

D3D11 Tessellation

Sarah Tariq
NVIDIA

Outline

» Motivation
» Tessellation Pipeline Introduction
» PN Triangles
» Code
» Tessellation Shaders Details
» Silhouette Refinement with PN

triangles

© Kenneth Scott, id Software 2008

Motivation

Presenter
Presentation Notes
- One of our goals (or our primary goal) with the tessellation pipeline is to be able to render highly detailed characters like this one. This character comes from id Software and has almost 1 million polygons.

Motivation

» Enable unprecedented visuals
 Highly detailed characters
 Realistic animation

© Mike Asquith, Valve
Corporation 2007

Motivation

» Examples
 Subdivision Surfaces

 Easy modeling and flexible animation
Widespread use in the movie industry
 Readily available in modeling and sculpting

tools

 Displacement Mapping
 Terrain Tessellation

Compression
» Save memory and bandwidth

 Memory is the main bottleneck to
render highly detailed surfaces

Level 8 Level 16 Level 32 Level 64

Regular Triangle Mesh 16MB 59MB 236MB 943MB

Displaced Subdivision
Surface 1.9MB 7.5MB 30MB 118MB

+=

© Bay Raitt

Presenter
Presentation Notes
- While GPUs today can render meshes with this complexity in real-time, it's not really practical to use them in games as is, because they consume a huge amount of memory.
- But this is one of the areas where tesellation can help.
- by allowing you to decompose a high resolution mesh into a base surface (which is defined with a low resolution mesh) and a displacement map.
- The advantage of this representation is that it's much more compact: Most vertex attributes and their connectivity is computed implicitly from the low res mesh.
- For example, if you look at the table, the regular mesh representation almost consumes 10x more memory than the displaced subdiv.
The size of the regular triangle mesh is based on a vertex size of 32 bytes, which is quite common for vertices containing position, normal, tangents and texcoords. In the case of the displaced subdivision surface the mesh only contained positions and texcoords and I assumed the displacements used 16 bit per pixel.
This example uses no compression, but with the data represented in the base mesh plus texture lookup format it is very easy to compress the data using DCT or DXT

Scalability

» Continuous Level of Detail

© Pixolator @ ZBrushCentral

Presenter
Presentation Notes
Tessellation on the GPU also allows you to have a very smooth and easy to control Level of Detail

Scalability

» View Dependent Level of Detail

© Bay Raitt© Pixolator @ ZBrushCentral

Presenter
Presentation Notes
And you can tweak that level of detail based on any metric that you choose, for example you can have view dependent LOD

» Perform Expensive Computations
at lower frequency:

 Realistic animation: blend shapes,
morph targets, etc.

 Physics, collision detection, soft body
dynamics, etc.

Animation & Simulation

Tessellation Pipeline

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

» Direct3D11 has support
for programmable
tessellation

» Two new programable
shader stages:

 Hull Shader (HS)
Domain Shader (DS)

» One fixed function stage:
 Tessellator (TS)

Presenter
Presentation Notes
OpenGL calls the new stages “Tessellation Control Shader & Tessellation Evaluation Shader”, whereas DirectX calls them “Hull Shader & Domain Shader”

» Hull Shader transforms basis
functions from base mesh to
surface patches

» Tessellator produces a semi-
regular tessellation pattern for
each patch

» Domain Shader evaluates surface

Tessellation Pipeline

Presenter
Presentation Notes
OpenGL calls the new stages “Tessellation Control Shader & Tessellation Evaluation Shader”, whereas DirectX calls them “Hull Shader & Domain Shader”

Input Assembler

Domain Shader

Hull Shader

Tessellator

Vertex Shader

Geometry Shader

Setup/Raster

» New patch primitive
type
 Arbitrary vertex count

(up to 32)

 No implied topology

 Only supported primitive
when tessellation is
enabled

Input Assembler

Presenter
Presentation Notes
A patch is a face and its neighborhood

Vertex Shader
» Transforms patch control

points
» Usually used for:

 Animation (skinning, blend
shapes)

 Physics simulation

» Allows more expensive
animation at a lower
frequency

Domain Shader

Hull Shader

Tessellator

Input Assembler

Geometry Shader

Setup/Raster

Vertex Shader

» Transforms control
points to a different
basis

» Computes edge
tessellation levels

Hull Shader (HS)

Domain Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Hull Shader

Presenter
Presentation Notes
One invocation per patch
Parallelized explicitly: One thread per control point

Tesellation levels:
Can use any metric:
Distance to camera
Screen space length of hull boundary
Hull curvature
Texture space length of patch edges
Precomputed edge factors based on displacement roughness

Tessellator (TS)
» Fixed function stage, but

configurable

» Fully symmetric

» Domains:
 Triangle, Quad, Isolines

» Spacing:
 Discrete, Continuous, Pow2

Domain Shader

Hull Shader

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Tessellator

Tessellator (TS)

Level 5 Level 5.4 Level 6.6

Tessellator (TS)

Inside Tess:
minimum

Inside Tess:
average

Inside Tess:
maximum

Top,Right =
4.5

Bottom,Left =
9.0

Left = 3.5
Right = 4.4

Bottom = 3.0

Domain Shader (DS)

» Evaluate surface given
parametric UV coordinates

» Interpolate attributes

» Apply displacements

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Geometry Shader

Setup/Raster

Domain Shader

Example - PN Triangles

» Simple tessellation scheme
 Provides smoother silhouettes

and better shading

» Operates directly on triangle
meshes with per vertex
Positions and Normals
 Easily integrated into existing

engines

Input Triangles

Output
Curved PN triangles

Vlachos et al, http://ati.amd.com/developer/curvedpntriangles.pdf

Presenter
Presentation Notes
Curved PN Triangles
Vlachos et al, http://ati.amd.com/developer/curvedpntriangles.pdf

Curved PN Triangles is a triangle interpolation scheme that operates directly on triangle meshes whose vertices are composed of positions and normals (PN stands for Point-Normal).
It’s an interesting way of improving visual quality that offers a simple migration path, since assets do not need to be heavily modified.

Each PN triangle replaces one original flat triangle by a curved shape that is re-triangulated into a programmable number of small (flat) sub triangles

PN Triangles - positions

» 1- Replace input triangle with a
bezier patch

 Use Hull Shader

» 2- Triangulated bezier patch into a
specified number of sub triangles

 Use Tessellator and Domain Shader
 Number of Sub triangles specified by Hull

Shader

PN Triangles- positions

()
()
()

...
3

2
3

2

22112
120

11221
210

NwPPb

NwPPb

NPPw iijij

−+=

−+=

•−=

Exterior control
point positions:

same as input
vertex positions

Interior control point
positions:

Weighted combinations of
input positions and normals

Computing Position Control Points

3003

2030

1300

Pb
Pb
Pb

=
=
=

Presenter
Presentation Notes

Given just positions (P1,P2,P3) and Normals (N1,N2,N3) we can construct the control points for our curved bezier patch as weighted combinations of this input.

PN Triangles- positions

wuvb
uvbwvbvub

vwbwubuwb
vbubwbvub

wvuvuw

6
333
333

),(

0,,1

111

2
012

2
102

2
021

2
201

2
120

2
210

3
003

3
030

3
300

+
+++
+++
++=

≥−−=

Evaluating tessellated positions from control points

Presenter
Presentation Notes
Once we have all the control points for the curved bezier patch, we can tessellate it into any number of flat tessellated triangles

PN Triangles - Normals

» Normal at a tessellated vertex is a
quadratic function of position and
normal data

wvnuvnwunvnunwnvun
vuw

101011110
2

002
2

020
2

200),(
1

+++++=

−−=

Presenter
Presentation Notes
The normal component of a curved PN triangle is either a linear average of the vertex normals or a quadratic function of the positional and normal data.

Tessellation Pipeline

Tessellator

Domain Shader

HS output:
• output control points

• Tessellation factors

HS input:
• input control points

DS Output:
• one tessellated vertex

Tessellator Output:
• uvw coordinates

Hull Shader HS output:
• Tessellation factors

DS Input from Tessellator:
• uvw coordinates for one vertex

Hull Shader Stages

» Main Hull Shader
 Calculate control point data
 Invoked once per output control point

» Patch Constant Function
Must calculate tessellation factors
 Has access to control point data calculated

in the Main Hull Shader
 Executes once per patch

Presenter
Presentation Notes

The patch Constant Function is useful for data calculated using control points gen erated from the Main Hull Shader, or data which is logically per patch rather than per control point

PN Triangles
Hull Shader

» Compute control positions and
normals in main Hull Shader

» Compute tessellation factors and
center location in patch constant
function
 The center location needs to average

all the other control point locations so
it belongs in the patch constant
function

PN Triangles
Hull Shader

» Partitioning the computation

» To balance the workload across
threads we partition the control
points into 3 uber control points

» Each uber control point computes
 3 positions
 2 normals

Thread distribution in Hull
Shader

Positions

Normals

Input

PN Triangles
Hull Shader

struct HS_PATCH_DATA
{

float edges[3] : SV_TessFactor;
float inside : SV_InsideTessFactor;
float center[3] : CENTER;

};

struct HS_CONTROL_POINT
{

float pos1[3] : POSITION1;
float pos2[3] : POSITION2;
float pos3[3] : POSITION3;
float3 nor1 : NORMAL0;
float3 nor2 : NORMAL1;
float3 tex : TEXCOORD0;

};

Data output by the
patch constant

function

Data output by main
tessellation function

Positions Normals

pos1

pos2

pos3

nor1

nor2Control point 1

Presenter
Presentation Notes
Data output from Hull Shader

PN Triangles
Hull Shader

[domain("tri")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(3)]
[partitioning("fractional_odd")]
[patchconstantfunc("HullShaderPatchConstant")]
HS_CONTROL_POINT HullShaderControlPointPhase(InputPatch<HS_DATA_INPUT, 3> inputPatch,

uint tid : SV_OutputControlPointID, uint pid : SV_PrimitiveID)
{

int next = (1 << tid) & 3; // (tid + 1) % 3

float3 p1 = inputPatch[tid].position;
float3 p2 = inputPatch[next].position;
float3 n1 = inputPatch[tid].normal;
float3 n2 = inputPatch[next].normal;

HS_CONTROL_POINT output;
//control points positions
output.pos1 = (float[3])p1;
output.pos2 = (float[3])(2 * p1 + p2 - dot(p2-p1, n1) * n1);
output.pos3 = (float[3])(2 * p2 + p1 - dot(p1-p2, n2) * n2);
//control points normals
float3 v12 = 4 * dot(p2-p1, n1+n2) / dot(p2-p1, p2-p1);
output.nor1 = n1;
output.nor2 = n1 + n2 - v12 * (p2 - p1);

output.tex = inputPatch[tid].texcoord;

return output;
}

Positions

Normals

Compute
control
points

Read input
data

Control point 1

Presenter
Presentation Notes

The main Hull Shader

The pictures show data computed for tid = 0, i.e. the first uber control point

PN Triangles
Hull Shader

//patch constant data
HS_PATCH_DATA HullShaderPatchConstant(OutputPatch<HS_CONTROL_POINT, 3> controlPoints)
{

HS_PATCH_DATA patch = (HS_PATCH_DATA)0;
//calculate Tessellation factors
HullShaderCalcTessFactor(patch, controlPoints, 0);
HullShaderCalcTessFactor(patch, controlPoints, 1);
HullShaderCalcTessFactor(patch, controlPoints, 2);
patch.inside = max(max(patch.edges[0], patch.edges[1]), patch.edges[2]);
//calculate center

float3 center = ((float3)controlPoints[0].pos2 + (float3)controlPoints[0].pos3) * 0.5 -
(float3)controlPoints[0].pos1 +

((float3)controlPoints[1].pos2 + (float3)controlPoints[1].pos3) * 0.5 –
(float3)controlPoints[1].pos1 +

((float3)controlPoints[2].pos2 + (float3)controlPoints[2].pos3) * 0.5 –
(float3)controlPoints[2].pos1;

patch.center = (float[3])center;
return patch;

}

//helper functions
float edgeLod(float3 pos1, float3 pos2) { return dot(pos1, pos2); }
void HullShaderCalcTessFactor(inout HS_PATCH_DATA patch,

OutputPatch<HS_CONTROL_POINT, 3> controlPoints, uint tid : SV_InstanceID)
{

int next = (1 << tid) & 3; // (tid + 1) % 3
patch.edges[tid] = edgeLod((float3)controlPoints[tid].pos1,

(float3)controlPoints[next].pos1);
return;

}

Patch Constant Phase

» Patch Constant phase is implicitly
parallelized
 Compiler looks for opportunities to

create independent instances

HS_PATCH_DATA HullShaderPatchConstant(OutputPatch<HS_CONTROL_POINT, 3> controlPoints)

{ HS_PATCH_DATA patch = (HS_PATCH_DATA)0;

//calculate Tessellation factors

HullShaderCalcTessFactor(patch, controlPoints, 0);

HullShaderCalcTessFactor(patch, controlPoints, 1);

HullShaderCalcTessFactor(patch, controlPoints, 2);

instance 1

instance 2
instance 3

Presenter
Presentation Notes
Code in the control point phase is explicitly parallelized: control point shader is invoked once per output control point. Each control point is calculated independently, with no intermediate data sharing.
Code in the patch constant phase is parallelized into instances based on compiler. To help the compiler parallelize your code you can try:
 Avoid dependencies : write subparts that are independent
Use values that are indexable (for example, currently the compiler has an easier time indexing arrays of floats vs float3s, which is the reason why we were using arrays of floats in this code.)
- In loops make sure input and output can be indexed by loop index
Unroll loops

If you write your code as a function of a set of inputs and a single index that gets called in an unrolled loop, then that's fairly likely to work.

Tessellation Pipeline

Tessellator

Domain Shader

HS output:
• output control points

• Tessellation factors

HS input:
• input control points

DS Output:
• one tessellated vertex

Tessellator Output:
• uvw coordinates

Hull Shader HS output:
• Tessellation factors

DS Input from Tessellator:
• uvw coordinates for one vertex

PN-Triangles - DS

[domain("triangle")]
DS_DATA_OUTPUT DomainShaderPN(HS_PATCH_DATA patchData,

const OutputPatch<HS_CONTROL_POINT, 3> input, float3 uvw : SV_DomainLocation)
{

DS_DATA_OUTPUT output;
float u = uvw.x;
float v = uvw.y;
float w = uvw.z;

//output position is weighted combination of all 10 position control points
float3 pos =

(float3)input[0].pos1 * w*w*w +(float3)input[1].pos1 * u*u*u +(float3)input[2].pos1 * v*v*v +
(float3)input[0].pos2 * w*w*u +(float3)input[0].pos3 * w*u*u +(float3)input[1].pos2 * u*u*v +
(float3)input[1].pos3 * u*v*v +(float3)input[2].pos2 * v*v*w + float3)input[2].pos3 * v*w*w +
(float3)patchData.center * u*v*w;

//output normal is weighted combination of all 10 position control points
float3 nor =

input[0].nor1 * w*w + input[1].nor1 * u*u + input[2].nor1 * v*v +
input[0].nor2* w*u + input[1].nor2 * u*v + input[2].nor2 * v*w;

//transform and output data
output.position = mul(float4(pos,1), g_mViewProjection);
output.view = mul(float4(pos,1),g_mView).xyz;
output.normal = mul(float4(normalize(nor),1),g_mNormal).xyz;
output.vUV = input[0].tex * w + input[1].tex * u + input[2].tex * v;

return output;
}

Adaptive Silhouette
Enhancement
» Different useful metrics

for deciding LOD per
patch

» For example:
 Only add detail at

silhouettes

Real-time linear silhouette enhancement
Dyken et al

Adaptive Silhouette
Enhancement
» A silhouette edge is an edge between a

front facing and a back facing triangle
 Determine triangle facing using dot product of

triangle normal and vector to eye

» Can also use the multiplication of the
dot products as a function to define
smoothly varying LODs to avoid popping

Presenter
Presentation Notes
Sihouette edge: An edge between two triangles one of which is front facing and the other back facing

Adaptive Silhouette
Enhancement
» Need to know normals of adjacent

triangles

» Use Patch primitive to represent triangle
with neighborhood

» Hull Shader computes adaptive per edge
tessellation factors based on silhouette
function

Questions?

Thank you for your time!

	Slide Number 1
	D3D11 Tessellation��Sarah Tariq �NVIDIA
	Outline
	Motivation
	Motivation
	Motivation
	Compression
	Scalability
	Scalability
	Animation & Simulation
	Tessellation Pipeline
	Tessellation Pipeline
	Input Assembler
	Vertex Shader
	Hull Shader (HS)
	Tessellator (TS)
	Tessellator (TS)
	Tessellator (TS)
	Domain Shader (DS)
	Example - PN Triangles
	PN Triangles - positions
	PN Triangles- positions
	PN Triangles- positions
	PN Triangles - Normals
	Tessellation Pipeline
	Hull Shader Stages
	PN Triangles �	Hull Shader
	PN Triangles �	Hull Shader
	PN Triangles �	Hull Shader
	�PN Triangles �	Hull Shader�
	PN Triangles �	Hull Shader
	Patch Constant Phase
	Tessellation Pipeline
	PN-Triangles - DS
	Adaptive Silhouette Enhancement
	Adaptive Silhouette Enhancement
	Adaptive Silhouette Enhancement
	Questions?

