
Next Generation Games with Direct3D 10

Simon Green

Copyright © NVIDIA Corporation 2004

Motivation

Direct3D 10 is Microsoft’s next graphics API
Driving the feature set of next generation GPUs

Many new features
New programmability, generality

New driver model
Improved performance

Cleaned up API
Improved state handling. Almost no caps bits!

Copyright © NVIDIA Corporation 2004

Agenda

Short review of DX10 pipeline and features

Effect Case Studies
Curves
Silhouette detection
Metaballs

Conclusions

Copyright © NVIDIA Corporation 2004

Direct3D 10 Pipeline

Vertex Shader

Pixel Shader

Rasterizer

Input Assembler

Geometry Shader
Video Memory

(Buffer
Texture,

Constant Buffer)

Stream Output

Output Merger

Copyright © NVIDIA Corporation 2004

Direct3D 10 Features Overview

Common shader core
Integer operations in shaders

Geometry shader

Stream out

Texture arrays

Generalized resources

Improved instancing support

Copyright © NVIDIA Corporation 2004

Geometry Shader

Brand new programmable stage
Allows GPU to create (or destroy) geometry
Run after vertex shader, before setup
Input: point, line or triangle

Also new primitive types with adjacency information
Output: points, line strips or triangle strips

Can output multiple primitives
Allow us to offload work from CPU

Copyright © NVIDIA Corporation 2004

Geometry Shader Applications

Shadow volume generation
Fur / fin generation
Render to cubemap
GPGPU

enables variable number of outputs from shader

Copyright © NVIDIA Corporation 2004

Silhouette Detection

Calculate geometric
normal of centre triangle
and adjacent triangles
Calculate dot products
between normals and
view direction
If centre triangle is
facing towards viewer
and adjacent triangle
is facing away, edge
must be on silhouette

Copyright © NVIDIA Corporation 2004

Silouhette Detection

Can be used for cartoon
shading
Same basic technique
used for stencil
shadow volumes
extrusion

Copyright © NVIDIA Corporation 2004

Bezier Curve Tesselation

Input:
Line with
adjacency
4 control vertices

0

1

2

3

Copyright © NVIDIA Corporation 2004

Bezier Curve HLSL Code

[maxvertexcount(10)]
void bezier_GS(lineadj float4 v[4],

inout LineStream<float4> stream,
uniform int segments = 10)

{
float4x4 bezierBasis = {

{ 1, -3, 3, -1 },
{ 0, 3, -6, 3 },
{ 0, 0, 3, -3 },
{ 0, 0, 0, 1 }

};

for(int i=0; i<segments; i++) {
float t = i / (float) (segments-1);
float4 tvec = float4(1, t, t*t, t*t*t);
float4 b = mul(bezierBasis, tvec);
float4 p = v[0]*b.x + v[1]*b.y + v[2]*b.z + v[3]*b.w;
stream.Append(p : SV_POSITION)

}
CubeMapStream.RestartStrip();

}

Copyright © NVIDIA Corporation 2004

Bezier Curve Tesselation

Output:
Line strip

Copyright © NVIDIA Corporation 2004

Fur Generation

Grow fur from triangles
1st pass

Generate lines with
adjacency from triangles
Use barycentric coords
Direction based on
tangent vectors
Use noise texture to
perturb directions

2nd pass
Generate curves from
lines

Copyright © NVIDIA Corporation 2004

Fur Generation

Light using anisotropic
lighting model

Copyright © NVIDIA Corporation 2004

Stream Out

Allows storing output from geometry
shader to buffer

Enables multi-pass operations on geometry,
e.g.

Recursive subdivision
Store results of skinning to buffer, reuse for
multiple lights

Can use DrawAuto() function to
automatically draw correct no. of primitives

No CPU intervention required

Copyright © NVIDIA Corporation 2004

Geometry Shader Tips

GS is not designed for large-scale tessellation
Output limited to 1024 float values
Try to minimize output size
Output order is guaranteed
Prefer multi-pass algorithms using stream-out to
single pass with large output
Do as much as possible in vertex shader

Run once per vertex, rather than per primitive vertex
No quad input type

can use lines with adjacency instead (4 vertices)

Copyright © NVIDIA Corporation 2004

Texture Arrays

Array of 1D or 2D textures
Indexable from shader
Slices must be same size and format
Arrays of cubemaps not supported (until DX10.1)
Removes need for texture atlases

Useful for instancing, terrain texturing

Copyright © NVIDIA Corporation 2004

Terrain using Texture Arrays

Copyright © NVIDIA Corporation 2004

Rendering to Texture Arrays

Can select destination slice from GS
Write to one of more layers

Contrast to MRT
writes to all render targets

Can be used for single-pass render-to-cubemap
Read input triangle
Output to 6 cube map faces, transformed by correct
face matrix
Simple culling may help

Copyright © NVIDIA Corporation 2004

DirectX 10 HDR

Two new floating point HDR formats
R9G9B9E5_SHAREDEXP

9 bit mantissa, shared 5 bit exponent
Very similar to Radiance RGBE format (R8G8B8E8)
Cannot be used for render targets (would be lossy)
Good for storing emissive textures (sky boxes etc.)

R11G11B10_FLOAT
Each component has own 5 bit exponent (like fp16 numbers)
RGB components have 6, 6, 5 bits of mantissa each (vs. 10
bit mantissa for fp16)
No sign bit, all values must be positive
Can be used for render targets

No sign bits, all values must be positive

Copyright © NVIDIA Corporation 2004

Case Study: GS Metaballs

Copyright © NVIDIA Corporation 2004

What are Isosurfaces?

Consider a function
Defines a scalar field in 3D-space
Can come from procedural function, or 3D simulation

Isosurface S is a set of points for which

Can be thought of as an implicit function relating x,
y and z

Sometimes called implicit surfaces

),,(zyxf

constzyxf =),,(

Copyright © NVIDIA Corporation 2004

Metaballs

A particularly interesting case
Use implicit equation of the form

Gradient can be computed directly

Soft/blobby objects that blend into each other
Perfect for modelling fluids, explosions in games

∑
=

=
−

N

i i

ir
1

2

2

1
px

)(2)(
1

4

2

i

N

i i

irf px
px

grad −⋅
−
⋅

−= ∑
=

Copyright © NVIDIA Corporation 2004

The Marching Cubes Algorithm

A well-known method for scalar
field polygonization
Sample f(x, y, z) on a cubic lattice
For each cubic cell:

Estimate where isosurface
intersects cell edges by linear
interpolation
Tessellate depending on
values of f() at cell vertices

Copyright © NVIDIA Corporation 2004

The marching cubes algorithm

Each vertex can be either “inside” or “outside”
For each cube cell there are 256 ways for isosurface
to intersect it

Can be simplified down to 15 unique cases

Copyright © NVIDIA Corporation 2004

Geometry shaders in DX10

Geometry Shader

Vertex Shader

Raster Stream Out

Pixel Shader

To Framebuffer

From CPU

0

1

2

3

4

5

0

1 2

3

Triangles with adjacency

Lines with adjacency

Copyright © NVIDIA Corporation 2004

Implementation - Basic Idea

App feeds a GPU with a grid of vertices

VS transforms grid vertices and computes
f(x, y, z), feeds to GS

GS processes each cell in turn and emits
triangles

Calculate
f(x, y, z)

Extract
Iso-surface

Shade
surface

Vertex
shader

Geometry
shader

Pixel
shader

CPU

Copyright © NVIDIA Corporation 2004

A problem…

Topology of GS input is restricted
Points
Lines
Triangles
with optional adjacency info

Our “primitive” is a cubic cell
Need to input 8 vertices to a GS
A maximum we can input is 6 (with triangleadj)

Copyright © NVIDIA Corporation 2004

Solution
First, note that actual input topology is irrelevant for
GS

E.g. lineadj can be treated as quad input

Work at tetrahedra level
Tetrahedron is 4 vertices - perfect fit for lineadj!

We’ll subdivide each cell into tetrahedra

Copyright © NVIDIA Corporation 2004

Marching Tetrahedra (MT)

Tetrahedra are easier to handle in GS
No ambiguities in isosurface reconstuction
Always output either 1 or 2 triangles

Copyright © NVIDIA Corporation 2004

Generating a sampling grid

There’s a variety of ways to subdivide
Along main diagonal into 6 tetrahedra – MT6
Tessellate into 5 tetrahedra – MT5
Body-centered tessellation – CCL

Can also generate tetrahedral grid directly
AKA simplex grid
Doesn’t fit well within rectilinear volume

Copyright © NVIDIA Corporation 2004

Sampling grids

MT5
MT6

CCL

Copyright © NVIDIA Corporation 2004

Sampling grids comparison

Generation
Complexity

Sampling
effectiveness

Regularity

MT5 Med Med Low

Low

Med

High

MT6 Low Med

CCL High High

Simplex Low Med

Copyright © NVIDIA Corporation 2004

VS/GS Input/output

// Grid vertex
struct SampleData
{

float4 Pos : SV_POSITION; // Sample position
float3 N : NORMAL; // Scalar field gradient
float Field : TEXCOORD0; // Scalar field value
uint IsInside : TEXCOORD1; // “Inside” flag

};

// Surface vertex
struct SurfaceVertex
{

float4 Pos : SV_POSITION; // Surface vertex position
float3 N : NORMAL; // Surface normal

};

Copyright © NVIDIA Corporation 2004

Vertex Shader

// Metaball function
// Returns metaball function value in .w
// and its gradient in .xyz

float4 Metaball(float3 Pos, float3 Center, float RadiusSq)
{

float4 o;

float3 Dist = Pos - Center;
float InvDistSq = 1 / dot(Dist, Dist);

o.xyz = -2 * RadiusSq * InvDistSq * InvDistSq * Dist;
o.w = RadiusSq * InvDistSq;

return o;
}

Copyright © NVIDIA Corporation 2004

Vertex Shader

#define MAX_METABALLS 32

SampleData VS_SampleField(float3 Pos : POSITION,
uniform float4x4 WorldViewProj,
uniform float3x3 WorldViewProjIT,
uniform uint NumMetaballs, uniform float4 Metaballs[MAX_METABALLS])

{
SampleData o;
float4 Field = 0;

for (uint i = 0; i<NumMetaballs; i++)
Field += Metaball(Pos, Metaballs[i].xyz, Metaballs[i].w);

o.Pos = mul(float4(Pos, 1), WorldViewProj);
o.N = mul(Field.xyz, WorldViewProjIT);
o.Field = Field.w;

o.IsInside = Field.w > 1 ? 1 : 0;

return o;
}

Copyright © NVIDIA Corporation 2004

Geometry Shader

// Estimate where isosurface intersects grid edge
SurfaceVertex CalcIntersection(SampleData v0, SampleData v1)
{

SurfaceVertex o;

float t = (1.0 - v0.Field) / (v1.Field - v0.Field);

o.Pos = lerp(v0.Pos, v1.Pos, t);
o.N = lerp(v0.N, v1.N, t);

return o;
}

Copyright © NVIDIA Corporation 2004

Geometry Shader

[MaxVertexCount(4)]
void GS_TesselateTetrahedra(lineadj SampleData In[4],

inout TriangleStream<SurfaceVertex> Stream)
{

// construct index for this tetrahedron
uint index =

(In[0].IsInside << 3) | (In[1].IsInside << 2) |
(In[2].IsInside << 1) | In[3].IsInside;

const struct { uint4 e0; uint4 e1; } EdgeTable[] = {
{ 0, 0, 0, 0, 0, 0, 0, 1 }, // all vertices out
{ 3, 0, 3, 1, 3, 2, 0, 0 }, // 0001
{ 2, 1, 2, 0, 2, 3, 0, 0 }, // 0010
{ 2, 0, 3, 0, 2, 1, 3, 1 }, // 0011 - 2 triangles
{ 1, 2, 1, 3, 1, 0, 0, 0 }, // 0100
{ 1, 0, 1, 2, 3, 0, 3, 2 }, // 0101 - 2 triangles
{ 1, 0, 2, 0, 1, 3, 2, 3 }, // 0110 - 2 triangles
{ 3, 0, 1, 0, 2, 0, 0, 0 }, // 0111
{ 0, 2, 0, 1, 0, 3, 0, 0 }, // 1000
{ 0, 1, 3, 1, 0, 2, 3, 2 }, // 1001 - 2 triangles
{ 0, 1, 0, 3, 2, 1, 2, 3 }, // 1010 - 2 triangles
{ 3, 1, 2, 1, 0, 1, 0, 0 }, // 1011
{ 0, 2, 1, 2, 0, 3, 1, 3 }, // 1100 - 2 triangles
{ 1, 2, 3, 2, 0, 2, 0, 0 }, // 1101
{ 0, 3, 2, 3, 1, 3, 0, 0 } // 1110

};

Copyright © NVIDIA Corporation 2004

Edge table construction

const struct { uint4 e0; uint4 e1; } EdgeTable[] = {
// …
{ 3, 0, 3, 1, 3, 2, 0, 0 }, // index = 1
// …

};

3

20

1
Index = 0001,
i.e. vertex 3 is “inside”

Copyright © NVIDIA Corporation 2004

Geometry Shader

// … continued
// don't bother if all vertices out or all vertices in
if (index > 0 && index < 15)
{

uint4 e0 = EdgeTable[index].e0;
uint4 e1 = EdgeTable[index].e1;

// Emit a triangle
Stream.Append(CalcIntersection(In[e0.x], In[e0.y]));
Stream.Append(CalcIntersection(In[e0.z], In[e0.w]));
Stream.Append(CalcIntersection(In[e1.x], In[e1.y]));

// Emit additional triangle, if necessary
if (e1.z != 0)
Stream.Append(CalcIntersection(In[e1.z], In[e1.w]));

}
}

Copyright © NVIDIA Corporation 2004

Respect your vertex cache!

f(x, y, z) can be arbitrary complex
E.g., many metaballs influencing a vertex

Need to be careful about walk order
Worst case is 4x more work than necessary!
Straightforward linear work is not particularly cache
friendly either

Alternatively, can pre-transform with StreamOut

Copyright © NVIDIA Corporation 2004

Tessellation space

Object space
Works if you can calculate BB around your
metaballs

View space
Better, but sampling rate is distributed
inadequately

Copyright © NVIDIA Corporation 2004

Tessellation in post-projection space

View-space Post-projection space

Post-projective space
Probably the best option
We also get LOD for free!

Copyright © NVIDIA Corporation 2004

Problems with current approach

Generated mesh is over-tessellated
General problem with MT algorithms

Many triangles end up irregular and skinny
Good sampling grid helps a bit

Copyright © NVIDIA Corporation 2004

Possible enhancements

Regularized Marching Tetrahedra (RMT)
Vertex clustering prior to polygonization
Generated triangles are more regular
For details refer to [2]

Need to run a pre-pass at vertex level, looking at
immediate neighbors

For CCL, each vertex has 14 neighbors
GS input is too limited for this

Copyright © NVIDIA Corporation 2004

Conclusion
Direct3D 10 is a major discontinuity in graphics
hardware functionality

Enables new effects and better performance

Start redesigning your game engine now

Copyright © NVIDIA Corporation 2004

Questions?

sgreen@nvidia.com

Copyright © NVIDIA Corporation 2004

Buffer Resources

Input assembler accepts
Vertex buffer
Index buffer
Buffer resource

Buffer resource can only be rendered to
And limited to 8k elements at a time

Multiple passes can get you a R2VB

Copyright © NVIDIA Corporation 2004

Respect your vertex cache!

Can use space-filling fractal curves
Hilbert curve
Swizzled walk

We’ll use swizzled walk
To compute swizzled offset, just interleave x,
y and z bits

000111223

012

0123

01

),,(xyzxyzyzyswizzle
zzz

yyyy
xx

=
=
=
=

zyx
z
y
x

Copyright © NVIDIA Corporation 2004

Linear walk vs swizzled walk

Linear walk Swizzled walk

	Next Generation Games with Direct3D 10
	Motivation
	Agenda
	Direct3D 10 Pipeline
	Direct3D 10 Features Overview
	Geometry Shader
	Geometry Shader Applications
	Silhouette Detection
	Silouhette Detection
	Bezier Curve Tesselation
	Bezier Curve HLSL Code
	Bezier Curve Tesselation
	Fur Generation
	Fur Generation
	Stream Out
	Geometry Shader Tips
	Texture Arrays
	Terrain using Texture Arrays
	Rendering to Texture Arrays
	DirectX 10 HDR
	Case Study: GS Metaballs
	What are Isosurfaces?
	Metaballs
	The Marching Cubes Algorithm
	The marching cubes algorithm
	Geometry shaders in DX10�
	Implementation - Basic Idea
	A problem…
	Solution
	Marching Tetrahedra (MT)
	Generating a sampling grid
	Sampling grids
	Sampling grids comparison
	VS/GS Input/output
	Vertex Shader
	Vertex Shader
	Geometry Shader
	Geometry Shader
	Edge table construction
	Geometry Shader
	Respect your vertex cache!
	Tessellation space
	Tessellation in post-projection space
	Problems with current approach
	Possible enhancements
	Conclusion
	Questions?
	Buffer Resources
	Respect your vertex cache!
	Linear walk vs swizzled walk

