
DirectX 10 PerformanceDirectX 10 PerformanceDirectX 10 Performance
Per Vognsen

DirectX 10 Performance
Per Vognsen

Outline

General DX10 API usage
Designed for performanceDesigned for performance
Batching and Instancing
State Managementg
Constant Buffer Management
Resource Updates and Management
Reading the Depth BufferReading the Depth Buffer
MSAA

Optimizing your DX10 Gamep g y
or how to work around GPU bottlenecks

DX10 Runtime and Driver.
Designed for Performance

DX10 validation moved from runtime to creation time
Only basic error checking at runtimeOnly basic error checking at runtime

Immutable state objects
Can be pre-computed and cached
S b t f d b ff t ti tiSubset of command buffer at creation time

Vista driver model delegates scheduling and memory
management to OS

Pro: more responsive system, GPU sharing across apps
Con: harder to guarantee performance if multiple apps share the
GPU

Fullscreen mode should be fine

Batch Performance

The truth about DX10 batch performance

“Simple” porting job will not yield expected performance

Need to use DX10 features to yield gains:
Geometry instancing or batching
Intelligent usage of state objects
Intelligent usage of constant buffers
Texture arraysTexture arrays

Geometry Instancing

Better instancing support in DX10
Use “System Values” to vary rendering
SV InstanceID SV PrimitiveID SV VertexIDSV_InstanceID, SV_PrimitiveID, SV_VertexID
Additional streams not required
Pass these to PS for texture array indexing
Hi hl i d i l lt i i l d llHighly-varied visual results in a single draw call

Watch out for:
Texture cache trashing if sampling textures from system values
(SV PrimitiveID)(SV_PrimitiveID)
Too many attributes passed from VS to PS
InputAssembly bottlenecks due to instancing
Solution: Load() per-instance data from Buffer in VS or PS using
SV_InstanceID

State Management

DX10 uses immutable “state objects”
Input Layout ObjectInput Layout Object
Rasterizer Object
DepthStencil Object
Blend Objectj
Sampler Object

DX10 requires a new way to manage statesq y g
A naïve DX9 to DX10 port will cause problems here
Always create state objects at load-time
Avoid duplicating state objectsp g j
Recommendation to sort by states still valid in DX10!

Constant Buffer Management (1)

Probably a major cause of poor performance in initial naïve DX10 ports!

Constants are declared in buffers in DX10:Constants are declared in buffers in DX10:
cbuffer PerFrameConstants
{

float4x4 mView;
float fTime

cbuffer SkinningMatricesConstants
{

float4x4 mSkin[64];
}

When any constant in a cbuffer is updated the full cbuffer has to be uploaded to
GPU

float fTime;
float3 fWindForce;

};

};

GPU
Need to strike a good balance between:

Amount of constant data to upload
Number calls required to do it (== # of cbuffers)q ()

Constant Buffer Management (2)

Use a pool of constant buffers sorted by frequency of updates

Don’t go overboard with number of cbuffers!
(3-5 is good)

Sharing cbuffers between shader stages can be a good thing

Example cbuffers:Example cbuffers:
PerFrameGlobal (time, per-light properties)
PerView (main camera xforms, shadowmap xforms)
PerObjectStatic (world matrix, static light indices)
PerObjectDynamic (skinning matrices, dynamic lightIDs)

Constant Buffer Management (3)

Group constants by access pattern to help cache reuse due
to locality of accessto locality of access
Example:

float4 PS_main(PSInput in)
{{
float4 diffuse = tex2D0.Sample(mipmapSampler, in.Tex0);
float ndotl = dot(in.Normal, vLightVector.xyz);
return ndotl * vLightColor * diffuse;

}

cbuffer PerFrameConstants
{

float4 vLightVector;
float4 vLightColor;
fl t4 Oth St ff[32]

cbuffer PerFrameConstants
{

float4 vLightVector;
float4 vOtherStuff[32];

}

float4 vOtherStuff[32];
};

float4 vLightColor;
};

GOOD BAD

Constant Buffer Management (4)

Careless DX9 port results in a single $Globals cbuffer containing
all constants, many of them unused, y

$Globals cbuffer typically yields bad performance:
Wasted CPU cycles updating unused constantsWasted CPU cycles updating unused constants

Check if used: D3D10_SHADER_VARIABLE_DESC.uFlags
cbuffer contention
Poor cbuffer cache reuse due to suboptimal layoutPoor cbuffer cache reuse due to suboptimal layout

When compiling SM3 shaders for SM4+ target with
D3D10 SHADER ENABLE BACKWARDS COMPATIBILITY: use conditionalD3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY: use conditional
compilation to declare cbuffers
(e.g. #ifdef DX10 cbuffer{ #endif)

Constant Buffer Management (5)

Consider tbuffer if access pattern is more random
than sequentialthan sequential

tbuffer access uses texture Loads, so higher latency but
higher performance sometimes
Watch out for texture-bound cases resulting from tbuffer
usage

Use tbuffer if you need more data in a single buffer
cbuffer limited to 4096*128-bit
tbuffer limited to 128 megabytes

Resource Updates

In-game destruction and creation of Texture and Buffer
resources has a significant impact on performance:resources has a significant impact on performance:

Memory allocation, validation, driver checks

Create all resources up-front if possible
During level load, cutscenes, or any non-performance critical
situationssituations

At runtime: replace contents of existing resources, rather than p g ,
destroying/creating new ones

Resource Updates: Textures

Avoid UpdateSubresource() for textures
Slow path in DX10

(think DrawPrimitiveUP() in DX9)
Especially bad with larger textures!

Use ring buffer of intermediate D3D10_USAGE_STAGING textures
Call Map(D3D10_MAP_WRITE,...) with
D3D10 MAP FLAG DO NOT WAIT to avoid stallsD3D10_MAP_FLAG_DO_NOT_WAIT to avoid stalls
If Map fails in all buffers: either stall waiting for Map or allocate
another resource (cache warmup time)
Copy to textures in video memory (D3D10_USAGE_DEFAULT):
CopyResource() or CopySubresourceRegion()

Resource Updates: Buffers
To update a Constant buffer
Map(D3D10_MAP_WRITE_DISCARD, …);
UpdateSubResource()p
Recall full buffer must be updated, but with Map() CPU can
skip parts that the shader does not care about. All the data
must be uploaded to GPU though

To update a dynamic Vertex/Index buffer
Use a large shared ring-buffer type; writing to unused portions
of buffer using:of buffer using:

Map(D3D10_MAP_WRITE_DISCARD,…) when full or
if possible the first time it is mapped at every frame
Map(D3D10 MAP WRITE NO OVERWRITE) thereafterMap(D3D10_MAP_WRITE_NO_OVERWRITE, …) thereafter

Avoid UpdateSubResource()
not as good as Map() in this case either

Accessing Depth and Stencil

DX10 enables the depth buffer to be read back as a texture
E bl f t ith t i i t d th dEnables features without requiring a separate depth render

Atmosphere pass
Soft particlesp
Depth of Field
Deferred shadow mapping
Screen space ambient occlusionScreen-space ambient occlusion
Etc.

Popular features in most recent game enginesg g

Accessing Depth and Stencil with MSAA

DX10.0: reading a depth buffer as SRV is only supported in single
sample modesample mode

Requires a separate render path for MSAA
Workarounds:

Store depth in alpha of main FP16 RT
Render depth into texture in a depth pre-pass
U d d t t i i lUse a secondary rendertarget in main color pass

MultiSampling Anti-Aliasing

MSAA resolves cost performance
Cost varies across GPUs but it is never freeCost varies across GPUs but it is never free
Avoid redundant resolves as much as possible
E.g.: no need to perform most post-process ops on MSAA
RT R l th l ff tRT. Resolve once, then apply p.p. effects

No need to allocate SwapChain as MSAA
Apply MSAA only to rendertargets that matterpp y y g

Be aware of CSAA:
Certain DXGI_SAMPLE_DESC.Quality values will enable

higher-quality but slightly costlier MSAA modehigher quality but slightly costlier MSAA mode
See http://developer.nvidia.com/object/coverage-sampled-aa.html

Optimizing your DX10 Game

Use PerfHUD to identify bottlenecks:

Step 1: are you GPU or CPU bound?
Check GPU idle time
If GPU is idle you are probably CPU bound either by other CPUIf GPU is idle you are probably CPU bound either by other CPU
workload on your application or by CPU-GPU synchronization

Step 2: if GPU bound, identify the top buckets and their bottlenecks
Use PerfHUD Frame Profiler for this

Step 3: try to reduce the top bottleneck/s

If Input Assembly is the bottleneck

Optimize IB and VB for cache reuse
Use ID3DXMesh::Optimize() or other toolsUse ID3DXMesh::Optimize() or other tools

Reduce number of vector attributes
Pack several scalars into single 4-scalar vector

R d t i i ki t i kReduce vertex size using packing tricks:
Pack normals into a float2 or even RGBA8
Calculate binormal in VS
Use lower-precision formats

Use reduced set of VB streams in shadow and depth-only passes
Separate position and 1 texcoord into a streamSeparate position and 1 texcoord into a stream
Improves cache reuse in pre-transform cache
Also use shortest possible shaders

Attribute Boundedness

Interleave data when possible into a less VB streams:
at least 8 scalars per streamat least 8 scalars per stream

Use Load() from Buffer or Texture instead

Dynamic VBs/IBs might be on system memory accessed overDynamic VBs/IBs might be on system memory accessed over
PCIe:

maybe CopyResource to USAGE_DEFAULT before using (especially
if used multiple times in several passes)if used multiple times in several passes)

Passing too many attributes from VS to PS may also be a
bottleneck

packing and Load() also apply in this case

If Vertex Shader is the bottleneck

Improve culling and LOD (also helps IA):
Look at wireframe in debugging tool and see if it’s reasonableLook at wireframe in debugging tool and see if it s reasonable
Check for percentage of triangles culled:

Frustum culling
Zero area on screenZero area on screen

Use other scene culling algorithms
CPU-based culling
Occlusion cullingOcclusion culling

Use Stream-Output to cache vertex shader results for multiple uses
E.g.: StreamOut skinning results, then render to shadowmap,
depth prepass and shading passdepth prepass and shading pass
StreamOut pass writes point primitives (vertices) Same index
buffer used in subsequent passes

If Geometry Shader is the bottleneck

Make sure maxvertexcount is as low as possible
maxvertexcount is a shader constant declaration need differentmaxvertexcount is a shader constant declaration need different
shaders for different values
Performance drops as output size increases

Minimize the size of your output and input vertex structuresy p p
GS not designed for large-expansion algorithms like
tessellation

Due to required ordering and serial executionq g
Consider using instancing in current hardware
Move some computation to VS to avoid redundancy
Keep GS shaders shortKeep GS shaders short

If Stream-Output is the bottleneck

Avoid reordering semantics in the output declaration
Keep them in same order as in output structureKeep them in same order as in output structure

You may have hit bandwidth limit
SO bandwidth varies by GPUy

Remember you don’t need to use a GS if you are just
processing vertices

U C t tGSWithSO V t Sh dUse ConstructGSWithSO on Vertex Shader
Rasterization can be used at the same time

Only enable it if needed (binding RenderTarget)y (g g)

If Pixel Shader is the bottleneck (1)

Verify by replacing with simplest PS (PerfHUD)
Move computations to Vertex Shaderp
Use pixel shader LOD
Only use discard or clip()when required
discard or clip() as early as possible

GPU ki i i i t ti if t t dGPU can skip remaining instructions if test succeeds
Use common app-side solutions to maximize pixel culling efficiency:

Depth prepass (most common)
R d bj t f t t b kRender objects front to back
Triangle sort to optimize both for post-transform cache and Z culling
within a single mesh
Stencil/scissor/user clip planes to tag shading areasStencil/scissor/user clip planes to tag shading areas
Deferred shading

If Pixel Shader is the bottleneck (2)

Shading can be avoided by Z/Stencil culling
Coarse (ZCULL)Coarse (ZCULL)
Fine-grained (EarlyZ)

Coarse Z culling is transparent but it may underperform if:Coarse Z culling is transparent, but it may underperform if:
If shader writes depth
High-frequency information in depth buffer
If d ’t l th d th b ff i “ l ” (id l iIf you don’t clear the depth buffer using a “clear” (avoid clearing
using fullscreen quads)

If Pixel Shader is the bottleneck (3)

Fine-grained Z culling is not always active
Disabled on current hardware if:Disabled on current hardware if:

PS writes depth (SV_Depth)
Z or Stencil writes combined with:

Alpha test is enabled (DX9 only)Alpha test is enabled (DX9 only)
discard / texkill in shaders
AlphaToCoverageEnable = true

Disabled on current NVIDIA hardware if:Disabled on current NVIDIA hardware if:
PS reads depth (.z) from SV_Position input

Use .w (view-space depth) if possible
Z or Stencil writes combined with:S

Samplemask != 0xffffffff

Any Shader is still the bottleneck (1)

Use NVIDIA’s ShaderPerf
Be aware of appropriate ALU to TEX hardware instruction ratios:Be aware of appropriate ALU to TEX hardware instruction ratios:

10 scalar ALU per TEX on NVIDIA GeForce 8 series
Check for excessive register usage

10 t i t i hi h G F 8 i> 10 vector registers is high on GeForce 8 series
Simplify shader, disable loop unrolling
DX compiler behavior may unroll loops so check outputp y p p

Use dynamic branching to skip instructions
Make sure branching has high coherency

Any Shader is still the bottleneck (2)

Some instructions operate at a slower rate
Integer multiplication and divisionInteger multiplication and division
Type conversion (float to int, int to float)

Too many of those can cause a bottleneck in your codey y
In particular watch out for type conversions

Remember to declare constants in the same format as the other
operands they’re used with!operands they’re used with!

If Texture is the bottleneck (1)

Verify by replacing textures with 1x1 texture
PerfHUD can do thisPerfHUD can do this

Basic advice:
Enable mipmapping
Use compressed textures where possibleUse compressed textures where possible

Block-compressed formats
Compressed float formats for HDR

Avoid negative LOD bias (aliasing != sharper)Avoid negative LOD bias (aliasing != sharper)
If multiple texture lookups are done in a loop

Unrolling partially may improve batching of texture lookups,
reducing overall latencyreducing overall latency
However this may increase register pressure
Find the right balance

If Texture is the bottleneck (2)

DirectX compiler moves texture instructions that compute
LOD out of branchesLOD out of branches

Use SampleLevel (no anisotropic filtering)
SampleGrad can be used too, but beware of the extra performance
costcost

Texture cache misses may be high due to poor coherence
In particular in post-processing effects
M dif ttModify access pattern

Not all textures are equal in sample performance
Filtering mode
Volume textures
Fat formats (128 bits)

If ROP is the bottleneck: Causes

Pixel shader is too cheap
Large pixel formatsLarge pixel formats
High resolution
Blending
MSAAMSAA
MRT
Rendering to system memory over PCIe
(t ith id)(parts with no video memory)
Typical problem with particle effects:
little geometry, cheap shading,
b t hi h d i bl dibut high overdraw using blending

If ROP is the bottleneck: Solutions

Render particle effects to lower resolution offscreen texture
See GPUGems 3 chapter by Iain CantlaySee GPUGems 3 chapter by Iain Cantlay

Disable blending when not needed, especially in larger
formats (R32G32B32A32 FLOAT)formats (R32G32B32A32_FLOAT)

Unbind render targets that are not needed
Multiple Render TargetsMultiple Render Targets
Depth-only passes

Use R11G11B10 float format for HDR
(if you don't need alpha)

If performance is hitchy or irregular

Make sure you are not creating/destroying critical resources
and shaders at runtimeand shaders at runtime

Remember to warm caches prior to rendering

Excessive paging when the amount of required video memory
is more than available

Could be other engine component like audio, networking,
CPU thread synchronization etc.CPU thread synchronization etc.

Clears

Always Clear Z buffer to enable ZCULL

Always prefer Clears vs. fullscreen quad draw calls

A id ti l ClAvoid partial Clears
Note there are no scissored Clears in DX10, they are only possible
via draw calls

Use Clear at the beginning of a frame on any rendertarget or
depthstencil buffer

In SLI mode driver uses Clears as hint that no inter frameIn SLI mode driver uses Clears as hint that no inter-frame
dependency exist. It can then avoid synchronization and transfer
between GPUs

Depth Buffer Formats

Use DXGI_FORMAT_D24_UNORM_S8_UINT

DXGI_FORMAT_D32_FLOAT should offer very similar
performance, but may have lower ZCULL efficiencype o a ce, but ay a e o e CU e c e cy

Avoid DXGI_FORMAT_D16_UNORM
will not save memory or increase performance

CSAA ill increase memor footprintCSAA will increase memory footprint

ZCULL Considerations

Coarse Z culling is transparent,
but it may underperform if:but it may underperform if:

If depth test changes direction while writing depth (== no Z culling!)
Depth buffer was written using different depth test direction than the
one used for testingone used for testing
(testing is less efficient)
If stencil writes are enabled while testing (it avoids stencil clear, but
may kill performance)may kill performance)
If DepthStencilView has Texture2D[MS]Array dimension (on GeForce
8 series)
Using MSAA (less efficient)Using MSAA (less efficient)
Allocating too many large depth buffers
(it’s harder for the driver to manage)

Conclusion

DX10 is a well-designed and powerful API

With great power comes great responsibility!
Develop applications with a “DX10” state of mind
A naïve port from DX9 will not yield expected gains

U f t l il blUse performance tools available
NVIDIA PerfHUD
NVIDIA ShaderPerfNVIDIA ShaderPerf

Talk to us

Questions

Per Vognsen, NVIDIA
@ idipvognsen@nvidia.com

