

Physical Simulation on GPUs

Jim Van Verth

OpenGL Software Engineer NVIDIA

jvanverth@nvidia.com www.nvidia.com www.essentialmath.com

Physics on GPU

Topics of discussion

Ways of parallelizing physics

Examples of GPU physics

CUDA and you

What we've talked about so far

Awfully busy... improve performance?

Solution 1: Multicore CPU

Solution 2a: Cell processor

Solution 2b: AGEIA processor

Solution 3: Programmable GPU

Solution 3b: SLI

GPU Computing

Modern GPU has many independent processors:

GeForce 8800 GTX: 128 SPs

GeForce 8800 GT: 112 SPs

Mostly processing power, not cache:

GeForce 8800 GTX: 300-400 Gflops

GeForce 8800 GT: 500 Gflops

A lot of parallel power for physics!

GPU Physics Example

- From GPU Gems 3
- Takahiro Harada, "Real-time Rigid Body Simulation on GPUs"
- Simple physics engine, all running on GPU

GPU Physics Example

Idea: GPU is good at: Many similar computations Simple data

So:

Particles for collision representation Grid for collision detection Simple collision response

Global object data in texture pairs

Alternate frame to frame

Collision rep: Solid (or shell) of particles

Store as

Fixed radius

Displacement from center of mass

- Smaller particles == better fit
- But more processing

Particle data stored in texture and three rendertargets

- Update position, velocity each frame from global object data
- Update force from collisions

Pipeline

Update Particles

For each object do:
Iterate through all particles
Update particle position, velocity

Grid Representation

Stored as slabs within 2D rendertarget

- Voxel stored as texel
- Four particle indices per texel

Grid Creation

For each particle do

Compute grid index

Write particle index to appropriate component at that location

Collision Resolution

- For each voxel do
 For each particle in voxel do
 - Compute force based on particles in this and 27 neighboring voxels
 - Regardless of collision!
 - Spring force
 - Damping from relative vel.
 - Tangential force

Integration

Compute new linear and angular momenta based on collision (and other) forces

Force/torque on rigid body is weighted sum of forces from each particle

Compute new position and orientation from momenta

Demo

Other approaches

- Simon Green's particles
- Nyland, Harris and Prins: N-body sim.
- A Parallelize one piece:
 Ex. Broad Phase (from GPU Gems 3)
- Do smaller problem
 Ex. Fluid dynamics (Hellfire: London)

GPU Computing

- ... How to program?
- In the past had to use Cg, GLSL, HLSL
- Problems:

Requires specialized shader knowledge Data is often texture or rendertarget Can't "scatter" data easily

CUDA

- Solution is CUDA
- Stands for Compute Unified Device Architecture
- Extensions on C/C++
- Interoperable with D3D and OpenGL
- www.nvidia.com/cuda
- Use it!

CUDA

Updating our example:

Instead of Cg, use standard C++ w/CUDA extensions Instead of textures or rendertargets, just use CUDA arrays

Instead of vertex shader, use scatter operation

References

Takahiro Harada. "Real-Time Rigid Body Simulation on GPUs." In *GPU Gems 3*, Hubert Nguyen, ed., Addison-Wesley, 2007.

Lars Nyland, Mark Harris, Jan Prins. "Fast N-Body Simulation with CUDA." In *GPU Gems 3*, Hubert Nguyen, ed., Addison-Wesley, 2007.

Scott Le Grand. "Broad-Phase Collision Detection with CUDA." In *GPU Gems 3*, Hubert Nguyen, ed., Addison-Wesley, 2007.

Keenan Crane, Ignacio Llamas, Sarah Tariq. "Real-Time Simulation and Rendering of 3D Fluids." In *GPU Gems 3*, Hubert Nguyen, ed., Addison-Wesley, 2007.

Simon Green. "CUDA Particles" NVIDIA whitepaper, November, 2007.

NVIDIA CUDA Compute Unified Device Architecture Programming Guide Version 1.1, November 2007.

