
Manycore Parallel
Computing with CUDA

Mark Harris
mharris@nvidia.com

1

© NVIDIA Corporation 2008

Future Science & Engineering
Breakthroughs Hinge on Computing

Computational
Chemistry

Computational
Biology

Computational
Finance

Image
Processing

Computational
Geoscience

Computational
Medicine

Computational
Modeling

Computational
Physics

2

Faster is not “Just faster”

3

“Just faster”

Do a little more, wait a little less

Doesn’t change how you work

2-3x

4

“Significant”

Worth upgrading

5-10x

Worth rewriting (parts of) your application

5

“Fundamentally Different”

Worth considering a new platform

Worth re-architecting your application

Makes new applications possible

Drives down “time to discovery”

Creates fundamental changes in science

100x+

6

Parallel Computing with CUDA

Enabling new science and engineering
By drastically reducing time to discovery
Engineering design cycles: from days to minutes, weeks to days

Enabling new computer science
By reinvigorating research in parallel algorithms, programming
models, architecture, compilers, and languages

7

© NVIDIA Corporation 2008

TeslaTM

High-Performance Computing
Quadro®

Design & Creation
GeForce®

Entertainment

8

© NVIDIA Corporation 2008

Wide Developer Acceptance and Success

146X 36X 19X 17X 100X

Interactive
visualization of

volumetric white
matter

connectivity

Ion placement for
molecular
dynamics
simulation

Transcoding HD
video stream to

H.264

Simulation in
Matlab using .mex
file CUDA function

Astrophysics N-
body simulation

149X 47X 20X 24X 30X

Financial
simulation of

LIBOR model with
swaptions

GLAME@lab: An
M-script API for
linear Algebra
operations on

GPU

Ultrasound
medical imaging

for cancer
diagnostics

Highly optimized
object oriented

molecular
dynamics

Cmatch exact
string matching to

find similar
proteins and gene

sequences
9

© NVIDIA Corporation 2008 10
10

Distributed computing to study protein folding
Alzheimer’s Disease
Huntington’s Disease
Cancer
Osteogensis imperfecta
Parkinson’s Disease
Antibiotics

CUDA client available soon!

© NVIDIA Corporation 2008

Folding@Home

11

© NVIDIA Corporation 2008

Molecular Dynamics : GROMACS

0

150

300

450

600

CPU PS3 Radeon HD 3870GeForce 8800 GTXGeForce GTX 280

511

369

170
100

4

Folding@Home

ns
/d

ay

CPU PS3 ATI GPU Tesla 8 Tesla 10

4

NVIDIA GPUS

12

© NVIDIA Corporation 2008

Life Sciences: Autodock for Cancer Research

National Cancer Institute reports 12x speedup

Wait for results reduced from 2 hours to 10 minutes

“We can only hope that in the long run, Silicon
Informatics' efforts will accelerate the discovery
of new drugs to treat a wide range of diseases,
from cancer to Alzheimer's, HIV to malaria.”

Dr. Garrett Morris, Scripps, Author of AutoDock

13

© NVIDIA Corporation 2008

Cambridge University Turbomachinery CFD
Partial differential equations on structured grids

NVIDIA GPUs enable faster design cycles
and new science

Up to 10 million points on a single GPU

Scales to many GPUs using MPI

10x – 20x speedup Intel Core2 Quad 2.33 GHz

CFD analysis of a jet engine fan, courtesy of Vicente Jerez Fidalgo, Whittle Lab

Slide courtesy of Tobias Brandvik and Graham Pullan, Whittle Lab

14

© NVIDIA Corporation 2008

National Center for Atmospheric Research
Weather Research and Forecast (WRF) model

4000+ registered users worldwide
First-ever release with GPU acceleration

Adapted 1% of WRF code to CUDA

Resulted in 20% overall speedup

Ongoing work to adapt more
of WRF to CUDA

12km CONUS WRF benchmark
Running on NCSA CUDA cluster

15

© NVIDIA Corporation 2008

Astrophysics N-Body Simulation

http://progrape.jp/cs/

12+ billion body-body interactions per second
300 GFLOP/s+ on GeForce 8800 Ultra

1-5 GFLOP/s on single-core CPU
Faster than custom GRAPE-6Af n-body computer

http://www.astrogpu.org/

16

© NVIDIA Corporation 2008

Finance: Real-time Options Valuation
Hanweck Associates Volera real-time option valuation engine

Value the entire U.S. listed options market in real-time using 3 NVIDIA Tesla S870’s

GPUs CPUs Savings

Processors 12 600

Rack Space 6U 54U 9x

Hardware Cost $42,000 $262,000 6x

Annual Cost $140,000 $1,200,000 9x

Figures assume:
• NVIDIA Tesla S870s with one 8-core host server per unit
• CPUs are 8-core blade servers; 10 blades per 7U
• $1,800/U/month rack and power charges
• 5-year depreciation

17

Massively Parallel
Computing with CUDA

18

1980s, early 1990s
Particularly data-parallel computing

Architectures
Connection Machine, MasPar, Cray
True supercomputers: incredibly exotic,
 powerful, expensive

Algorithms, languages, &
 programming models

Solved a wide variety of problems
Various parallel algorithmic models developed
P-RAM, V-RAM, circuit, hypercube, etc.

© NVIDIA Corporation 2008

Parallel Computing’s Golden Age

MasPar MP-1
(1990)

Thinking Machines
CM-1 (1984)

Cray X-MP
(1982)

19

But…impact of data-parallel computing limited
Thinking Machines sold 7 CM-1s (100s of systems total)
MasPar sold ~200 systems

Commercial and research activity subsided
Massively-parallel machines replaced by
clusters of ever more powerful commodity
microprocessors
Beowulf, Legion, grid computing, …

Massively parallel computing lost momentum to the inexorable
advance of commodity technology

© NVIDIA Corporation 2008

Parallel Computing’s Dark Age

20

© NVIDIA Corporation 2008

Enter the GPU

GPU = Graphics Processing Unit
Processor in computer video cards, PlayStation 3, etc.

GPUs are massively multithreaded manycore chips
NVIDIA Tesla products have 128 scalar processors
Over 470 GFLOPS sustained performance
Over 12,000 concurrent threads

21

© NVIDIA Corporation 2008

Enter CUDA

CUDA is a scalable parallel programming model and software
environment for parallel computing

NVIDIA TESLA GPU architecture accelerates CUDA
Hardware and software designed together for computing
Expose the computational horsepower of NVIDIA GPUs
Enable general-purpose GPU computing

22

© NVIDIA Corporation 2008

The Democratization of Parallel Computing

GPUs and CUDA bring parallel computing to the masses
Over 70M CUDA-capable GPUs sold to date
60K CUDA developers
A “developer kit” costs ~$200 (for 500 GFLOPS)

Data-parallel supercomputers are everywhere!
CUDA makes this power accessible
We’re already seeing innovations in data-parallel computing

 Massively parallel computing has become a commodity technology!

23

© NVIDIA Corporation 2008

24

© NVIDIA Corporation 2008

A scalable parallel programming model and software
environment for parallel computing

Minimal extensions to familiar C/C++ environment

Heterogeneous serial-parallel programming model

24

© NVIDIA Corporation 2008

Heterogeneous Computing

4 cores

plusMulti-Core Many-Cores

25

© NVIDIA Corporation 2008

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executed by a CPU thread
Parallel kernel C code executed by thread blocks across multiple processing elements

Serial Code

. .
.

. . .

Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Serial Code

Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

26

© NVIDIA Corporation 2008

A Highly Multithreaded Coprocessor

The GPU is a highly parallel compute coprocessor
serves as a coprocessor for the host CPU
has its own device memory with high bandwidth interconnect
executes many threads in parallel

Parallel portions of an application are executed as kernels
Many threads execute each kernel

CUDA threads
extremely lightweight

Very little creation overhead,
Instant switching

GPU uses 1000s of threads for efficiency

80+
GigaBytes/sec

To Data

27

A CUDA kernel is executed by an array of threads
All threads run the same code
Each thread uses its ID to compute addresses and make control decisions

© NVIDIA Corporation 2008

Arrays of Parallel Threads

0 1 2 3 4 5 6 7

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

28

© NVIDIA Corporation 2008

Thread Cooperation

Share results to save computation
Share memory accesses for drastic bandwidth reduction

Thread cooperation is a powerful feature of CUDA
Threads can cooperate via on-chip shared memory and synchronization

29

Divide monolithic thread array into multiple blocks
Threads within a block cooperate via shared memory
Threads in different blocks cannot cooperate

Enables programs to transparently scale to any number of processors!

© NVIDIA Corporation 2008

threadID

Thread Block 0

…

Thread Block 1 Thread Block N - 1

Thread Blocks: Scalable Cooperation

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

30

© NVIDIA Corporation 2008

Transparent Scalability

Hardware is free to schedule thread blocks on any processor
Kernels scale to any number of parallel multiprocessors

Device BDevice A

Block 1Block 0

Block 3Block 2

Block 5Block 4

Block 7Block 6

Block 1Block 0 Block 3Block 2

Block 5Block 4 Block 7Block 6

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

31

© NVIDIA Corporation 2008

Simple “C” Extensions to Express Parallelism

void
saxpy_serial(int n, float a,
 float *x, float *y)

{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

32

__global__ void
saxpy_parallel(int n, float a, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x +
 threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with
// 256 threads/block
int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code CUDA C Code

32

© NVIDIA Corporation 2008

Registers

Global Memory
Kernel input and output data reside here
Off-chip, large
Uncached

Shared Memory
Shared among threads in a single block
On-chip, small
As fast as registers

The host can read & write global memory
but not shared memory

Grid

Block (0, 0)Block (0, 0)

Host

Kernel Memory Access

Global
Memory

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

33

© NVIDIA Corporation 2008

G80 (launched Nov 2006 – GeForce 8800 GTX)
128 Thread Processors (16 multiprocessors) execute kernel threads
Up to 12,288 parallel threads active
Per-block shared memory (PBSM) accelerates processing

Manycore GPU – Block Diagram

Thread Execution Manager

Input Assembler

Host

PBSM

Global Memory

Load/store

PBSM

Thread Processors

PBSM

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSM PBSMPBSM

34

© NVIDIA Corporation 2008

Hardware Implementation:
Collection of SIMT Multiprocessors
Each multiprocessor is a set of SIMT thread processors

Single Instruction Multiple Thread

Each thread processor has:
program counter, register file, etc.
scalar data path
read/write memory access

Unit of SIMT execution: warp
execute same instruction/clock
Hardware handles thread scheduling and divergence
transparently

Warps enable a friendly data-parallel programming model

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Instruction

Processor …Processor Processor

35

Hardware Thread Management
Thousands of lightweight concurrent threads
No switching overhead
Hide instruction and memory latency

On-Chip Shared memory
User-managed data cache
Thread communication / cooperation within blocks

Random access to global memory
Any thread can read/write any location(s)
Direct host access

© NVIDIA Corporation 2008

The Keys to GPU Computing Performance

36

© NVIDIA Corporation 2008

Libraries
cuFFT cuBLAS cuDPP

CUDA Compiler

C Fortran

CUDA Tools
Debugger

Profiler

System

PCI-E Switch1U

Application Software
Industry Standard C Language

4 cores

37

© NVIDIA Corporation 2008

A New Platform: Tesla

HPC-oriented product line
C870: board (1 GPU)
D870: deskside unit (2 GPUs)
S870: 1u server unit (4 GPUs)

38

Data-Parallel Algorithms
in CUDA

39

© NVIDIA Corporation 2008

Common Situations in Parallel Computation

Many parallel threads need to generate a single result value
Reduce

Many parallel threads that need to partition data
Split

Many parallel threads and variable output per thread
Compact / Expand / Allocate

40

© NVIDIA Corporation 2008

Split Operation

FTFFTFFT

36140713

Flag

Payload

Given an array of true and false elements (and payloads)

41

© NVIDIA Corporation 2008

Split Operation

FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload

Given an array of true and false elements (and payloads)

Return an array with all true elements at the beginning

41

© NVIDIA Corporation 2008

Split Operation

FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload

Given an array of true and false elements (and payloads)

Return an array with all true elements at the beginning

Examples: sorting, building trees

41

Remove null elements

Example: collision detection

© NVIDIA Corporation 2008

Variable Output Per Thread: Compact

3 0 7 0 4 1 0 33 7 4 1 3

42

Remove null elements

Example: collision detection

© NVIDIA Corporation 2008

Variable Output Per Thread: Compact

3

0

7

0

4 1

0

3

3 7 4 1 3

42

Remove null elements

Example: collision detection

© NVIDIA Corporation 2008

Variable Output Per Thread: Compact

3

0

7

0

4 1

0

3

3 7 4 1 3

42

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case

A

B

C D

E

F

G

2 1 0 3 2

H

43

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case

Allocate Variable Storage Per Thread

A

B

C D

E

F

G

2 1 0 3 2

H

43

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case

Allocate Variable Storage Per Thread

A B C D E F G

2 1 0 3 2

H

43

© NVIDIA Corporation 2008

Variable Output Per Thread: General Case

Allocate Variable Storage Per Thread

Examples: marching cubes, geometry generation

A B C D E F G

2 1 0 3 2

H

43

© NVIDIA Corporation 2008

“Where do I write my output?”

In each case, every thread must answer this simple question

The answer is:

 “That depends (on how much the other threads write)!”

“Scan” is an efficient way to answer this question in parallel

44

© NVIDIA Corporation 2008

Parallel Prefix Sum (Scan)

Given a sequence A = [a0, a1, …, an-1]
and a binary associative operator ⊕ with identity I,

scan(A) = [I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]

Example: if ⊕ is addition, then scan on the sequence

[3 1 7 0 4 1 6 3]

returns the sequence

[0 3 4 11 11 15 16 22]

45

© NVIDIA Corporation 2008

Applications of Scan

Scan is a simple and useful parallel building block for many parallel
algorithms:

Fascinating, since scan is unnecessary in sequential computing!

radix sort
quicksort (segmented scan)
string comparison
lexical analysis
stream compaction
run-length encoding
line of sight

polynomial evaluation
solving recurrences
tree operations
histograms
allocation
graph operations
summed area tables
etc.

46

© NVIDIA Corporation 2008

Segmented Scan

3 1 7 0 4 1 6 3

0 0 1 0 0 1 0 0

0 3 0 7 7 0 1 7

Segment Head Flags

Input Data Array

Segmented scan

47

© NVIDIA Corporation 2008

Segmented Scan

Segmented scan enables another class of parallel algorithms
Parallel quicksort, sparse matrix-vector multiply, hierarchical data structures

3 1 7 0 4 1 6 3

0 0 1 0 0 1 0 0

0 3 0 7 7 0 1 7

Segment Head Flags

Input Data Array

Segmented scan

47

© NVIDIA Corporation 2008

Segmented Scan

Segmented scan enables another class of parallel algorithms
Parallel quicksort, sparse matrix-vector multiply, hierarchical data structures

Sengupta, Harris, Zhang, Owens. “Scan Primitives for GPU Computing”. Proceedings of
Graphics Hardware 2007
Sengupta, Harris, Garland. “Data-Parallel GPU Computing”. Under review
Dotsenko, Govindaraju, Sloan, Boyd, Manferdelli. “Fast Scan Algorithms on Graphics
Processors”. Proceedings of ICS 2008.

3 1 7 0 4 1 6 3

0 0 1 0 0 1 0 0

0 3 0 7 7 0 1 7

Segment Head Flags

Input Data Array

Segmented scan

47

© NVIDIA Corporation 2008

Sorting in CUDA: Radix and Merge Sort

0

10

20

30

40

50

60

70

80

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

M
ill

io
n
s

Sequence Size

S
o

rt
in

g
 R

a
te

 (
p

a
ir
s/

se
c)

CPU/8 quicksort CPU/8 radix
Our radix Our merge
CPU/8 SIMD radix

Figure 11. Sorting rates for our GPU sorts compared with an 8-core Intel Xeon system.

Source: Satish, Harris, and Garland. “Designing
efficient sorting algorithms for manycore GPUs”.
Submitted to SC08

Radix Sort on
GeForce 8800 Ultra

48

TBB+SSE Radix sort
on 8-core Intel Xeon

48

© NVIDIA Corporation 2008

cuDPP: CUDA Data-Parallel Primitives Library

Provide easy access to important data-parallel algorithms in CUDA
Scan
Segmented Scan
Radix sort, merge sort
Sparse matrix-vector multiply
Coming soon: parallel reduction, faster radix and merge sorts, quicksort

Open source collaboration between NVIDIA and UC Davis
Shubho Sengupta, John Owens, Mark Harris

http://www.gpgpu.org/developer/cudpp

49

© NVIDIA Corporation 2008

70M CUDA GPUs

Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

Heterogeneous Computing

CPU
GPU

60K CUDA Developers
Questions?

50

