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Smoke in NVIDIA’s DirectX10 SDK Sample



Smoke in the game Hellgate London



Talk outline:

Why 3D fluid simulation is important
Overview of process
Fluid simulation basics
Dynamic arbitrary boundaries
Rendering
Tradeoffs and optimizations 



Why is this cool

Current approaches to rendering smoke 
in games have limitations 

Video textures 
Particle systems

Generalizes to other fluids like water or 
fire



Why now?

Jos Stam 03: Real time fluids for games
Harris03, Sander04, FluidSim on the GPU

Sheer number of operations needed can only be 
supported by modern high end GPUs

New features in DirectX10
Render to 3D texture
Geometry Shader
Stream Out



Overview

Composite 
on top of scene

Render
Discretize 
space and 
simulate

Decide where to place 
the smoke

Scene



Fluid Simulation

A fluid (with constant density and temperature) is described by a 
velocity and pressure field
Navier-Stokes equations mathematically defines the evolution of 
these fields over time; impose that the field conserves both mass 
and momentum
To use these equations we discretize the space into a grid
Define smoke density, velocity and pressure at the center of 
each grid cell
At each time step, we use the equations to determine the new 
values of the fields

Pressure DensityVelocity



Fluid Simulation steps
Initialize

Advect Advect
Add

Density
Add

Velocity Project

Density

Velocity

Iterate

Density DensityVelocity Velocity Velocity

Pressure

Each time step

Pressure
* We skip the diffusion step



Advect
Density Velocity

Density

Time Step t

Time Step t + 1



Fluid Simulation on the GPU

Velocity, Density, Pressure → Textures

Simulate one substep for entire grid →
Render a grid sized, screen aligned, quad

Calculations for a grid cell → Pixel Shader

Output values → using Render to Texture



Advect on the GPU

Density Texture at 
timestep t

Velocity Texture at 
timestep t

rasterized rendered

Texture fetch Texture fetch

Render Target
Density for timestep t+1
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Pixel Shader

PS_ADVECT
calculate new 
density for this grid 
cell using the 
density and velocity 
textures from the 
previous time step
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Texture fetchTexture fetch

GS is used to 
rasterize each 
quad to proper 
layer in output 
Render Target

Advect on the GPU in 3D

Density Texture at 
timestep t

Velocity Texture at 
timestep t

rasterized rendered

Pixel Shader Render Target
Density for timestep t+1

N Quads
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O
MPS_ADVECT

calculate new 
density for this grid 
cell using the 
density and velocity 
textures from the 
previous time step

N
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Obstacles

Smoke interacting with 
obstacles and compositing 

with the scene

Smoke only compositing 
with the scene



Obstacles

Implicit shapes 
Like spheres, cylinders

Voxelize objects 
Static : Voxelize just once, offline
Moving:Voxelize objects per frame

Obstacle texture 

Fluid cell inside 
obstacle 

Fluid cell outside 
obstacle 



Dealing with Obstacles

How should the fluid react to obstacles?
The fluid should not enter obstacles cells
If the obstacles are moving they should impart the 
correct velocity on the fluid

How the fluid reacts to the obstacles →
Boundary Conditions



Boundary Conditions for 
Density

No density should be added to or 
advected into the interior of obstacles

Density Obstacles



Boundary Conditions for 
Pressure

Derivative of the pressure across the 
boundary should be zero 

(Neumann boundary conditions - specifying derivative )

cell1

u

v cell2 PressureCell1 – PressureCell2 = 0

PressureCell1 = PressureCell2



Boundary Conditions for 
Velocity

The velocity normal to the boundary of 
the obstacle  should be equal for fluid 
and obstacle 

(Dirichlet boundary conditions – specifying value)

u

v



Voxelizing an object

Obstacle texture 

Obstacle Velocity texture 



Use low res collision model for 
voxelization



Voxelizing a simple object

?



Voxelizing a simple object

Orthographic camera

Near plane

Far plane

Stencil Buffer

Decrement on back faces
Increment on front faces



Voxelization

… … …

2DArray of N stencil buffers 

Render model N times, each time with a different near plane



Optimizations

Skin the mesh once per frame, stream out the 
skinned mesh, and rendered n times using 
instancing

Each instance uses a different projection matrix 
with the appropriate near plane

Each instance is rasterized to a different slice in 
the output 3D obstacle texture using the 
geometry shader.



Voxelizing velocity

Obstacle Velocity texture 



Moving obstacles

?

Velocity in x
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Moving obstacles

Velocity in x

V
el

oc
ity

 in
 y

Use GS to 
compute plane 

triangle 
intersection and 
output a quad.

The quad is rendered 
with the interpolated 

velocities of the vertices 
(derived by subtracting 
current vertex positions 

from previous ones)



Rendering

Render front faces 
of box 

Raycast into the
3D Density texture 

Composite into scene 



Raycasting into 3D texture
What we have What we don’t have

- Ray from eye to box - Ray in texture space

Transform from world 
to texture space

Transform from world 
to texture space

Transform from world 
to grid space

- Ray box intersection

- Distance the eye ray  
traverses through the box

- Ray entry point in the texture

- Number of voxels the ray traverses 
= Number of samples to take     

3D Density Texture



Raycasting setup
Render back faces 

of the box
To RayDataTexture

Render front faces 
of the box

To RayDataTexture

Float4(0,0,0,depthInViewSpace) Float4( -posInGrid, depthInViewSpace)
With subtractive (DST - SRC) blending

RayDataTexture.a RayDataTexture.rgb



Raycasting: blending

FinalColor.rgba = 0 FinalColor.rgb += sampleColor.rgb * SampleColor.a
*(1.0 – FinalColor.a)

FinalColor.a += SampleColor.a * (1.0 – FinalColor.a)

Density Texture

=  Trilinear sample
from 3D texture

Render Fullscreen
quad to frame buffer

RayDataTexture

PositionInTexture = 
TransformToTexSpace
(RayDataTexture.rgb)

MarchingVector = 
TransformToTexSpace
(eye - RayDataTexture.rgb)

NumberOfSamples = 
TransformToGridSpace
(RayDataTexture.a)



Occluding the scene

Smoke correctly compositing 
with the scene

Smoke directly blended on  
top of the scene



Integrating scene depth



Integrating scene depth

Back Faces

Front Faces

float4(0,0,0,depthInViewSpace) float4(0,0,0, )

float4(-posInGrid,depthInViewSpace)

Before After using scene depth

min(sceneDepth,depthInViewSpace)

if( sceneDepth < depthInViewSpace)
float4(0,0,0,0)

float4(-posInGrid,depthInViewSpace)



Artifacts

Correctly using the depth 
by weighted sampling

Artifacts resulting from an 
integral number of samples



Artifacts



Correctly integrating scene depth 
by weighting the last sample

FinalColor.rgb += d/sampleWidth * SampleColor.rgb * SampleColor.a * (1.0 – FinalColor.a)
FinalColor.a += d/sampleWidth * SampleColor.a * (1.0 – FinalColor.a)

sampleWidth

d



Camera inside smoke volume

Near plane of camera

Smoke Volume
inside scene



Camera inside smoke volume

Near plane of camera

Smoke Volume
inside scene

Part of smoke volume 
clipped by near plane



Camera inside smoke volume 

Front faces clipped by near plane;

Depth at these pixels is incorrect
No information about the pixel’s 
position in grid

Render back faces 
of the box

To RayDataTexture

Render front faces 
of the box

To RayDataTexture

Float4(0,0,0,depthInViewSpace) Float4( -posInGrid, depthInViewSpace)
With subtractive (DST - SRC) blending

RayDataTexture.a RayDataTexture.rgb



Camera inside smoke volume

Mark pixels where back faces have been 
rendered but not front

In the raycasting step, for these marked 
pixels we explicitly set the position in the 
grid, and also subtract ZNear from the 
depth 



Space Requirements

Total Space Exclusive Shared

Simulation 32 bytes per cell 12 bytes per cell
1 x RGBA16
2 x R16

20 bytes per cell
2 x RGBA16
2 x R16

Voxelization 9 bytes per cell - 9 bytes per cell
1 x RGBA16
1 x R8

Rendering 20 bytes per 
pixel

- 20 bytes per pixel
1 x RGBA32
1 x R32 



Space Requirements for demo

Total Space Exclusive Shared

Simulation 14.95 MB 5.6 MB 9.3 MB

Voxelization 4.2 MB - 4.2 MB

Rendering 25 MB - 25 MB 

Grid Size: 70 x 70 x 100
Screen Resolution : 1280 x 1024



Optimizations

Tradeoffs:
Reduce grid size
Reduce number of Jacobi iterations

Early Z cull technique introduced by Sander et 
al, 2004

LOD approach for simulation

Render final smoke to a fixed sized off-screen 
buffer



Conclusion

Interactive 3D fluid simulation at reasonable grid 
resolutions is feasible for games

We presented here a brief overview of the entire 
process

More information
NVIDIA DirectX10 SDK code sample
Upcoming GPU Gems3 article
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