

DirectX 10/11
Visual Effects
Simon Green, NVIDIA

Introduction

» Graphics hardware feature set is starting
to stabilize and mature

» But new general-purpose compute
functionality (DirectX Compute Shader)
 - enables new graphical effects
 - allows more of game computation to move

to the GPU
 - Physics, AI, image processing

» Fast hardware graphics combined with
compute is a powerful combination!

» Next generation consoles will likely also
follow this path

Overview

» DirectX 10 Effects
 Volumetric Particle Shadowing
 Horizon Based Ambient Occlusion

(HBAO)

» DirectX Compute Shader
 Brief introduction
 Compute Shader on DX10 hardware
 Demos

Volumetric Particle
Shadowing

Particle Systems in
Today’s Games
» Commonly used for smoke, explosions,

spark effects
» Typically use relatively small number of

large particles (10,000s)
» Rendered using point sprites with

painted or pre-rendered textures
 Use animation / movies to hide large particles

» Sometimes include some lighting effects
 normal mapping

» Don’t interact much with scene
 No collisions

Particle Systems in
Today’s Games
» Can get some great effects with

current technology

World in Conflict, Ubisoft / Massive

Tomorrow’s Particle
Systems
» Will likely be more similar to particle

effects used in film
» Millions of particles
» Driven by physical simulations

 With artist control

» Interaction (collisions) with scene and
characters

» Simulation using custom compute
shaders or physics middleware

» High quality shading and shadowing

Tomorrow’s Particle
Systems - Example

Low Viscosity Flow Simulations for Animation, Molemaker et al., 2008

Volume Shadowing

» Shadows are very important for
diffuse volumes like smoke
 - show density and shape

» Not much diffuse reflection from a
cloud of smoke
 - traditional lighting doesn’t help

much
» Usually achieved in off-line

rendering using deep shadow
maps
 - still too expensive for real time

Volume Shadowing

Before After

Half-Angle Slice
Rendering
» Very simple idea
» Based on a volume rendering

technique by Joe Kniss et. Al [1]
» Only requires sorting particles

along a given axis
 - you’re probably already doing this

» Plus a single 2D shadow texture
 - no 3D textures required

» Works well with simulation and
sorting done on GPU (compute)

Half-Angle Slice
Rendering
» Calculate vector half way between

light and view direction
» Render particles in slices

perpendicular to this half-angle
vector

Why Use The
Half-Angle?
» Same slices are visible to both camera

and light
» Lets us accumulate shadowing to

shadow buffer at the same time as we
are rendering to the screen

» First render slices from light POV to
shadow map, and then to the screen

Half-Angle Slice
Rendering
» Need to change rendering direction (and blend

mode) based on dot(l, v)
» if (dot(l, v) > 0) - render front-to-back (case a)
» if (dot(l,v) < 0) – render back-to-front (case b)
» Always render from front-to-back w.r.t. light

Rendering Slices

» Sort particles along half-angle axis
 - based on dot(p, s)
 - can be done very quickly using compute

shader
» Choose a number of slices

 - more slices improves quality
 - but causes more draw calls and render

target switches
» batchSize = numParticles / numSlices
» Render slices as batches of particles

starting at i*batchSize
» Render particles as billboards using

Geometry Shader

Pseudo-Code
If (dot(v, l) > 0) {

h = normalize(v + l)
dir = front-to-back

} else {
h = normalize(-v + l)
dir = back-to-front

}
sort particles along h
batchSize = numParticles / numSlices
for(i=0; i<numSlices; i++) {

draw particles to screen
looking up in shadow buffer

draw particles to shadow buffer
}

Tricks & Tips

» Shadow buffer can be quite low
resolution (e.g. 256 x 256)

» Can also use final shadow buffer to
shadow scene

» Screen image can also be rendered
at reduced resolution (2 or 4x)
 Requires destination alpha for front-

to-back (under) blending

» Can blur shadow buffer at each
iteration to simulate scattering:

Without Scattering

With Scattering

Particle Shadows in
Shattered Horizon TM

Courtesy Futuremark Games Studio

Demo

Volume Shadowing -
Conclusion
» Very simple to add to existing particle

system renderer
» Only requires depth-sorting along a

different axis
 - Can be done using CPU radix sort or

Compute

» Plus a single 2D shadow map
» Can simulate millions of particles on the

GPU in real-time
» DirectX 10 SDK sample coming soon

Horizon Based
Ambient Occlusion

Ambient Occlusion

» Simulates lighting
from hemi-spherical
sky light

» Occlusion amount is
% of rays that hit
something within a
given radius R

» Usually solved offline
using ray-tracing

scene

P

N

R

Ambient Occlusion

» Gives perceptual clues to depth,
curvature and spatial proximity

Without AO With AO

Screen Space Ambient
Occlusion (SSAO)

» Has become very popular!
» Renders approximate AO

for dynamic scenes with
no precomputation

» Approach introduced by
[Shanmugam and Orikan
07] [Mittring 07]
[Fox and Compton 08]

» Input - Z-Buffer
+ normals

» Z-Buffer = Height field
 z = f(x,y)

eye

image plane

Z-Buffer

Horizon Based Ambient
Occlusion (HBAO)

» SSAO technique
» Based on ideas from horizon

mapping [Max 1986]
» Goal = approximate the result of

ray tracing the depth buffer in
2.5D

» Scalable – performance vs. quality
» Details in ShaderX7 [2]

Ray Traced AO

Several minutes with Gelato and 64 rays per pixel

HBAO with large radius

Interactive HBAO with 16x64 depth samples per pixel

HBAO with large radius

Interactive HBAO with 16x16 depth samples per pixel

“Crease shading” look
with 6x6 depth samples per pixel

HBAO with small radius

“Crease shading” look
with 4x8 depth samples per pixel

HBAO with small radius

Integration in Games

» Implemented in DirectX 9 and
DirectX 10

» Has been used successfully in
several shipping games

Age Of Conan
Without HBAO

Age Of Conan
with HBAO

Sampling the Depth
Image
» Estimate occlusion by

sampling depth image
» Use uniform

distribution of
directions per pixel
 Fixed number of

samples / dir

» Per-pixel randomization
 Rotate directions by

random per-pixel angle
 Jitter samples along ray

by a random offset

P

u

v

Noise

» Per-pixel randomization generates
visible noise

AO with 6 directions x 6 steps/dir

Cross Bilateral Filter

» Blur the ambient occlusion to
remove noise

» Depth-dependent Gaussian blur
 [Petschnigg et al. 04]

[Eisemann and Durand 04]
 - Reduces blurring across edges

» Although it is a non-separable
filter, we apply it separately in the
X and Y directions
 No significant artifacts visible

Cross Bilateral Filter

Without Blur With 15x15 Blur

Rendering Pipeline
Render opaque

geometry

Render AO
(Half or Full Res)

Blur AO in X

Blur AO in Y

Modulate Color

(eye-space
normals)

eye-space
depths

colors

Unprojection parameters
(fovy and aspect ratio)

Eye-space radius R
Number of directions
Number of steps / direction

Kernel radius
Spatial sigma
Range sigma

Half-Resolution AO
6x6 (36) samples / AO pixel
No Blur

Half-Resolution AO
6x6 (36) samples / AO pixel
15x15 Blur

Full-Resolution AO
6x6 (36) samples / AO pixel
15x15 Blur

Full-Resolution AO
16x16 (256) samples / pixel
No Blur

Full-Resolution AO
16x32 (512) samples / pixel
No Blur

Demo

HBAO - Conclusion

» DirectX10 SDK sample
 Now available on developer.nvidia.com

 Including video and whitepaper

» DirectX9 and OpenGL samples to be
released soon

» Easy to integrate into a game engine
 Rendered as a post-processing pass
 Only requires eye-space depths (normals can

be derived from depth)

» More details in ShaderX7 (to appear)

DirectX 11

DirectX
Compute Shader
» New shader type supported in D3D11

 Designed for general purpose processing
» Doesn’t require a separate API -

integrated with D3D
 Shares memory resources with graphics

shaders
» Thread invocation is decoupled from

input or output domains
 Single thread can process one or many data

elements
» Can share data between threads
» Supports random access memory writes

Compute Shaders on
D3D10 Hardware
» Subset of the D3D11 compute shader

functionality that runs on current
D3D10.x hardware
 From NVIDIA and AMD

» Drivers available now from NVIDIA and
AMD

» You can start experimenting with
compute shaders today!

Compute Shader 4.0

» New shader models - CS4.0/CS4.1
 Based on vertex shader VS4.0/VS4.1

instruction set
 CS4.1 includes D3D10.1 features

 Texture cube arrays etc.

» Check for support using caps bit:
 ComputeShaders_Plus_RawAndStructuredBuffers_Via_

Shader_4_x

» Adds:
 New Compute Shader inputs:
 vThreadID, vThreadIDInGroup,
vThreadGroupID, and
vThreadIDInGroupFlattened

 Support for raw and structured buffers

What’s Missing in CS4.0
Compared to CS5.0?

» Atomic operations
» Append/consume
» Typed UAV

(unordered access view)

» Double precision
» DispatchIndirect()

» Still a lot you can do!

Other Differences

» Only a single output UAV allowed
 Not a huge restriction in practice

» Thread group grid dimensions limited to
65535
 Z dimension must be 1 (no 3D grids)

» Thread group size is restricted to
maximum of 768 threads total
 1024 on D3D11 hardware

» Thread group shared memory restricted
to 16KB total
 32Kb on D3D11 hardware

Thread Group Shared
Memory Restrictions
» Each thread can only write to its

own region of shared memory
» Write-only region has maximum

size of 256 bytes, and depends on
the number of threads in group

» Writes to shared memory must
use a literal offset into the region

» Threads can still read from any
location in the shared memory

So What Does
CS4.x Give Me?
» Scattered writes

 Via “unordered access views”
 Write to any address in a buffer
 Was possible before by rendering points, but

not efficient
 Enables many new algorithms – sorting,

parallel data structures
» Thread Group Shared Memory

 Allows sharing data between threads
 Much faster than texture or buffer reads,

saves bandwidth
 Fast reductions, prefix sum (scan)

» Efficient interoperability with D3D
graphics

Optimizing Compute
Shaders
» Context switching

 - try to avoid switching between
compute and graphics shaders too
often

 - ideally only once per frame

» Use shared memory to save
bandwidth where possible
 - think of it as a small user-managed

cache

Optimizing CS Memory
Access on NVIDIA D3D10
Hardware

» Some restrictions for optimal
performance on NVIDIA GeForce 8/9
series:
 (Less of an issue on GeForce GTS series)

» Reads and writes to structured buffers
should be linear and aligned
 thread i should read/write to location i

» Allows hardware to “coalesce” memory
accesses into a minimum number of
transactions

» Use textures if you want random read
access

Applications

» Image processing
 Reductions, Tone mapping
 Blurs, Image Compression

» Physics
 Particle systems, Fluids
 Collision detection

» AI
 Path finding

» Animation
 Advanced skinning and deformations

Examples

» N-Body Simulation
» Colliding Particles
» Image Processing – Box Blur
» Ocean

N-Body Simulation

» Simulates motion of bodies under
gravity

» Uses brute force n2 comparisons
» Uses shared memory to re-use

body positions among threads
 Reduces bandwidth massively

» 30,720 bodies

N-Body CS Code
// all positions, then all velocities

RWStructuredBuffer<float4> particles;

float3

bodyBodyInteraction(float4 bi, float4 bj)

{

// r_ij [3 FLOPS]

float3 r = bi - bj;

// distSqr = dot(r_ij, r_ij) + EPS^2 [6 FLOPS]

float distSqr = dot(r, r);

distSqr += g_softeningSquared;

float invDist = 1.0f / sqrt(distSqr);

float invDistCube = invDist * invDist * invDist;

float s = bj.w * invDistCube;

// a_i = a_i + s * r_ij [6 FLOPS]

return r*s;

}

N-Body CS Code (2)
// body positions in shared memory

groupshared float4 sharedPos[BLOCK_SIZE];

float3 gravitation(float4 myPos, float3 accel)

{

// unroll the loop

[unroll]

for (unsigned int counter = 0; counter < BLOCK_SIZE; counter++)

{

accel += bodyBodyInteraction(sharedPos[counter], myPos);

}

return accel;

}

N-Body CS Code (3)
float3 computeBodyAccel(float4 bodyPos, uint threadId, uint blockId)

{

float3 acceleration = {0.0f, 0.0f, 0.0f};

uint p = BLOCK_SIZE;

uint n = g_numParticles;

uint numTiles = n / p;

for (uint tile = 0; tile < numTiles; tile++)

{

// load to shared memory

sharedPos[threadId] = particles[g_readOffset + tile * p +
threadId];

GroupMemoryBarrierWithGroupSync();

acceleration = gravitation(bodyPos, acceleration);

GroupMemoryBarrierWithGroupSync();

}

return acceleration;

}

N-Body CS Code (4)
[numthreads(BLOCK_SIZE,1,1)]

void UpdateParticles(uint threadId : SV_GroupIndex,

uint3 groupId : SV_GroupID,

uint3 globalThreadId : SV_DispatchThreadID)

{

float4 pos = particles[g_readOffset + globalThreadId.x];

float4 vel = particles[2 * g_numParticles + globalThreadId.x];

float3 accel = computeBodyAccel(pos, threadId, groupId);

vel.xyz += accel * g_timestep;

pos.xyz += vel * g_timestep;

particles[g_writeOffset + globalThreadId.x] = pos;

particles[2 * g_numParticles + globalThreadId.x] = vel;

}

N-Body Simulation

Colliding Particles

» Simulates large number of
particles with collisions

» Uses uniform grid to find
neighboring particles quickly

» Grid implemented using parallel
bitonic sort (uses scattered writes)
 Calculate which grid cell each particle

it is in
 Sort particles by cell index
 Find start and end of each cell in

sorted list

Particles Demo

Rolling Box Filter Blur

» Computes box filter of any radius for
constant cost
 Only 2 adds, one multiply per pixel

» Takes advantage of scattered writes
available in CS

» Uses one thread per row/column in the
image
 Parallelism is limited by image size

» At each step, adds incoming new pixel,
subtracts pixel leaving window

» Can be iterated to approximate Gaussian
blur

Rolling Box Blur

…

+

Rolling Box Blur

…+-

+

Rolling Box Blur

…+-

+

Box Blur CS Code
Texture2D<float4> Input

RWStructuredBuffer<float4> Output;

[numthreads(256,1,1)]

void boxBlurY(uint3 globalThreadID : SV_DispatchThreadID)

{

uint x = globalThreadID.x;

if (x >= imageW) return;

float scale = 1.0f / (2*blurRadius+1);

float4 t = 0.0f;

for(int y=-blurRadius; y<=blurRadius; y++) {

t += Input.Load(int3(x, y, 0));

}

Output[x] = t * scale;

for(y=1; y<imageH; y++) {

t += Input.Load(int3(x, y + blurRadius, 0));

t -= Input.Load(int3(x, y - blurRadius - 1, 0));

Output[y*imageW+x] = t * scale;

}

}

Rolling Box Blur

Rolling Box Blur

Rolling Box Blur

Rolling Box Blur

FFT Ocean

» Generates ocean height field using
Compute Shader to compute FFT

» See: Tessendorf, “Simulating
Ocean Water”

» Synthesize waves in frequency
space based on statistical model

» Use C2R FFT to convert to spatial
domain

» Heightfield tiles naturally

FFT Ocean

Summary

» DirectX Compute Shader offers
many opportunities for offloading
CPU processing to the GPU

» …and producing unique new
effects for your game

» Can achieve much higher
performance than vertex or pixel
shader based solutions

» Can start developing today on
current hardware

Questions?

Acknowledgments

 NVIDIA
 Miguel Sainz, Louis Bavoil, Rouslan Dimitrov,

Samuel Gateau, Jon Jansen, Mark Harris,
Calvin Lin, Victor Podlozhnyuk

 NVIDIA D3D Driver Team
 Models

 Dragon - Stanford 3D Scanning Repository
 Science-Fiction scene - Juan Carlos Silva

http://www.3drender.com/challenges/index.htm

 Sibenik Cathedral - Marko Dabrovic

http://www.3drender.com/challenges/index.htm�

References

1. Volume Rendering Techniques, Milan Ikits, Joe
Kniss, Aaron Lefohn, Charles Hansen. Chapter
39, section 39.5.1, GPU Gems: Programming
Techniques, Tips, and Tricks for Real-Time
Graphics (2004).

2. BAVOIL, L., AND SAINZ, M. 2009. Image-space
horizon-based ambient occlusion. In ShaderX7
- Advanced Rendering Techniques.

http://http.developer.nvidia.com/GPUGems/gpugems_ch39.html�

	Slide Number 1
	DirectX 10/11�Visual Effects
	Introduction
	Overview
	Volumetric Particle Shadowing
	Particle Systems in Today’s Games
	Particle Systems in Today’s Games
	Tomorrow’s Particle Systems
	Tomorrow’s Particle Systems - Example
	Volume Shadowing
	Volume Shadowing
	Half-Angle Slice Rendering
	Half-Angle Slice Rendering
	Why Use The�Half-Angle?
	Half-Angle Slice Rendering
	Rendering Slices
	Pseudo-Code
	Tricks & Tips
	Without Scattering
	With Scattering
	Particle Shadows in�Shattered Horizon TM
	Demo
	Volume Shadowing - Conclusion
	Horizon Based Ambient Occlusion
	Ambient Occlusion
	Ambient Occlusion
	Screen Space Ambient Occlusion (SSAO)
	Horizon Based Ambient Occlusion (HBAO)
	Ray Traced AO
	HBAO with large radius
	HBAO with large radius
	HBAO with small radius
	HBAO with small radius
	Integration in Games
	Age Of Conan�Without HBAO
	Age Of Conan�with HBAO
	Sampling the Depth Image
	Noise
	Cross Bilateral Filter
	Cross Bilateral Filter
	Rendering Pipeline
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Demo
	HBAO - Conclusion
	DirectX 11
	DirectX�Compute Shader
	Compute Shaders on D3D10 Hardware
	Compute Shader 4.0
	What’s Missing in CS4.0 Compared to CS5.0?
	Other Differences
	Thread Group Shared Memory Restrictions
	So What Does�CS4.x Give Me?
	Optimizing Compute Shaders
	Optimizing CS Memory Access on NVIDIA D3D10 Hardware
	Applications
	Examples
	N-Body Simulation
	N-Body CS Code
	N-Body CS Code (2)
	N-Body CS Code (3)
	N-Body CS Code (4)
	N-Body Simulation
	Colliding Particles
	Particles Demo
	Rolling Box Filter Blur
	Rolling Box Blur
	Rolling Box Blur
	Rolling Box Blur
	Box Blur CS Code
	Rolling Box Blur
	Rolling Box Blur
	Rolling Box Blur
	Rolling Box Blur
	FFT Ocean
	FFT Ocean
	Summary
	Questions?
	Acknowledgments
	References

