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Compute Unified Device Architecture 
(CUDA)

Parallel computing 

architecture

Allows easy access to GPU

A back-end for different APIs

Application

CUDA

C/C++ OpenCL Fortran DirectX 
Compute …
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Threads and Blocks

One block is executed on 

one SM

Threads within a block can 

cooperate

Shared memory

__syncthreads()
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Multiprocessor Occupancy

Registers (r.) & Threads
8192 r. per Streaming Multiprocessor on 8800GTX

128 r. – way too many registers
r. ≤ 40: 6 active warps
r. ≤ 32: 8 active warps
r. ≤ 24: 10 active warps
r. ≤ 20: 12 active warps
r. ≤ 16: 16 active warps



Usecases



Ray tracing



Ray tracing

Natural rendering pipeline

Important tool for determining visibility



Research goals

Investigate rendering pipelines

Collaborative research with 

Moscow State University

http://graphics.cs.msu.ru/index.html.en�
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Path of a ray

Unknown number of rays

Ray workload and memory access is highly irregular

Register & Bandwidth pressure is high



Kd-tree
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Kd-tree

Registers – 13 min:
Ray – 6
t, tmin, tmax – 3
node – 2
tid, stack_top – 2
19 registers – is a practical number
Stack in local memory

tmax

tmin

C

t*

tmax

t* tmin

B

A tmax

tmin

t*



Kd-tree

Stack: 
Current Node: 

Tree traversing
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Kd-tree

Tree traversing
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Kd-tree

Tree traversing

RL

RRR

RRL

LRR

LLRLLLL LLLR

LRLL

LRLRL LRLRR

Stack: LLR, R
Current Node: LLL
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Kd-tree

Tree traversing
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We could stop here!
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Kd-tree

Tree traversing
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Kd-tree

Tree traversing
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Current Node: RRR
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Tree traversal

Different rays may run for different time

One thread can stall a whole block

Each thread needs a buffer to store all possible leafs

Worst case: a ray intersects all possible leafs of a tree



Tree traversal

Different rays may run for different time

Solution: Persistent threads

Each thread needs a buffer to store all possible leafs

Solution: Screen tiling



Persistent threads

Launch as many threads as possible 

Depends on HW architecture and kernel requisites

Keep all threads busy

Create a pool of rays to traverse a tree



Regular execution

tim
e

Warp 0 Warp 1 Warp 2 Warp 3

Disadvantages

Waiting until all threads finish execution to launch new block

Block 0

Block 1



Regular execution

tim
e

Warp 0 Warp 1 Warp 2 Warp 3

Block 0

Block 1

Disadvantages

Waiting until all threads finish execution to launch new block



Persistent threads execution

tim
e

Warp 0 Warp 1 Warp 2 Warp 3

Advantages

Workload is balanced between warps

Block 0



Screen Tiling

Split the screen into multiple tiles

Render tiles separately

Tiles of 128x128 / 256x256 work well

128x128 is still 16K of threads!

Allows easy multi-GPU performance scaling

Control over memory



Tree traversal

Screen is split into tiles (256x256)

Reserve place for a number of non-empty leafs 

Launch fixed number of threads



Ray

Select K Leaves

Generate Shadow 
Rays

Shaded cluster 
is sampled

Tree traversal  
kernel

Primitive 
intersection 

kernel

Material & Light 
Kernel

Shading 
Kernel

Ray-triangle 
intersect

Select Next Leaf

Select Next 
Primitive

Intersection found: 
Primitive ID

Generate Secondary 
Rays

Shading

Compute light 
equation

Tree traversal

Path of a ray



),(
),(

),(
),(
),(

),(
1

1

2

0

022

011

2

1

ETcrossQ
EDcrossP

vpT
vvE
vvE

DQdot
TPdot
EQdot

EPdot
v
u
t

=
=

−=
−=
−=
















=

















Ray-triangle intersection

Minimum storage ray-triangle intersection

v1

v0
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Ray-triangle intersection

Computational complexity (>30 MADs) 

Register Pressure (>23)
6 r. per ray
9 r. per triangle
3 r. for intersection result (t, u, v)
1 r. for Triangle Count
1 r. for loop index
1 r. for thread ID (tid)
2 r. min_t и min_id

v1

v0

v2

u
v

t1

z

p

D



Ray-triangle kernel

Each thread is mapped to a ray

Block of threads shares 
triangles (packet)

Each ray operates on its 
triangle



Ray-triangle intersection

triangles texture

threads

for (int i=0;i<triNum;i++)
{

(A,B,C) = tex1Dfetch(tex,i);
// intersection code

}

Each thread is mapped to a ray

Kernel takes 32 registers
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Ray-triangle intersection

Each thread is mapped to a ray

threads

triangles texture

for (int i=0;i<triNum;i++)
{

(A,B,C) = tex1Dfetch(tex,i);
// intersection code
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Ray-triangle intersection

Packet tracing

__shared__  sABC[N];

sABC[id] = tex1Dfetch(tex,i);
__syncthreads();

for (int i=0;i<N;i++)
{

(A,B,C) = sABC[i];
// intersection code

}Kernel takes 20 registers

triangles texture

shared memory

threads
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Ray-triangle intersection

Packet tracing

__shared__  sABC[N];

sABC[id] = tex1Dfetch(tex,i);
__syncthreads();

for (int i=0;i<N;i++)
{

(A,B,C) = sABC[i];
// intersection code

}

triangles texture

shared memory

threads

Kernel takes 20 registers



Ray-triangle intersection

Performance comparison

One thread per ray: 1x

Packet tracing: 1.3x



Ray

Select K Leaves

Generate Shadow 
Rays

Shaded cluster 
is sampled

Tree traversal  
kernel

Primitive 
intersection 

kernel

Material & Light 
Kernel

Shading 
Kernel

Ray-triangle 
intersect

Select Next Leaf

Select Next 
Primitive

Intersection found: 
Primitive ID

Generate Secondary 
Rays

Shading

Compute light 
equation

Tree traversal

Path of a ray



Ray

Select K Leaves

Generate Shadow 
Rays

Shaded cluster 
is sampled

Tree traversal  
kernel

Primitive 
intersection 

kernel

Material & Light 
Kernel

Shading 
Kernel

Ray-triangle 
intersect

Select Next Leaf

Select Next 
Primitive

Intersection found: 
Primitive ID

Generate Secondary 
Rays

Shading

Compute light 
equation

Tree traversal

Path of a ray



Uber-kernel

Uber kernel – a kernel of the following structure:

Ideally condition_A / condition_B … are constant per 
block

if ( condition_A )
{

Do_Work_A();
}
else if ( condition_B )
{

Do_Work_B();
}
…



Ray tracing Uber-kernel

Uber kernel – a kernel of the following structure:

if ( Leaf_List_is_Empty )
{

Select_K_Leafs();
}
else
{

Intersect_Trianles();
}
…



Ray-tracing: separate kernels

tim
e

Blocks 0 Blocks 1 Blocks 2 Blocks 3

Disadvantages

Waiting until traversal kernel finishes execution

Tree Traversal

Ray-Triangle 
Intersection
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Ray-tracing uber-kernel

tim
e

Blocks 0 Blocks 1 Blocks 2 Blocks 3

Advantages

Waiting until a block reaches the barrier

Tree Traversal

Ray-Triangle 
Intersection

Blocks 0 Blocks 1 Blocks 2 Blocks 3



Uber-kernel vs. Separate kernels

Pros
Work switching
Memory savings

Caution! 
Hard to profile 
Poor resources utilization
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Material & Light Kernel

Ray-tracing result: primitive ID and depth buffer

Points to primitive matrix, material, etc

For each pixel inside the tile evaluate:

Number of secondary rays

Number of shadow rays

Get total number of rays



Material & Light Kernel

Primitive ID

Reflection 
ray count

Refraction 
ray count

Shadow 
ray count

Diffuse 
ray count

0 0

1 0

0 0

0 0

1 1

1 1

0 0

1 1

5 5

0 1

5 5

1 1

0 0

0 0

1 1

0 0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

0 0

0 9

0 0

9 9

0 0

0 0

9 9

0 0

Number of rays depends on 

material and light properties



Histogram Pyramid

Use histogram pyramid for stream compaction
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Histogram Pyramid
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Histogram Pyramid

0 0 6 71 4 9

0 1 1 23 2 1 0

1 5 3 1

6 4
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10

Use histogram pyramid for stream compaction



Material & Light Kernel

Read back the total number of rays required

Check if resources are available

Send generated rays to tree traversal & primitive 

intersection stage



Ray

Select K Leaves

Generate Shadow 
Rays

Shaded cluster 
is sampled

Tree traversal  
kernel

Primitive 
intersection 

kernel

Material & Light 
Kernel

Shading 
Kernel

Ray-triangle 
intersect

Select Next Leaf

Select Next 
Primitive

Intersection found: 
Primitive ID

Generate Secondary 
Rays

Shading

Compute light 
equation

Tree traversal

Path of a ray



Shading

Deferred rendering style



Ray-tracing & Global Illumination

To simulate global illumination we can:

Path-tracing: trace multiple rays through each pixel

Photon mapping: trace photons from light source



Photon mapping

Brute force solution:

Trace N photons from the light 
source

Create lists of photons for each Kd-
tree node

For each visible pixel:

Collect photons that are within 
radius R



REYES 
Pipeline



REYES

Micropolygonal rendering pipeline

Industrial standard for high-quality 

rendering

Widely used in film production



Research

[Zhou09]

[Patney08]

Problems of implementing REYES on CUDA are 

common to many tasks in parallel computing 



Peculiarities

A lot of uniform, non-divergent computations

Natural parallelism exposed through bucketing

Amount of work per input data element may vary 

significantly

Some stages of pipeline can generate enormous 

amounts of data



Implementation Design

The idea is to implement REYES as a set of kernels 

which communicate through queues

This allows implementing advanced scheduling schemes

Kernel

input

output

input

output
Queue

Queue

Kernel



Pipeline overview

Transforms control points

Bounds and splits patches

Uberkernel which can do 

dicing, shading and sampling

Map A-buffer to screen buffer

Transformation 
kernel

Subdivision
kernel

Dice/Shade/Sample 
kernel

Map A-buffer 
to screen

input

output



Why queues?

High-level memory access interface

Push()/Pop()-style access

Encapsulates complex memory management schemes

Queue-specific tricks 

Recursive processing

Workload management



Transformation 
queue

patch
Model-view 

transformations
Subdivision 
check failed

Subdivision check 
passed

Dicing queue

Shading 
queue

Transformed to 
a set of diced 
microquads

The microquad
is shaded

Sampling 
queue Shaded quad is 

sampled

ABuffer

Screen 
buffer

Transformation 
kernel

Subdivision 
kernel

Dice/Shade/Sample 
kernel

Mapping 
kernel

Path of the Patch

Subdivision queue



Queues

High-level memory access interface

Map()/Unmap() routines

Implicitly perform scan inside Map() calls

All threads get access to memory synchronously



Scan operation

Prefix sum

Fundamental operation used in GPU computing

Allows managing the memory depending on the needs  

of each thread



data buffer

Scan operation

1 1 2 2 1 1 4 1

0 1

Can be performed by sequentially summing elements

This implementation is not suited for parallel execution

2 4 6 7 8 12



S
ca

n
Scan operation

1 1 2 2 1 1 4 1

1 1 2 2 1 1 40

0 1 2 3 4 3 2 5

10 2 4 6 6 6 8

1 2 40 6 7 8 12

0 1 2 4 6 7 8 12

The naïve (n log(n) complexity) scan approach is used



S
ca

n
Scan operation

1 1 2 2 1 1 4 1

1 1 2 2 1 1 40

1 2 3 4 3 2 50

1 2 4 6 6 6 80

1 2 4 6 7 8 120

0 1 2 4 6 7 8 12

The naïve (n log(n) complexity) scan approach is used



Scan operation

For more work efficient Scan approaches, see [Harris07]



Queues
Thread 

0
Thread 

1
Thread 

2
Thread 

3
Thread 

4
Thread 

5
Thread 

6
Thread 

7

Calling Map()
Map(1) Map(1) Map(2) Map(2) Map(1) Map(1) Map(4) Map(1)
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1
Thread 

2
Thread 

3
Thread 

4
Thread 

5
Thread 

6
Thread 
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Calling Map()
Map(1) Map(1) Map(2) Map(2) Map(1) Map(1) Map(4) Map(1)
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Thread 
0

Thread 
1

Thread 
2

Thread 
3

Thread 
4

Thread 
5

Thread 
6

Thread 
7

Queues

Calling Map()
Map(1) Map(1) Map(2) Map(2) Map(1) Map(1) Map(4) Map(1)

Performing
scan

1 1 2 2 1 1 4 1

0 1 2 4 6 7 8 12

Accessing data
Read(0) Read(1) Read(2) Read(4) Read(6) Read(7) Read(8) Read(12)



Advantages of using scan

Used when a lot of threads need to access one shared 

resource

Advantages:

All threads get access to data synchronously

No racing conditions and deadlocks



Kernels
in detail



Grid

Bucketed rendering

Each block in a kernel grid processes one screen tile

Block (1, 0)Block (0, 0)

Block (1, 1)Block (0, 1)

Block (1, 2)

Blo

Blo

BloBlock (0, 2)
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Grid

Block (1, 0)Block (0, 0)

Block (1, 1)Block (0, 1)

Block (1, 2)

Blo

Blo

BloBlock (0, 2)

Bucketed rendering

Each block in a kernel grid processes one screen tile



Bucketed rendering

Subdivision
block

Dice/Shade/Sample 
block

A-buffer to screen mapping

Input 
queue

output

Subdivision
block

Dice/Shade/Sample 
block

Subdivision
block

Dice/Shade/Sample 
block

. . .

. . .
A-buffer tile 0 A-buffer tile 1 A-buffer tile N-1

Input 
queue

Input 
queue



Undetermined workload

Data parallelism is not well-suited when amount of 

input data is undetermined

Need to schedule kernel execution on CPU

1562 
quads

420 
quads

1298 
quads

308 
quads



Persistent threads

Launch as many threads as possible on GPU

Use work stealing scheme to balance workload 

between threads

Kernel works until the job is done



Persistent threads

Advantages

Workload is balanced between warps automatically
tim

e
Warp 0 Warp 1 Warp 2 Warp 3



Persistent threads

Trick

Can write data back to the input buffer

Allows performing recursion

Input buffer

Persistent 
kernel

Output

Processed 
data

Input



Subdivision kernel

Subdivide

Input queue

Output queue

OK

fail

Discard

Bucket 
check

fail

OK Subdivision 
check

Take a patch from input FIFO

Perform bucket check

Perform subdivision check

Subdivide and store the 

results



Working within limited memory

Dicing kernel can generate enormous amounts of 

data

Need to pipeline the computations to fit the limited 

amount of memory



Uber-kernel

Kernel capable of doing multiple types of job

Can pipeline the computations

Regular 
kernel

Dicing Dicing



Dice/Shade/Sample kernel

Uber-kernel capable of dicing, shading and sampling

Switch between jobs is based on the state of input 

queues

Uber
kernel

Dicing Shading Sampling



Dicing
kernel

Do dicing

Dicing queue

Shading queue

Do shading

Sampling queue

Do sampling

Shading
kernel

Sampling
kernel

Requires feedback from 

GPU to CPU and some 

scheduling logic on the 

host side 

Regular kernels



Uber-kernel

Do dicing

Dicing queue

Shading queueDo shading

Sampling queue

When shading queue 
is full, switch to 

shading

Do sampling

When sampling queue 
is full, proceed with 

sampling

Do dicing

Dicing queue

Shading queue

If there is something 
left in dicing queue, 

return to dicing

Uber-kernel



Dice/Shade/Sample kernel

Allows to pipeline the computation process within 
the limited amount of memory
Doesn’t require CPU readbacks and additional host-
side scheduling



A-buffer
A-buffer is a set of 

pixels

Color = 1.0, 0.0, 1.0, 0.7
Depth = 0.9

Color = 1.0, 1.0, 1.0, 0.1
Depth = 0.5

Color = 1.0, 0.0, 1.0, 0.5
Depth = 0.7

Color = 0.0, 1.0, 0.0, 1.0
Depth = 0.1

empty

empty

…

Pixel is a set of 

samples

Each sample can 

contain up to N 

color/depth pairs



Synchronizing access to samples

Color; Depth

empty

empty

…

A-buffer is a shared resource
Use atomics to secure the slot

.

.

.

.

.

.

.

.

.

Thread 0 Thread 1 Thread 2Count = 1

empty

empty

empty



Synchronizing access to samples

Color; Depth

empty

empty

…

A-buffer is a shared resource
Use atomics to secure the slot

.

.

.
Write

Inc( count )

.

.

.

.

.

.

.

.

.

.

Thread 0 Thread 1 Thread 2Count = 2

empty

empty

Color; Depth



Synchronizing access to samples

Color; Depth

Color; Depth

empty

empty

…

A-buffer is a shared resource
Use atomics to secure the slot

.

.

.

.

.

.

.
Write

.

.

.

.

.

.

.
Write

Thread 0 Thread 1 Thread 2Count = 2

empty

empty

.

.

.
Write

Inc( count )



Synchronizing access to samples

Color; Depth

Color; Depth

Color; Depth

empty

empty

…

A-buffer is a shared resource
Use atomics to secure the slot

.

.

.

.

.

.

.
Write

Inc( count )

.

.

.

.

.

.

.
Write

Thread 0 Thread 1 Thread 2Count = 3

empty

.

.

.
Write

Inc( count )



Synchronizing access to samples

Color; Depth

Color; Depth

Color; Depth

empty

empty

…

A-buffer is a shared resource
Use atomics to secure the slot

Thread 0 Thread 1 Thread 2Count = 4

Color; Depth

.

.

.

.

.

.

.
Write

Inc( count )

.

.

.

.

.

.

.
Write

Inc( count )

.

.

.
Write

Inc( count )



Mapping A-buffer to screen
Sort and blend all color/depth pairs per sample

Sum all samples in pixel to get final pixel color

4 samples 

per pixel



Mapping A-buffer to screen
Sort and blend all color/depth pairs per sample

Sum all samples in pixel to get final pixel color

9 samples 

per pixel



Demo

Vortigaunt model

Resolution: 512x512 pixels

9 samples per pixel

Shading rate: 0.25

~4 microquads per pixel

Rendering time: ~150ms
Vortigaunt model © Valve Software




Performance: persistent threads

Subdivision kernel via persistent threads

vs

Regular threads with CPU readbacks

Regular threads Persistent threads Perf improvement

Bucket time 110ms 40ms 3x



Performance: uber-kernel

Dice/Shade/Sample kernel

vs

Separate kernels and CPU scheduling

Separate kernels Uber-kernel Perf improvement

Bucket time 500ms 110ms 5x



Future work



Future work

Implement completely GPU-accelerated 

photorealistic renderer

Use REYES pipeline to generate fine picture

Use photon mapping to compute global 

illumination



Idea

Use REYES to rasterize a picture

Compute eye-rays during rasterization

During subdivision stage REYES pipeline would 

generate a set of triangles

Use these triangles and eye-rays to compute GI



Idea

Subdivision

REYES 
dice/sample

Combine final image

input

output

Subdivided 
triangles

Photon mapping

Ray tracing

Triangles

Eye-rays

Photon map



Conclusion



Conclusion

CUDA has proven to be a powerful instrument for 

computation-heavy tasks in computer graphics

CUDA can also be used in tasks which generate 

non-uniform work and which are not easy to 

parallelize

Scheduling mechanisms can be implemented in 

CUDA to allow better workload and memory 

balancing



Keep in mind

Persistent threads

Uber-kernels

Work stealing

Scan (Prefix sum)

Histogram pyramids

Tiling / Bucketing



Thanks!
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