Real-Time Hair
Rendering on

the GPU e

Sarah Tariq
A= NVIDIA
\ : =

X

NVIDIA.

Motivation

: ° 1 ®_ 5 o ¥ '.i.'.l. ..O ,

Academia and the movie industry have been
simulating and rendering impressive and
realistic hair for a long time

We have demonstrated realistic real time
results [Nalu, 2003]

GPU is powerful and programmable enough
to do all simulation/rendering

t ~ SIGGRAPH2008
-

Results

*« o o - 9. O ® © ® ® ©® 00" %O
..-------....0.0.
- i @& @ i " O W W

166 simulated strands

0.99 Million triangles

Stationary: 64 fps

Moving: 41 fps

8800GTX, 1920x1200,
8XMSAA

Results

& & & A & A A A

166 simulated strands

2.1Million triangles

241fps

8800GTX, 1280x1024
S ISTAVA
2XSSAA with 5 taps

" SIGGRAPH2008

* In this talk | will cover only hair rendering

* Real Time Hair Simulation and Rendering on

the GPU
Session: Lets get physical

Thursday Room 502B. 1:45-3:30

t ~ SIGGRAPH2008
-

* o © & 9 O ® ® O 0" %
¢ & & o © © o 0 ® ° o 0
& i A a B

Import Guide Hair Simulate Guide Tessellate and Render Final Hair
Hair Interpolate Guide
Hair

t ' SIGGRAPH2008
-

Tessellation and
Interpolation

S RADHONNS
- st Fih {/ 1] y | (’-"'j
S J J _l_ = _/_ an- B £ \J\IJ

X

NVIDIA.

Tessellation

e e @ ® © ® 0 0V O
.----iilii'..'...
- V2 S Y P R N g

O}
N
\

4
/
@®

Simulated Vertices Smoothly Tessellated Hair

t ~ SIGGRAPH2008
-

Tessellation

* We use B-Splines

— Uniform cubic b-splines

* Pre-compute and store
partial results

— Automatically handle
continuity

— Do not interpolate
endpoints

* S0 we repeat end points

’
/
@

t ~ SIGGRAPH2008
-

Interpolation

|

Multi Strand Interpolation Clump Based Interpolation

t " SIGGRAPH2008
-

Interpolation

* Clump Based Interpolation

— Each interpolated strand is defined by

» 2D offset that is added to the guide strand in the direction of its
coordinate frame. Pre-computed and stored in constants

* Clump radius which changes along the length of the guide
strand

* Multi Strand Interpolation

— Each strand is defined by 3D weights which we use to
combine the 3 guide strands

t ~ SIGGRAPH2008
-

Interpolation

s * = & © 0 9 O O O O 0" %
e o ¢ & ® o O © ® 0 O PO OO0
& i A a B

Multi strand Interpolation Clump Based Interpolation Combination

f | SIGGRAPH2008
-

Interpolation

e ® 0 0 0 0.0 0 0 00
@ ®© 0 0 0 60 06 000
a & a a &

Multi strand Interpolation Clump Based Interpolation Combination

t | SIGGRAPH2008
-

Modulate density across scalp
o 0%’ 0% e e 0 e L L

. Red -L;)(-:all density of hair

* For example In this demo

|
— Multi strand based hair has higher %
density near the center of the head

Multi Strand
Interpolation

t ClumpsRasarH2008
-

Process
o 0% e e’ s 0 0 e L L LLLLLLSL

* Create a tessellated dummy hair and render it N
times, where N Is the number of final hairs

* |In the VS, load from Buffers storing simulated
strand attributes

— Constant attributes: strand texcoords, length, width etc

— Variable attributes: vertex positions, coordinate frames

t ~ SIGGRAPH2008
-

Process
o 0% e e’ s 0 0 e L L LLLLLLSL

e Stream out the data after each stage to minimize
re-computation

— Tessellate the simulated strands and Stream out
— Interpolate the tessellated strands and Stream out
— Render final hair to shadow map

— Render final hair for rendering

* Each stage uses data computed and streamed
out from previous stage

t ~ SIGGRAPH2008
-

Indexing

Tessellated

Master
Strands

Interpolated

Final Hair Indirection

Buffer

t‘j

SIGGRAPH2008

Using Dx11
Tessellation
Engine

S RADHONNS
- st Fih {/ 1] y | (’-"'j
S J J _l_ = _/_ an- B £ \J\IJ

X

NVIDIA.

Tessellation Pipeline
-'-.n.-. t'-.l...... ,_ f‘_ _f_o’_f_f_

Direct3D11 extends Direct3D10 with T
support for programmable tessellation

Vertex Shader

* Two new shader stages:

— Hull Shader (HS)
— Domain Shader (DS)

Geometry Shader

* One fixed function stage: T —

— Tessellator (TS)

t " SIGGRAPH2008
-

|ISO Lines e
® ® 0 ® 00 O ,

* Output from the tessellation engine will be a
set lines of equal number of segments

* We can either render these directly

* Or we can expand these to triangles in the
GS

t ~ SIGGRAPH2008
-

|ISO Lines

* |nput an arbitrary patch

* For each patch output a number of lines with
many segments per line
— The number of lines output per patch and the number

of segments per line are user controlled and can be
different per patch

— The positions of the vertices of the line segments are
shader evaluated

t ~ SIGGRAPH2008
-

Interpolating and Tessellatin

* With Tessellation engine we can create
tessellated and interpolated hair on the fly

 Benefits:

— Easy and intuitive

— More programmable
* Can create geometry only where needed

* Reduce detail where not needed

— Continuous LOD

t ~ SIGGRAPH2008
-

Pipeline

Calculate Generate Calculate Expand Shade
LODs topology vertex lines to
attributes quads

000000
000000
000000

Tessellated, Interpolated,
Rendered Hair

Pat.ch of Slmulated t ’ SIGGRAPH2008
Guide Hair -

Clump Based Hair Tessellation &%
and Interpolation "

e ‘ 1 - oo o -.-.l.'.i.'.....'.......{ a a

\
\
\

; Tessellated
Input Patch .’ And

(sub set of guide hair) Interpolated
lines

H\W

>

!

000000
000000
000000
000000
000000
000000

Single Pass on GPU t
-

" SIGGRAPH2008

Alternative Pipeline

--

h\

000000

N

?

é
o

Simulated Guide Hair
Calculate Generate Calculate
vertex

topolo
Hebe POIogY attributes

Q’Q
“q

e ®
s ?
$r

0-0-0000
0-0-0-0-00
0-0-0-000

Tessellated Guide Hair

Calculate
Calculate Generate Expand

vertex
topolo . '
LODs pology B tribulls lines to
quads

" SIGGRAPH2008
-

NVIDIA.
SESEBESEIIIIITIIIITE,

* Can use the distance of patch from camera to
decide on the LOD

— Low LOD levels would use
* |less number of lines
* thicker lines
* |less segments per line

* |less complex shading

t ~ SIGGRAPH2008
-

i K .'.:-. -:-:-'-'.'-'.‘-:1:0:0:.:{ AL -

 LOD can be procedural

— For LOD 0.5 render only 50% of lines in a given patch

e LOD can also be artist defined

— Artists can create density/width maps for different LOD of
the hairstyle

— The Hull Shader can lerp between appropriate LOD
textures to decide on the line density, and line thickness

f

-

Rendering

,!.u./ J J_l_ __/_ = ; = e ../; ‘../‘ ri,-._._./l

XN

NVIDIA.

Rendering

¢ o 0 o ® ® © ® ® 0 00 00
© e g [. . e @& .' & .' '. '. 2@ . . .
- - - . - | O Ea A A B

Lines have issues:
— No floating point line width
— No textures across line

* These are useful for simulating the look of many hair

* Rendering hair with complex color variations

* Render camera facing triangle strips

— Can either expand lines to strips in the GS

— Or can render instanced triangle strips

t ~ SIGGRAPH2008
-

Shading: Kajiya and Kay

Kajiya and Kay [Rendering fur with three dimensional textures (SIGGRAPH '89)]

Diffuse = sin(T,L) =sqgrt(1 - T . L?)
Specular=[T.L*T.E +sin(T,L) sin(T,E)] P
=[T.L*T.E+sgrt(1 —-T.L?)sqgrt(1-T.E?]P

lvan 2006
fake dual specular highlights

— primary highlight shifted towards tip

— secondary highlight shifted towards root

t ~ SIGGRAPH2008
-

Tangents

— Calculate tessellated and
Interpolated tangents

* Need to have smooth tangents 05 -1 05[t
x(t)=[T, T, TZ]{-l 1 0.5%

05 0 0|1

* Add jitter to tangents in order to
break strong highlights

— Randomly a per strand constant
bias to tangents towards or away
from root

— Add per pixel noise to tangents

t " SIGGRAPH2008
-

* Material Model: Opaque hair

* Essential Requirements

— No flickering, smooth shadows

— Soft Shadows

* Do PCF with multiple taps

— tShadowMap.SampleCmpLevelZero(ShadowSampl
er, texcoord, z, int2(dx, dy));

— Helps reduce temporal/spatial aliasing

— Calculate shadows in VS and interpolate across hair
length to further reduce aliasing t ’ TR
- 36 taps

* Material Model: Translucent Hair

* If hair Is semi-transparent then we
N eed VO | um etrl CS h ad oOWS \\Epacity Shadow maps

==

— [Yuksel and Keyser 08], [Kim and
Neuman 01], [Lokovic and Veach 01]

— discritize the space into layers

, ' Deep Shadow Maps

" [Images courtesy of Yuksel 08]

Shadows

* We do absorption weighted PCF

— Similar to [Halen 06]

— Weigh the PCF sample by
1 - exp(g_SigmaA * d)
* d is the difference between the depth of the

current shaded point and the closest point to
the light

T
No absorption weighting

With absorption weighting

Antialiasing

* Human hair is very thin

e Typically alpha blending is used to hide
aliasing

— Requires sorting geometry which is time
consuming

— Can use depth peeling [Everitt 01], [Bavaoll
and Myers 07]

* Scalable: can decide to render only the first 4 depth
layers for example

— Or [Sintorn and Assarsson 08]

1

With Alpha Blending

[Sintorn and Assarsson 08]

Antialiasing

o ¥ -'.'" l.l.l. 0.0.. ,

* Can also use Alpha To Coverage ..H.

— Does not require sorting
— Does require MSAA
— Need depth pre-pass to get earlyZ

* \We use a combination of MSAA
and SSAA

— 8XMSAA
— 2XSSAA with 5 taps

Add random deviations to hair

;s & & &
}

Pre bake and store deviations which
are added to interpolation offsets
along the length of the hair

— Most hair deviate towards the tips

— Some very deviant and thin hair

Other
— Taper hair width towards the hair tip

— Randomize width per-hair strand

NVIDIA.

Thank you!

X

NVIDIA.

