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Motivation
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Academia and the movie industry have been
simulating and rendering impressive and
realistic hair for a long time

We have demonstrated realistic real time
results [Nalu, 2003]

GPU is powerful and programmable enough
to do all simulation/rendering
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Results
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166 simulated strands

0.99 Million triangles

Stationary: 64 fps

Moving: 41 fps

8800GTX, 1920x1200,
8XMSAA




Results
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166 simulated strands

2.1Million triangles

241fps

8800GTX, 1280x1024
S ISTAVA
2XSSAA with 5 taps
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* In this talk | will cover only hair rendering

* Real Time Hair Simulation and Rendering on

the GPU
Session: Lets get physical

Thursday Room 502B. 1:45-3:30
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Import Guide Hair Simulate Guide Tessellate and Render Final Hair
Hair Interpolate Guide
Hair
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Tessellation and
Interpolation
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Tessellation
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Simulated Vertices Smoothly Tessellated Hair
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Tessellation

* We use B-Splines

— Uniform cubic b-splines

* Pre-compute and store
partial results

— Automatically handle
continuity

— Do not interpolate
endpoints

* S0 we repeat end points
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Interpolation
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Multi Strand Interpolation Clump Based Interpolation
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Interpolation

* Clump Based Interpolation

— Each interpolated strand is defined by

» 2D offset that is added to the guide strand in the direction of its
coordinate frame. Pre-computed and stored in constants

* Clump radius which changes along the length of the guide
strand

* Multi Strand Interpolation

— Each strand is defined by 3D weights which we use to
combine the 3 guide strands
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Interpolation
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Multi strand Interpolation Clump Based Interpolation Combination
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Interpolation
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Multi strand Interpolation Clump Based Interpolation Combination
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Modulate density across scalp
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. Red -L;)(-:all density of hair

* For example In this demo

|
— Multi strand based hair has higher %
density near the center of the head

Multi Strand
Interpolation
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Process
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* Create a tessellated dummy hair and render it N
times, where N Is the number of final hairs

* |In the VS, load from Buffers storing simulated
strand attributes

— Constant attributes: strand texcoords, length, width etc

— Variable attributes: vertex positions, coordinate frames
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Process
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e Stream out the data after each stage to minimize
re-computation

— Tessellate the simulated strands and Stream out
— Interpolate the tessellated strands and Stream out
— Render final hair to shadow map

— Render final hair for rendering

* Each stage uses data computed and streamed
out from previous stage
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Indexing

Tessellated

Master
Strands

Interpolated

Final Hair Indirection

Buffer
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Using Dx11
Tessellation
Engine
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Tessellation Pipeline
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Direct3D11 extends Direct3D10 with T
support for programmable tessellation

Vertex Shader

* Two new shader stages:

— Hull Shader (HS)
— Domain Shader (DS)

Geometry Shader

* One fixed function stage: T —

— Tessellator (TS)
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|ISO Lines e
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* Output from the tessellation engine will be a
set lines of equal number of segments

* We can either render these directly

* Or we can expand these to triangles in the
GS
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|ISO Lines

* |nput an arbitrary patch

* For each patch output a number of lines with
many segments per line
— The number of lines output per patch and the number

of segments per line are user controlled and can be
different per patch

— The positions of the vertices of the line segments are
shader evaluated
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Interpolating and Tessellatin

* With Tessellation engine we can create
tessellated and interpolated hair on the fly

 Benefits:

— Easy and intuitive

— More programmable
* Can create geometry only where needed

* Reduce detail where not needed

— Continuous LOD
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Pipeline

Calculate Generate  Calculate Expand Shade
LODs topology vertex lines to
attributes  quads
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Tessellated, Interpolated,
Rendered Hair

Pat.ch of Slmulated t ’ SIGGRAPH2008
Guide Hair -




Clump Based Hair Tessellation &%
and Interpolation "
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; Tessellated
Input Patch .’ And

(sub set of guide hair) Interpolated
lines
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Single Pass on GPU t
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Alternative Pipeline
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Simulated Guide Hair
Calculate Generate Calculate
vertex
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Tessellated Guide Hair

Calculate
Calculate Generate Expand

vertex
topolo . '
LODs pology B tribulls lines to
quads
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* Can use the distance of patch from camera to
decide on the LOD

— Low LOD levels would use
* |less number of lines
* thicker lines
* |less segments per line

* |less complex shading
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 LOD can be procedural

— For LOD 0.5 render only 50% of lines in a given patch

e LOD can also be artist defined

— Artists can create density/width maps for different LOD of
the hairstyle

— The Hull Shader can lerp between appropriate LOD
textures to decide on the line density, and line thickness

f

-




Rendering
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Rendering
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Lines have issues:
— No floating point line width
— No textures across line

* These are useful for simulating the look of many hair

* Rendering hair with complex color variations

* Render camera facing triangle strips

— Can either expand lines to strips in the GS

— Or can render instanced triangle strips
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Shading: Kajiya and Kay

Kajiya and Kay [Rendering fur with three dimensional textures (SIGGRAPH '89)]

Diffuse = sin(T,L) =sqgrt(1 - T . L?)
Specular=[T.L*T.E +sin(T,L) sin(T,E)] P
=[T.L*T.E+sgrt(1 —-T.L?)sqgrt(1-T.E?]P

lvan 2006
fake dual specular highlights

— primary highlight shifted towards tip

— secondary highlight shifted towards root
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Tangents

— Calculate tessellated and
Interpolated tangents

* Need to have smooth tangents 05 -1 05[t
x(t)=[T, T, TZ]{-l 1 0.5%

05 0 0|1

* Add jitter to tangents in order to
break strong highlights

— Randomly a per strand constant
bias to tangents towards or away
from root

— Add per pixel noise to tangents
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* Material Model: Opaque hair

* Essential Requirements

— No flickering, smooth shadows

— Soft Shadows

* Do PCF with multiple taps

— tShadowMap.SampleCmpLevelZero(ShadowSampl
er, texcoord, z, int2(dx, dy));

— Helps reduce temporal/spatial aliasing

— Calculate shadows in VS and interpolate across hair
length to further reduce aliasing t ’ TR
- 36 taps




* Material Model: Translucent Hair

* If hair Is semi-transparent then we
N eed VO | um etrl CS h ad oOWS \\Epacity Shadow maps

==

— [Yuksel and Keyser 08], [Kim and
Neuman 01], [ Lokovic and Veach 01]

— discritize the space into layers

, ' Deep Shadow Maps

" [Images courtesy of Yuksel 08]




Shadows

* We do absorption weighted PCF

— Similar to [Halen 06]

— Weigh the PCF sample by
1 - exp(g_SigmaA * d)
* d is the difference between the depth of the

current shaded point and the closest point to
the light

T
No absorption weighting

With absorption weighting




Antialiasing

* Human hair is very thin

e Typically alpha blending is used to hide
aliasing

— Requires sorting geometry which is time
consuming

— Can use depth peeling [Everitt 01], [Bavaoll
and Myers 07]

* Scalable: can decide to render only the first 4 depth
layers for example

— Or [Sintorn and Assarsson 08]

1

With Alpha Blending

[Sintorn and Assarsson 08]




Antialiasing

o ¥ -'.'" l.l.l. 0.0.. ,

* Can also use Alpha To Coverage ..H.

— Does not require sorting
— Does require MSAA
— Need depth pre-pass to get earlyZ

* \We use a combination of MSAA
and SSAA

— 8XMSAA
— 2XSSAA with 5 taps




Add random deviations to hair
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Pre bake and store deviations which
are added to interpolation offsets
along the length of the hair

— Most hair deviate towards the tips

— Some very deviant and thin hair

Other
— Taper hair width towards the hair tip

— Randomize width per-hair strand
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Thank you!
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