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Ray Tracing & Rasterization <X

NVIDIA

L Requires track
Rasterization distance per pixel

® For each triangle:

® Find the pixels it covers
® For each pixel: compare to closest triangle so far

Requires a spatially

Ray tracing sorted arrangement of triangles

® For each pixel:
® Find the triangles that might be closest
® For each triangle: compute distance to pixel

When all triangles/pixels have been processed, we know
the closest triangle at all pixels




Myths of Ray Tracing & Rasterization <3

NVIDIA

® Ray tracing is clean, rasterization is ugly

® Both are ugly

® Ray tracing is sublinear, rasterization linear in primitives

® Rasterization uses culling techniques

® Ray tracing is linear, rasterization sublinear in pixels

® Ray tracing uses packets & frustum tracing




Ray Tracing vs. Rasterization <X
NVIDIA

® Rasterization is fast
® Dbut needs cleverness to support complex visual effects

® Ray tracing supports complex visual effects

® but needs cleverness to be fast




Why Rasterization? <X

NVIDIA

Fast & Efficient

Ubiquitous — part of workflow, pipeline

Great for displacement-mapped geometry

Developers know how to make beautiful pictures...
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From Battlefield: Bad Company, EA Digital Illusions CE AB
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From Battlefield: Bad Company, EA Digital Illusions CE AB
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Why Rasterization? <A
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From Crysis, Crytek GmbH
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Why ray tracing? <3

NVIDIA

® Ray tracing unifies rendering of visual phenomena
® fewer algorithms with fewer interactions between algorithms

® Easier to combine advanced visual effects robustly
soft shadows

subsurface scattering
indirect illumination
transparency

reflective & glossy surfaces
depth of field
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Ray Tracing vs. Rasterization <X
NVIDIA

® RasterizatiOn-is fast
® Dbut needs clevernees to support complex visual effects

® Ray tracing suppers complex vistal.effects
® Dbut needs™Cleverness to be fast

Use both!




Ray tracing (Appel 1968, Whitted 1980) <3

NVIDIA.
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Distributed Ray Tracing (Cook, 1984) <3
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Path Tracing (Kajiya, 1986) <3

NVIDIA

Figure 6. A sample image. All objects are neutral grey. Color on the objects
is due to caustics from the green glass balls and color bleeding from the base

polygon.
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Ray Tracing Regimes <3

NVIDIA

Real-time

Interactive

Computational Power
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Industrial strength ray tracing <3

NVIDIA

® mental images is market leader for ray tracing software

® Applicable in numerous markets: automotive, design,
architecture, film




Importance <3
NVIDIA
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Interactive Ray Tracing <3

NVIDIA
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GPUs Are Fast & Getting Faster

——NVIDIA GPU Intel CPU
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Why GPU Ray Tracing? <3

NVIDIA

® Abundant parallelism, massive computational power

® GPUs excel at shading

® Opportunity for hybrid algorithms
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GPU Ray Tracing <3

NVIDIA

Purcell et al., Ray Tracing on Programmable
Graphics Hardware, SIGGRAPH 2002

Purcell et al., Photon Mapping on
Programmable Graphics Hardware,
Graphics Hardware 2004

Popov et al., Stackless KD-Tree Traversal for High Performance
GPU Ray Tracing, Computer Graphics Forum, Oct 2007

Popov et al., Realtime Ray Tracing on GPU with BVH-based
Packet Traversal, Symposium on Interactive Ray Tracing 2007
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GPU Ray Tracing <3

NVIDIA

Il K-D Restart

[l GPU Improvement
[0 Looping

[J Short-Stack

Horn et aI.2, Interactive k-D Tree GPU Raytracing
ACM SIGGRAPH Symposium on Interactive 3D Graphics 2007
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GPU Ray Tracing <3
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Zhou et al., Real-Time KD-Tree Construction on Graphics Hardware
Microsoft Research Asia Tech Report 2008-52
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Volume Ray Casting <3

NVIDIA

Ray marching for isosurfaces + direct volume rendering

Electron density of virus
from cryoelectroscopy

Vital to change isosurface
interactively

Great match for CUDA

Volume Ray Casting With CUDA
Marsalek & Slusallek 2008
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City demo <X

NVIDIA

Real system
NVSG-driven animation and interaction
Programmable shading

Modeled in Maya, imported through COLLADA
Fully ray traced
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2 million polygons
Bump-mapping

Movable light source

5 bounce reflection/refraction
Adaptive antialiasing




System Diagram - ray tracing <3
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System Diagram —ray tracing <3

NVIDIA

S —— D
Texture/Vertex Ray Programmable

buffer setup generation Ray tracing system
(OpenGL) | L i
Light
shader

Traversal

Image display/ Material
postprocessing shading
(OpenGL)




Key Parallel Abstractions in CUDA <X

NVIDIA

. Zillions of lightweight threads

= Simple decomposition model

. Hierarchy of concurrent threads
= Simple execution model

. Lightweight synchronization primitives
=» Simple synchronization model

. Shared memory model for cooperating threads
= Simple communication model
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Hierarchy of concurrent threads <X
NVIDIA

® Parallel kernels composed of many threads fhreac

® all threads execute the same sequential program

® Threads are grouped into thread blocks
® threads in the same block can cooperate

Kernel foo ()

® Threads/blocks
have unique IDs
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Big Picture <3

NVIDIA
GT1X 280 supports up to 30,720 concurrent threads!

1. Big strategic optimization: minimize per-thread state

2. Otherwise, take simplest option
« Clever optimizations usually violate rule 1

3. Lots of opportunity for further research
» Coalescing work for increased coherence (work queues)

Data coherence
Execution coherence

« Ray space hierarchies
« Radical departures from traditional methods (see RT08)
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Details — Algorithmic <X

NVIDIA

® Top-level BVH + subtrees (BVH or k-d tree)

® Supports rigid motion, instancing
® Rebuild/refit easy to add

® Traversal + intersection + shading “megakernel”

® while — while vs. if — if

® Highly variable thread lifetimes!
® Software load-balancing

Copyright NVIDIA 2008




Details - Implementation <X
NVIDIA

* Triangle & hierarchy data through texture cache

® Ray tree recursion
® Stack in local memory to store shader live variables
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Short Stack <X

NVIDIA

® Goal: minimize state per thread

® Strategy: replace traversal stack with short stack

Hm;n.@’r al__ Inferactive k-D Tree GPU Raytracing, 13D
2008

Slides courtesy Daniel Horn
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KD-Tree <X
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KD-Tree <X
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KD-Tree <X
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KD-Tree Traversal <X
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KD-Tree Traversal <X
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KD-Tree Traversal <X
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KD-Restart
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Standard traversal
®  Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

<3

NVIDIA




KD-Restart

Copyright NVIDIA 2008

Standard traversal
®  Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf

<3

NVIDIA




KD-Restart
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KD-Restart
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KD-Restart
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Standard traversal
®  Omit stack operations
e Proceed to 1st leaf

If no intersection
. Advance (tmin,tmax)
J Restart from root

Proceed to next leaf




KD-Restart with short stack (siz 1) <
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KD-Restart with short stack (size 1) <X
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KD-Restart with short stack (size 1) <X
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KD-Restart with short stack (siz 1) <

NVIDIA




Short Stack Cache <X

NVIDIA

e Even better:

e Each thread stores full stack in memory non-blocking writes

e (Cache top of stack locally (registers or shared memory)

e Enables BVHs as well as k-d trees

e 5-10% faster in our current implementation
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System Diagram —ray tracing <3
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buffer setup generation Ray tracing system
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Light
shader

Traversal

Image display/ Material
postprocessing shading
(OpenGL)




System Diagram — Hybrid <X

Multi-pass
Rasterization
(OpenGL)

AlDs, ...

FBO, ...

Composite,
shade, display
(OpenGL)

NVIDIA

Ray Programmable
generation Ray tracing system

Light
shader

Traversal

Material
shading




Hybrid Rendering — Primary Rays <3

NVIDIA

M RF ray tracing framework

Copyright NVIDIA 2008




Hybrid Rendering — Primary Rays <3
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M RF ray tracing framework
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Hybrid Rendering — “God Rays” <
Wyman & Ramsey, RT08

NVIDIA
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Hybrid Rendering — “God Rays”
Wyman & Ramsey, RT08
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Indirect lllumination != Ray Tracing rfl%A

)

|
f

No indirect lighting With indirect lighting

Laine et al., Incremental Instant Radiosity for Real-Time Indirect lllumination
Eurographics Symposium on Rendering 2007
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Solve the Right Problems! <3

NVIDIA

Tracing eye rays is uninteresting
e rasterization wins, use it

Scenes change dynamically at run time
e can't lovingly craft all spatial indices in off-line process

Complex shaders & texturing are mandatory
e a big weakness of CPU software tracers to date

Need to provide a complete solution
e construction, shading, application integration, hardware
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Summary <3

NVIDIA

e CUDA makes GPU ray tracing fast and practical

A powerful tool in the interactive graphics toolbox

* Hybrid algorithms are the future

e Leverage the power of rasterization with the flexibility of CUDA

e Together they provide tremendous scope for innovation
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Thank You! <@

NVIDIA
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