
GeForce 8800 OpenGL Extensions

Evan Hart

© NVIDIA Corporation 2007

Roadmap

What’s different
The programmable core
Feeding it
New pathways
The backend

© NVIDIA Corporation 2007

GeForce 8800 Differences

Pipeline modifications
Additional geometry shader stage
Feedback available midstream

Unified shading hardware
Same instructions and characteristics across shaders

© NVIDIA Corporation 2007

GeForce 8800 OpenGL Pipeline

More flexible memory
access model

Multiple ways to read and
write

Additional pipeline stages
Fundamentally new
capabilities

Fixed / Built in stream
Programmable stream
Video memory IO

Fixed stage

Programmable stage

Memory

Fixed / Built in stream
Programmable stream
Video memory IO

Fixed / Built in stream
Programmable stream
Video memory IO

Fixed stage

Programmable stage

Memory

Input Assembler

Vertex Processor

Raster Operations

Primitive Assembly

Rasterization & Interpolation

Framebuffer

V
ideo M

em
ory

Geometry Processor

Fragment Processor

Transform
Feedback

© NVIDIA Corporation 2007

FutureFuturePhysics

Vertex

Pixel

Geometry
(new)

Future

Floating
Point

Processor

Memory

ROP

Unified Shaders

© NVIDIA Corporation 2007

Programmability

#1 design concern of all extensions
Efficient for input
Efficient for computation
Efficient for output

No concessions for fixed-function
Only the right choices for programmability
Most will not work with the fixed function pipeline

© NVIDIA Corporation 2007

New Capabilities

Unified instruction set for programs
Integer instructions and data types
Uniform set of structured branching constructs
Indexable constants and temporaries
New texture fetching instructions
Attribute interpolation control

Flat shaded, perspective-incorrect or centroid sampled

© NVIDIA Corporation 2007

New OpenGL Program Extensions

OpenGL Shading Language
EXT_gpu_shader4

GLSL extension for fourth generation shaders

ARB_vertex_program style asm-like programs
NV_gpu_program4

NV_vertex_program4
NV_fragment_program4
NV_geometry_program4

Cg 2.0
Not a GL extension
Will support the capabilities

© NVIDIA Corporation 2007

GL_EXT_gpu_shader4

New integer support
unsigned int, uvec2, uvec3, uvec4
Integer varying and attributes
Integer texture samplers: isampler*, usampler*
Real integer ops

%, &, |, ^, >>, <<, ~

© NVIDIA Corporation 2007

GL_EXT_gpu_shader4 cnt’d

Extends varying type qualifiers
Centroid – keeps the value inside the covered region
Flat – no interpolation, like flat shading
Noperspective – interpolate in screen-space

© NVIDIA Corporation 2007

Flat interpolation

© NVIDIA Corporation 2007

GL_EXT_gpu_shader4 cnt’d

Instancing and procedural generation
gl_VertexID

Integer index derived from glDrawElements, etc
Only with vertex arrays (no display lists)
Only when using VBOs

gl_InstanceID
Integer index of the current primitive
Only available when using DrawElementsInstancedEXT

gl_PrimitiveID
Integer describing the primitive number

© NVIDIA Corporation 2007

GL_EXT_gpu_shader4 cnt’d

User-defined output variables
Declared as “varying out”
Allow more flexible outputs from the fragment shader

Integers
Integers and floats simultaneously

Used instead of gl_FragColor or gl_FragData

© NVIDIA Corporation 2007

GL_EXT_gpu_shader cnt’d

Exact texel fetches
texelFetch*(sampler, icoord, lod)
Treats a texture as a directly addressable array of texels

Texture size query
textureSize*(sampler, lod)
Returns the dimensions of the texture level

Shadow cubemaps
Depth is compared against the 4th component

Texture Gradient fetches
texture*Grad(sampler, coord, dx, dy)
Allows custom lod/anisotropy control

© NVIDIA Corporation 2007

GL_EXT_gpu_shader4 cnt’d

Offset texture fetches
texture*Offset(sampler, coord, offset)
Offset must be compile-time constant expression
Allow convenient shortcut for building filter kernels
Offset size has an implementation dependent limit

© NVIDIA Corporation 2007

GL_NV_gpu_program4

Composed of three sub-extensions
GL_NV_vertex_program4
GL_NV_fragment_program4
GL_NV_geometry_program4

Still based on 4-wide registers
No longer really matches HW
Enhances backward compatibility

Provides same capabilities as EXT_gpu_shader4

© NVIDIA Corporation 2007

Feeding the Shader

Instancing
Optimized rendering of multiple copies of an object

New texture types
Texture arrays

New texture formats
Integer textures
Additional HDR formats

Data buffers
Fast flexible ways to swap blocks of constants

Texture buffers
Massive data store for shaders

© NVIDIA Corporation 2007

EXT_draw_instanced

Efficient rendering for large numbers of objects
Vertex array only

glDrawArraysInstancedEXT
glDrawElementsInstancedEXT

Draw calls take one additional parameter
of instances to draw

Each instance has a separate instance ID
Used by the shader to change behavior

Select transform matrix
Select material

Clever shaders can even draw different objects

© NVIDIA Corporation 2007

EXT_texture_array

Array Textures
Generalizes 1D and 2D textures to consist of an
array of 1D or 2D textures

1D array loaded using glTexImage2D
2D array loaded using glTexImage3D

Array indexable from shader program
Access layer using r texture coordinate

Layers must be same size and format
No filtering between layers
Arrays of cubemaps not currently supported
Removes need for texture atlases

Useful for instancing, terrain texturing

© NVIDIA Corporation 2007

Array Textures Cont’d

S [0-1]

T [0-1]

R [0–3]

© NVIDIA Corporation 2007

Texture Format Extensions

EXT_texture_integer
Adds integer texture formats

EXT_packed_float
Space-efficient float format
Relatively low precision

More than good enough most times

EXT_texture_shared_exponent
Space-efficient float format
Variable accuracy

Can be more or less accurate than packed float
Also more than good enough

© NVIDIA Corporation 2007

Integer texture formats

EXT_texture_integer
Adds integer texture formats
8, 16, and 32 bit per component
Signed and unsigned
RGB, RGBA, Luminance, Alpha, Intensity, and LA
Lack filtering support
Only available with EXT_gpu_shader4 / NV_gpu_program4

Uses
Bitfields
Color index emulation
Lookup tables

© NVIDIA Corporation 2007

Packed Float Textures

EXT_packed_float
11/11/10 floating point format
5 bit exponent per component

Bias of -15
Only supports positive values (no sign bit)
Can be used as framebuffer format
Max values

R/G – 65024
B – 64512

Size advantage can make it much faster than float16
Supports filtering, blending, and MSAA

© NVIDIA Corporation 2007

Packed Float Texture Usage

© NVIDIA Corporation 2007

RGBE / Shared Exponent textures

EXT_texture_shared_exponent
9/9/9/5 RGBE format
Similar to Radiance 8/8/8/8 RGBE format
Shared 5 bit exponent (bias of -15)
Source texture format only (not renderable to)
Only supports positive values (no sign bit)

© NVIDIA Corporation 2007

New compressed texture formats

EXT_texture_compression_latc
Good format for greyscale w/ alpha compression
8-bits per texel
Stored in 4x4 blocks (like DXT formats)
Components are compressed independently

EXT_texture_compression_rgtc
Same properties as latc
Returns (r,g,0,1) instead of (l,l,l,a)
Useful for normal map compression

(x,y) = 2 * (r,g) – 1
Z = sqrt(1 – (x2 + y2))

© NVIDIA Corporation 2007

OpenGL Data Buffer Extensions

EXT_bindable_uniform
Used with EXT_gpu_shader4
Allows a uniform to be bound to a buffer object
Quickly switch all values in a large structure or array

NV_parameter_buffer_object
Used with NV_gpu_program4
Defines new object containing banks of uniform
parameters
Enables rendering to parameter buffers
Useful for instancing
Provides a very large parameter store

© NVIDIA Corporation 2007

EXT_texture_buffer_object

Bind buffer object as a texture
Jumbo 1D texture

Larger size limit (128 Mtexels)
Does not support filtering
Addressed by element

Not normalized [0-1]
Limited format support

No RGB support (RGBA is OK)
Minimum of 1 byte per component
No compressed formats

© NVIDIA Corporation 2007

Texture buffer usage

Large constant store
Significantly larger than EXT_bindable_uniform
Jumbo bone list for skinning

Instancing data
Transform matrices
Materials

Custom indexing
Separate ‘index’ for position, normal, texture coordinate
Less efficient than normal vertex fetching

Not as coherent
Can be useful interactive editing due to reduced sw cost

© NVIDIA Corporation 2007

New Pathways

Geometry Shaders
New pipeline stage

Render target arrays
Geometry shader indexing of texture arrays

Transform feedback
Export vertices mid-stream

© NVIDIA Corporation 2007

Geometry Shader Basics
Input

Standard primitives
point, line, triangle…

New primitive types include
neighboring vertices

Line with adjacency

Triangle with adjacency

Output
Unique output type (independent from input type)
Points, line strips or triangle strips
Can output zero or more primitives
Generated primitive stream is in the same order as inputted

1
2 3

4

5
6

1

2

3
4

Primitive Assembly

Clipping & Rasterization

Geometry Shader

V
ideo M

em
ory

© NVIDIA Corporation 2007

Geometry Shader Applications

Better point sprites
Rotation, non-square, motion blur

Simple subdivision
Single pass cube map creation
Automatic stencil shadow polygon generation
Fur rendering

Fin generation
Curve rendering

2D rendering, hair/fur
Particle systems
GPGPU

Data amplification – variable number of outputs

© NVIDIA Corporation 2007

Geometry Shader Extensions

EXT_geometry_shader4
GLSL geometry shaders

NV_geometry_shader4
Adds to EXT_geometry_shader4

NV_geometry_program4
ARB_vertex_program style
Part of NV_gpu_program4

© NVIDIA Corporation 2007

EXT_geometry_shader

New link-time parameters
Primitive input and output type
Max vertices output

New shader variables
gl_VerticesIn – number of input vertices
gl_Layer – texture array layer target
gl_PrimitiveID – Set primitive ID seen by the fragments
gl_PrimitiveIDIn – Primitive ID based on input prims

© NVIDIA Corporation 2007

EXT_geometry_shader code

varying in vec3 eyeNormal[gl_VerticesIn];

varying out vec3 oEyeNormal;

for (int i = 0; i < gl_VerticesIn; i++) {
oEyeNormal = eyeNormal[i];
//causes all output varying to submit
EmitVertex();

}

//Start a new strip
RestartPrimitive();

© NVIDIA Corporation 2007

NV_geometry_shader4

Relax restrictions of EXT_geometry_shader4
Changing input/output primitive without a relink
Changing max output vertices without a relink

Defines additional behavior
Quads and polygons at turned into triangles

Shader accepting triangle accepts quads

© NVIDIA Corporation 2007

NV_geometry_program4

Same capabilities as geometry_shader4
ARB_vertex_program style syntax
Inputs are ‘ATTRIB’
Outputs are ‘RESULT’
Input primitive, output primitive, and max vertices

Declared in the shader

© NVIDIA Corporation 2007

Rendering to Texture Arrays

Can select destination layer for each primitive in
geometry program

Write to “gl_Layer” or “result.layer”
Can be used for single-pass render-to-cubemap

Read input triangle
Output to 6 cube map faces, transformed by correct
face matrix
No real savings for GPU

Same transform and rasterization load
Additional geometry shader work

Simple culling may help

© NVIDIA Corporation 2007

EXT_transform_feedback

Allows storing output from a vertex program or
geometry program to buffer object
Enables multi-pass operations on geometry, e.g.

Store results of animation (skinning) to buffer, reuse for
multiple lights
Recursive subdivision

Provides queries for number of primitives generated
by geometry program

© NVIDIA Corporation 2007

Example: Terrain Subdivision

Takes quad as input (actually line_adj primitive)
Geometry program subdivides into 4 new quads
using diamond-square subdivision
Uses two VBOs, reads from one, writes to the other
using transform feedback
Then swap

© NVIDIA Corporation 2007

Terrain Subdivision

© NVIDIA Corporation 2007

The backend

Floating point depth buffers
EXT_draw_buffers2
sRGB Framebuffers
Coverage sample anti-aliasing

© NVIDIA Corporation 2007

NV_depth_float

Provides floating point depth buffers and textures
Range extended to [–MAX_FLOAT, MAX_FLOAT]
New functions for non-normalized values

glDepthRangedNV
glClearDepthdNV
glDepthBoundsdNV

Multiple formats
DEPTH_COMPONENT32F_NV
DEPTH32F_STENCIL8_NV

FBO only
Care must be taken in using the extra precision

© NVIDIA Corporation 2007

Float depth precision

Normal [0-1] mapping is ineffective
Precision bunches up at 0

Logarithmic distribution of floats
24 bits of precision [0.5 (2^-1) – 1.0 (2^0)]

Perspective projection pushes scene toward 1
2x near maps to roughly 0.5
90%+ of scene [0.5 – 1.0] range

Effectively a 25-bit depth buffer
Changing to [0-256] is no better

[128 – 256] has the same 24-bits

© NVIDIA Corporation 2007

Depth Precision Distribution

Integer distribution

Floating point distribution

0 1

2x near

© NVIDIA Corporation 2007

The Solution

Reverse the depth mapping
Far = 0.0
Near = 1.0 (or higher)

Precision bunching now reversed
Compression and expansion line up
Results in essentially linear depth buffering

© NVIDIA Corporation 2007

A Caveat

Small precision cliff near 0
FP numbers often use denormals to fill it
Graphics hardware typically avoid it

Often CPU’s too, denorms are slow

Problem is minimal due to exponent range
Infinite far plane completely fixes it

© NVIDIA Corporation 2007

EXT_draw_buffers2

Provides per draw buffer control of
Blend Enable
Color mask

Does not provide independent control of
Blend Function
Blend Equation
Blend Color

© NVIDIA Corporation 2007

EXT_framebuffer_sRGB

Allows framebuffer to be stored in sRGB space
Provides perceptual color compression

8 bits sRGB is similar to 10 bits linear RGB
Converts to/from sRGB on access to framebuffer
Implements a gamma of 2.2

This matches most monitors relatively well

Controlled via a simple enable
Not available on all formats (>8 bit per component)

© NVIDIA Corporation 2007

CSAA

Coverage Sample Anti-Aliasing
GL_NV_framebuffer_multisample_coverage

Decouples primitive coverage from depth/color
Increases edge quality with little cost
Memory and bandwidth overhead scale with # depth
samples
Worst case is as good as # of depth samples

© NVIDIA Corporation 2007

CSAA usage

Extremely simple

MSAA
glRenderbufferStorageMultisampleEXT(

GL_RENDERBUFFER_EXT, 4, GL_RGBA8, width,
height)

CSAA
glRenderbufferStorageMultisampleCoverageNV(

GL_RENDERBUFFER_EXT, 16, 4, GL_RGBA8, width,
height)

© NVIDIA Corporation 2007

CSAA Modes

Name Coverage Samples Color/Depth
Samples

2x 2 2

4x 4 4

8x 8 4

8xQ 8 8

16x 16 4

16xQ 16 8

© NVIDIA Corporation 2007

Thanks

Simon Green
Samuel Gateau
Henry Moreton
NVIDIA DevTech team

© NVIDIA Corporation 2007

New Developer Tools at GDC 02007

SDK 10

PerfKit 5 FX Composer 2

GPU-Accelerated
Texture Tools

ShaderPerf 2

Shader Library

	GeForce 8800 OpenGL Extensions
	Roadmap
	GeForce 8800 Differences
	GeForce 8800 OpenGL Pipeline
	Unified Shaders
	Programmability
	New Capabilities
	New OpenGL Program Extensions
	GL_EXT_gpu_shader4
	GL_EXT_gpu_shader4 cnt’d
	Flat interpolation
	GL_EXT_gpu_shader4 cnt’d
	GL_EXT_gpu_shader4 cnt’d
	GL_EXT_gpu_shader cnt’d
	GL_EXT_gpu_shader4 cnt’d
	GL_NV_gpu_program4
	Feeding the Shader
	EXT_draw_instanced
	EXT_texture_array
	Array Textures Cont’d
	Texture Format Extensions
	Integer texture formats
	Packed Float Textures
	Packed Float Texture Usage
	RGBE / Shared Exponent textures
	New compressed texture formats
	OpenGL Data Buffer Extensions
	EXT_texture_buffer_object
	Texture buffer usage
	New Pathways
	Geometry Shader Basics�
	Geometry Shader Applications
	Geometry Shader Extensions
	EXT_geometry_shader
	EXT_geometry_shader code
	NV_geometry_shader4
	NV_geometry_program4
	Rendering to Texture Arrays
	EXT_transform_feedback
	Example: Terrain Subdivision
	Terrain Subdivision
	The backend
	NV_depth_float
	Float depth precision
	Depth Precision Distribution
	The Solution
	A Caveat
	EXT_draw_buffers2
	EXT_framebuffer_sRGB
	CSAA
	CSAA usage
	CSAA Modes
	Thanks
	New Developer Tools at GDC 02007

