.o

e

SERLPEEEN) s 300
“CREREEREAFEFFEREEREN (N
REAREREFFFFEFEFERENRENER
’ fir LR I I IR
EEEREREREREREFFEE NN
EREERE R EFED P EF NN
F e L
EEEREEREENENEEJJENENNN NN
REEREEEREEREEREEREEERELENEEEINNIN
REEREREFENEREE LR R R ENEEDENENENENE
A AR AR R R R R R R ERERE AR R EREEREEREREREEREREENENENJNNNER BN
PSS AL AR R R R R R R R R R EEREEERENERIEENEIE B B

PP A A A A A A d A R R R R E T T T T ’
.s\\s\b\\\\\\\s‘\-suonc.s;s.ss-c.s..-..-......~.
g S I I NI T rr L
FEBFP ISPy AAREE R R R EE I I T e

‘littnnts.sc‘s.ss..~y;;.~..‘.-..
\\\I‘.\Q\\.\b.-\

ng with

I

Comput

Mark Harris

mharris@nvidia.com

Future Science & Engineering rﬁ%\
Breakthroughs Hinge on Computing

Computational Computational Computational Computational
Geoscience Modeling Medicine Physics

Computational Computational Computational Image
Chemistry Biology Finance Processing

© NVIDIA Corporation 2008

Faster is not “Just faster”

“Just faster”

2-3X

Do a little more, wait a little less

Doesn’t change how you work

5-10x

“Significant”

Worth upgrading

Worth rewriting (parts of) your application

100x+ “Fundamentally Different”

Worth considering a new platform

Worth re-architecting your application
Makes new applications possible
Drives down “time to discovery”

Creates fundamental changes in science

Parallel Computing with CUDA

*Enabling new science and engineering

* By drastically reducing time to discovery
* Engineering design cycles: from days to minutes, weeks to days

* Enabling new computer science

* By reinvigorating research in parallel algorithms, programming
models, architecture, compilers, and languages

<

NVIDIA.

GeForce® Tesla™ Quadro®
Entertainment High-Performance Computing Design & Creation

© NVIDIA Corporation 2008

Wide Developer Acceptance and Success <X

NVIDIA

Interactive lon placement for Transcoding HD Simulation in Astrophysics N-
visualization of molecular video stream to Matlab using .mex body simulation
volumetric white dynamics H.264 file CUDA function
matter simulation

connectivity

——

Financial GLAME@Iab: An Ultrasound Highly optimized Cmatch exact
simulation of M-script API for medical imaging object oriented string matching to
LIBOR model with linear Algebra for cancer molecular find similar
swaptions operations on diagnostics dynamics proteins and gene
© NVIDIA Corporation 2008 GPU sequences

>

NVIDIA

John Stone

Preparing the Virus for Stmulation seckman mstiute, vniversity of tinois

Key task: placement of 10ns inside and
around the virus

110 CPU-hours on SGI Altix Itantum?2

Larger viruses could require thousands of
CPU-hours

27 GPU-minutes on G80

Over 240 times faster - 1on placement can
now be done on a desktop machine!

NIH Resource for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC
http://www.ks.uiuc.edu/

© NVIDIA Corporation 2008

Folding@Home >

NVIDIA.

* Distributed computing to study protein folding

® Alzheimer’s Disease

¢ Huntington’s Disease S ooNoR "
¢ Cancer t‘ Compoted 3 wark s
CURRENT WORK UNIT

* Osteogensis imperfecta
® Parkinson’s Disease
¢ Antibiotics

Name p3116_noshake_low

Core SCEARDZ 1.9.74885

Progress 450/10000
— 4 51"

g Performance 0.0807sNrame 214.11 ns/day

ne b0 Completie 0d:00h:12m:515

| ; 3J25!2087‘ Sun 12:28

* CUDA client available soon! § ?ﬁ;

© NVIDIA Corporation 2008

Molecular Dynamics : GROMACS <X

NVIDIA

Folding@Home

CPU PS3 ATI GPU Tesla 8 Tesla 10

NVIDIA GPUS

© NVIDIA Corporation 2008

Life Sciences: Autodock for Cancer Research <3

NVIDIA.
National Cancer Institute reports 12x speedup
Wait for results reduced from 2 hours to 10 minutes
~ -

s i’

.
——r

. .
......
TEIN

“We can only hope that in the long run, Silicon
Informatics' efforts will accelerate the discovery
of new drugs to treat a wide range of diseases,
from cancer to Alzheimer's, HIV to malaria.”

S
'''''''''''
.......

-9.0
Dr. Garrett Morris, Scripps, Author of AutoDock C-offinity _
Energy = -15.97
RMSD = 4.11 Ang&tr o WEter Ronk = 19
S

© NVIDIA Corporation 2008

Cambridge University Turbomachinery CFD >

NVIDIA.

¢ Partial differential equations on structured grids

“NVIDIA GPUs enable faster design cycles
and new science

*Up to 10 million points on a single GPU

#Scales to many GPUs using MPI

*10x — 20x speedup Intel Core2 Quad 2.33 GHz

i UNIVERSITY OF WHITTLE CFD analysis of a jet engine fan, courtesy of Vicente Jerez Fidalgo, Whittle Lab
LABORATORY Slide courtesy of Tobias Brandvik and Graham Pullan, Whittle Lab

3 li&

© NVIDIA Corporation 2008

National Center for Atmospheric Research <3

NVIDIA.

® Weather Research and Forecast (WRF) model
#4000+ registered users worldwide

* First-ever release with GPU acceleration

12km CONUS WRF benchmark
Running on NCSA CUDA cluster

* Adapted 1% of WRF code to CUDA -

* Resulted in 20% overall speedup

#Ongoing work to adapt more
of WRF to CUDA

KF TSU P HS La=s wer-D v
LH: ARTN S¥: Dudhio DIFFs =1 le ')

LT T T T

© NVIDIA Corporation 2008

Astrophysics N-Body Simulation <3

NVIDIA

. o
.........

.
Ul -y
»
pt -
!‘\ . -
l.\.\ "
» -
. s..."_’ -

¢ 12+ billion body-body interactions per second

300 GFLOP/s+ on GeForce 8800 Ultra
¢ 1-5 GFLOP/s on single-core CPU
® Faster than custom GRAPE-6Af n-body computer

*® http://www.astrogpu.org/

© NVIDIA Corporation 2008

http://progrape.jp/cs/

Finance: Real-time Options Valuation <3

NVIDIA
Hanweck Associates Volera real-time option valuation engine
Value the entire U.S. listed options market in real-time using 3 NVIDIA Tesla S870’s
GPUs CPUs Savings
I . O . N i R
Processors 12 $10]0
Rack Space 6U 54U Ox
Hardware Cost $42,000 $262,000 6X
Annual Cost $140,000 $1,200,000 Ox e e] R
g "_IIR‘L".' 3
Bl e
Figures assume: oeafreicBE] Techfom s fFoodes
NVIDIA Tesla S870s with one 8-core host server per unit 1 R O |
CPUs are 8-core blade servers; 10 blades per 7U B e o et O e =
- == . =

$1,800/U/month rack and power charges
S-year depreciation

© NVIDIA Corporation 2008

’ -
4
o
rrT T Ley
ey
reed B
3
-
3
<
A A
. ’
4 Yo
Pl s

Q-..’.‘N.'.‘

—-——---——

i‘n‘t~

AN,

s o
ALy ey
\.M.m.\..“.n.n.\“...h.., 22>

(LSS LR RN
. (EEES R FN) .
SERIFEFESFS)
“REEEREAFEFFEEE RN . N

EREEEEREFFFFFENFEREEN NN

'ERFEFEF RN
REEREEEREEREEREEREEERELENEEEINNIN
AR EFERENREREE LR R R ENEE R NENNENI
FARRPORIR NN ’
PRI R T NETE
FERATA I PIPIIREI NI EE R R R R RN ’
; ‘\\ss\\\\s\\s\s\\\\‘\\\\\s-s\-s‘;-.-. .-... AR R R R RN
»
10000003055 ssses L)

rEAdp
4

A
.oh‘\l‘kﬂ\\‘.

th

ng wi

I

Comput

Parallel Computing’s Golden Age <3

NVIDIA

J‘ » Cray X-MP

*1980s, early 1990s ol (1982)
\E‘ S

* Particularly data-parallel computing N

® Architectures
_ Thinking Machines
* Connection Machine, MasPar, Cray CM-1 (1984)

* True supercomputers: incredibly exotic,
powerful, expensive
]' MasPar MP-1
| (1990)

® Algorithms, languages, &
programming models
* Solved a wide variety of problems

® Various parallel algorithmic models developed
* P-RAM, V-RAM, circuit, hypercube, etc.

© NVIDIA Corporation 2008

Parallel Computing’s Dark Age <3

NVIDIA

* But...impact of data-parallel computing limited
®* Thinking Machines sold 7 CM-1s (100s of systems total)
® MasPar sold ~200 systems

®* Commercial and research activity subsided

* Massively-parallel machines replaced by
clusters of ever more powerful commodity
microprocessors

¢ Beowulf, Legion, grid computing, ...

Massively parallel computing lost momentum to the inexorable
advance of commodity technology

© NVIDIA Corporation 2008

Enter the GPU <3

NVIDIA

* GPU = Graphics Processing Unit

® Processor in computer video cards, PlayStation 3, etc.

* GPUs are massively multithreaded manycore chlps

* NVIDIA Tesla products have 128 scalar processors
®* Over 470 GFLOPS sustained performance
® Over 12,000 concurrent threads

© NVIDIA Corporation 2008

Enter CUDA <3

NVIDIA

®* CUDA i1s a scalable parallel programming model and software
environment for parallel computing

* NVIDIA TESLA GPU architecture accelerates CUDA

* Hardware and software designed together for computing
* Expose the computational horsepower of NVIDIA GPUs
* Enable general-purpose GPU computing

© NVIDIA Corporation 2008

The Democratization of Parallel Computing >

NVIDIA

®* GPUs and CUDA bring parallel computing to the masses
* Over 70M CUDA-capable GPUs sold to date
* 60K CUDA developers
* A “developer kit” costs ~$200 (for 500 GFLOPS)

¢ Data-parallel supercomputers are everywhere!
* CUDA makes this power accessible
® We’'re already seeing innovations In data-parallel computing

Massively parallel computing has become a commodity technology!

© NVIDIA Corporation 2008

=

CUDA

© NVIDIA Corporation 2008

>

CUDA

A scalable parallel programming model and software
environment for parallel computing

Minimal extensions to familiar C/C++ environment

Heterogeneous serial-parallel programming model

© NVIDIA Corporation 2008

Heterogeneous Computing <3

NVIDIA.

|1428 cores’”

Multi-Core plus Many-Cores

© NVIDIA Corporation 2008

Heterogeneous Programming <3

NVIDIA

* CUDA = serial program with parallel kernels, all in C
» Serial C code executed by a CPU thread
* Parallel kernel C code executed by thread blocks across multiple processing elements

Serial Code

N
20000
KL

4444444444

Parallel Kernel SIS || SIS
KernelA<<< nBIk, nTid >>>(args);

I

TR, | | 'R SRR

Serial Code

Parallel Kernel % % % %
KernelB<<< nBlk, nTid >>>(args); —

© NVIDIA Corporation 2008

A Highly Multithreaded Coprocessor <3

NVIDIA.
* The GPU is a highly parallel compute coprocessor
® serves as a coprocessor for the host CPU
¢ has its own device memory with high bandwidth interconnect
¢ executes many threads in parallel
® Parallel portions of an application are executed as kernels
¢ Many threads execute each kernel
Threaltglahr;li-r?a()gr:ment
. NEREEEER 80+
*CUDA threads ANNNNNEN ENNNARER GigaBytes/sec
¢ extremely lightweight EEREREER RRRERERR To Data
® Very little creation overhead, EENNEEEN NNNREEER
P EERRREER RRRERERR
* Instant switching ======== ======== qum—.
® GPU uses 1000s of threads for efficienc
: HEEEREER RRNEEERR

© NVIDIA Corporation 2008

27

Arrays of Parallel Threads <X

NVIDIA

® A CUDA kernel is executed by an array of threads

® All threads run the same code
® Each thread uses its ID to compute addresses and make control decisions

threadID 0|1/ 2| 3| 4|5| 6|7

float x input|[threadlID];

float y = func(x);
output[threadID] = y;

© NVIDIA Corporation 2008

— 8

Thread Cooperation <X

NVIDIA

* Share results to save computation
* Share memory accesses for drastic bandwidth reduction

* Thread cooperation is a powerful feature of CUDA
®* Threads can cooperate via on-chip shared memory and synchronization

© NVIDIA Corporation 2008

— 9

Thread Blocks: Scalable Cooperation rf,%\

* Divide monolithic thread array into multiple blocks
* Threads within a block cooperate via shared memory
® Threads in different blocks cannot cooperate

* Enables programs to transparently scale to any number of processors!

Thread Block 0 Thread Block 1 Thread Block N - 1

threadID 0|12 (3 |4|5(|6 |7 0|1(2|3 |4 |56 |7 0|12 |3 |4 |56 |7

float x =
input[threadID];
float y = func(x);
output[threadID] = y;

float x =
input[threadID];
float y = func(x);
output[threadID] = y;

float x =
input|[threadlID];
float y = func(x);
output[threadID] = y;

B Y I R Y

Transparent Scalability <3

NVIDIA.

¢® Hardware is free to schedule thread blocks on any processor
® Kernels scale to any number of parallel multiprocessors

Device A Device B

Kernel grid

Block 0 Block 1

Block 2 Block 3

S Block 4 | Block 5 e

Block 6 | Block 7 }

Block 0 Block 1 Block 0 Block 1 Block 2 Block 3

Block 2 | Block 3 Block 4 | Block5 | Block6 | Block 7

Block 6 Block 7

© NVIDIA Corporation 2008

Simple “C” Extensions to Express Parallelism

Standard C Code CUDA C Code

void __global__ void
saxpy_serial(int n, float a, saxpy_parallel(int n, float a, float *x, float *y)
float *x, float *y) | {
{ int i = blockldx.x*blockDim.x +
for (inti = 0;i < n; ++i) threadldx.x;
vlil = a*x[i] + vyIi]; } if (i < n) yli] = a*x[i] + ylil;

}// Invoke serial SAXPY kernel /| Invoke parallel SAXPY kernel with
saxpy_serial(n, 2.0, x, y); /] 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256> >>(n, 2.0, X, y);

© NVIDIA Corporation 2008 32

Kernel Memory Access <X

NVIDIA.

® Registers

® Global Memory Grid
® Kernel input and output data reside here
e UncaChed Shared Memory Shared Memory
. Shared Memory Registers Registers | Registers ‘ Registers
Shared among threads in a single block | |
On-chip, small
* As fast as registers
(Host I
® The host can read & write global memory
but not shared memory

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

© NVIDIA Corporation 2008

33

Manycore GPU - Block Diagram <3

NVIDIA.

»

G380 (launched Nov 2006 — GeForce 8800 GTX)
128 Thread Processors (16 multiprocessors) execute kernel threads

»

»

Up to 12,288 parallel threads active
® Per-block shared memory (PBSM) accelerates processing

_P

Input Assembler
Thread Execution Manager

v

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

Load/store

Global Memory

© NVIDIA Corporation 2008

Hardware Implementation: rfl‘l’zm
Collection of SIMT Multiprocessors

¢ Each multiprocessor is a set of SIMT thread processors
® Single Instruction Multiple Thread

Device

*Each thread processor has: Huttroegeert
¢ program counter, register file, etc. Multiprocessor 2

Multiprocessor 1

¢ scalar data path
® read/write memory access

Instruction

Processor Processor Processor

® Unit of SIMT execution: warp
® execute same instruction/clock

¢ Hardware handles thread scheduling and divergence
transparently

®Warps enable a friendly data-parallel programming model

© NVIDIA Corporation 2008

35

The Keys to GPU Computing Performance <3

NVIDIA.

® Hardware Thread Management
® Thousands of lightweight concurrent threads
® No switching overhead
¢ Hide instruction and memory latency

® On-Chip Shared memory
¢ User-managed data cache
® Thread communication / cooperation within blocks

® Random access to global memory
¢ Any thread can read/write any location(s)
® Direct host access

© NVIDIA Corporation 2008

36

© NVIDIA Corporation 2008

Application Software
Industry Standard C Language

Libraries
cuFFT cuBLAS cuDPP

System CUDA Compiler CUDA Tools

Debugger

1U PCI-E Switch C Fortran Profiler

<

NVIDIA.

X

A New Platform: Tesla nVIDIA
| Tesia
* HPC-oriented product line
® C870: board (1 GPU)
¢ D870: deskside unit (2 GPUs)

® S870: 1u server unit (4 GPUs)

-—-—-———

—-——---——

-

yr 4

.

r .'
1 ' \ <
%) 3 :
Y)
~
L
o .
et A
X -
" .
Y o,
'y e
'y ! o,
¥ - -
- ..—- ..-\.‘a.. il.i
rrys) o
.‘

1'% e

Frere

Frrrey

y
S rsrrry
P FASA S

Yy

ry Yrris
b -\ﬂﬂ“~._.
A ,

Frres
Freer

SO ens
,'q_ma .sqa
.
fo e

1 .."—ﬂ.ffoflbu
AR A
SN,
NN -
Y l—-" -
/»..c\
JJ 't S
(ferse
(eeecceses
= ((rs
LRSS
.-.AM\'Q
R .-‘...,;.af:.;

EEREEEREEREREFFEE NN
EREERREREEEF RN EEEN
RN PA A
REEEREEREREERNEDEN)
REEREEEREEREEREEREEERELENEEEINNIN
I B EER
AR R R R R R R R R R R R R R R R R R R RN RN

Al sl A R R R R R R RN R R R R IR

S S 4T T Y ey FP 20000000 00
A A A2 T TTT LA I I
NYYYrrerrrey \\“tt\\.tsu.-

RIS g

AP AR
e
AR

$\\\tss\s\\\\s A AR
\.\‘\t\\\\t\\\\\...t
L

g
UDA

-

‘
.

!
.
.
L
‘
L
W b
.
.

L
.
.

.
L
.
'
.
.
L
.
.
\
.
.
.
.
.
LT
.
.
.
L
.
s Y s

Data-Parallel A

C

n

NVIDIA.

S

Common Situations in Parallel Computation >

NVIDIA

* Many parallel threads need to generate a single result value
* Reduce

* Many parallel threads that need to partition data
* Split

® Many parallel threads and variable output per thread
® Compact / Expand / Allocate

© NVIDIA Corporation 2008

Split Operation >

NVIDIA

Given an array of true and false elements (and payloads)

Flag T| F|F | T)| F | F | T/|F

Payload 3 | 1 7 0 4 1 6 3

© NVIDIA Corporation 2008

Split Operation >

NVIDIA

Given an array of true and false elements (and payloads)

Flag T| F|F | T)| F | F | T/|F

Payload 3 | 1 7 0 4 1 6 3

Return an array with all true elements at the beginning

© NVIDIA Corporation 2008

Split Operation >

NVIDIA

Given an array of true and false elements (and payloads)

Flag T| F|F | T)| F | F | T/|F

Payload 3 | 1 7 0 4 1 6 3

Return an array with all true elements at the beginning

T| T | T|F | F | F | F|F

3 0 6 1 7 4 1 3

Examples: sorting, building trees

© NVIDIA Corporation 2008

Variable Output Per Thread: Compact >

NVIDIA

Remove null elements
3l o710l 4]1]|0]3

Example: collision detection

© NVIDIA Corporation 2008

Variable Output Per Thread: Compact >

NVIDIA

Remove null elements

Example: collision detection

© NVIDIA Corporation 2008

Variable Output Per Thread: Compact >

NVIDIA

Remove null elements

Example: collision detection

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case <3

NVIDIA

A C D | G
E | H
F

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case <3

NVIDIA

Allocate Variable Storage Per Thread

A C D | G
E | H
F

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case <3

NVIDIA

Allocate Variable Storage Per Thread

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case <3

NVIDIA

Allocate Variable Storage Per Thread

ABIC D‘IEIF‘G‘H

Examples: marching cubes, geometry generation

© NVIDIA Corporation 2008

“Where do | write my output?” >

NVIDIA

*In each case, every thread must answer this simple question
* The answer is:
“That depends (on how much the other threads write)!”

* “Scan” is an efficient way to answer this question in parallel

© NVIDIA Corporation 2008

Parallel Prefix Sum (Scan) <3

NVIDIA

» Given a sequence A = [ay, a4, ..., a@,.1]
and a binary associative operator ® with identity |,

scan(A) =[l, ap, (ag® a4), ..., (8@ a1 ® ... ® a,)]

* Example: if @ is addition, then scan on the sequence

[3170416 3]
returns the sequence

[0341111 1516 22]

© NVIDIA Corporation 2008

Applications of Scan A

NVIDIA

®* Scan is a simple and useful parallel building block for many parallel

algorithms:
® radix sort ® polynomial evaluation
® quicksort (segmented scan) ® solving recurrences
® string comparison ® tree operations
® |exical analysis ® histograms
® stream compaction ® allocation
® run-length encoding ® graph operations
® line of sight ® summed area tables

® etc.

* Fascinating, since scan is unnecessary in sequential computing!

© NVIDIA Corporation 2008

Segmented Scan >

NVIDIA

Segment Head Flags 0 0 1 0 0 1 0 0
Input Data Array 3 1 7 0 4 1 6 3

Segmented scan 0 K 0 7 7 0 1 7

© NVIDIA Corporation 2008

Segmented Scan >

NVIDIA

Segment Head Flags 0 0 1 0 0 1 0 0
Input Data Array 3 1 7 0 4 1 6 3

Segmented scan 0 K 0 7 7 0 1 7

* Segmented scan enables another class of parallel algorithms
* Parallel quicksort, sparse matrix-vector multiply, hierarchical data structures

© NVIDIA Corporation 2008

Segmented Scan <3

NVIDIA

Segment Head Flags 0 0 1 0 0 1 0 0
Input Data Array 3 1 7 0 4 1 6 3

Segmented scan 0 K 0 7 7 0 1 7

* Segmented scan enables another class of parallel algorithms
* Parallel quicksort, sparse matrix-vector multiply, hierarchical data structures

* Sengupta, Harris, Zhang, Owens. “Scan Primitives for GPU Computing”. Proceedings of
Graphics Hardware 2007

* Sengupta, Harris, Garland. “Data-Parallel GPU Computing”. Under review

* Dotsenko, Govindaraju, Sloan, Boyd, Manferdelli. “Fast Scan Algorithms on Graphics
Processors”. Proceedings of ICS 2008.

© NVIDIA Corporation 2008

Sorting in CUDA: Radix and Merge Sort

—X= CPU/8 quicksort —+=—CPU/8 radix |
=& Our radix —#— QOur merge

2l S —+—CPU/8 SIMD radix b
s

e D e Radix Sort on

GeForce 8800 Ultra
60 -
50 TBB+SSE Radix sort

on 8-core Intel Xeon

Sorting Rate (pairs/sec)

Source: Satish, Harris, and Garland. “Designing
efficient sorting algorithms for manycore GPUs”.
Submitted to SCO08

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000
Sequence Size

Figure 11. Sorting rates for our GPU sorts compared with an 8-core Intel Xeon system.

48

cuDPP: CUDA Data-Parallel Primitives Library <3

NVIDIA

* Provide easy access to important data-parallel algorithms in CUDA
® Scan
* Segmented Scan
* Radix sort, merge sort
* Sparse matrix-vector multiply

®* Coming soon: parallel reduction, faster radix and merge sorts, quicksort

* Open source collaboration between NVIDIA and UC Davis
® Shubho Sengupta, John Owens, Mark Harris

* http://www.gpgpu.org/developer/cudpp

© NVIDIA Corporation 2008

=

NVIDIA.

46 Million Units

70M CUDA GPUs

Questions?

60K CUDA Developers

~ CUDA

Heterogeneous Computing

sl

o o & ‘ff';t».»\.-"ﬁj‘ b) ':}‘“‘ { 7 i 2., , - -] = = I—
Bon e 7 E S Y Ll 02 01 LR CNN £ IO
' NN 1 5 o o
Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

© NVIDIA Corporation 2008

