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Motivation

Direct3D 10 is Microsoft’s next graphics API
Driving the feature set of next generation GPUs

Many new features
New programmability, generality

New driver model
Improved performance

Cleaned up API
Improved state handling. Almost no caps bits!
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Agenda

Short review of DX10 pipeline and features

Effect Case Studies
Curves
Silhouette detection
Metaballs

Conclusions
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Direct3D 10 Pipeline

Vertex Shader

Pixel Shader

Rasterizer

Input Assembler

Geometry Shader
Video Memory

(Buffer
Texture,

Constant Buffer)

Stream Output

Output Merger
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Direct3D 10 Features Overview

Common shader core
Integer operations in shaders

Geometry shader

Stream out

Texture arrays

Generalized resources

Improved instancing support 
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Geometry Shader

Brand new programmable stage
Allows GPU to create (or destroy) geometry
Run after vertex shader, before setup
Input: point, line or triangle

Also new primitive types with adjacency information
Output: points, line strips or triangle strips

Can output multiple primitives
Allow us to offload work from CPU
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Geometry Shader Applications

Shadow volume generation
Fur / fin generation
Render to cubemap
GPGPU

enables variable number of outputs from shader
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Silhouette Detection

Calculate geometric
normal of centre triangle
and adjacent triangles
Calculate dot products
between normals and
view direction
If centre triangle is
facing towards viewer
and adjacent triangle
is facing away, edge
must be on silhouette



Copyright © NVIDIA Corporation 2004

Silouhette Detection

Can be used for cartoon
shading
Same basic technique
used for stencil
shadow volumes
extrusion
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Bezier Curve Tesselation

Input:
Line with
adjacency
4 control vertices

0

1

2

3
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Bezier Curve HLSL Code

[maxvertexcount(10)]
void bezier_GS(lineadj float4 v[4],

inout LineStream<float4> stream,
uniform int segments = 10)

{
float4x4 bezierBasis = {

{ 1, -3, 3, -1 },
{ 0, 3, -6, 3 },
{ 0, 0, 3, -3 },
{ 0, 0, 0, 1 }

};

for(int i=0; i<segments; i++) {
float t = i / (float) (segments-1);
float4 tvec = float4(1, t, t*t, t*t*t);
float4 b = mul(bezierBasis, tvec);
float4 p = v[0]*b.x + v[1]*b.y + v[2]*b.z + v[3]*b.w;
stream.Append(p : SV_POSITION)

}
CubeMapStream.RestartStrip();

}
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Bezier Curve Tesselation

Output:
Line strip
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Fur Generation

Grow fur from triangles
1st pass

Generate lines with
adjacency from triangles
Use barycentric coords
Direction based on
tangent vectors
Use noise texture to
perturb directions

2nd pass
Generate curves from
lines



Copyright © NVIDIA Corporation 2004

Fur Generation

Light using anisotropic
lighting model
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Stream Out

Allows storing output from geometry 
shader to buffer

Enables multi-pass operations on geometry, 
e.g.

Recursive subdivision
Store results of skinning to buffer, reuse for 
multiple lights

Can use DrawAuto() function to 
automatically draw correct no. of primitives

No CPU intervention required
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Geometry Shader Tips

GS is not designed for large-scale tessellation
Output limited to 1024 float values
Try to minimize output size
Output order is guaranteed
Prefer multi-pass algorithms using stream-out to 
single pass with large output
Do as much as possible in vertex shader

Run once per vertex, rather than per primitive vertex
No quad input type

can use lines with adjacency instead (4 vertices)
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Texture Arrays

Array of 1D or 2D textures
Indexable from shader
Slices must be same size and format
Arrays of cubemaps not supported (until DX10.1)
Removes need for texture atlases

Useful for instancing, terrain texturing
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Terrain using Texture Arrays
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Rendering to Texture Arrays

Can select destination slice from GS
Write to one of more layers

Contrast to MRT
writes to all render targets

Can be used for single-pass render-to-cubemap
Read input triangle
Output to 6 cube map faces, transformed by correct 
face matrix
Simple culling may help
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DirectX 10 HDR

Two new floating point HDR formats
R9G9B9E5_SHAREDEXP 

9 bit mantissa, shared 5 bit exponent
Very similar to Radiance RGBE format (R8G8B8E8)
Cannot be used for render targets (would be lossy)
Good for storing emissive textures (sky boxes etc.)

R11G11B10_FLOAT
Each component has own 5 bit exponent (like fp16 numbers)
RGB components have 6, 6, 5 bits of mantissa each (vs. 10 
bit mantissa for fp16)
No sign bit, all values must be positive
Can be used for render targets

No sign bits, all values must be positive
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Case Study: GS Metaballs
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What are Isosurfaces?

Consider a function
Defines a scalar field in 3D-space
Can come from procedural function, or 3D simulation

Isosurface S is a set of points for which

Can be thought of as an implicit function relating x, 
y and z

Sometimes called implicit surfaces

),,( zyxf

constzyxf =),,(
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Metaballs

A particularly interesting case
Use implicit equation of the form

Gradient can be computed directly

Soft/blobby objects that blend into each other
Perfect for modelling fluids, explosions in games
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The Marching Cubes Algorithm

A well-known method for scalar 
field polygonization
Sample f(x, y, z) on a cubic lattice
For each cubic cell:

Estimate where isosurface
intersects cell edges by linear 
interpolation
Tessellate depending on 
values of f() at cell vertices
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The marching cubes algorithm

Each vertex can be either “inside” or “outside”
For each cube cell there are 256 ways for isosurface
to intersect it

Can be simplified down to 15 unique cases
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Geometry shaders in DX10

Geometry Shader

Vertex Shader

Raster Stream Out

Pixel Shader

To Framebuffer

From CPU

0

1

2

3

4

5

0

1 2

3

Triangles with adjacency

Lines with adjacency
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Implementation - Basic Idea

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds to GS

GS processes each cell in turn and emits 
triangles

Calculate
f(x, y, z)

Extract
Iso-surface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU
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A problem…

Topology of GS input is restricted
Points
Lines
Triangles
with optional adjacency info

Our “primitive” is a cubic cell
Need to input 8 vertices to a GS
A maximum we can input is 6 (with triangleadj)
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Solution
First, note that actual input topology is irrelevant for 
GS

E.g. lineadj can be treated as quad input

Work at tetrahedra level
Tetrahedron is 4 vertices - perfect fit for lineadj!

We’ll subdivide each cell into tetrahedra
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Marching Tetrahedra (MT)

Tetrahedra are easier to handle in GS
No ambiguities in isosurface reconstuction
Always output either 1 or 2 triangles
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Generating a sampling grid

There’s a variety of ways to subdivide
Along main diagonal into 6 tetrahedra – MT6
Tessellate into 5 tetrahedra – MT5
Body-centered tessellation – CCL

Can also generate tetrahedral grid directly
AKA simplex grid
Doesn’t fit well within rectilinear volume
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Sampling grids

MT5
MT6

CCL
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Sampling grids comparison

Generation
Complexity

Sampling
effectiveness

Regularity

MT5 Med Med Low

Low

Med

High

MT6 Low Med

CCL High High

Simplex Low Med
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VS/GS Input/output

// Grid vertex
struct SampleData
{

float4 Pos : SV_POSITION; // Sample position
float3 N : NORMAL; // Scalar field gradient
float Field : TEXCOORD0; // Scalar field value
uint IsInside : TEXCOORD1; // “Inside” flag

};

// Surface vertex
struct SurfaceVertex
{

float4 Pos : SV_POSITION; // Surface vertex position
float3 N : NORMAL; // Surface normal

};
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Vertex Shader

// Metaball function
// Returns metaball function value in .w
// and its gradient in .xyz

float4 Metaball(float3 Pos, float3 Center, float RadiusSq)
{

float4 o;

float3 Dist = Pos - Center;
float InvDistSq = 1 / dot(Dist, Dist);

o.xyz = -2 * RadiusSq * InvDistSq * InvDistSq * Dist;
o.w = RadiusSq * InvDistSq;

return o;
}
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Vertex Shader

#define MAX_METABALLS 32

SampleData VS_SampleField(float3 Pos : POSITION,
uniform float4x4 WorldViewProj,
uniform float3x3 WorldViewProjIT,
uniform uint NumMetaballs, uniform float4 Metaballs[MAX_METABALLS])

{
SampleData o;
float4 Field = 0;

for (uint i = 0; i<NumMetaballs; i++)
Field += Metaball(Pos, Metaballs[i].xyz, Metaballs[i].w);

o.Pos = mul(float4(Pos, 1), WorldViewProj);
o.N = mul(Field.xyz, WorldViewProjIT);
o.Field = Field.w;

o.IsInside = Field.w > 1 ? 1 : 0;

return o;
}
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Geometry Shader

// Estimate where isosurface intersects grid edge
SurfaceVertex CalcIntersection(SampleData v0, SampleData v1)
{

SurfaceVertex o;

float t = (1.0 - v0.Field) / (v1.Field - v0.Field);

o.Pos = lerp(v0.Pos, v1.Pos, t);
o.N = lerp(v0.N, v1.N, t);

return o;
}
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Geometry Shader

[MaxVertexCount(4)]
void GS_TesselateTetrahedra(lineadj SampleData In[4],

inout TriangleStream<SurfaceVertex> Stream)
{

// construct index for this tetrahedron
uint index =

(In[0].IsInside << 3) | (In[1].IsInside << 2) |
(In[2].IsInside << 1) | In[3].IsInside;

const struct { uint4 e0; uint4 e1; } EdgeTable[] = {
{ 0, 0, 0, 0, 0, 0, 0, 1 }, // all vertices out
{ 3, 0, 3, 1, 3, 2, 0, 0 }, // 0001
{ 2, 1, 2, 0, 2, 3, 0, 0 }, // 0010
{ 2, 0, 3, 0, 2, 1, 3, 1 }, // 0011 - 2 triangles
{ 1, 2, 1, 3, 1, 0, 0, 0 }, // 0100
{ 1, 0, 1, 2, 3, 0, 3, 2 }, // 0101 - 2 triangles
{ 1, 0, 2, 0, 1, 3, 2, 3 }, // 0110 - 2 triangles
{ 3, 0, 1, 0, 2, 0, 0, 0 }, // 0111
{ 0, 2, 0, 1, 0, 3, 0, 0 }, // 1000
{ 0, 1, 3, 1, 0, 2, 3, 2 }, // 1001 - 2 triangles
{ 0, 1, 0, 3, 2, 1, 2, 3 }, // 1010 - 2 triangles
{ 3, 1, 2, 1, 0, 1, 0, 0 }, // 1011
{ 0, 2, 1, 2, 0, 3, 1, 3 }, // 1100 - 2 triangles
{ 1, 2, 3, 2, 0, 2, 0, 0 }, // 1101
{ 0, 3, 2, 3, 1, 3, 0, 0 } // 1110

};
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Edge table construction

const struct { uint4 e0; uint4 e1; } EdgeTable[] = {
// …
{ 3, 0, 3, 1, 3, 2, 0, 0 }, // index = 1
// …

};

3

20

1
Index = 0001,
i.e. vertex 3 is “inside”
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Geometry Shader

// … continued
// don't bother if all vertices out or all vertices in
if (index > 0 && index < 15)
{

uint4 e0 = EdgeTable[index].e0;
uint4 e1 = EdgeTable[index].e1;

// Emit a triangle
Stream.Append(CalcIntersection(In[e0.x], In[e0.y]));
Stream.Append(CalcIntersection(In[e0.z], In[e0.w]));
Stream.Append(CalcIntersection(In[e1.x], In[e1.y]));

// Emit additional triangle, if necessary
if (e1.z != 0)
Stream.Append(CalcIntersection(In[e1.z], In[e1.w]));

}
}
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Respect your vertex cache!

f(x, y, z) can be arbitrary complex
E.g., many metaballs influencing a vertex

Need to be careful about walk order
Worst case is 4x more work than necessary!
Straightforward linear work is not particularly cache 
friendly either

Alternatively, can pre-transform with StreamOut
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Tessellation space

Object space
Works if you can calculate BB around your 
metaballs

View space
Better, but sampling rate is distributed 
inadequately



Copyright © NVIDIA Corporation 2004

Tessellation in post-projection space

View-space Post-projection space

Post-projective space
Probably the best option
We also get LOD for free!
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Problems with current approach

Generated mesh is over-tessellated
General problem with MT algorithms

Many triangles end up irregular and skinny
Good sampling grid helps a bit
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Possible enhancements

Regularized Marching Tetrahedra (RMT)
Vertex clustering prior to polygonization
Generated triangles are more regular
For details refer to [2]

Need to run a pre-pass at vertex level, looking at 
immediate neighbors

For CCL, each vertex has 14 neighbors
GS input is too limited for this 
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Conclusion
Direct3D 10 is a major discontinuity in graphics
hardware functionality

Enables new effects and better performance

Start redesigning your game engine now
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Questions?

sgreen@nvidia.com
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Buffer Resources

Input assembler accepts
Vertex buffer
Index buffer
Buffer resource

Buffer resource can only be rendered to
And limited to 8k elements at a time

Multiple passes can get you a R2VB
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Respect your vertex cache!

Can use space-filling fractal curves
Hilbert curve
Swizzled walk

We’ll use swizzled walk
To compute swizzled offset, just interleave x, 
y and z bits

000111223

012

0123

01

),,( xyzxyzyzyswizzle
zzz

yyyy
xx

=
=
=
=

zyx
z
y
x
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Linear walk vs swizzled walk

Linear walk Swizzled walk
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