
OpenGL Bindless ExtensionsOpenGL Bindless Extensions

Jeff Bolz

OverviewOverview

Explain the source of CPU bottlenecks, past and pre sent
Show how new extensions alleviate these bottlenecks

GL_NV_shader_buffer_load
GL_NV_vertex_buffer_unified_memory

Goal: Reduce the CPU overhead of launching a batch of geometry
Allow more interesting and varied content by increa sing the number of draw

NVIDIA Confidential© NVIDIA Corporation 2009

Allow more interesting and varied content by increa sing the number of draw
calls per frame

Imagine “Instancing” but with significant additiona l flexibility

Akin to texture techniques that pack independent te xtures into a single object
Texture array – pack separate images as slices of an array. Choose between images
with a single vertex attrib coordinate
Megatexture – pack tiles into a large virtual textur e. Choose between images with
clever page table techniques
But more flexible by still allowing separate object s

Remove limitations on number/size of constant buffe rs

GL1.x Performance CharacteristicsGL1.x Performance Characteristics

A configurable state machine
exposing low-level hardware state
Lots of commands to set GL state

Transform and lighting: N lights,
matrices, etc.
Per-pixel shading: N textures,
texture environments

LOTS of commands to specify

Application

Driver
wide stream
of commands

NVIDIA Confidential© NVIDIA Corporation 2009

LOTS of commands to specify
vertex data

Immediate mode: Set each attribute
individually, launch one vertex at a
time
Classic vertex array: driver copies
all vertex data each Draw

Bottleneck: the API stream is too
large

GPU command buffer

GPU Vidmem

wide interconnect

GL3.x Performance CharacteristicsGL3.x Performance Characteristics

Configurable state replaced with
programmability and objects

Lighting, texenv -> shaders
Matrices, light values -> constant
buffers
Immediate mode -> VBO

Few commands to setup a rendering
batch

Application

Driver
narrow stream
of commands Sysmem

expensive stream
of cache misses

NVIDIA Confidential© NVIDIA Corporation 2009

batch
Bind shaders, textures, constants,
vertex buffers

The API stream is now narrow, no
longer the bottleneck
Most commands (Binds) make the
driver fetch object state from
sysmem

The new bottleneck!
Hundreds of clocks per cache miss
Several Binds per Draw

GPU command buffer

GPU Vidmem

wide interconnect

Removing the BindsRemoving the Binds

Still want to use objects, but more
directly (by GPU address)
Object creation time:

Application queries the GPU address
64bit, static for object lifetime

Application informs driver to lock
down the memory

MakeBufferResident

Application

Driver
narrow stream
of commands

feedback GPU
address at
creation time

NVIDIA Confidential© NVIDIA Corporation 2009

MakeBufferResident
Amortized cost, rather than per-use

Object use:
By GPU address rather than by name
As few commands as Binding
Driver no longer has to fetch GPU
address from sysmem
Memory residency controlled by app,
not handled worst-case by the driver

The GL3.x bottleneck of cache misses
on object use is gone!

GPU command buffer

GPU Vidmem

wide interconnect

Vertex Buffer Unified MemoryVertex Buffer Unified Memory

Goal: Reduce cache misses involved in setting verte x array state by directly
specifying GPU addresses
Set vertex attribute (and element array) GPU addres ses directly

BufferAddressRangeNV(COLOR_ARRAY_ADDRESS_NV, 0, add r, length);
BufferAddressRangeNV(VERTEX_ATTRIB_ARRAY_ADDRESS_NV , i, addr, length);
BufferAddressRangeNV(ELEMENT_ARRAY_ADDRESS_NV, 0, a ddr, length);

Decouple address from format

NVIDIA Confidential© NVIDIA Corporation 2009

Decouple address from format
VertexFormatNV(size, type, stride);
ColorFormatNV(size, type, stride);

Enable vertex/element GPU addresses explicitly
EnableClientState(VERTEX_ATTRIB_ARRAY_UNIFIED_NV);
EnableClientState(ELEMENT_ARRAY_UNIFIED_NV);
Unlike VBO where bound/latched buffers determine us e

Example (Interleaved VBO)Example (Interleaved VBO)

for (i = 0; i < N; ++i) {
BindBuffer(ARRAY_BUFFER, vboNames[i]);
BufferData(ARRAY_BUFFER, size, ptr, STATIC_DRAW);
GetBufferParameterui64vNV(ARRAY_BUFFER,

BUFFER_GPU_ADDRESS_NV,
&vboAddrs[i]);

MakeBufferResidentNV(ARRAY_BUFFER, READ_ONLY);
}

Init (one time only)

NVIDIA Confidential© NVIDIA Corporation 2009

EnableClientState(COLOR_ARRAY);
EnableClientState(VERTEX_ARRAY);
ColorFormatNV(4, UNSIGNED_BYTE, 20);
VertexFormatNV(4, FLOAT, 20);
EnableClientState(VERTEX_ATTRIB_ARRAY_UNIFIED_NV);

for (i = 0; i < N; ++i) {
// point at buffer i
BufferAddressRangeNV(COLOR_ARRAY_ADDRESS_NV,

0, vboAddrs[i], size);
BufferAddressRangeNV(VERTEX_ARRAY_ADDRESS_NV,

0, vboAddrs[i]+4, size-4);
DrawArrays(POINTS, 0, size/20);

}

Format/Enables
change (rare)

Buffer change
(frequent and efficient)

Easy to PortEasy to Port

Old code:
foreach vertexattrib {

BindBuffer(ARRAY_BUFFER, vbo name);
VertexAttribPointer(attrib index, format, offset);

}
BindBuffer(ELEMENT_ARRAY, index buffer name);
DrawRangeElements(..., index offset);

NVIDIA Confidential© NVIDIA Corporation 2009

New code:
if (vertex format has changed) { // rare

// send VertexAttribFormat commands
}
foreach vertexattrib {

BufferAddressRangeNV(VERTEX_ATTRIB_ARRAY_ADDRESS_NV ,
attrib index, vbo gpu addr + offset, vbo size - offs et);

}
BufferAddressRangeNV(ELEMENT_ARRAY_ADDRESS_NV,

0, index gpu addr, index size);
DrawRangeElements(..., index offset);

Perf ComparisonPerf Comparison

for (i = 0; i < N; ++i) {
for (j = 0; j < 5; ++j) {

BindBuffer(ARRAY, vboNames[x]);
VertexAttribPointer(j, 4, FLOAT, 0, 4, 0);

}
BindBuffer(ELEMENT_ARRAY, vboNames[x]);
DrawRangeElements(POINTS, ...);

}

N=100: 900K Draw/s
N=10K: 400K Draw/s

Old:

Cache Misses!

NVIDIA Confidential© NVIDIA Corporation 2009

}

for (i = 0; i < N; ++i) {
for (j = 0; j < 5; ++j) {

BufferAddressRangeNV(VERTEX_ATTRIB_ARRAY_ADDRESS_NV , j,
vboAddrs[x], 100);

}
BufferAddressRangeNV(ELEMENT_ARRAY_ADDRESS_NV, 0,

vboAddrs[x], 100);
DrawRangeElements(POINTS, ...);

}

New:

N=100: 3000K Draw/s
N=10K: 3000K Draw/s

7.5x speedup by
removing cache misses!

Shader Buffer LoadShader Buffer Load

Allow shaders to fetch from buffer objects by
GPU address

Exposed in the shading language as pointers
No need to bind constant buffers between
each draw

“Switch” dynamically, even at fine granularity
By immediate mode attrib (per batch)
By instance ID

Application

Driver

NVIDIA Confidential© NVIDIA Corporation 2009

By instance ID
By primitive ID
By vertex ID or vertex attributes
By varyings

More flexible than indexable constant buffers
Can do dependent fetches, even across buffer
objects

Can build complex data structures to be
traversed in shaders

No limit on number of resident buffers
Pull your state into shaders through cached
memory reads rather than pushing through
app/driver/commandbuffer

GPU command buffer

GPU Vidmem

fetch state through
memory reads

Easy to PortEasy to Port

Old code:
(shader)
struct Material { vec4 color; ... };
bindable uniform Material mat;
void main() {

gl_FrontColor = mat.color;
...

New code:
(shader)
struct Material { vec4 color; ... };
in Material *mat;
void main() {

gl_FrontColor = mat->color;
...

NVIDIA Confidential© NVIDIA Corporation 2009

}

(app init)
loc = GetUniformLocation(pgm, “mat”);

(app render)
UniformBufferEXT(pgm, loc, buffer1);
Draw1();
UniformBufferEXT(pgm, loc, buffer2);
Draw2();
...

}

(app init)
loc = GetAttribLocation(pgm, “mat”);

(app render)
VertexAttribI2iEXT(loc, buf1Addr, buf1Addr>>32);
Draw1();
VertexAttribI2iEXT(loc, buf2Addr, buf2Addr>>32);
Draw2();
...

API SummaryAPI Summary

Query a GPU address and make a buffer resident
GetBufferParameterui64vNV(target, BUFFER_GPU_ADDRES S, &addr);
MakeBufferResident(target, READ_ONLY);

Vertex Format functions, similar to existing Vertex Pointer functions
VertexAttribFormatNV(index, size, type, normalized, stride);

Set GPU addresses for vertex attribs and element ar rays
BufferAddressRangeNV(pname, index, address, length) ;

NVIDIA Confidential© NVIDIA Corporation 2009

BufferAddressRangeNV(pname, index, address, length) ;

Set pointer uniforms
Uniformui64NV(int location, uint64EXT value);

Assembly LOAD instruction
LOAD.F32X4 result, address;

Shader pointer types, enabling complex data structu res:
struct LinkedListNode {

vec4 color;
LinkedListNode *next;

};

