
Real-Time Hair
Rendering on
Real-Time Hair
Rendering on e de g o
the GPU

e de g o
the GPU

Sarah TariqSarah Tariq

NVIDIA

MotivationMotivation

A d i d h i i d h b• Academia and the movie industry have been
simulating and rendering impressive and
realistic hair for a long time

• We have demonstrated realistic real timeWe have demonstrated realistic real time
results [Nalu, 2003]

GPU i f l d bl h• GPU is powerful and programmable enough
to do all simulation/rendering

ResultsResults

• 166 simulated strands• 166 simulated strands

• 0.99 Million triangles

• Stationary: 64 fps

• Moving: 41 fpsg p

• 8800GTX, 1920x1200,

• 8XMSAA

ResultsResults

166 i l t d t d• 166 simulated strands

• 2.1Million triangles

• 24fps

• 8800GTX, 1280x1024

• 8xMSAA• 8xMSAA

• 2xSSAA with 5 taps

I hi lk I ill l h i d i• In this talk I will cover only hair rendering

• Real Time Hair Simulation and Rendering on
the GPUthe GPU
Session: Lets get physical

Thursday Room 502B. 1:45-3:30

Import Guide Hair Simulate Guide Tessellate and Render Final Hair
Hair Interpolate Guide

Hair

Tessellation and
I t l ti
Tessellation and
I t l tiInterpolationInterpolation

TessellationTessellation

Simulated Vertices Smoothly Tessellated Hair

TessellationTessellation

W B S li
⎤⎡⎤⎡ −− 1331 3t• We use B-Splines

– Uniform cubic b-splines
[]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

10001
1333
4063

6
1)(

2

3210 t
t
t

PPPPtx

• Pre-compute and store
partial results

⎦⎣

– Automatically handle
continuity

– Do not interpolate
endpoints

• So we repeat end points

InterpolationInterpolation

Clump Based InterpolationMulti Strand Interpolation

InterpolationInterpolation

Cl B d I t l ti• Clump Based Interpolation
– Each interpolated strand is defined by

• 2D offset that is added to the guide strand in the direction of its
coordinate frame. Pre-computed and stored in constants

Cl di hi h h l h l h f h id• Clump radius which changes along the length of the guide
strand

• Multi Strand Interpolation• Multi Strand Interpolation
– Each strand is defined by 3D weights which we use to

combine the 3 guide strandscombine the 3 guide strands

InterpolationInterpolation

Multi strand Interpolation Clump Based Interpolation Combination

InterpolationInterpolation

Multi strand Interpolation Clump Based Interpolation Combination

Modulate density across scalpModulate density across scalpModulate density across scalpModulate density across scalp

• Red: Local density of hairRed: Local density of hair

• For example in this demo
– Multi strand based hair has higher

density near the center of the head
Multi Strand
Interpolation

Clump Based

ProcessProcess

C t t ll t d d h i d d it N• Create a tessellated dummy hair and render it N
times, where N is the number of final hairs

• In the VS, load from Buffers storing simulated , g
strand attributes
– Constant attributes: strand texcoords length width etcConstant attributes: strand texcoords, length, width etc

– Variable attributes: vertex positions, coordinate frames

ProcessProcess

St t th d t ft h t t i i i• Stream out the data after each stage to minimize
re-computation
– Tessellate the simulated strands and Stream out

– Interpolate the tessellated strands and Stream out

– Render final hair to shadow map

– Render final hair for renderingRender final hair for rendering

• Each stage uses data computed and streamed
out from previous stageout from previous stage

IndexingIndexing

Tessellated
MasterMaster
Strands

N B

Interpolated

N

N

N

Np
Final Hair

N

N

N

N

Indirection
Buffer

B

B

Using Dx11
Tessellation
Using Dx11
Tessellation esse at o
Engine

esse at o
Engine

Tessellation PipelineTessellation Pipeline

Di t3D11 t d Di t3D10 ith Input Assembler

Vertex Shader

• Direct3D11 extends Direct3D10 with
support for programmable tessellation

Hull Shader

TS• Two new shader stages:

Domain Shader

Geometry Shader

– Hull Shader (HS)

– Domain Shader (DS)

Setup/Raster• One fixed function stage:
– Tessellator (TS)

ISO LinesISO Lines

O f h ll i i ill b• Output from the tessellation engine will be a
set lines of equal number of segments

• We can either render these directly• We can either render these directly

• Or we can expand these to triangles in the
GS

ISO LinesISO Lines

I t bit t h• Input an arbitrary patch

• For each patch output a number of lines with
many segments per liney g p
– The number of lines output per patch and the number

of segments per line are user controlled and can be g p
different per patch

– The positions of the vertices of the line segments are p g
shader evaluated

Interpolating and Tessellating hairInterpolating and Tessellating hair

Wi h T ll i i• With Tessellation engine we can create
tessellated and interpolated hair on the fly

• Benefits:
Easy and intuitive– Easy and intuitive

– More programmable
• Can create geometry only where needed

• Reduce detail where not needed

– Continuous LOD

PipelinePipeline

InputInput Output

HS

Calculate
LODs

TS

Generate
topology

DS

Calculate
vertex
attributes

GS

Expand
lines to
quads

PS

Shade

attributes quads

Tessellated, Interpolated,
Rendered Hair

Patch of Simulated
Guide Hair

Clump Based Hair Tessellation
and Interpolation
Clump Based Hair Tessellation
and Interpolationand Interpolationand Interpolation

Output:
Tessellated

Input Patch
(sub set of guide hair)

Tessellated
And
Interpolated
lines

Hull
Line Density
+
Line Detail

TS Domain

i ilLine Detail

Line Density

Single Pass on GPU

Alternative PipelineAlternative Pipeline

HS TS DS SO

Simulated Guide Hair
Calculate
LODs

Generate
topology

Calculate
vertex
attributes

GS PSHS TS DS

Expand
lines to

Shade

Tessellated Guide Hair

Calculate
LODs

Generate
topology

Calculate
vertex
attributes

quads
attributes

LODLOD

C th di t f t h f t• Can use the distance of patch from camera to
decide on the LOD

– Low LOD levels would use

• less number of lines

• thicker lines

• less segments per line

• less complex shading

LODLOD

LOD b d l• LOD can be procedural
– For LOD 0.5 render only 50% of lines in a given patch

• LOD can also be artist defined
– Artists can create density/width maps for different LOD of

the hairstyle

– The Hull Shader can lerp between appropriate LOD

Near

The Hull Shader can lerp between appropriate LOD
textures to decide on the line density, and line thickness

Far

RenderingRenderinge de ge de g

RenderingRendering

Li h i• Lines have issues:
– No floating point line width

– No textures across line

• These are useful for simulating the look of many hair

R d i h i ith l l i ti• Rendering hair with complex color variations

• Render camera facing triangle strips
– Can either expand lines to strips in the GS

– Or can render instanced triangle strips

Shading: Kajiya and KayShading: Kajiya and Kay

• Kajiya and Kay [R d i f ith th di i l t t (SIGGRAPH ’89)]• Kajiya and Kay [Rendering fur with three dimensional textures (SIGGRAPH ’89)]

• Diffuse = sin(T L) = sqrt(1 T L2)• Diffuse = sin(T,L) = sqrt(1 – T . L2)
Specular = [T . L * T . E + sin(T,L) sin(T,E)] p

= [T . L * T . E + sqrt(1 – T . L2) sqrt(1 – T . E2)] p

• Ivan 2006

• fake dual specular highlights

– primary highlight shifted towards tip

d hi hli ht hift d t d t– secondary highlight shifted towards root

TangentsTangents

N d t h th t t• Need to have smooth tangents
– Calculate tessellated and ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

1005.0
5.011
5.015.0

][)(

2

210 t
t

TTTtx

interpolated tangents

• Add jitter to tangents in order to

⎦⎣⎦⎣

break strong highlights
– Randomly a per strand constant

bias to tangents towards or away
from root

– Add per pixel noise to tangents

ShadowsShadows

M t i l M d l O h i• Material Model: Opaque hair

• Essential Requirements
– No flickering, smooth shadows

– Soft Shadows

• Do PCF with multiple taps
– tShadowMap.SampleCmpLevelZero(ShadowSampl

t d i t2(d d))

1 tap

er, texcoord, z, int2(dx, dy));

– Helps reduce temporal/spatial aliasing

C l l t h d i VS d i t l t h i– Calculate shadows in VS and interpolate across hair
length to further reduce aliasing

36 taps

ShadowsShadows

M i l M d l T l H i• Material Model: Translucent Hair

• If hair is semi-transparent then we
d l t i h d Opacity Shadow mapsneed volumetric shadows

– [Yuksel and Keyser 08], [Kim and

Opacity Shadow maps

Neuman 01], [Lokovic and Veach 01]

– discritize the space into layers

Deep Shadow Maps

[Images courtesy of Yuksel 08]

ShadowsShadows

W d b i i h d PCF• We do absorption weighted PCF
– Similar to [Halen 06]

– Weigh the PCF sample by
1 - exp(g_SigmaA * d)p(g_ g)

• d is the difference between the depth of the
current shaded point and the closest point to

No absorption weighting

the light

With absorption weighting

AntialiasingAntialiasing

H h i i thi• Human hair is very thin

• Typically alpha blending is used to hide
li ialiasing
– Requires sorting geometry which is time

consuming
No Alpha Blending

consuming

– Can use depth peeling [Everitt 01], [Bavoil
and Myers 07]

• Scalable: can decide to render only the first 4 depth
layers for example

– Or [Sintorn and Assarsson 08] With Alpha BlendingOr [Sintorn and Assarsson 08]

[Sintorn and Assarsson 08]

With Alpha Blending

AntialiasingAntialiasing

C l Al h T C• Can also use Alpha To Coverage
– Does not require sorting

– Does require MSAA

– Need depth pre-pass to get earlyZ

• We use a combination of MSAA
and SSAA

8 MSAA– 8xMSAA

– 2xSSAA with 5 taps

Add random deviations to hairAdd random deviations to hair

P b k d t d i ti hi h• Pre bake and store deviations which
are added to interpolation offsets
along the length of the hairalong the length of the hair
– Most hair deviate towards the tips

– Some very deviant and thin hairSome very deviant and thin hair

• Other
Taper hair width towards the hair tip– Taper hair width towards the hair tip

– Randomize width per-hair strand

Thank you!Thank you!a youa you

