

Real-Time Volumetric Smoke
using D3D10

Sarah Tariq and Ignacio Llamas
NVIDIA Developer Technology

Smoke in NVIDIA’s DirectX10 SDK Sample

Smoke in the game Hellgate London

Talk outline:

Why 3D fluid simulation is important
Overview of process
Fluid simulation basics
Dynamic arbitrary boundaries
Rendering
Tradeoffs and optimizations

Why is this cool

Current approaches to rendering smoke
in games have limitations

Video textures
Particle systems

Generalizes to other fluids like water or
fire

Why now?

Jos Stam 03: Real time fluids for games
Harris03, Sander04, FluidSim on the GPU

Sheer number of operations needed can only be
supported by modern high end GPUs

New features in DirectX10
Render to 3D texture
Geometry Shader
Stream Out

Overview

Composite
on top of scene

Render
Discretize
space and
simulate

Decide where to place
the smoke

Scene

Fluid Simulation

A fluid (with constant density and temperature) is described by a
velocity and pressure field
Navier-Stokes equations mathematically defines the evolution of
these fields over time; impose that the field conserves both mass
and momentum
To use these equations we discretize the space into a grid
Define smoke density, velocity and pressure at the center of
each grid cell
At each time step, we use the equations to determine the new
values of the fields

Pressure DensityVelocity

Fluid Simulation steps
Initialize

Advect Advect
Add

Density
Add

Velocity Project

Density

Velocity

Iterate

Density DensityVelocity Velocity Velocity

Pressure

Each time step

Pressure
* We skip the diffusion step

Advect
Density Velocity

Density

Time Step t

Time Step t + 1

Fluid Simulation on the GPU

Velocity, Density, Pressure → Textures

Simulate one substep for entire grid →
Render a grid sized, screen aligned, quad

Calculations for a grid cell → Pixel Shader

Output values → using Render to Texture

Advect on the GPU

Density Texture at
timestep t

Velocity Texture at
timestep t

rasterized rendered

Texture fetch Texture fetch

Render Target
Density for timestep t+1

Quad

M

O

M

O

M

O

M

O

Pixel Shader

PS_ADVECT
calculate new
density for this grid
cell using the
density and velocity
textures from the
previous time step

Velocity in x

V
el

oc
ity

 in
 y

Texture fetchTexture fetch

GS is used to
rasterize each
quad to proper
layer in output
Render Target

Advect on the GPU in 3D

Density Texture at
timestep t

Velocity Texture at
timestep t

rasterized rendered

Pixel Shader Render Target
Density for timestep t+1

N Quads

M

O

M

O
MPS_ADVECT

calculate new
density for this grid
cell using the
density and velocity
textures from the
previous time step

N

N

O
M

N

O

Obstacles

Smoke interacting with
obstacles and compositing

with the scene

Smoke only compositing
with the scene

Obstacles

Implicit shapes
Like spheres, cylinders

Voxelize objects
Static : Voxelize just once, offline
Moving:Voxelize objects per frame

Obstacle texture

Fluid cell inside
obstacle

Fluid cell outside
obstacle

Dealing with Obstacles

How should the fluid react to obstacles?
The fluid should not enter obstacles cells
If the obstacles are moving they should impart the
correct velocity on the fluid

How the fluid reacts to the obstacles →
Boundary Conditions

Boundary Conditions for
Density

No density should be added to or
advected into the interior of obstacles

Density Obstacles

Boundary Conditions for
Pressure

Derivative of the pressure across the
boundary should be zero

(Neumann boundary conditions - specifying derivative)

cell1

u

v cell2 PressureCell1 – PressureCell2 = 0

PressureCell1 = PressureCell2

Boundary Conditions for
Velocity

The velocity normal to the boundary of
the obstacle should be equal for fluid
and obstacle

(Dirichlet boundary conditions – specifying value)

u

v

Voxelizing an object

Obstacle texture

Obstacle Velocity texture

Use low res collision model for
voxelization

Voxelizing a simple object

?

Voxelizing a simple object

Orthographic camera

Near plane

Far plane

Stencil Buffer

Decrement on back faces
Increment on front faces

Voxelization

… … …

2DArray of N stencil buffers

Render model N times, each time with a different near plane

Optimizations

Skin the mesh once per frame, stream out the
skinned mesh, and rendered n times using
instancing

Each instance uses a different projection matrix
with the appropriate near plane

Each instance is rasterized to a different slice in
the output 3D obstacle texture using the
geometry shader.

Voxelizing velocity

Obstacle Velocity texture

Moving obstacles

?

Velocity in x

V
el

oc
ity

 in
 y

Moving obstacles

Velocity in x

V
el

oc
ity

 in
 y

Use GS to
compute plane

triangle
intersection and
output a quad.

The quad is rendered
with the interpolated

velocities of the vertices
(derived by subtracting
current vertex positions

from previous ones)

Rendering

Render front faces
of box

Raycast into the
3D Density texture

Composite into scene

Raycasting into 3D texture
What we have What we don’t have

- Ray from eye to box - Ray in texture space

Transform from world
to texture space

Transform from world
to texture space

Transform from world
to grid space

- Ray box intersection

- Distance the eye ray
traverses through the box

- Ray entry point in the texture

- Number of voxels the ray traverses
= Number of samples to take

3D Density Texture

Raycasting setup
Render back faces

of the box
To RayDataTexture

Render front faces
of the box

To RayDataTexture

Float4(0,0,0,depthInViewSpace) Float4(-posInGrid, depthInViewSpace)
With subtractive (DST - SRC) blending

RayDataTexture.a RayDataTexture.rgb

Raycasting: blending

FinalColor.rgba = 0 FinalColor.rgb += sampleColor.rgb * SampleColor.a
*(1.0 – FinalColor.a)

FinalColor.a += SampleColor.a * (1.0 – FinalColor.a)

Density Texture

= Trilinear sample
from 3D texture

Render Fullscreen
quad to frame buffer

RayDataTexture

PositionInTexture =
TransformToTexSpace
(RayDataTexture.rgb)

MarchingVector =
TransformToTexSpace
(eye - RayDataTexture.rgb)

NumberOfSamples =
TransformToGridSpace
(RayDataTexture.a)

Occluding the scene

Smoke correctly compositing
with the scene

Smoke directly blended on
top of the scene

Integrating scene depth

Integrating scene depth

Back Faces

Front Faces

float4(0,0,0,depthInViewSpace) float4(0,0,0,)

float4(-posInGrid,depthInViewSpace)

Before After using scene depth

min(sceneDepth,depthInViewSpace)

if(sceneDepth < depthInViewSpace)
float4(0,0,0,0)

float4(-posInGrid,depthInViewSpace)

Artifacts

Correctly using the depth
by weighted sampling

Artifacts resulting from an
integral number of samples

Artifacts

Correctly integrating scene depth
by weighting the last sample

FinalColor.rgb += d/sampleWidth * SampleColor.rgb * SampleColor.a * (1.0 – FinalColor.a)
FinalColor.a += d/sampleWidth * SampleColor.a * (1.0 – FinalColor.a)

sampleWidth

d

Camera inside smoke volume

Near plane of camera

Smoke Volume
inside scene

Camera inside smoke volume

Near plane of camera

Smoke Volume
inside scene

Part of smoke volume
clipped by near plane

Camera inside smoke volume

Front faces clipped by near plane;

Depth at these pixels is incorrect
No information about the pixel’s
position in grid

Render back faces
of the box

To RayDataTexture

Render front faces
of the box

To RayDataTexture

Float4(0,0,0,depthInViewSpace) Float4(-posInGrid, depthInViewSpace)
With subtractive (DST - SRC) blending

RayDataTexture.a RayDataTexture.rgb

Camera inside smoke volume

Mark pixels where back faces have been
rendered but not front

In the raycasting step, for these marked
pixels we explicitly set the position in the
grid, and also subtract ZNear from the
depth

Space Requirements

Total Space Exclusive Shared

Simulation 32 bytes per cell 12 bytes per cell
1 x RGBA16
2 x R16

20 bytes per cell
2 x RGBA16
2 x R16

Voxelization 9 bytes per cell - 9 bytes per cell
1 x RGBA16
1 x R8

Rendering 20 bytes per
pixel

- 20 bytes per pixel
1 x RGBA32
1 x R32

Space Requirements for demo

Total Space Exclusive Shared

Simulation 14.95 MB 5.6 MB 9.3 MB

Voxelization 4.2 MB - 4.2 MB

Rendering 25 MB - 25 MB

Grid Size: 70 x 70 x 100
Screen Resolution : 1280 x 1024

Optimizations

Tradeoffs:
Reduce grid size
Reduce number of Jacobi iterations

Early Z cull technique introduced by Sander et
al, 2004

LOD approach for simulation

Render final smoke to a fixed sized off-screen
buffer

Conclusion

Interactive 3D fluid simulation at reasonable grid
resolutions is feasible for games

We presented here a brief overview of the entire
process

More information
NVIDIA DirectX10 SDK code sample
Upcoming GPU Gems3 article

References and acknowledgements

NVIDIA Developer Technology team, Keenan Crane, and the
developers of Hellgate:London

Real-Time Fluid Dynamics for Games. Jos Stam, Alias |
Wavefront. GDC 2003

Simulation of Cloud Dynamics on Graphics Hardware. Mark
Harris, W. Baxter, T. Scheurmann, A. Lastra. Eurographics
Workshop on Graphics Hardware. 2003

Fast Fluid Dynamics Simulation on the GPU. Mark Harris,
NVIDIA. GPU Gems 2004

Explicit Early-Z Culling for Efficient Fluid Flow Simulation and
Rendering”, Pedro V. Sander, Natalya Tatarchuk, Jason L.
Mitchell, ATI Research Technical Report, August 2004

Hardware Accelerated Voxelization. S. Fang and H. Cheng.
Computers and Graphics, 2000

	Real-Time Volumetric Smoke using D3D10���Sarah Tariq and Ignacio Llamas�NVIDIA Developer Technology
	Talk outline:
	Why is this cool
	Why now?
	Overview
	Fluid Simulation
	Fluid Simulation steps
	Advect
	Fluid Simulation on the GPU
	Advect on the GPU
	Advect on the GPU in 3D
	Obstacles
	Obstacles
	Dealing with Obstacles
	Boundary Conditions for Density
	Boundary Conditions for Pressure
	Boundary Conditions for Velocity
	Voxelizing an object
	Use low res collision model for voxelization
	Voxelizing a simple object
	Voxelizing a simple object
	Voxelization
	Optimizations
	Voxelizing velocity
	Moving obstacles
	Moving obstacles
	Rendering
	Raycasting into 3D texture
	Raycasting setup
	Raycasting: blending
	Occluding the scene
	Integrating scene depth
	Integrating scene depth
	Artifacts
	Artifacts
	Correctly integrating scene depth by weighting the last sample
	Camera inside smoke volume
	Camera inside smoke volume
	Camera inside smoke volume
	Camera inside smoke volume
	Space Requirements
	Space Requirements for demo
	Optimizations
	Conclusion
	References and acknowledgements

