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Introduction

» Graphics hardware feature set is starting 
to stabilize and mature

» But new general-purpose compute 
functionality (DirectX Compute Shader)
 - enables new graphical effects
 - allows more of game computation to move 

to the GPU
 - Physics, AI, image processing

» Fast hardware graphics combined with 
compute is a powerful combination!

» Next generation consoles will likely also 
follow this path



Overview

» DirectX 10 Effects
 Volumetric Particle Shadowing
 Horizon Based Ambient Occlusion 

(HBAO)

» DirectX Compute Shader
 Brief introduction
 Compute Shader on DX10 hardware
 Demos



Volumetric Particle 
Shadowing



Particle Systems in 
Today’s Games
» Commonly used for smoke, explosions, 

spark effects
» Typically use relatively small number of 

large particles (10,000s)
» Rendered using point sprites with 

painted or pre-rendered textures
 Use animation / movies to hide large particles

» Sometimes include some lighting effects
 normal mapping

» Don’t interact much with scene
 No collisions



Particle Systems in 
Today’s Games
» Can get some great effects with 

current technology

World in Conflict, Ubisoft / Massive



Tomorrow’s Particle 
Systems
» Will likely be more similar to particle 

effects used in film
» Millions of particles
» Driven by physical simulations

 With artist control

» Interaction (collisions) with scene and 
characters

» Simulation using custom compute 
shaders or physics middleware

» High quality shading and shadowing



Tomorrow’s Particle 
Systems - Example

Low Viscosity Flow Simulations for Animation, Molemaker et al., 2008



Volume Shadowing

» Shadows are very important for 
diffuse volumes like smoke
 - show density and shape

» Not much diffuse reflection from a 
cloud of smoke
 - traditional lighting doesn’t help 

much
» Usually achieved in off-line 

rendering using deep shadow 
maps
 - still too expensive for real time



Volume Shadowing

Before After



Half-Angle Slice 
Rendering
» Very simple idea
» Based on a volume rendering 

technique by Joe Kniss et. Al [1]
» Only requires sorting particles 

along a given axis
 - you’re probably already doing this

» Plus a single 2D shadow texture
 - no 3D textures required

» Works well with simulation and 
sorting done on GPU (compute)



Half-Angle Slice 
Rendering
» Calculate vector half way between 

light and view direction
» Render particles in slices 

perpendicular to this half-angle 
vector



Why Use The
Half-Angle?
» Same slices are visible to both camera 

and light
» Lets us accumulate shadowing to  

shadow buffer at the same time as we 
are rendering to the screen

» First render slices from light POV to 
shadow map, and then to the screen



Half-Angle Slice 
Rendering
» Need to change rendering direction (and blend 

mode) based on dot(l, v)
» if (dot(l, v) > 0) - render front-to-back (case a)
» if (dot(l,v ) < 0) – render back-to-front (case b)
» Always render from front-to-back w.r.t. light



Rendering Slices

» Sort particles along half-angle axis
 - based on dot(p, s)
 - can be done very quickly using compute 

shader
» Choose a number of slices

 - more slices improves quality
 - but causes more draw calls and render 

target switches
» batchSize = numParticles / numSlices
» Render slices as batches of particles 

starting at i*batchSize
» Render particles as billboards using 

Geometry Shader



Pseudo-Code
If (dot(v, l) > 0) {

h = normalize(v + l)
dir = front-to-back

} else {
h = normalize(-v + l)
dir = back-to-front

}
sort particles along h
batchSize = numParticles / numSlices
for(i=0; i<numSlices; i++) {

draw particles to screen
looking up in shadow buffer

draw particles to shadow buffer
}



Tricks & Tips

» Shadow buffer can be quite low 
resolution (e.g. 256 x 256)

» Can also use final shadow buffer to 
shadow scene

» Screen image can also be rendered 
at reduced resolution (2 or 4x)
 Requires destination alpha for front-

to-back (under) blending

» Can blur shadow buffer at each 
iteration to simulate scattering:



Without Scattering



With Scattering



Particle Shadows in
Shattered Horizon TM

Courtesy Futuremark Games Studio



Demo



Volume Shadowing -
Conclusion
» Very simple to add to existing particle 

system renderer
» Only requires depth-sorting along a 

different axis
 - Can be done using CPU radix sort or 

Compute

» Plus a single 2D shadow map
» Can simulate millions of particles on the 

GPU in real-time
» DirectX 10 SDK sample coming soon



Horizon Based 
Ambient Occlusion



Ambient Occlusion

» Simulates lighting
from hemi-spherical
sky light

» Occlusion amount is 
% of rays that hit
something within a 
given radius R

» Usually solved offline 
using ray-tracing

scene

P

N

R



Ambient Occlusion

» Gives perceptual clues to depth, 
curvature and spatial proximity

Without AO With AO



Screen Space Ambient 
Occlusion (SSAO)

» Has become very popular!
» Renders approximate AO 

for dynamic scenes with 
no precomputation

» Approach introduced by
[Shanmugam and Orikan 
07] [Mittring 07]
[Fox and Compton 08]

» Input - Z-Buffer
+ normals

» Z-Buffer = Height field
 z = f(x,y)

eye

image plane

Z-Buffer



Horizon Based Ambient 
Occlusion (HBAO)

» SSAO technique
» Based on ideas from horizon 

mapping [Max 1986]
» Goal = approximate the result of 

ray tracing the depth buffer in 
2.5D

» Scalable – performance vs. quality
» Details in ShaderX7 [2]



Ray Traced AO

Several minutes with Gelato and 64 rays per pixel



HBAO with large radius

Interactive HBAO with 16x64 depth samples per pixel 



HBAO with large radius

Interactive HBAO with 16x16 depth samples per pixel 



“Crease shading” look
with 6x6 depth samples per pixel

HBAO with small radius



“Crease shading” look
with 4x8 depth samples per pixel

HBAO with small radius



Integration in Games

» Implemented in DirectX 9 and 
DirectX 10

» Has been used successfully in 
several shipping games



Age Of Conan
Without HBAO



Age Of Conan
with HBAO



Sampling the Depth 
Image
» Estimate occlusion by 

sampling depth image
» Use uniform 

distribution of 
directions per pixel
 Fixed number of

samples / dir

» Per-pixel randomization
 Rotate directions by 

random per-pixel angle
 Jitter samples along ray 

by a random offset

P

u

v



Noise

» Per-pixel randomization generates 
visible noise

AO with 6 directions x 6 steps/dir



Cross Bilateral Filter

» Blur the ambient occlusion to 
remove noise

» Depth-dependent Gaussian blur
 [Petschnigg et al. 04]

[Eisemann and Durand 04] 
 - Reduces blurring across edges

» Although it is a non-separable 
filter, we apply it separately in the 
X and Y directions
 No significant artifacts visible



Cross Bilateral Filter

Without Blur With 15x15 Blur



Rendering Pipeline
Render opaque 

geometry

Render AO
(Half or Full Res)

Blur AO in X

Blur AO in Y

Modulate Color

(eye-space
normals)

eye-space
depths

colors

Unprojection parameters
(fovy and aspect ratio)

Eye-space radius R
Number of directions
Number of steps / direction

Kernel radius
Spatial sigma
Range sigma



Half-Resolution AO
6x6 (36) samples / AO pixel
No Blur



Half-Resolution AO
6x6 (36) samples / AO pixel
15x15 Blur



Full-Resolution AO
6x6 (36) samples / AO pixel
15x15 Blur



Full-Resolution AO
16x16 (256) samples / pixel
No Blur



Full-Resolution AO
16x32 (512) samples / pixel
No Blur



Demo



HBAO - Conclusion

» DirectX10 SDK sample
 Now available on developer.nvidia.com

 Including video and whitepaper

» DirectX9 and OpenGL samples to be 
released soon

» Easy to integrate into a game engine
 Rendered as a post-processing pass
 Only requires eye-space depths (normals can 

be derived from depth)

» More details in ShaderX7 (to appear)



DirectX 11



DirectX
Compute Shader
» New shader type supported in D3D11

 Designed for general purpose processing
» Doesn’t require a separate API -

integrated with D3D
 Shares memory resources with graphics 

shaders
» Thread invocation is decoupled from 

input or output domains
 Single thread can process one or many data 

elements
» Can share data between threads
» Supports random access memory writes



Compute Shaders on 
D3D10 Hardware
» Subset of the D3D11 compute shader 

functionality that runs on current 
D3D10.x hardware
 From NVIDIA and AMD

» Drivers available now from NVIDIA and 
AMD

» You can start experimenting with 
compute shaders today!



Compute Shader 4.0

» New shader models - CS4.0/CS4.1
 Based on vertex shader VS4.0/VS4.1 

instruction set
 CS4.1 includes D3D10.1 features

 Texture cube arrays etc.

» Check for support using caps bit:
 ComputeShaders_Plus_RawAndStructuredBuffers_Via_

Shader_4_x

» Adds:
 New Compute Shader inputs:
 vThreadID, vThreadIDInGroup, 
vThreadGroupID, and 
vThreadIDInGroupFlattened

 Support for raw and structured buffers



What’s Missing in CS4.0 
Compared to CS5.0?

» Atomic operations
» Append/consume
» Typed UAV

(unordered access view)

» Double precision
» DispatchIndirect()

» Still a lot you can do!



Other Differences

» Only a single output UAV allowed
 Not a huge restriction in practice

» Thread group grid dimensions limited to 
65535
 Z dimension must be 1 (no 3D grids)

» Thread group size is restricted to 
maximum of 768 threads total
 1024 on D3D11 hardware

» Thread group shared memory restricted 
to 16KB total
 32Kb on D3D11 hardware



Thread Group Shared 
Memory Restrictions
» Each thread can only write to its 

own region of shared memory
» Write-only region has maximum 

size of 256 bytes, and depends on 
the number of threads in group

» Writes to shared memory must 
use a literal offset into the region

» Threads can still read from any 
location in the shared memory



So What Does
CS4.x Give Me?
» Scattered writes

 Via “unordered access views”
 Write to any address in a buffer
 Was possible before by rendering points, but 

not efficient
 Enables many new algorithms – sorting, 

parallel data structures
» Thread Group Shared Memory

 Allows sharing data between threads
 Much faster than texture or buffer reads, 

saves bandwidth
 Fast reductions, prefix sum (scan)

» Efficient interoperability with D3D 
graphics



Optimizing Compute 
Shaders
» Context switching

 - try to avoid switching between 
compute and graphics shaders too 
often

 - ideally only once per frame

» Use shared memory to save 
bandwidth where possible
 - think of it as a small user-managed 

cache



Optimizing CS Memory 
Access on NVIDIA D3D10 
Hardware 

» Some restrictions for optimal 
performance on NVIDIA GeForce 8/9 
series:
 (Less of an issue on GeForce GTS series)

» Reads and writes to structured buffers 
should be linear and aligned
 thread i should read/write to location i

» Allows hardware to “coalesce” memory 
accesses into a minimum number of 
transactions

» Use textures if you want random read 
access



Applications

» Image processing
 Reductions, Tone mapping
 Blurs, Image Compression

» Physics
 Particle systems, Fluids
 Collision detection

» AI
 Path finding

» Animation
 Advanced skinning and deformations



Examples

» N-Body Simulation
» Colliding Particles
» Image Processing – Box Blur
» Ocean



N-Body Simulation

» Simulates motion of bodies under 
gravity

» Uses brute force n2 comparisons
» Uses shared memory to re-use 

body positions among threads
 Reduces bandwidth massively

» 30,720 bodies



N-Body CS Code
// all positions, then all velocities

RWStructuredBuffer<float4> particles;

float3 

bodyBodyInteraction(float4 bi, float4 bj) 

{

// r_ij  [3 FLOPS]

float3 r = bi - bj;

// distSqr = dot(r_ij, r_ij) + EPS^2  [6 FLOPS]

float distSqr = dot(r, r);

distSqr += g_softeningSquared;

float invDist = 1.0f / sqrt(distSqr);

float invDistCube =  invDist * invDist * invDist;

float s = bj.w * invDistCube;

// a_i =  a_i + s * r_ij [6 FLOPS]  

return r*s;

}



N-Body CS Code (2)
// body positions in shared memory

groupshared float4 sharedPos[BLOCK_SIZE];

float3 gravitation(float4 myPos, float3 accel)

{

// unroll the loop

[unroll]

for (unsigned int counter = 0; counter < BLOCK_SIZE; counter++) 

{

accel += bodyBodyInteraction(sharedPos[counter], myPos); 

}

return accel;

}



N-Body CS Code (3)
float3 computeBodyAccel(float4 bodyPos, uint threadId, uint blockId)

{

float3 acceleration = {0.0f, 0.0f, 0.0f};

uint p = BLOCK_SIZE;

uint n = g_numParticles;

uint numTiles = n / p;

for (uint tile = 0; tile < numTiles; tile++) 

{

// load to shared memory

sharedPos[threadId] = particles[g_readOffset + tile * p + 
threadId];

GroupMemoryBarrierWithGroupSync();

acceleration = gravitation(bodyPos, acceleration);

GroupMemoryBarrierWithGroupSync();

}

return acceleration;

}



N-Body CS Code (4)
[numthreads(BLOCK_SIZE,1,1)]

void UpdateParticles(uint threadId : SV_GroupIndex,

uint3 groupId        : SV_GroupID,

uint3 globalThreadId : SV_DispatchThreadID)

{

float4 pos = particles[g_readOffset + globalThreadId.x]; 

float4 vel = particles[2 * g_numParticles + globalThreadId.x]; 

float3 accel = computeBodyAccel(pos, threadId, groupId);

vel.xyz += accel * g_timestep;

pos.xyz += vel   * g_timestep;

particles[g_writeOffset + globalThreadId.x]      = pos;

particles[2 * g_numParticles + globalThreadId.x] = vel;

}



N-Body Simulation



Colliding Particles

» Simulates large number of 
particles with collisions

» Uses uniform grid to find 
neighboring particles quickly

» Grid implemented using parallel 
bitonic sort (uses scattered writes)
 Calculate which grid cell each particle 

it is in
 Sort particles by cell index
 Find start and end of each cell in 

sorted list



Particles Demo



Rolling Box Filter Blur

» Computes box filter of any radius for 
constant cost
 Only 2 adds, one multiply per pixel

» Takes advantage of scattered writes 
available in CS

» Uses one thread per row/column in the 
image
 Parallelism is limited by image size

» At each step, adds incoming new pixel, 
subtracts pixel leaving window

» Can be iterated to approximate Gaussian 
blur



Rolling Box Blur

…

+



Rolling Box Blur

…+-

+



Rolling Box Blur

…+-

+



Box Blur CS Code
Texture2D<float4> Input

RWStructuredBuffer<float4> Output;

[numthreads(256,1,1)]

void boxBlurY(uint3 globalThreadID : SV_DispatchThreadID)

{

uint x = globalThreadID.x;

if (x >= imageW) return;

float scale = 1.0f / (2*blurRadius+1);

float4 t = 0.0f;

for(int y=-blurRadius; y<=blurRadius; y++) {

t += Input.Load(int3(x, y, 0));

}

Output[x] = t * scale;

for(y=1; y<imageH; y++) {

t += Input.Load(int3(x, y + blurRadius, 0));

t -= Input.Load(int3(x, y - blurRadius - 1, 0));

Output[y*imageW+x] = t * scale;

}

}



Rolling Box Blur



Rolling Box Blur



Rolling Box Blur



Rolling Box Blur



FFT Ocean

» Generates ocean height field using 
Compute Shader to compute FFT

» See: Tessendorf, “Simulating 
Ocean Water”

» Synthesize waves in frequency 
space based on statistical model

» Use C2R FFT to convert to spatial 
domain

» Heightfield tiles naturally



FFT Ocean



Summary

» DirectX Compute Shader offers 
many opportunities for offloading 
CPU processing to the GPU

» …and producing unique new 
effects for your game

» Can achieve much higher 
performance than vertex or pixel 
shader based solutions

» Can start developing today on 
current hardware



Questions?
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