nVIDI,

Interactive Ray Tracing with CUDA

David Luebke and Steven Parker
NVIDIA Research

Ray Tracing & Rasterization <X

NVIDIA

L Requires track
Rasterization distance per pixel

® For each triangle:

® Find the pixels it covers
® For each pixel: compare to closest triangle so far

Requires a spatially

Ray tracing sorted arrangement of triangles

® For each pixel:
® Find the triangles that might be closest
® For each triangle: compute distance to pixel

When all triangles/pixels have been processed, we know
the closest triangle at all pixels

Myths of Ray Tracing & Rasterization <3

NVIDIA

® Ray tracing is clean, rasterization is ugly

® Both are ugly

® Ray tracing is sublinear, rasterization linear in primitives

® Rasterization uses culling techniques

® Ray tracing is linear, rasterization sublinear in pixels

® Ray tracing uses packets & frustum tracing

Ray Tracing vs. Rasterization <X
NVIDIA

® Rasterization is fast
® Dbut needs cleverness to support complex visual effects

® Ray tracing supports complex visual effects

® but needs cleverness to be fast

Why Rasterization? <X

NVIDIA

Fast & Efficient

Ubiquitous — part of workflow, pipeline

Great for displacement-mapped geometry

Developers know how to make beautiful pictures...

Copyright NVIDIA 2008

Why Rasterization? <X

NVIDIA

From Battlefield: Bad Company, EA Digital Illusions CE AB

Copyright NVIDIA 2008

Why Rasterization? <X

NVIDIA

From Battlefield: Bad Company, EA Digital Illusions CE AB

Copyright NVIDIA 2008 6

Why Rasterization? <A

NVIDIA

From Crysis, Crytek GmbH

Copyright NVIDIA 2008

>
NVIDIA

-
c
O

—
)

s
S
)

e
V)
)

14
>

2

From Crysis, Crytek GmbH

Copyright NVIDIA 2008

Why ray tracing? <3

NVIDIA

® Ray tracing unifies rendering of visual phenomena
® fewer algorithms with fewer interactions between algorithms

® Easier to combine advanced visual effects robustly
soft shadows

subsurface scattering
indirect illumination
transparency

reflective & glossy surfaces
depth of field

Copyright NVIDIA 2008

Ray Tracing vs. Rasterization <X
NVIDIA

® RasterizatiOn-is fast
® Dbut needs clevernees to support complex visual effects

® Ray tracing suppers complex vistal.effects
® Dbut needs™Cleverness to be fast

Use both!

Ray tracing (Appel 1968, Whitted 1980) <3

NVIDIA.

R oy ','_
A,
PO ~e

PP s
P2 ,_v§ a@
'\ B

L ¢ r

Copyright NVIDIA 2008

Distributed Ray Tracing (Cook, 1984) <3

NVIDIA

Path Tracing (Kajiya, 1986) <3

NVIDIA

Figure 6. A sample image. All objects are neutral grey. Color on the objects
is due to caustics from the green glass balls and color bleeding from the base

polygon.

Copyright NVIDIA 2008

Ray Tracing Regimes <3

NVIDIA

Real-time

Interactive

Computational Power

Copyright NVIDIA 2008

Industrial strength ray tracing <3

NVIDIA

® mental images is market leader for ray tracing software

® Applicable in numerous markets: automotive, design,
architecture, film

Importance <3
NVIDIA

Copyright NVIDIA 2008

Importance <3
NVIDIA

Copyright NVIDIA 2008

Importance <3
NVIDIA

Copyright NVIDIA 2008

Interactive Ray Tracing <3

NVIDIA

Copyright NVIDIA 2008

GPUs Are Fast & Getting Faster

——NVIDIA GPU Intel CPU

2
~
o
o
-
L
O
X

S

v
o

0

Sep-02

Copyright NVIDIA 2008

Why GPU Ray Tracing? <3

NVIDIA

® Abundant parallelism, massive computational power

® GPUs excel at shading

® Opportunity for hybrid algorithms

Copyright NVIDIA 2008

GPU Ray Tracing <3

NVIDIA

Purcell et al., Ray Tracing on Programmable
Graphics Hardware, SIGGRAPH 2002

Purcell et al., Photon Mapping on
Programmable Graphics Hardware,
Graphics Hardware 2004

Popov et al., Stackless KD-Tree Traversal for High Performance
GPU Ray Tracing, Computer Graphics Forum, Oct 2007

Popov et al., Realtime Ray Tracing on GPU with BVH-based
Packet Traversal, Symposium on Interactive Ray Tracing 2007

Copyright NVIDIA 2008

GPU Ray Tracing <3

NVIDIA

Il K-D Restart

[l GPU Improvement
[0 Looping

[J Short-Stack

Horn et aI.2, Interactive k-D Tree GPU Raytracing
ACM SIGGRAPH Symposium on Interactive 3D Graphics 2007

Copyright NVIDIA 2008 20

GPU Ray Tracing <3

NVIDIA

~!: 5

- -

Zhou et al., Real-Time KD-Tree Construction on Graphics Hardware
Microsoft Research Asia Tech Report 2008-52

Copyright NVIDIA 2008 21

Volume Ray Casting <3

NVIDIA

Ray marching for isosurfaces + direct volume rendering

Electron density of virus
from cryoelectroscopy

Vital to change isosurface
interactively

Great match for CUDA

Volume Ray Casting With CUDA
Marsalek & Slusallek 2008

Volume Ray Casting <3

NVIDIA

Ray marching for isosurfaces + direct volume rendering

Electron density of virus
from cryoelectroscopy

Vital to change isosurface
interactively

Great match for CUDA

Volume Ray Casting With CUDA
Marsalek & Slusallek 2008

Volume Ray Casting <3

NVIDIA

Ray marching for isosurfaces + direct volume rendering

Electron density of virus
from cryoelectroscopy

Vital to change isosurface
interactively

Great match for CUDA

Volume Ray Casting With CUDA
Marsalek & Slusallek 2008

City demo <X

NVIDIA

Real system
NVSG-driven animation and interaction
Programmable shading

Modeled in Maya, imported through COLLADA
Fully ray traced

N o
| 'y Wi’
' " ‘ ’ N/ v/ N\
| P iy 4 N
Pl v/’ u
‘ 1 » ¢ 14} N
| 4 4N T L]
R OpETEE EEEE /AR 7Y, I | « 1
! 3 SO gy s R 2 WY
ah wilem gy aie fo

2 million polygons
Bump-mapping

Movable light source

5 bounce reflection/refraction
Adaptive antialiasing

System Diagram - ray tracing <3

NVIDIA

System Diagram —ray tracing <3

NVIDIA

S —— D
Texture/Vertex Ray Programmable

buffer setup generation Ray tracing system
(OpenGL) | L i
Light
shader

Traversal

Image display/ Material
postprocessing shading
(OpenGL)

Key Parallel Abstractions in CUDA <X

NVIDIA

. Zillions of lightweight threads

= Simple decomposition model

. Hierarchy of concurrent threads
= Simple execution model

. Lightweight synchronization primitives
=» Simple synchronization model

. Shared memory model for cooperating threads
= Simple communication model

Copyright NVIDIA 2008

Hierarchy of concurrent threads <X
NVIDIA

® Parallel kernels composed of many threads fhreac

® all threads execute the same sequential program

® Threads are grouped into thread blocks
® threads in the same block can cooperate

Kernel foo ()

® Threads/blocks
have unique IDs

Copyright NVIDIA 2008

Big Picture <3

NVIDIA
GT1X 280 supports up to 30,720 concurrent threads!

1. Big strategic optimization: minimize per-thread state

2. Otherwise, take simplest option
« Clever optimizations usually violate rule 1

3. Lots of opportunity for further research
» Coalescing work for increased coherence (work queues)

Data coherence
Execution coherence

« Ray space hierarchies
« Radical departures from traditional methods (see RT08)

Copyright NVIDIA 2008

Details — Algorithmic <X

NVIDIA

® Top-level BVH + subtrees (BVH or k-d tree)

® Supports rigid motion, instancing
® Rebuild/refit easy to add

® Traversal + intersection + shading “megakernel”

® while — while vs. if — if

® Highly variable thread lifetimes!
® Software load-balancing

Copyright NVIDIA 2008

Details - Implementation <X
NVIDIA

* Triangle & hierarchy data through texture cache

® Ray tree recursion
® Stack in local memory to store shader live variables

Copyright NVIDIA 2008

Short Stack <X

NVIDIA

® Goal: minimize state per thread

® Strategy: replace traversal stack with short stack

Hm;n.@’r al__ Inferactive k-D Tree GPU Raytracing, 13D
2008

Slides courtesy Daniel Horn

Copyright NVIDIA 2008 30

KD-Tree <X

NVIDIA

KD-Tree <X

NVIDIA

KD-Tree <X

NVIDIA

X Z

c .
VA
O (2
OBONO

KD-Tree <X

NVIDIA

KD-Tree <X

NVIDIA

KD-Tree <X

NVIDIA

KD-Tree Traversal <X

NVIDIA

KD-Tree Traversal <X

NVIDIA

KD-Tree Traversal <X

NVIDIA

)
®/ e

32

KD-Tree Traversal <X

NVIDIA

KD-Restart

Copyright NVIDIA 2008

Standard traversal
® Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

<3

NVIDIA

KD-Restart

Copyright NVIDIA 2008

Standard traversal
® Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

<3

NVIDIA

KD-Restart

X

Z

Copyright NVIDIA 2008

<3

NVIDIA

Standard traversal
® Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

KD-Restart

Copyright NVIDIA 2008

Standard traversal
® Omit stack operations
L Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

>

NVIDIA

KD-Restart

Copyright NVIDIA 2008

<3

NVIDIA

Standard traversal
® Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

KD-Restart with short stack (siz 1) <

NVIDIA

KD-Restart with short stack (size 1) <X

NVIDIA

KD-Restart with short stack (size 1) <X

NVIDIA

KD-Restart with short stack (size 1) <X

NVIDIA

KD-Restart with short stack (size 1) <X

NVIDIA

KD-Restart with short stack (siz 1) <

NVIDIA

Short Stack Cache <X

NVIDIA

e Even better:

e Each thread stores full stack in memory non-blocking writes

e (Cache top of stack locally (registers or shared memory)

e Enables BVHs as well as k-d trees

e 5-10% faster in our current implementation

Copyright NVIDIA 2008

System Diagram —ray tracing <3

NVIDIA

S —— D
Texture/Vertex Ray Programmable

buffer setup generation Ray tracing system
(OpenGL) | L i
Light
shader

Traversal

Image display/ Material
postprocessing shading
(OpenGL)

System Diagram — Hybrid <X

Multi-pass
Rasterization
(OpenGL)

AlDs, ...

FBO, ...

Composite,
shade, display
(OpenGL)

NVIDIA

Ray Programmable
generation Ray tracing system

Light
shader

Traversal

Material
shading

Hybrid Rendering — Primary Rays <3

NVIDIA

M RF ray tracing framework

Copyright NVIDIA 2008

Hybrid Rendering — Primary Rays <3

NVIDIA

M RF ray tracing framework

Copyright NVIDIA 2008

Hybrid Rendering — “God Rays” <
Wyman & Ramsey, RT08

NVIDIA

cOp(y:rEﬁﬁ«XS Aggorymons Image: Mila Zinkova

Hybrid Rendering — “God Rays”
Wyman & Ramsey, RT08

4

oop(y:r@?ﬁg('XSACz:gd?mum rrrriagesivina ZImKova

Indirect lllumination != Ray Tracing rfl%A

)

|
f

No indirect lighting With indirect lighting

Laine et al., Incremental Instant Radiosity for Real-Time Indirect lllumination
Eurographics Symposium on Rendering 2007

Copyright NVIDIA 2008 43

Solve the Right Problems! <3

NVIDIA

Tracing eye rays is uninteresting
e rasterization wins, use it

Scenes change dynamically at run time
e can't lovingly craft all spatial indices in off-line process

Complex shaders & texturing are mandatory
e a big weakness of CPU software tracers to date

Need to provide a complete solution
e construction, shading, application integration, hardware

Copyright NVIDIA 2008

Summary <3

NVIDIA

e CUDA makes GPU ray tracing fast and practical

A powerful tool in the interactive graphics toolbox

* Hybrid algorithms are the future

e Leverage the power of rasterization with the flexibility of CUDA

e Together they provide tremendous scope for innovation

Copyright NVIDIA 2008

Thank You! <@

NVIDIA

i

alr WUER 7Ei

gy s 2RI
'l'l"hﬂiﬁiﬁill. 2
gl Wi EE g ri Y I N
U F WA R G I

3 I]“IMKW |y
o e v |y

i /1P R ARy [\
{2

£

7
7

