
1

NVIDIA OpenGL
Extension Specifications for the

CineFX 3.0 Architecture (NV4x/G7x)

November 13, 2006

NVIDIA OpenGL Extension Specifcations for CineFX 3.0

NVIDIA Proprietary 2

Copyright NVIDIA Corporation, 1999-2006.

This document is protected by copyright and contain s information
proprietary to NVIDIA Corporation.

This document is an abridged collection of OpenGL e xtension
specifications limited to those extensions for new OpenGL functionality
introduced by the GeForce 8 Series (G8 x) architecture. See the
unabridged document “NVIDIA OpenGL Extension Specif ications” for a
complete collection.

NVIDIA-specific OpenGL extension specifications, po ssibly more up-to-
date, can be found at:

 http://developer.nvidia.com/view.asp?IO=nvidia_ope ngl_specs

Other OpenGL extension specifications can be found at:

 http://oss.sgi.com/projects/ogl-sample/registry/

Corrections? Email opengl-specs@nvidia.com

http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs
http://oss.sgi.com/projects/ogl-sample/registry/

 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 3

Table of Contents

Table of NVIDIA OpenGL Extension Support.............................. 4
ARB_texture_non_power_of_two....................... 9
ATI_draw_buffers................................... 21
ATI_texture_float.................................. 27
ATI_texture_mirror_once............................ 31
EXT_blend_equation_separate........................ 34
EXT_texture_mirror_clamp........................... 40
EXT_texture_sRGB................................... 46
NV_fragment_program2............................... 61
NV_vertex_program3................................. 78
WGL_ATI_pixel_format_float......................... 92
WGL_NV_gpu_affinity................................ 97

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 Table of NVIDIA OpenGL Extension Support

NVIDIA Proprietary 4

Table of NVIDIA OpenGL Extension Support

Extension NV1x NV2 x NV3x NV4x G8x Notes
ARB_color_buffer_float R75 X
ARB_depth_texture R25+ X X X 1.4 functionality
ARB_draw_buffers R75 X 2.0 functionality
ARB_fragment_program X X X
ARB_fragment_program_shadow R55 X X
ARB_fragment_shader R60 X X 2.0 functionality, GL SL
ARB_half_float_pixel R75 R75 X
ARB_imaging R10 X X X X 1.2 imaging subset
ARB_multisample X X X X 1.3 functionality
ARB_multitexture X X X X X 1.3 functionality
ARB_occlusion_query R50 R50 R50 X 1.5 functionalit y
ARB_pixel_buffer_object R80 R80 R80 R80 X 2.1 funct ionality
ARB_point_parameters R35 R35 X X X 1.4 functionalit y
ARB_point_sprite R50 R50 R50 X X
ARB_shader_objects R60 R60 R60 X X 2.0 functionalit y, GLSL
ARB_shading_language_100 R60 R60 R60 X X 2.0 functi onality, GLSL
ARB_shadow R25+ X X X 1.4 functionality
ARB_texture_border_clamp X X X X 1.3 functionality
ARB_texture_compression X X X X X 1.3 functionality
ARB_texture_cube_map X X X X X 1.3 functionality
ARB_texture_env_add X X X X X 1.3 functionality
ARB_texture_env_combine X X X X X 1.3 functionality
ARB_texture_env_crossbar see explanation
ARB_texture_env_dot3 X X X X X 1.3 functionality
ARB_texture_mirrored_repeat R40 R40 X X X 1.4, same as IBM
ARB_texture_non_power_of_two X X 2.0 functionali ty
ARB_texture_rectangle R62 R60+ R62 R62 X
ARB_transpose_matrix X X X X X 1.3 functionality
ARB_vertex_buffer_object R65 R65 R65 R65 X 1.5 func tionality
ARB_vertex_program R40+ R40+ X X X
ARB_vertex_shader R60 R60 R60 R60 X 2.0 functionali ty, GLSL
ARB_window_pos R40 R40 X X X 1.4 functionality
ATI_draw_buffers X X
ATI_texture_float X X
ATI_texture_mirror_once X X use EXT_texture_mirr or_clamp
EXT_abgr X X X X X
EXT_bgra X X X X X 1.2 functionality
EXT_bindable_uniform X GLSL extension
EXT_blend_color X X X X X 1.4 functionality
EXT_blend_equation_separate R60 X 2.0 functional ity
EXT_blend_func_separate X X X 1.4 functionality
EXT_blend_minmax X X X X X 1.4 functionality
EXT_blend_subtract X X X X X 1.4 functionality
EXT_Cg_shader R60 R60 R60 R60 X Cg through GLSL API
EXT_clip_volume_hint R20+
EXT_compiled_vertex_array X X X X X
EXT_depth_bounds_test R50 X X NV35, NV36, NV4x in hw only
EXT_draw_buffers2 X ARB_draw_buffers extension
EXT_draw_instanced X
EXT_draw_range_elements R20 R20 X X X 1.2 functiona lity
EXT_fog_coord X X X X X 1.4 functionality
EXT_framebuffer_blit R95 R95 X
EXT_framebuffer_multisample R95 R95 X
EXT_framebuffer_object R75 R75 X
EXT_framebuffer_sRGB X
EXT_geometry_shader4 X GLSL extension
EXT_gpu_program_parameters R95 R95 R95 R95 X
EXT_gpu_shader4 X GLSL extension
EXT_multi_draw_arrays R25 R25 X X X 1.4 functionali ty
EXT_packed_depth_stencil R80 X X
EXT_packed_float X
EXT_packed_pixels X X X X X 1.2 functionality

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 5

Extension NV1x NV2 x NV3x NV4x G8x Notes
EXT_paletted_texture X X X no NV4x hw support
EXT_pixel_buffer_object R55 R55 R55 X X 2.1 functio nality
EXT_point_parameters X X X X X 1.4 functionality
EXT_rescale_normal X X X X X 1.2 functionality
EXT_secondary_color X X X X X 1.4 functionality
EXT_separate_specular_color X X X X X 1.2 functiona lity
EXT_shadow_funcs R25+ X X X 1.5 functionality
EXT_shared_texture_palette X X X no NV4x hw suppo rt
EXT_stencil_clear_tag R70 NV44 only
EXT_stencil_two_side X X X 2.0 functionality
EXT_stencil_wrap X X X X X 1.4 functionality
EXT_texture3D sw X X X X 1.2 functionality
EXT_texture_array X
EXT_texture_buffer_object X
EXT_texture_compression_latc X
EXT_texture_compression_rgtc X
EXT_texture_compression_s3tc X X X X X
EXT_texture_cube_map X X X X X 1.2 functionality
EXT_texture_edge_clamp X X X X X 1.2 functionality
EXT_texture_env_add X X X X X 1.3 functionality
EXT_texture_env_combine X X X X X 1.3 functionality
EXT_texture_env_dot3 X X X X X 1.3 functionality
EXT_texture_filter_anisotropic X X X X X
EXT_texture_integer X
EXT_texture_lod X X X X X 1.2 functionality; no spe c
EXT_texture_lod_bias X X X X X 1.4 functionality
EXT_texture_mirror_clamp X X
EXT_texture_object X X X X X 1.1 functionality
EXT_texture_shared_exponent X
EXT_texture_sRGB X X 2.1 functionality
EXT_timer_query R80 R80 R80 X
EXT_vertex_array X X X X X 1.1 functionality
EXT_vertex_weighting X X Discontinued
KTX_buffer_region X X X X X
HP_occlusion_test R25 X X X
IBM_rasterpos_clip R40+ R40+ R40+ X X
IBM_texture_mirrored_repeat X X X X X 1.4 functiona lity
KTX_buffer_region X X X X X use ARB_buffer_region
NV_blend_square X X X X X 1.4 functionality
NV_copy_depth_to_color R20 X X X
NV_depth_buffer_float X
NV_depth_clamp R25+ X X X
NV_evaluators R10 X Discontinued
NV_fence X X X X X
NV_float_buffer X X X
NV_fog_distance X X X X X
NV_fragment_program X X X
NV_fragment_program_option R55 X X NV_fp features for ARB_fp
NV_fragment_program2 X X
NV_fragment_program4 X See NV_gpu_program4
NV_framebuffer_multisample_coverage Nf Nf X FBO e xtension
NV_geometry_program4 X See NV_gpu_program4
NV_gpu_program4 X
NV_half_float X X X
NV_light_max_exponent X X X X X
NV_multisample_filter_hint X X X X
NV_occlusion_query R25 X X X
NV_packed_depth_stencil R10+ R10+ X X X
NV_parameter_buffer_object X See NV_gpu_program 4
NV_pixel_data_range R40 R40 X X X
NV_point_sprite R35+ R25 X X X
NV_primitive_restart X X X
NV_register_combiners X X X X X
NV_register_combiners2 X X X X

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 Table of NVIDIA OpenGL Extension Support

NVIDIA Proprietary 6

Extension NV1x NV2 x NV3x NV4x G8x Notes
NV_texgen_emboss X Discontinued
NV_texgen_reflection X X X X X use 1.3 functionalit y
NV_texture_compression_vtc X X X X
NV_texture_env_combine4 X X X X X
NV_texture_expand_normal X X X
NV_texture_rectangle X X X X X
NV_texture_shader X X X X
NV_texture_shader2 X X X X
NV_texture_shader3 R25 X X X only NV25 and up in H W
NV_transform_feedback X
NV_vertex_array_range X X X X X
NV_vertex_array_range2 R10 R10 X X X
NV_vertex_program R10 X X X X
NV_vertex_program1_1 R25 R25 X X X
NV_vertex_program2 X X X
NV_vertex_program2_option R55 X X
NV_vertex_program3 X X
NV_vertex_program4 X See NV_gpu_program4
S3_s3tc X X X X X no spec; use EXT_t_c_s3tc
SGIS_generate_mipmap R10 X X X X 1.4 functionality
SGIS_multitexture X X use 1.3 version
SGIS_texture_lod X X X X X 1.2 functionality
SGIX_depth_texture X X X X use 1.4 version
SGIX_shadow X X X X use 1.4 version
SUN_slice_accum R50 R50 R50 X X accelerated on NV3x /NV4x
WGL_ARB_buffer_region X X X X X Win32
WGL_ARB_extensions_string X X X X X Win32
WGL_ARB_make_current_read R55 R55 R55 X X
WGL_ARB_multisample X X X X see ARB_multisample
WGL_ARB_pixel_format R10 X X X X Win32
WGL_ARB_pbuffer R10 X X X X Win32
WGL_ARB_render_texture R25 R25 X X X Win32
WGL_ATI_pixel_format_float X X Win32
WGL_EXT_extensions_string X X X X X Win32
WGL_EXT_swap_control X X X X X Win32
WGL_NV_float_buffer X X X Win32, see NV_float_buf fer
WGL_NV_gpu_affinity R95 X Win32 SLI
WGL_NV_render_depth_texture R25 X X X Win32
WGL_NV_render_texture_rectangle R25 R25 X X X Win32
WIN_swap_hint X X X X X Win32, no spec

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 7

Key for table entries:

X = supported

sw = supported by software rasterization (expect poo r performance)

Nf = Extension advertised but rendering functionality not available

R10 = introduced in the Release 10 OpenGL driver (not supported by earlier
drivers)

R20 = introduced in the Detanator XP (also known as Re lease 20) OpenGL driver
(not supported by earlier drivers)

R20+ = introduced after the Detanator XP (also known as Release 20) OpenGL
driver (not supported by earlier drivers)

R25 = introduced in the GeForce4 launch (also known as Release 25) OpenGL driver
(not supported by earlier drivers)

R25+ = introduced after the GeForce4 launch (also known as Release 25) OpenGL
driver (not supported by earlier drivers)

R35 = post-GeForce4 launch OpenGL driver release (not supported by earlier
drivers)

R40 = Detonator 40 release, August 2002.

R40+ = introduced after the Detanator 40 (also known as Release 40) OpenGL
driver (not supported by earlier drivers)

R50 = Detonator 50 release

R55 = Detonator 55 release

R60 = Detonator 60 release, May 2004

R65 = Release 65

R70 = Release 70

R80 = Release 80

R95 = Release 95

no spec = no suitable specification available

Discontinued = earlier drivers (noted by 25% gray entries) suppo rted this
extension but support for the extension is disconti nued in current and future
drivers

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 Table of NVIDIA OpenGL Extension Support

NVIDIA Proprietary 8

Notices:

Emulation: While disabled by default, older GPUs can support e xtensions
supported in hardware by newer GPUs through a proce ss called emulation though
any functionality unsupported by the older GPU must be emulated via software.
For more details see: http://developer.nvidia.com/object/nvemulate.html

Warning: The extension support columns are based on the late st & greatest
NVIDIA driver release (unless otherwise noted). Ch eck your GL_EXTENSIONS string
with glGetString at run-time to determine the speci fic supported extensions for
a particular driver version.

Discontinuation of support: NVIDIA drivers from release 95 no longer support
NV1x- and NV2x-based GPUs.

http://developer.nvidia.com/object/nvemulate.html

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 9

 Name

 ARB_texture_non_power_of_two

Name Strings

 GL_ARB_texture_non_power_of_two

Notice

 Copyright to be assigned to the ARB.

Status

 Approved by the ARB on June 11, 2003.

Version

 Date: May 14, 2004
 Revision: 1.0

Number

 ARB Extension #34

Dependencies

 Written based on the OpenGL 1.4 specification.

 ARB_texture_mirrored_repeat (and IBM_texture_mi rrored_repeat)
 affects the definition of this extension.

 ARB_texture_border_clamp affects the definition of this extension.

 EXT_texture_compression_s3tc and NV_texture_com pression_vtc affect
 the definition of this extension.

Overview

 Conventional OpenGL texturing is limited to ima ges with
 power-of-two dimensions and an optional 1-texel border.
 ARB_texture_non_power_of_two extension relaxes the size restrictions
 for the 1D, 2D, cube map, and 3D texture target s.

 There is no additional procedural or enumerant api introduced by this
 extension except that an implementation which e xports the extension
 string will allow an application to pass in tex ture dimensions for
 the 1D, 2D, cube map, and 3D targets that may o r may not be a power
 of two.

 An implementation which supports relaxing tradi tional GL's
 power-of-two size restrictions across all textu re targets will export
 the extension string: "ARB_texture_non_power_of _two".

 When this extension is supported, mipmapping, a utomatic mipmap
 generation, and all the conventional wrap modes are supported for
 non-power-of-two textures

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ARB_texture_non_power_of_two

NVIDIA Proprietary 10

Issues

 1. What should this extension be called?

 STATUS: RESOLVED

 RESOLUTION: ARB_texture_non_power_of_two. C onventional OpenGL
 textures are restricted to size dimensions th at are powers of two.

 The phrases POT (power of two) and NPOT (non- power of two) textures
 are used in the Overview and Issues section o f this specification,
 but notice these terms are never required in the actual extension
 language to amend the core specification.

 2. Should any enable or other state change be r equired to relax
 the texture dimension restrictions?

 STATUS: RESOLVED

 RESOLUTION: No. The restrictions on texture dimensions in the
 core OpenGL specification are enforced by err ors. Extensions are
 free to make legal and defined the error beha vior of extensions.
 This extension is really no different in that respect.

 The argument for having an enable to "unlock" more generalized
 texture dimensions is that it avoids develope rs accidently releasing
 applications developed on an OpenGL implement ation supporting this
 extension and unintentionally using NPOT text ures. This situation
 exists in theory with other extensions that d o not require new
 entry points or enumerants to operate (think of NV_blend_square).
 The real responsibility falls on developers t o not use extensions
 unless the implementation advertises support for the extension
 and do proper testing to ensure this is reall y the case.

 An additional issue with not having an enable to "unlock" this
 feature concerns the cases where existing app s might actually be
 relying on the current error condition to tel l them what to do,
 but might not be able to handle the "new" suc cess this extension
 would create. However, this seems to be limi ted to apps that
 are explicitly checking for implementation co rrectness (like a
 conformance test) and this does not seem to b e a typical problem
 for "real-world" applications. The working g roup members agreed
 that it is acceptable to require those few ap ps which fall into
 this category to be updated in the context of this extension.

 3. Should this extension be limited to a subset of conventional
 texture targets?

 STATUS: RESOLVED

 SUGGESTION: No. This extension should apply to 1D, 2D, 3D, and
 cube map textures (all supported by OpenGL 1. 4) but this extension
 does NOT extend or otherwise affect the EXT_t exture_rectangle
 extension's TEXTURE_RECTANGLE_EXT target.

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 11

 One early point of debate was whether we shou ld have a single
 unified extension which lifted the power of t wo restrictions from
 all targets, or whether we should have indivi dual target specific
 extensions. For example, one could imagine separate extensions for
 ARB_texture_non_power_of_two_2d, ARB_texture_ non_power_of_two_3d,
 ARB_texture_non_power_of_two_cube_map.

 The advantages of the separate extension appr oach are to allow IHV's
 to choose which pieces of functionality to su pport independently.
 The advantages of the single extension approa ch is to have a
 simpler and more forward looking extension.

 4. Are cube map texture images still required t o be square when this
 extension is supported?

 STATUS: RESOLVED

 RESOLUTION: Yes. But while the width and he ight of each level
 must be equal, they can be NPOT.

 5. How is a conventional NPOT target different from the texture
 rectangle target?

 STATUS: RESOLVED

 RESOLUTION:
 The biggest practical difference is that cove ntional targets use
 normalized texture coordinates (ie, [0..1]) w hile the texture
 rectangle target uses unnormalized (ie, [0..w]x[0..h]) texture
 coordinates.

 Differences include:

 + In ARB_texture_non_power_of_two:
 * mipmapping is allowed, default filter rem ains unchanged.
 * all wrap modes are allowed, default wrap mode remains unchanged.
 * borders are supported.
 * paletted textures are not unsupported.
 * texture coordinates are addressed paramet rically [0..1],[0..1]
 + In EXT_texture_rectangle:
 * mipmapping is not allowed, default filter is changed to LINEAR.
 * only CLAMP* wrap modes are allowed, defau lt is CLAMP_TO_EDGE.
 * borders are not supported.
 * paletted textures are unsupported.
 * texture coordinates are addressed non-par ametrically [0..w],[0..h].

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ARB_texture_non_power_of_two

NVIDIA Proprietary 12

 6. What is the dimension reduction rule for eac h successively smaller
 mipmap level?

 STATUS: RESOLVED

 RESOLUTION: Each successively smaller mipmap level is half the size
 of the previous level, but if this half value is a fractional value,
 you should round down to the next largest int eger. Essentially:

 max(1, floor(w_b / 2^i)) x
 max(1, floor(h_b / 2^i)) x
 max(1, floor(d_b / 2^i))

 where i is the ith level beyond the 0th level (the base level).

 This is a "floor" convention. An alternative is a "ceiling"
 convention.

 The primary reason to favor the floor convent ion is that Direct3D
 uses the floor convention.

 Also, the "ceiling" convention potentially im plies one more mipmap
 level than the "floor" convention.

 Some regard the "ceiling" convention to have nicer properties with
 respect to making sure that each level sample s at at least 2x the
 frequency of the next level. This can reduce the chances of
 sampling artifacts. However, it's probably n ot worth diverging
 from the Direct3D convention just for this. A more sophisticated
 downsampling algorithm (using a larger kernel perhaps) during
 mipmap level generation can help reduce artif acts related to using
 the "floor" convention.

 The "floor" convention has a relatively strai ghtforward way to
 evaluate (with integer math) means to determi ne how many mipmap
 levels are required for a complete pyramid:

 numLevels = 1 + floor(log2(max(w, h, d)))

 The "floor" convention can be evaluated incre mentally with the
 following recursion:

 nextLODdim = max(1, currentLODdim >> 1)

 where currentLODdim is the dimension of a lev el N and nextLODdim
 is the dimension of level N+1. The recursion stops when level
 numLevels-1 is reached.

 Other compromise rules exist such as "round" (floor(x+0.5)).
 Such a hybrid approach make it more difficult to compute how many
 mipmap levels are required for a complete pyr amid.

 Note that this extension is compatible with s upporting other rules
 because it merely relaxes the error and compl eteness conditions
 for mipmaps. At the same time, it makes sens e to provide developers
 a single consistent rule since developers are unlikely to want to
 generate mipmaps for different rules unnecess arily. One reasonable

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 13

 rule is sufficient and preferable, and the "f loor" convention is
 the best choice.

 7. Should the LOD for filtering (rho) be comput ed differently for
 NPOT textures?

 STATUS: RESOLVED

 RESOLUTION: No (though, ideally, the answer would be "yes slightly
 somehow"). The core OpenGL specification alr eady allows that
 the ideal computation of rho (even for POT te xtures) is "often
 impractical to implement". The "ceiling" con vention adds one more
 mipmap level for NPOT textures so at extreme minification, the
 "ceiling" convention may be somewhat sharper than ideal (whereas
 "floor" would be blurrier).

 This excess bluriness should only be signific ant at the smallest
 (blurriest) mipmap levels where it should be quite difficult to
 notice for properly downsampled mipmap images .

 8. Should there be any restrictions on the wrap modes supported for
 NPOT textures?

 STATUS: RESOLVED

 RESOLUTION: No restrictions; all existing wr ap modes
 (GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CL AMP_TO_BORDER, and
 GL_MIRRORED_REPEAT) should "just work" with N POT textures.

 The difficult part of this requirement is to compute "mod w_i"
 (or h_i or d_i) rather than simply "mod 2^n" (or 2^m or 2^l) for
 the GL_REPEAT wrap mode (GL_MIRRORED_REPEAT m ay also be an issue,
 but as defined by OpenGL 1.4, no "mod" math i s required to implement
 the mirrored repeat wrap mode). REPEAT is to o commonly used (indeed
 it is the default wrap mode) to exclude it fo r NPOT textures.

 9. How does this extension interact with ARB_te xture_compression?

 STATUS: RESOLVED

 RESOLUTION: It does not. ARB_texture_compre ssion doesn't
 technically require that any compressed forma ts be supported.
 Implementations can choose to compress or not compress any
 particular texture.

 While implementations may choose an internal component resolution
 and compressed format, the OpenGL 1.4 require s that the choice be
 a function only of the TexImage parameters. If an implementation
 chose not to compress NPOT textures, it might get into a situation
 where a 7x7 image wasn't compressed but its 4 x4, 2x2, and 1x1
 mipmaps were compressed. The result would be an inconsistent mipmap
 chain since the internal format of each level would not the same.

 Therefore, an implementation must be able to handle the case where
 decisions it makes during image specification can be corrected
 appropriately at render time. This may mean that an implementation
 such as the one described above may need to t empoarily keep

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ARB_texture_non_power_of_two

NVIDIA Proprietary 14

 compressed and uncompressed images internally until the full
 mipmap stack can be examined or may need to d ecompress previously
 compressed images in order to recover.

 10. How does this extension interact with speci fic texture compression
 extensions such as EXT_texture_compression_s3tc ?

 STATUS: RESOLVED

 RESOLUTION: It does not. If both this exten sion and
 EXT_texture_compression_s3tc are supported, a pplications can safely
 load NPOT S3TC-compressed textures.

 Textures are still decomposed into an array o f 4x4 blocks.
 The compressed data for any texels outside th e specified image
 dimensions are irrelevant and are effectively ignored, just as they
 are for the 1x1 and 2x2 mipmaps of a POT S3TC -compressed texture.

 11. How is automatic mipmap generation affected by this extension?

 STATUS: RESOLVED

 RESOLUTION: It is not directly affected. I f an implementation
 supports automatic mipmap generation, then mi pmap generation must
 be supported even for NPOT textures.

 Note however, that the OpenGL 1.4 specificati on recommends a
 "2x2 box filter" for the default filter. Thi s is typo since
 a 2x2 box filter would be incorrect for 1D an d 3D textures.
 With support for NPOT textures, this "2x2 box filter" becomes
 even more inappropriate. The wording should be changed to simply
 recommend a box filter where the dimensionali ty and filter size is
 assumed appropriate for the texture image dim ensionality and size.

 12. Are any edits required for Section 3.8.10 " Texture Completeness"?

 STATUS: RESOLVED

 RESOLUTION: No. This section references Sec tion 3.8.8 for
 the allowed sequence of dimensions for comple teness (rather than
 stating the requirements explicition in Secti on 3.8.10). The only
 difference between NPOT and POT textures is t he allowable sequence
 of mipmap sizes, and in both cases, a smaller level is half the
 size of the larger (modulo rounding).

 As with POT textures, a mipmap chain is consi stent only if the
 correct sequence of sizes is found. As with POT textures, an
 attempt to load a mipmap that could never be part of a consistent
 mipmap chain should fail. For example, if an implementation
 supports textures with dimensions only up to 1024, an attempt to
 load level 2 with a 257x114 texture will fail because the smallest
 possible corresponding level 0 texture would have to be 1028x456.

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 15

 13. The WGL_ARB_render_texture extension allows creating a pbuffer
 with the WGL_PBUFFER_LARGEST_ARB attribute. If this extension is
 present, should this attribute potentially retu rn a NPOT pbuffer?

 STATUS: UNRESOLVED

 SUGGESTION: The WGL_ARB_render_texture speci fication appears
 to anticipate NPOT textures with this stateme nt: "e.g. Both the
 width and height will be a power of 2 if the implementation only
 supports power of 2 textures." so I think the right thing to do
 is allow NPOT textures (of the proper aspect ratio) to be returned.

 It is not entirely clear if this behavior is "safe" for preexisting
 applications that might not be aware of NPOT textures. The safe
 thing would be to add a WGL_PBUFFER_LARGEST_N POT_ARB enumerant
 that could return NPOT textures and require t hat the existing
 WGL_PBUFFER_LARGEST_ARB enumerant always retu rn POT textures.

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Rasterization)

 -- Section 3.8.1 "Texture Image Specification"

 Replace the discussion of the border parameter with:

 "The border argument to TexImage3D is a border width. The
 significance of borders is described below. Th e border width affect
 the dimensions of the texture image; it must be the case that

 w_s = w_i + 2 b_s (3.13)

 h_s = h_i + 2 b_s (3.14)

 d_s = d_i + 2 b_s (3.15)

 where w_s, h_s, and d_s are the specified image width, height, and
 depth, and w_i, h_i, and d_i are the dimensions of the texture image
 internal to the border. If w_i, h_i, or d_i ar e less than zero,
 then the error INVALID_VALUE is generated.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ARB_texture_non_power_of_two

NVIDIA Proprietary 16

 -- Section 3.8.8 "Texture Minification"

 In the subsection "Scale Factor and Level of Detail"...

 Replace the sentence defining the u, v, and w f unctions with:

 "Let u(x,y) = w_i * s(x,y), v(x,y) = h_i * t(x, y), and w(x,y) = d_i *
 r(x,y), where w_i, h_i, and d_i are as defined by equations 3.13,
 3.14, and 3.15 with w_s, w_s, and d_s equal to the width, height,
 and depth of the image array whose level is TEX TURE_BASE_LEVEL."

 Replace 2^n, 2^m, and 2^l with w_i, h_i, and d_ i in Equations 3.19,
 3.20, and 3.21.

 { floor(u), s < 1
 i = { (3.19)
 { w_i - 1, s = 1

 { floor(u), t < 1
 j = { (3.20)
 { h_i - 1, t = 1

 { floor(u), r < 1
 k = { (3.21)
 { d_i - 1, r = 1

 Replace 2^n, 2^m, and 2^l with w_i, h_i, and d_ i in the equations for
 computing i_0, j_0, k_0, i_1, j_1, and k_1 used for LINEAR filtering.

 { floor(u - 1/2) mod w_i, TEXTURE_WRA P_S is REPEAT
 i_0 = {
 { floor(u - 1/2), otherwise

 { floor(v - 1/2) mod h_i, TEXTURE_WRA P_T is REPEAT
 j_0 = {
 { floor(v - 1/2), otherwise

 { floor(w - 1/2) mod d_i, TEXTURE_WRA P_R is REPEAT
 k_0 = {
 { floor(w - 1/2), otherwise

 { (i_0 + 1) mod w_i, TEXTURE_WRA P_S is REPEAT
 i_1 = {
 { i_0 + 1, otherwise

 { (j_0 + 1) mod h_i, TEXTURE_WRA P_T is REPEAT
 j_1 = {
 { j_0 + 1, otherwise

 { (k_0 + 1) mod d_i, TEXTURE_WRA P_R is REPEAT
 k_1 = {
 { k_0 + 1, otherwise

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 17

 In the subsection "Mipmapping"...

 Replace the last sentence of the first paragrap h with:

 "If the image array of level level_base, exclud ing its border, has
 dimensions w_b x h_b x d_b, then there are floo r(log2(max(w_b, h_b,
 d_b))) + 1 image arrays in the mipmap. Numberi ng the levels such
 that level level_base is the 0th level, the ith array has dimensions

 max(1, floor(w_b / 2^i)) x
 max(1, floor(h_b / 2^i)) x
 max(1, floor(d_b / 2^i))

 until the last array is reached with dimension 1 x 1 x 1."

 Replace the second sentence of the second parag raph with:

 "Level-of-detail numbers proceed from level_bas e for the original
 texture array through p = floor(log2(max(w_b, h _b, d_b))) + level_base
 with each unit increase indicating an array of half the dimensions
 of the previous one (rounded down to the next i nteger if fractional)
 as already described."

 In the subsection "Automatic Mipmap Generation"...

 Replace the second sentence of the third paragr aph with:

 "No particular filter algorithm is required, th ough a box filter is
 recommended as the default filter."

 -- Section 3.8.10 "Texture Completeness"

 In the subsection "Effects of Completeness on Texture Image
 Specification"...

 Replace the last sentence with:

 "A mipmap complete set of arrays is equivalent to a complete set
 of arrays where level_base = 0 and level_max = 1000, and where,
 excluding borders, the dimensions of the image array being created are
 understood to be half the corresponding dimensi ons of the next lower
 numbered array (rounded down to the next intege r if fractional)."

Additions to Chapter 4 of the GL Specification (Per-Fragment Operations
and the Framebuffer)

 None

Additions to Chapter 5 of the GL Specification (Special Functions)

 None

Additions to the GLX Specification

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ARB_texture_non_power_of_two

NVIDIA Proprietary 18

Additions to the EXT_texture_compression_s3tc and
NV_texture_compression_vtc Specification

 Add this paragraph:

 "For a compressed texture where w_i != 2^m OR h _i != 2^n OR d_i != 2^l
 for some integer value of m, n, and l, the 4x4 tiles are assumed to be
 aligned to u=0, v=0, w=0 origin in texel space. For such compressed
 textures, this implies that texels in regions o f tiles beyond the
 edges u=w_i, v=h_i, and w=d_i will not be sampl ed explicitly."

GLX Protocol

 None

Errors

 Various errors are ELIMINATED when this extensi on is supported as
 noted.

 INVALID_VALUE is NO LONGER generated by TexImag e1D or glCopyTexImage1D
 if width is not zero or cannot be represented a s 2^n+2(border)
 for some integer value of n.

 INVALID_VALUE is NO LONGER generated by TexImag e2D or glCopyTexImage2D
 if width or height is not zero or cannot be rep resented as
 2^n+2(border) for some integer value of n.

 INVALID_VALUE is NO LONGER generated by TexImag e3D if width, height,
 or depth is not zero or cannot be represented a s 2^n+2(border)
 for some integer value of n.

New State

 None

New Implementation Dependent State

 None

Revision History

 Date 05/14/2004
 Revision: 1.0
 - Formated text for 72 column convention
 - Fixed date for last revision
 - fix "Image2d" typo

 Date: 03/23/2004
 Revision: 1.0
 - Formulas for computing the dimensions of mipmap sizes based
 on the base level size should involve 2^i (not i^2)

ARB_texture_non_power_of_two NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 19

 Date: 09/11/2003
 Revision: 1.0
 - allow zero (instead of just positive valu es before) when
 specifying the width, height, and depth o f texture image
 dimensions; this is to avoid an inconsist ency with the
 sample implementation

 Date: 05/29/2003
 Revision: 0.10
 - removed "@" language for target specific behavior, the spec
 now treats all targets uniformly

 Date: 05/21/2003
 Revision: 0.9
 - fixed typo: ARB/IBM_mirrored_repeat shoul d have been
 ARB/IBM_texture_mirrored_repeat
 - fixed various other minor typos, duplicat ed words, etc.
 - added a line to issue #6 regarding sugges ting use of a
 larger kernel when downsampling using the floor convention
 - coalesced the equations that used 3 2-ter m max equations into
 single 3-term max equations for clarity
 - fixed two more typos where "ceil" should have been "floor"
 - refer to ARB_texture_rectangle as EXT_tex ture_rectangle
 (this may change back when/if back extens ion becomes ARB'ified)

 Date: 05/10/2003
 Revision: 0.8
 - additional additional names to contributo rs list
 - clarified language describing resolution of issues #9,10,11

 Date: 05/08/2003
 Revision: 0.7
 - very minor language update to overview se ction regarding
 exporting of ARB_texture_non_power_of_two string
 - fixed another two places where it said we should round up
 instead of down (in section 3.8.10 "Textu re Completeness",
 and in section 3.8.8 "Texture Minificatio n")
 - mark the regions of the spec affected by the decision to
 use separate strings per texture target w ith the "@" symbol.
 This is temporary until issue #3 is resol ved.
 - resolved issues 9,10,11,12

 Date: 05/08/2003
 Revision: 0.6
 - updated revision history and coalesced re vision notes from
 various specs
 - fixed typo in issue #5 ("2d" --> "non_pow er_of_two")
 - clarified the discussion in issue #3 as t he langage was a
 little confusing in parts.
 - explicitly refer to the cube map targets in section 3.8.1
 instead of using the "made up" target TEX TURE_CUBE_MAP.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ARB_texture_non_power_of_two

NVIDIA Proprietary 20

 Date: 05/06/2003
 Revision: 0.5
 - changed name of extension from ARB_textur e_np2 to
 ARB_texture_non_power_of_two
 - added target specific extension strings
 - added more discussion to several issues b ased on feedback from
 the working group meetings
 - fixed several typos where INVALID_VALUE w as INVALID_VALID
 - addressed typo in issue #6, it said you s hould round up,
 but really we agreed to round down when d escribing the mipmap
 stack (floor vs ceil convention).
 - resolved issues 1 - 8.

 Date: 04/24/2003
 Revision: 0.4 (jsandmel)
 - numbered issues list
 - additional discussion of several issues
 - added more explicit comparison of texture _rectangle and this
 proposal

 Date: 04/10/2003
 Revision: 0.3 (mjk)
 - integrates input from the ARB_texture_2d_ np2 proposals.

 Date: 03/25/2003
 Revision: 0.1 (jsandmel)
 - draft proposal
 - deals with 2d targets only
 - named: ARB_texture_2d_np2

ATI_draw_buffers NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 21

Name

 ATI_draw_buffers

Name Strings

 GL_ATI_draw_buffers

Status

 Complete.

Version

 Last Modified Date: December 30, 2002
 Revision: 8

Number

 277

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

 OpenGL 1.3 is required.

 ARB_fragment_program affects the definition of this extension.

Overview

 This extension extends ARB_fragment_program to allow multiple output
 colors, and provides a mechanism for directing those outputs to
 multiple color buffers.

Issues

 (1) How many GL_DRAW_BUFFER#_ATI enums should b e reserved?

 RESOLVED: We only need 4 currently, but for f uture expandability
 it would be nice to keep the enums in sequenc e. We'll specify
 16 for now, which will be more than enough fo r a long time.

New Procedures and Functions

 void DrawBuffersATI(sizei n, const enum *bufs);

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ATI_draw_buffers

NVIDIA Proprietary 22

New Tokens

 Accepted by the <pname> parameters of GetIntege rv, GetFloatv,
 and GetDoublev:

 MAX_DRAW_BUFFERS_ATI 0x8 824
 DRAW_BUFFER0_ATI 0x8 825
 DRAW_BUFFER1_ATI 0x8 826
 DRAW_BUFFER2_ATI 0x8 827
 DRAW_BUFFER3_ATI 0x8 828
 DRAW_BUFFER4_ATI 0x8 829
 DRAW_BUFFER5_ATI 0x8 82A
 DRAW_BUFFER6_ATI 0x8 82B
 DRAW_BUFFER7_ATI 0x8 82C
 DRAW_BUFFER8_ATI 0x8 82D
 DRAW_BUFFER9_ATI 0x8 82E
 DRAW_BUFFER10_ATI 0x8 82F
 DRAW_BUFFER11_ATI 0x8 830
 DRAW_BUFFER12_ATI 0x8 831
 DRAW_BUFFER13_ATI 0x8 832
 DRAW_BUFFER14_ATI 0x8 833
 DRAW_BUFFER15_ATI 0x8 834

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL
Operation)

 None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

 Modify Section 3.11.2, Fragment Program Grammar and Semantic
 Restrictions

 (replace <resultBinding> grammar rule with thes e rules)

 <resultBinding> ::= "result" "." "color" <optOutputColorNum>
 | "result" "." "depth"

 <optOutputColorNum> ::= ""
 | "[" <outputColorNum> "]"

 <outputColorNum> ::= <integer> from 0 to MAX_DRAW_BUFFERS_ATI-1

 Modify Section 3.11.3.4, Fragment Program Results

 (modify Table X.3)

 Binding Components Description
 ----------------------------- ---------- ----------------------------
 result.color[n] (r,g,b,a) color n
 result.depth (*,*,*,d) depth coordinate

 Table X.3: Fragment Result Variable Bindin gs. Components labeled
 "*" are unused. "[n]" is optional -- color <n> is used if
 specified; color 0 is used otherwise.

ATI_draw_buffers NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 23

 (modify third paragraph) If a result variable binding matches
 "result.color[n]", updates to the "x", "y", "z" , and "w" components
 of the result variable modify the "r", "g", "b" , and "a" components,
 respectively, of the fragment's corresponding o utput color. If
 "result.color[n]" is not both bound by the frag ment program and
 written by some instruction of the program, the output color <n> of
 the fragment program is undefined.

 Add a new Section 3.11.4.5.3

 3.11.4.5.3 Draw Buffers Program Option

 If a fragment program specifies the "ATI_draw_b uffers" option,
 it will generate multiple output colors, and th e result binding
 "result.color[n]" is allowed, as described in s ection 3.11.3.4,
 and with modified grammar rules as set forth in section 3.11.2.
 If this option is not specified, a fragment pro gram that attempts
 to bind "result.color[n]" will fail to load, an d only "result.color"
 will be allowed.

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

 Modify Section 4.2.1, Selecting a Buffer for Writing (p. 168)

 (modify the title and first paragraph, p. 168)

 4.2.1 Selecting Color Buffers for Writing

 The first such operation is controlling the col or buffers into
 which each of the output colors are written. T his is accomplished
 with either DrawBuffer or DrawBuffersATI. Draw Buffer defines the
 set of color buffers to which output color 0 is written.

 (insert paragraph between first and second para graph, p. 168)

 DrawBuffer will set the draw buffer for output colors other than 0
 to NONE. DrawBuffersATI defines the draw buffe rs to which all
 output colors are written.

 void DrawBuffersATI(sizei n, const enum *bufs);

 <n> specifies the number of buffers in <bufs>. <bufs> is a pointer
 to an array of symbolic constants specifying th e buffer to which
 each output color is written. The constants ma y be NONE,
 FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, and AUX0 through
 AUXn, where n + 1 is the number of available au xiliary buffers. The
 draw buffers being defined correspond in order to the respective
 output colors. The draw buffer for output colo rs beyond <n> is set
 to NONE.

 If the "ATI_draw_buffers" fragment program opti on, is not being used
 then DrawBuffersATI specifies a set of draw buf fers into which output
 color 0 is written.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ATI_draw_buffers

NVIDIA Proprietary 24

 The maximum number of draw buffers is implement ation dependent and
 must be at least 1. The number of draw buffers supported can
 be queried with the state MAX_DRAW_BUFFERS_ATI.

 The constants FRONT, BACK, LEFT, RIGHT, and FRO NT_AND_BACK that
 refer to multiple buffers are not valid for use in DrawBuffersATI
 and will result in the error INVALID_OPERATION.

 If DrawBuffersATI is supplied with a constant (other than NONE)
 that does not indicate any of the color buffers allocated to
 the GL context, the error INVALID_OPERATION wil l be generated. If
 <n> is greater than MAX_DRAW_BUFFERS_ATI, the e rror
 INVALID_OPERATION will be generated.

 (replace last paragraph, p. 169)

 The state required to handle color
 buffer selection is an integer for each support ed output color. In
 the initial state, draw buffer for output color 0 is FRONT if there
 are no back buffers; otherwise it is BACK. The initial state of
 draw buffers for output colors other then 0 is NONE.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

 None

Dependencies on ARB_fragment_program

 If ARB_fragment_program is not supported then a ll changes to
 section 3.11 are removed.

Interactions with possible future extensions

 If there is some other future extension that de fines multiple
 color outputs then this extension and glDrawBuf fersATI could be
 used to define the destinations for those outpu ts. This extension
 need not be used only with ARB_fragment_program .

Errors

 The error INVALID_OPERATION is generated by Dra wBuffersATI if a
 color buffer not currently allocated to the GL context is specified.

 The error INVALID_OPERATION is generated by Dra wBuffersATI if <n>
 is greater than the state MAX_DRAW_BUFFERS_ATI.

 The error INVALID_OPERATION is generated by Dra wBuffersATI if value in
 <bufs> does not correspond to one of the allowe d buffers.

ATI_draw_buffers NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 25

New State

 (table 6.19, p227) add the following entry:

Get Value Type Get Command Initial Value Description Section Attribute
---------------- ---- ----------- ------------- -------------------- --------- ------------
DRAW_BUFFERi_ATI Z10* GetIntegerv see 4.2.1 Draw buffer selected 4.2.1 color-buffer
 for output color i

New Implementation Dependent State

Get Value Type Get Command Minimum Va lue Description Sec. Attribute
--------- ---- ----------- ---------- --- ------------------- ----- ---------
MAX_DRAW_BUFFERS_ATI Z+ GetIntegerv 1 Maximum number of 4.2.1 -
 active draw buffers

Revision History

 Date: 12/30/2002
 Revision: 8
 - Clarified that DrawBuffersATI will set the set of draw buffers to
 write color output 0 to when the "ATI_draw_ buffer" fragments
 program option is not in use.

 Date: 9/27/2002
 Revision: 7
 - Fixed confusion between meaning of color bu ffer and draw buffer
 in last revision.
 - Fixed mistake in when an error is generated based on the <n>
 argument of DrawBuffersATI.

 Date: 9/26/2002
 Revision: 6
 - Cleaned up and put in sync with latest ARB_ fragment_program
 revision (#22). Some meaningless changes m ade just in the name
 of consistency.

 Date: 9/11/2002
 Revision: 5
 - Added section 3.11.4.5.3.
 - Added enum numbers to New Tokens.

 Date: 9/9/2002
 Revision: 4
 - Changed error from MAX_OUTPUT_COLORS to MAX _DRAW_BUFFERS_ATI.
 - Changed 3.10 section numbers to 3.11 to mat ch change to
 ARB_fragment_program spec.
 - Changed ARB_fragment_program from required to affects, and
 added section on interactions with it and f uture extensions
 that define multiple color outputs.

 Date: 9/6/2002
 Revision: 3
 - Changed error to INVALID OPERATION.
 - Cleaned up typos.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ATI_draw_buffers

NVIDIA Proprietary 26

 Date: 8/19/2002
 Revision: 2
 - Added a paragraph that specifically points out that the
 constants that refer to multiple buffers ar e not allowed with
 DrawBuffersATI.
 - Changed bufs to <bufs> in a couple of place s.

 Date: 8/16/2002
 Revision: 1
 - First draft for circulation.

ATI_texture_float NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 27

Name

 ATI_texture_float

Name Strings

 GL_ATI_texture_float

Status

 Complete.

Version

 Last Modified Date: December 4, 2002
 Revision: 4

Number

 280

Dependencies

 OpenGL 1.1 or EXT_texture is required.

 The extension is written against the OpenGL 1.3 Specification.

Overview

 This extension adds texture internal formats wi th 32 and 16 bit
 floating-point components. The 32 bit floating -point components
 are in the standard IEEE float format. The 16 bit floating-point
 components have 1 sign bit, 5 exponent bits, an d 10 mantissa bits.
 Floating-point components are clamped to the li mits of the range
 representable by their format.

Issues

 1. Should we expose a GL_FLOAT16_ATI pixel type so that the 16 bit
 float textures can be directly loaded?

 RESOLUTION: This will be exposed in a separ ate extension.

New Procedures and Functions

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ATI_texture_float

NVIDIA Proprietary 28

New Tokens

 Accepted by the <internalFormat> parameter of T exImage1D,
 TexImage2D, and TexImage3D:

 RGBA_FLOAT32_ATI 0x8814
 RGB_FLOAT32_ATI 0x8815
 ALPHA_FLOAT32_ATI 0x8816
 INTENSITY_FLOAT32_ATI 0x8817
 LUMINANCE_FLOAT32_ATI 0x8818
 LUMINANCE_ALPHA_FLOAT32_ATI 0x8819
 RGBA_FLOAT16_ATI 0x881A
 RGB_FLOAT16_ATI 0x881B
 ALPHA_FLOAT16_ATI 0x881C
 INTENSITY_FLOAT16_ATI 0x881D
 LUMINANCE_FLOAT16_ATI 0x881E
 LUMINANCE_ALPHA_FLOAT16_ATI 0x881F

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL
Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16 Bit Floating-Point

 A 16 bit floating-point number has 1 sign bit (s), 5 exponent
 bits (e), and 10 mantissa bits (m). The valu e (v) of a 16 bit
 floating-point number is determined by the fo llowing pseudo code:

 if (e != 0)
 v = (-1)^s * 2^(e-15) * 1.m # normaliz ed
 else if (f == 0)
 v = (-1)^s * 0 # zero
 else
 v = (-1)^s * 2^(e-14) * 0.m # denormal ized

 It is acceptable for an implementation to tre at denormalized 16 bit
 floating-point numbers as zero.

 There are no NAN or infinity values for 16 bi t floating-point.

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

 Section 3.8.1, (p. 116), change the last sentence on the page to:

 Each R, G, B, and A value so generated is cla mped based on the
 component type in the <internalFormat>. Fixe d-point components
 are clamped to [0, 1]. Floating-point compon ents are clamped
 to the limits of the range representable by t heir format. 32
 bit floating- point components are in the sta ndard IEEE float
 format. 16 bit floating-point components hav e 1 sign bit, 5
 exponent bits, and 10 mantissa bits.

ATI_texture_float NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 29

 Section 3.8.1, (p. 119), add the following to table 3.16:

 Sized Base R G B A L I
 Internal Format Internal Format b its bits bits bits bits bits
 --------------------------- --------------- - --- ---- ---- ---- ---- ----
 RGBA_FLOAT32_ATI RGBA f 32 f32 f32 f32
 RGB_FLOAT32_ATI RGB f 32 f32 f32
 ALPHA_FLOAT32_ATI ALPHA f32
 INTENSITY_FLOAT32_ATI INTENSITY f32
 LUMINANCE_FLOAT32_ATI LUMINANCE f32
 LUMINANCE_ALPHA_FLOAT32_ATI LUMINANCE_ALPHA f32 f32
 RGBA_FLOAT16_ATI RGBA f 16 f16 f16 f16
 RGB_FLOAT16_ATI RGB f 16 f16 f16
 ALPHA_FLOAT16_ATI ALPHA f16
 INTENSITY_FLOAT16_ATI INTENSITY f16
 LUMINANCE_FLOAT16_ATI LUMINANCE f16
 LUMINANCE_ALPHA_FLOAT16_ATI LUMINANCE_ALPHA f16 f16

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

 None

Errors

 None

New State

 None

New Implementation Dependent State

 None

Revision History

 Date: 12/4/2002
 Revision: 4
 - Added Section 2.1.2 16 Bit Floating-Point.

 Date: 9/11/2002
 Revision: 3
 - Changed description of float clamping to be consistent with
 WGL_ATI_pixel_format_float.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ATI_texture_float

NVIDIA Proprietary 30

 Date: 9/6/2002
 Revision: 2
 - Changed unsigned integer components to fixe d-point components.
 - Resolved GL_FLOAT16_ATI issue.
 - Cleaned up typos.

 Date: 8/18/2002
 Revision: 1
 - First draft for circulation.

ATI_texture_mirror_once NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 31

Name

 ATI_texture_mirror_once

Name Strings

 GL_ATI_texture_mirror_once

Version

 Last Modified Date: 11/14/2000 Revision: 0.30

Number

 221

Dependencies

 EXT_texture3D

Overview

 ATI_texture_mirror_once extends the set of text ure wrap modes to
 include two modes (GL_MIRROR_CLAMP_ATI, GL_MIRR OR_CLAMP_TO_EDGE_ATI)
 that effectively use a texture map twice as lar ge as the original image
 in which the additional half of the new image i s a mirror image of the
 original image.

 This new mode relaxes the need to generate imag es whose opposite edges
 match by using the original image to generate a matching "mirror image".
 This mode allows the texture to be mirrored onl y once in the negative
 s, t, and r directions.

Issues

 None known

New Procedure and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv, when
 their <pname> parameter is TEXTURE_WRAP_S, TEXT URE_WRAP_T, or
 TEXTURE_WRAP_R_EXT:

 MIRROR_CLAMP_ATI 0x8742
 MIRROR_CLAMP_TO_EDGE_ATI 0x8743

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (Operation)

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 ATI_texture_mirror_once

NVIDIA Proprietary 32

Additions to Chapter 3 if the OpenGL 1.2.1 Specification (Rasterization):

 - (3.8.3, p. 124) Change first three entries in t able:

 "TEXTURE_WRAP_S integer CLAMP, CLAMP_TO _EDGE, REPEAT,
 MIRROR_CLAMP_AT I, MIRROR_CLAMP_TO_EDGE_ATI
 TEXTURE_WRAP_T integer CLAMP, CLAMP_TO _EDGE, REPEAT,
 MIRROR_CLAMP_AT I, MIRROR_CLAMP_TO_EDGE_ATI
 TEXTURE_WRAP_R integer CLAMP, CLAMP_TO _EDGE, REPEAT,
 MIRROR_CLAMP_AT I, MIRROR_CLAMP_TO_EDGE_ATI"

 - (3.8.4, p. 125) Added after second paragraph:

 "If TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_ WRAP_R_EXT is set to
 MIRROR_CLAMP_ATI or MIRROR_CLAMP_TO_EDGE_ATI, the s (or t or r)
 coordinate is clamped to [-1, 1] and then conv erted to:

 s 0 <= s <= 1
 -s -1 <= s < 0

 Like the CLAMP wrap mode, with MIRROR_CLAMP_AT I the texels from
 the border can be used by the texture filter. MIRROR_CLAMP_TO_EDGE_ATI
 clamps texture coordinates at all mipmap level s such that the texture
 filter never samples a border texel."

 - (3.8.5, p.127) Change last paragraph to:

 "When TEXTURE_MIN_FILTER is LINEAR, a 2 x 2 x 2 cube of texels in the
 image array of level TEXTURE_BASE_LEVEL is sel ected. This cube is
 obtained by first clamping texture coordinates as described above
 under Texture Wrap Modes (if the wrap mode for a coordinate is CLAMP,
 CLAMP_TO_EDGE, MIRROR_CLAMP_ATI, or MIRROR_CLA MP_TO_EDGE_ATI) and
 computing..."

Additions to Chapter 4:

 None

Additions to Chapter 5:

 None

Additions to Chapter 6:

 None

Additions to the GLX Specification

 None

GLX Protocol

 None

Errors

 None

ATI_texture_mirror_once NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 33

Dependencies on EXT_texture3D

 If EXT_texture3D is not implemented, then the r eferences to clamping of 3D
 textures in this file are invalid, and referenc es to TEXTURE_WRAP_R_EXT
 should be ignored.

New State

 Only the type information changes for these par ameters:

 Get Value Get Command Typ e Initial Value Attrib
 --------- ----------- --- - ------------- ------
 TEXTURE_WRAP_S GetTexParameteriv n x Z5 REPEAT texture
 TEXTURE_WRAP_T GetTexParameteriv n x Z5 REPEAT texture
 TEXTURE_WRAP_R_EXT GetTexParameteriv n x Z5 REPEAT texture

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_blend_equation_separate

NVIDIA Proprietary 34

Name

 EXT_blend_equation_separate

Name Strings

 GL_EXT_blend_equation_separate

Notice

 Copyright NVIDIA Corporation, 2003.

Version

 Date: 12/23/2003 Version 1.0

Status

 Shipping as of May 2004 for GeForce6.

Number

 299

Dependencies

 Written based on the wording of the OpenGL 1.5 specification.

 OpenGL 1.4 (or ARB_imaging, or EXT_blend_minmax and/or
 EXT_blend_subtract) is required for blend equat ion support.

 EXT_blend_func_separate is presumed but not req uired.

 EXT_blend_logic_op interacts with this extensio n.

Overview

 EXT_blend_func_separate introduced separate RGB and alpha blend
 factors. EXT_blend_minmax introduced a distinc t blend equation for
 combining source and destination blend terms. (EXT_blend_subtract &
 EXT_blend_logic_op added other blend equation m odes.) OpenGL 1.4
 integrated both functionalities into the core s tandard.

 While there are separate blend functions for th e RGB and alpha blend
 factors, OpenGL 1.4 provides a single blend equ ation that applies
 to both RGB and alpha portions of blending.

 This extension provides a separate blend equati on for RGB and alpha
 to match the generality available for blend fac tors.

IP Status

 No known IP issues.

EXT_blend_equation_separate NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 35

Issues

 Why not use ATI_blend_equation_separate?

 Apple supports this extension in OS X 10.2 but the extension
 lacks a specification and, as explained in subsequent issues,
 the token naming is inconsistent with OpenG L conventions.

 What should the token names be?

 RESOLVED: Follow the precedent of EXT_blen d_equation_separate.
 For example, GL_BLEND_DST becomes GL_BLEND_ DST_RGB
 and GL_BLEND_DST_ALPHA. So GL_BLEND_EQUATI ON becomes
 GL_BLEND_EQUATION_RGB (same value as GL_BLE ND_EQUATION) and
 GL_BLEND_EQUATION_ALPHA.

 This is different from the ATI_blend_equati on_separate approach
 which introduces the single name GL_ALPHA_B LEND_EQUATION_ATI
 (no RGB name is introduced). The existing OpenGL convention
 (example: ARB_texture_env_combine) is to us e _RGB and _ALPHA as
 a suffix for enumerants, not a prefix.

 How should get token values be assigned?

 RESOLVED: GL_BLEND_EQUATION_RGB_EXT has th e same value as
 GL_BLEND_EQUATION. See "Compatibility" sec tion.

 For compatibility with ATI_blend_equation_s eparate,
 GL_BLEND_EQUATION_ALPHA_EXT shares the same value (0x883D)
 with the ATI_blend_equation_separate's GL_A LPHA_BLEND_EQUATION_ATI
 token. The GL_BLEND_EQUATION_ALPHA_EXT nam e uses the suffixing
 convention (rather than prefixing) for addi ng _ALPHA addition
 as done by ARB_texture_env_combine and EXT_ blend_func_separate.

New Procedures and Functions

 void BlendEquationSeparateEXT(enum modeRGB,
 enum modeAlpha);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_EQUATION_RGB_EXT 0x8009 (same as BLEND_EQUATION)
 BLEND_EQUATION_ALPHA_EXT 0x883D

Additions to Chapter 2 of the 1.5 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.5 GL Specification (Rasterization)

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_blend_equation_separate

NVIDIA Proprietary 36

Additions to Chapter 4 of the 1.5 GL Specification (Per-Fragment Operations
and the Framebuffer)

 Replace the "Blend Equation" discussion in sect ion 4.1.7 (Blending)
 with the following:

 "The equations used to control blending are det ermined by the blend
 equations. Blend equations are specified with the commands:

 void BlendEquation(enum mode);
 void BlendEquationSeparateEXT(enum modeRGB, e num modeAlpha);

 BlendEquationSeparateEXT arguments modeRGB dete rmines the RGB blend
 function while modeAlpha determines the alpha b lend equation.
 BlendEquation argument mode determines both the RGB and alpha blend
 equations. modeRGB and modeAlpha must each be one of FUNC_ADD,
 FUNC_SUBTRACT, FUNC_REVERSE_SUBTRACT, MIN, or M AX.

 Destination (framebuffer) components are taken to be fixed-point
 values represented according to the scheme in s ection 2.13.9
 (Final Color Processing), as are source (fragme nt) components.
 Constant color components are taken to be float ing point values.
 [ed: paragraph unchanged except that floating-p oint is hyphenated.]

 Prior to blending, each fixed-point color compo nent undergoes an
 implied conversion to floating-point. This con version must leave
 the values 0 and 1 invariant. Blending compone nts are treated as
 if carried out in floating-point. [ed: paragra ph unchanged except
 that floating-point is hyphenated.]

 Table 4.blendeq provides the corresponding per- component blend
 equations for each mode, whether acting on RGB components for modeRGB
 or the alpha component for modeAlpha.

 In the table, the "s" subscript on a color comp onent abbreviation
 (R, G, B, or A) refers to the source color comp onent for an incoming
 fragment, the "d" subscript on a color componen t abbreviation refers
 to the destination color component at the corre sponding framebuffer
 location, and the "c" subscript on a color com ponent abbreviation
 refers to the constant blend color component. A color component
 abbreviation without a subscript refers to the new color component
 resulting from blending. Additionally, Sr, Sg, Sb, and Sa are
 the red, green, blue, and alpha components of t he source weighting
 factors determined by the source blend function , and Dr, Dg, Db, and
 Da are the red, green, blue, and alpha componen ts of the destination
 weighting factors determined by the destination blend function.
 Blend functions are described below.

EXT_blend_equation_separate NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 37

 Mode RGB components Alpha component
 --------------------- ---------------------- ----------------------
 FUNC_ADD Rc = Rs * Sr + Rd * Dr Ac = As * Sa + Ad * Da
 Gc = Gs * Sg + Gd * Dg
 Bc = Bs * Sb + Bd * Db
 --------------------- ---------------------- ----------------------
 FUNC_SUBTRACT Rc = Rs * Sr - Rd * Dr Ac = As * Sa - Ad * Da
 Gc = Gs * Sg - Gd * Dg
 Bc = Bs * Sb - Bd * Db
 --------------------- ---------------------- ----------------------
 FUNC_REVERSE_SUBTRACT Rc = Rd * Sr - Rs * Dr Ac = Ad * Sa - As * Da
 Gc = Gd * Sg - Gs * Dg
 Bc = Bd * Sb - Bs * Db
 --------------------- ---------------------- ----------------------
 MIN Rc = min(Rs, Rd) Ac = min(As, Ad)
 Gc = min(Gs, Gd)
 Bc = min(Bs, Bd)
 --------------------- ---------------------- ----------------------
 MAX Rc = max(Rs, Rd) Ac = max(As, Ad)
 Gc = max(Gs, Gd)
 Bc = max(Bs, Bd)
 --------------------- ---------------------- ----------------------

 Table 4.blendeq: RGB and alpha blend equations are their
 per-component equations controlling the color c omponents resulting
 from blending for each mode."

 In the "Blending State" paragraph, replace the initial lines with...

 "The state required for blending is two integer s for the RGB and alpha
 blend equations, four integer indicating the so urce and destination
 RGB and alpha blending functions, four floating -point values to store
 the RGBA constant blend color, and a bit indica ting whether blending
 is enabled or disabled. The initial blending e quations for RGB and
 alpha are FUNC_ADD. ..."

Additions to Chapter 5 of the 1.5 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.5 GL Specification (State and State Requests)

 None

Additions to the GLX Specification

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_blend_equation_separate

NVIDIA Proprietary 38

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent
 to the server as part of a glXRender request:

 BlendEquationSeparateEXT
 2 12 rendering c ommand length
 2 4228 rendering c ommand opcode
 4 ENUM modeRGB
 4 ENUM modeAlpha

Dependencies on EXT_blend_logic_op

 If EXT_blend_logic_op and EXT_blend_equation_se parate are both
 supported, the logic op blend equation should b e supported separately
 for RGB and alpha as with the other blend equat ion modes.

 And add to the table 4.blendeq this line:

 Mode RGB components Alpha component
 --------------------- ---------------------- ----------------------
 LOGIC_OP Rc = Rs OP Rd Ac = As OP Ad
 Gc = Gs OP Gd
 Bc = Bs OP Bd
 --------------------- ---------------------- ----------------------

 where OP denotes the logical operation controll ed by LogicOp (see
 table 4.2).

 Note: there is no support for a distinct RGB lo gical operation
 and alpha logical operation (that could be prov ided by another
 extension).

Errors

 INVALID_ENUM is generated if either the modeRGB or modeAlpha
 parameter of BlendEquationSeparateEXT is not on e of FUNC_ADD,
 FUNC_SUBTRACT, FUNC_REVERSE_SUBTRACT, MAX, or M IN.

 INVALID_OPERATION is generated if BlendEquation SeparateEXT
 is executed between the execution of Begin and the corresponding
 execution of End.

New State

 In itial
 Get Value Get Command Type Va lue Attribute
 ------------------------ ----------- ---- -- ------ ------------
 BLEND_EQUATION_RGB_EXT GetIntegerv Z FU NC_ADD color-buffer
 BLEND_EQUATION_ALPHA_EXT GetIntegerv Z FU NC_ADD color-buffer

 [remove BLEND_EQUATION from the table, add a no te "v1.5 BLEND_EQUATON"
 beside BLEND_EQUATION_RGB_EXT to note the legac y name.]

New Implementation Dependent State

 None

EXT_blend_equation_separate NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 39

Compatibility

 The BLEND_EQUATION_RGB_EXT query token has the same value as the
 legacy BLEND_EQUATION query token. This means querying the legacy
 BLEND_EQUATION state is identical to querying t he RGB blend equation
 state.

 This is a different approach than taken by the EXT_blend_func_separate
 extension, but matches the approach taken by ot her "split" OpenGL
 state such as the SMOOTH_POINT_SIZE_RANGE and A LIASED_POINT_SIZE_RANGE
 values split from POINT_SIZE_RANGE.

 In the EXT_blend_func_separate case, four new t oken names
 (BLEND_DST_RGB, BLEND_SRC_RGB, BLEND_DST_ALPHA, and BLEND_DST_RGB)
 with four new token values (0x80C8, 0x80C9, 0x8 0CA, and 0x80CB
 respectively) were added. Querying the legacy BLEND_DST (0x0BE0) and
 BLEND_RGB (0x0BE1) returns the same value as qu erying BLEND_SRC_RGB
 and BLEND_DST_RGB respectively but this was nev er explicitly
 documented.

 In the case of the point size ranges, SMOOTH_PO INT_SIZE_RANGE was
 given the same value as POINT_SIZE_RANGE (0x0B1 2) and a single new
 token ALIASED_POINT_SIZE_RANGE (0x846D).

 The point size ranges approach is preferable be cause it minimizes
 the confusion about how the legacy name should be treated by
 implementations because the legacy name shares its value with
 the new name. This is less prone to confusion by developers and
 implementers and less effort to implement.

 For token value compatibility with ATI_blend_eq uation_separate,
 GL_BLEND_EQUATION_ALPHA_EXT shares the same val ue (0x883D) with the
 ATI_blend_equation_separate's GL_ALPHA_BLEND_EQ UATION_ATI token.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_mirror_clamp

NVIDIA Proprietary 40

Name

 EXT_texture_mirror_clamp

Name Strings

 GL_EXT_texture_mirror_clamp

Status

 Shipping as of May 2004 for GeForce6.

Version

 Last Modified Date: $Date: 2004/05/17 $
 NVIDIA Revision: $Revision: #4 $

Number

 298

Issues

 How does EXT_texture_mirror_clamp extend ATI_te xture_mirror_once?

 This EXT extension provides the two wrap mo des that
 ATI_texture_mirror_once adds but also adds a third new wrap mode
 (GL_MIRROR_CLAMP_TO_BORDER_EXT). This exte nsion uses the same
 enumerant values for the ATI_texture_mirror _once modes.

 Why is the GL_MIRROR_CLAMP_TO_BORDER_EXT mode m ore interesting than
 the two other modes?

 Rather than clamp to 100% of the edge of th e texture
 (GL_MIRROR_CLAMP_TO_EDGE_EXT) or to 50% of the edge and border
 color (GL_MIRROR_CLAMP), it is preferable t o clamp to 100%
 of the border color (GL_MIRROR_CLAMP_TO_BOR DER_EXT). This
 avoids "bleeding" at smaller mipmap levels.

 Consider a texture that encodes a circular fall-off pattern such
 as for a projected spotlight. A circular p attern is bi-symmetric
 so a "mirror clamp" wrap modes can reduce t he memory footprint
 of the texture by a fourth. Far outside th e spotlight pattern,
 you'd like to sample 100% of the border col or (typically black
 for a spotlight texture). The way to achie ve this without any
 bleeding of edge texels is with GL_MIRROR_C LAMP_TO_BORDER_EXT.

EXT_texture_mirror_clamp NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 41

 Does this extension complete the orthogonality of the current five
 OpenGL 1.5 wrap modes?

 Yes. There are two ways for repetition to operate (repeated
 & mirrored) and four ways for texture coor dinate clamping to
 operate (unclamped, clamp, clamp to edge, & clamp to border).
 The complete table of all 8 modes looks li ke this:

 Repeat Mirror
 +---------------- ------- ---------------
 Unclamped | REPEAT MIRRORE D_REPEAT
 Clamp | CLAMP MIRROR_ CLAMP
 Clamp to edge | CLAMP_TO_EDGE MIRROR_ CLAMP_TO_EDGE
 Clamp to border | CLAMP_TO_BORDER MIRROR_ CLAMP_TO_BORDER

 OpenGL 1.0 introduced REPEAT & CLAMP.
 OpenGL 1.2 introduced CLAMP_TO_EDGE
 OpenGL 1.3 introduced CLAMP_TO_BORDER
 OpenGL 1.4 introduced MIRRORED_REPEAT
 ATI_texture_mirror_once introduced MIRROR_ CLAMP & MIRROR_CLAMP_TO_EDGE
 EXT_texture_mirror_clamp introduces MIRROR _CLAMP_TO_BORDER

 Do these three new wrap modes work with 1D, 2D, 3D, and cube map
 texture targets?

 RESOLUTION: Yes.

 Do these three new wrap modes work with ARB_tex ture_non_power_of_two
 functionality?

 RESOLUTION: Yes.

 Do these three new wrap modes interact with NV_ texture_rectangle?

 RESOLUTION: Mirroring wrap modes are not supported by
 GL_TEXTURE_RECTANGLE_NV textures. Convent ional mirroring is
 already not supported for texture rectangl es so supporting
 clamped mirroring modes should not be supp orted either.

 Does the specification of MIRROR_CLAMP_EXT & MI RROR_CLAMP_TO_EDGE_EXT
 match the ATI_texture_mirror_once specification ?

 I believe yes. The ATI_texture_mirror_onc e specification is
 somewhat vague what happens to texture coo rdinates at or very
 near (within half a texel of) zero. The p resumption is that a
 CLAMP_TO_EDGE behavior is used. This spec ification is quite
 explicit that values near zero are clamped to plus or minus
 1/(2*N) respectively so that the CLAMP_TO_ EDGE behavior is
 explicit.

 What should this extension be called?

 Calling the extension EXT_texture_mirror_o nce might cause
 confusion since this extension has additio nal functionality.
 Also, "once" never appears in the specific ation.
 EXT_texture_mirror_clamp is a good name be cause it implies
 support for all the clamped versions of mi rroring.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_mirror_clamp

NVIDIA Proprietary 42

 There is GL_MIRRORED_REPEAT and then GL_MIRROR_ CLAMP_EXT,
 GL_MIRROR_CLAMP_TO_EDGE_EXT, and GL_MIRROR_CLAMP_TO_BORDER_EXT.
 Why does the first enumerant name say "MIRRORED " while the other
 three say "MIRROR"?

 This extension follows the naming preceden t set by the
 ATI_texture_mirror_once specification.

 Moreover, MIRRORED_REPEAT uses "mirrored" to help that the
 mirroring repeats infinitely. For the oth er three modes,
 there is just one mirror that occurs and t hen a clamp.

Dependencies

 Written based on the wording of the OpenGL 1.4.

 Extends ATI_texture_mirror_once by adding
 GL_MIRROR_CLAMP_TO_BORDER_EXT.

 NV_texture_rectangle trivially affects the defi nition of this
 extension.

Overview

 EXT_texture_mirror_clamp extends the set of tex ture wrap modes to
 include three modes (GL_MIRROR_CLAMP_EXT, GL_MI RROR_CLAMP_TO_EDGE_EXT,
 GL_MIRROR_CLAMP_TO_BORDER_EXT) that effectively use a texture map
 twice as large as the original image in which t he additional half
 of the new image is a mirror image of the origi nal image.

 This new mode relaxes the need to generate imag es whose opposite
 edges match by using the original image to gene rate a matching
 "mirror image". This mode allows the texture t o be mirrored only
 once in the negative s, t, and r directions.

New Procedure and Functions

 None

New Tokens

 Accepted by the <param> parameter of TexParamet eri and TexParameterf,
 and by the <params> parameter of TexParameteriv and TexParameterfv,
 when their <pname> parameter is TEXTURE_WRAP_S, TEXTURE_WRAP_T,
 or TEXTURE_WRAP_R:

 MIRROR_CLAMP_EXT 0x8742 (same value as MIRROR_CLAMP_ATI)
 MIRROR_CLAMP_TO_EDGE_EXT 0x8743 (same value as MIRROR_CLAMP_TO_EDGE_ATI)
 MIRROR_CLAMP_TO_BORDER_EXT 0x8912

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (Operation)

 None

EXT_texture_mirror_clamp NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 43

Additions to Chapter 3 if the OpenGL 1.2.1 Specification (Rasterization):

 - (3.8.4, page 136, as amended by the NV_texture_ rectangle extension)

 Add the 3 new wrap modes to the list of wrap mo des unsupported for
 the TEXTURE_RECTANGLE_NV texture target.

 "Certain texture parameter values may not be sp ecified for textures
 with a target of TEXTURE_RECTANGLE_NV. The err or INVALID_ENUM
 is generated if the target is TEXTURE_RECTANGLE _NV and the
 TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP _R parameter is set to
 REPEAT, MIRRORED_REPEAT_IBM, MIRROR_CLAMP_EXT, MIRROR_CLAMP_TO_EDGE_EXT, and
 MIRROR_CLAMP_TO_BORDER_EXT. The error INVALID_ ENUM is generated
 if the target is TEXTURE_RECTANGLE_NV and the T EXTURE_MIN_FILTER is
 set to a value other than NEAREST or LINEAR (no mipmap filtering
 is permitted). The error INVALID_ENUM is gener ated if the target
 is TEXTURE_RECTANGLE_NV and TEXTURE_BASE_LEVEL is set to any value
 other than zero."

 - Table 3.19, page 137: Change first three entrie s in table:

 "TEXTURE_WRAP_S integer CLAMP, CLAMP_TO_ BORDER, CLAMP_TO_EDGE,
 MIRRORED_REPEAT, MIRROR_CLAMP_EXT,
 MIRROR_CLAMP_TO_ BORDER_EXT,
 MIRROR_CLAMP_TO_ EDGE_EXT, REPEAT
 TEXTURE_WRAP_T integer CLAMP, CLAMP_TO_ BORDER, CLAMP_TO_EDGE,
 MIRRORED_REPEAT, MIRROR_CLAMP_EXT,
 MIRROR_CLAMP_TO_ BORDER_EXT,
 MIRROR_CLAMP_TO_ EDGE_EXT, REPEAT
 TEXTURE_WRAP_R integer CLAMP, CLAMP_TO_ BORDER, CLAMP_TO_EDGE,
 MIRRORED_REPEAT, MIRROR_CLAMP_EXT,
 MIRROR_CLAMP_TO_ BORDER_EXT,
 MIRROR_CLAMP_TO_ EDGE_EXT, REPEAT"

 - (3.8.7, page 140) After the last paragraph of t he section add:

 "Wrap Mode MIRROR_CLAMP_EXT

 Wrap mode MIRROR_CLAMP_EXT mirrors and clamps t he texture coordinate,
 where mirroring and clamping a value f computes

 mirrorClamp(f) = min(1, max(1/(2*N), abs(f)))

 where N is the size of the one-, two-, or three -dimensional texture
 image in the direction of wrapping.

 Wrap Mode MIRROR_CLAMP_TO_EDGE_EXT

 Wrap mode MIRROR_CLAMP_TO_EDGE_EXT mirrors and clamps to edge the
 texture coordinate, where mirroring and clampin g to edge a value f
 computes

 mirrorClampToEdge(f) = min(1-1/(2*N), max(1/(2*N), abs(f)))

 where N is the size of the one-, two-, or three -dimensional texture
 image in the direction of wrapping.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_mirror_clamp

NVIDIA Proprietary 44

 Wrap Mode MIRROR_CLAMP_TO_BORDER_EXT

 Wrap mode MIRROR_CLAMP_TO_BORDER_EXT mirrors an d clamps to border the
 texture coordinate, where mirroring and clampin g to border a value
 f computes

 mirrorClampToBorder(f) = min(1+1/(2*N), max(1 /(2*N), abs(f)))

 where N is the size of the one-, two-, or three -dimensional texture
 image in the direction of wrapping."

 - (3.8.8, page 142) Delete this phrase because it is out of date and
 unnecessary given the current way section 3.8.7 is written:

 "(if the wrap mode for a coordinate is CLAMP or CLAMP_TO_EDGE)"

Additions to Chapter 4:

 None

Additions to Chapter 5:

 None

Additions to Chapter 6:

 None

Additions to the GLX Specification

 None

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not supported, ignor e the statement that
 the initial value for the S, T, and R wrap mode s is CLAMP_TO_EDGE
 for rectangular textures.

 Ignore the error for a texture target of TEXTUR E_RECTANGLE_NV.

GLX Protocol

 None

Errors

 INVALID_ENUM is generated when TexParameter is called with
 a target of TEXTURE_RECTANGLE_NV and the TEXTUR E_WRAP_S,
 TEXTURE_WRAP_T, or TEXTURE_WRAP_R parameter is set to REPEAT,
 MIRRORED_REPEAT_IBM, MIRROR_CLAMP_EXT, MIRROR_C LAMP_TO_EDGE_EXT,
 or MIRROR_CLAMP_TO_BORDER_EXT.

EXT_texture_mirror_clamp NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 45

New State

 (table 6.15, p230) amend the following entries [Z5 changed to Z8]:

Get Value Type Get Command Initial Valu e Description Sec Attribute
-------------- ---- --------------- ------------ --- ------------------- ----- ---------
TEXTURE_WRAP_S n*Z8 GetTexParameter REPEAT excep t Texture wrap mode S 3.8.7 texture
 for rectangu lar
 which is
 CLAMP_TO_EDG E
TEXTURE_WRAP_T n*Z8 GetTexParameter REPEAT excep t Texture wrap mode T 3.8.7 texture
 for rectangu lar
 which is
 CLAMP_TO_EDG E
TEXTURE_WRAP_R n*Z8 GetTexParameter REPEAT excep t Texture wrap mode R 3.8.7 texture
 for rectangu lar
 which is
 CLAMP_TO_EDG E

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 46

Name

 EXT_texture_sRGB

Name Strings

 GL_EXT_texture_sRGB

Contributors

 Alain Bouchard, Matrox
 Brian Paul, Tungsten Graphics
 Daniel Vogel, Epic Games
 Eric Werness, NVIDIA
 Kiril Vidimce, Pixar
 Mark J. Kilgard, NVIDIA
 Pat Brown, NVIDIA
 Yanjun Zhang, S3 Graphics
 Jeremy Sandmel, Apple
 Herb Kuta, Quantum3D

Contact

 Mark J. Kilgard, NVIDIA Corporation (mjk 'at' n vidia.com)

Status

 Implemented by NVIDIA's Release 80 driver serie s for GeForce FX
 (NV3x), GeForce 6 and 7 Series (NV4x and G7x), and Quadro FX (NV3xGL,
 NV4xGL, G7xGL).

Version

 Date: August 8, 2005
 Revision: 0.7

Number

 315

Dependencies

 OpenGL 1.1 required

 EXT_texture_compression_s3tc interacts with thi s extension.

 NV_texture_compression_vtc interacts with this extension.

 This extension is written against the OpenGL 2. 0 (September 7,
 2004) specification.

Overview

 Conventional texture formats assume a linear co lor space. So for
 a conventional internal texture format such as GL_RGB8, the 256
 discrete values for each 8-bit color component map linearly and
 uniformly to the [0,1] range.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 47

 The sRGB color space is based on typical (non-l inear) monitor
 characteristics expected in a dimly lit office. It has been
 standardized by the International Electrotechni cal Commission (IEC)
 as IEC 61966-2-1. The sRGB color space roughly corresponds to 2.2
 gamma correction.

 This extension adds a few new uncompressed and compressed color
 texture formats with sRGB color components.

Issues

 1) What should this extension be called?

 RESOLVED: EXT_texture_sRGB.

 The "EXT_texture" part indicates the extens ion is in the texture
 domain and "sRGB" indicates the extension i s adding a set of
 sRGB formats. ARB_texture_float is similar ly named where "_float"
 indicates float texture formats are added b y the extension.

 The mixed-case spelling of sRGB is the esta blished usage so
 "_sRGB" is preferred to "_srgb". The "s" s tands for standard
 (color space).

 For token names, we use "SRGB" since token names are uniformly
 capitalized.

 2) Should this extension mandate that sRGB con version be performed
 pre-filtering?

 RESOLVED: Post-filtering sRGB color conver sion is allowed though
 pre-filtering conversion is the preferred a pproach.

 Ideally, sRGB conversion moves from the non -linear sRGB to the
 linear RGB color space. However, implement ations should be
 provided leeway as to whether sRGB conversi on occurs before or
 after texture filtering of RGB components.

 3) Should the alpha component of sRGB texture formats be
 gamma-corrected?

 RESOLVED: No. Alpha is correctly understo od to be a weighting
 factor that is best stored in a linear repr esentation. The alpha
 component should always be stored as a line ar value.

 "SRGB_ALPHA" is used to indicate sRGB forma ts with an alpha
 component. This naming (as opposed to some thing like "SRGBA")
 helps highlight the fact that the alpha com ponent is separate
 and stored with a linear distribution of pr ecision.

 4) Should formats for sRGB luminance values be supported?

 RESOLVED: Yes. Implementations can always support luminance
 and luminance-alpha sRGB formats as an RGB8 or RGBA8 format with
 replicated R, G, and B values.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 48

 For lack of a better term, "SLUMINANCE" wil l be used within
 token names to indicate sRGB values with id entical red, green,
 and blue components.

 5) Should formats for sRGB intensity values be supported?

 RESOLVED: No. Intensity uses the same val ue for both luminance
 and alpha. Treating a single value as an s RGB luminance value
 and a linear alpha value is undesirable.

 Hardware design is simplified if alpha neve r involves sRGB
 conversions.

 6) Should all component sizes be supported for sRGB components or
 just 8-bit?

 RESOLVED: Just 8-bit. For sRGB values wit h more than 8 bit of
 precision, a linear representation may be e asier to work with
 and adequately represent dim values. Stori ng 5-bit and 6-bit
 values in sRGB form is unnecessary because applications
 sophisticated enough to sRGB to maintain co lor precision will
 demand at least 8-bit precision for sRGB va lues.

 Because hardware tables are required sRGB c onversions, it doesn't
 make sense to burden hardware with conversi ons that are unlikely
 when 8-bit is the norm for sRGB values.

 7) Should color tables, convolution kernels, h istogram table,
 and minmax table entries support sRGB forma ts?

 RESOLVED: No.

 The internalformat for histogram table entr ies determines the bit
 precision of the histogram bin counters so indicating the sRGB
 color space is meaningless in this context. The internalformat
 for minmax table entries simply indicates t he components
 for minmax bounding so indicating the sRGB color space is
 meaningless.

 Convolution filter values are weighting fac tors rather than
 color values needing a color space.

 Color table entries may be colors but the c omponent values are
 typically stored with more than 8 bits alre ady. For example,
 software implementations of the OpenGL colo r table functionality
 typically store colors in floating-point.

 8) Should generic compressed sRGB formats be s upported?

 RESOLVED: Yes. Implementations are free s imply to use
 uncompressed sRGB formats to implement the GL_COMPRESSED_SRGB_*
 formats.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 49

 9) Should S3TC compressed sRGB formats be supp orted?

 RESOLVED: Yes, but only if EXT_texture_com pression_s3tc is also
 advertised. For competitive reasons, we ex pect OpenGL will need
 an S3TC-based block compression format for sRGB data.

 Rather than expose a separate "sRGB_compres sion" extension,
 it makes more sense to specify a dependency between
 EXT_texture_compression_s3tc and this exten sion such that when
 BOTH extensions are exposed, the GL_COMPRES SED_SRGB*_S3TC_DXT*_EXT
 tokens are accepted.

 We avoid explicitly requiring S3TC formats when EXT_texture_sRGB
 is advertised to avoid IP encumbrances.

 10) Should the S3TC decompression algorithm be affected by support
 for sRGB component values?

 RESOLVED: No.

 S3TC involves the linear weighting of two p er-block R5G6B5 colors.
 The sRGB to linear RGB color conversion sho uld occur AFTER the
 linear weighting of the two per-block color s performed during
 texel decompression.

 Also be aware that an sRGB value with 8-bit red, green, and blue
 components must be quantized to a 5, 6, and 5 bits respectively
 to form the two per-block R5G6B5 colors.

 S3TC compressors may wish to account for th e sRGB color space
 as part of the compression algorithm.

 11) Should VTC compressed sRGB formats be suppo rted?

 RESOLVED. Yes, for the same reasons as S3T C.

 12) Should pixel data entering or exiting the O penGL pixel path be
 labeled as sRGB or conventional linear RGB? This would allow
 pixels labeled as sRGB to be converted to a linear RGB color space
 prior to processing by the pixel path which includes operations
 such as convolution, scale, and bias that p resume a linear
 color space. If the destination (say a tex ture with an sRGB
 internal format) was sRGB, then linear RGB components would be
 converted to sRGB prior to being packed int o the texture image.
 This would assume new format parameters to glDrawPixels and
 glReadPixels indicating the source or desti nation format was
 sRGB if a GL_SRGB_EXT or GL_SRGB_ALPHA_EXT format is specified.
 Likewise, a format parameter to glTexImage2 D such as GL_SRGB_EXT
 would indicate the pixel data was already i n an sRGB color space
 where GL_RGB would indicate a linear color space. New state
 would indicate if the framebuffer held sRGB or linear RGB pixels.

 RESOLVED: No.

 The pixel path should be left blind to colo r spaces and provide
 no implicit conversions.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 50

 Core pixel maps and ARB_imaging provides su fficient color
 tables so that applications interested in m anaging color space
 conversions within the pixel path can do so themselves.

 A 256 entry table outputting floating-point values is sufficient
 to convert sRGB to linear RGB.

 However when converting from linear RGB to sRGB, one must
 be careful to make sure the source linear R GB values are
 specified with more than 8 bits of precisio n and the color
 table to implement the conversion must like wise have more than
 256 entries. A power-of-two table sufficie nt to map values
 to each of the 256 sRGB encodings for an 8- bit sRGB component
 requires at least 4096 entries (a fairly la rge color table).

 Because vertex and fragment programs and sh aders operate in
 floating-point and have sufficient programm ability to implement
 the sRGB to linear RGB and vice versa witho ut resorting to large
 tables.

 13) Does this extension imply filtered results from sRGB texture
 have more than 8 bits of precision?

 RESOLVED: Effectively, yes.

 8-bit components of sRGB texels are convert ed to linear RGB values
 which requires more than 8 bits to avoid lo se of precision.
 This implies the filtering involve more tha n 8 bits of color
 precision per component. Moreover, fragmen t color (whether by
 a fragment program, vertex program, or glTe xEnv modes) should
 operate at precision beyond 8 bits per colo r component.

 The exact precision maintained (and its dis tribution) is left to
 implementations to define but returning at least 12 but more
 likely 16 linear bits per component, post-f iltering, is a
 reasonable expectation for developers.

 This extension assumes fragment coloring is performed

 14) What must be specified as far as how do you convert to and from
 sRGB and linear RGB color spaces?

 RESOLVED: The specification language needs to only supply the
 sRGB to linear RGB conversion (see section 3.8.x below).

 For completeness, the accepted linear RGB t o sRGB conversion
 (the inverse of the function specified in s ection 3.8.x) is as
 follows:

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 51

 Given a linear RGB component, cl, convert i t to an sRGB component,
 cs, in the range [0,1], with this pseudo-co de:

 if (isnan(cl)) {
 /* Map IEEE-754 Not-a-number to zer o. */
 cs = 0.0;
 } else if (cl > 1.0) {
 cs = 1.0;
 } else if (cl < 0.0) {
 cs = 0.0;
 } else if (cl < 0.0031308) {
 cs = 12.92 * cl;
 } else {
 cs = 1.055 * pow(cl, 0.41666) - 0.0 55;
 }

 sRGB components are typically stored as un signed 8-bit
 fixed-point values. If cs is computed wit h the above
 pseudo-code, cs can be converted to a [0,2 55] integer with this
 formula:

 csi = floor(255.0 * cs + 0.5)

 15) Does this extension provide any sort of sRG B framebuffer formats
 or guarantee images rendered with sRGB text ures will "look good"
 when output to a device supporting an sRGB color space?

 RESOLVED: No.

 Whether the displayed framebuffer is displa yed to a monitor that
 faithfully reproduces the sRGB color space is beyond the scope
 of this extension. This involves the gamma correction and color
 calibration of the physical display device.

 With this extension, artists can author con tent in an sRGB color
 space and provide that sRGB content for use as texture imagery
 that can be properly converted to linear RG B and filtered as part
 of texturing in a way that preserves the sR GB distribution of
 precision, but that does NOT mean sRGB pixe ls are output
 to the framebuffer. Indeed, this extension provides texture
 formats that convert sRGB to linear RGB as part of filtering.

 With programmable shading, an application c ould perform a
 linear RGB to sRGB conversion just prior to emitting color
 values from the shader. Even so, OpenGL bl ending (other than
 simple modulation) will perform linear math operations on values
 stored in a non-linear space which is techn ically incorrect for
 sRGB-encoded colors.

 One way to think about these sRGB texture f ormats is that they
 simply provide color components with a dist ribution of values
 distributed to favor precision towards 0 ra ther than evenly
 distributing the precision with conventiona l non-sRGB formats
 such as GL_RGB8.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 52

 16) How does this extension interact with EXT_f ramebuffer_object?

 RESOLVED: No specific interaction language is necessary but
 there is no provision that pixels written i nto a framebuffer
 object with a texture with an sRGB internal format for its color
 buffer will in anyway convert the output co lor values into an sRGB
 color space. A fragment program or shader could be written to
 convert linear RGB values to sRGB values pr ior to shader output,
 but NO automatic conversion is performed.

 So you can create a texture with an sRGB in ternal format (such
 as GL_SRGB8_ALPHA8_EXT), bind that texture to a framebuffer
 object with glFramebufferTexture2DEXT, and then render into
 that framebuffer. If you then texture with the sRGB texture,
 the texels within the texture are treated a s sRGB values for
 filtering.

 17) Should sRGB be supported with a texture par ameter rather than
 new texture formats?

 RESOLVED: Adding new texture formats is th e right approach.

 Hardware is expected to implements sRGB con versions via hardwired
 look-up tables. Such tables are expensive (when sRGB isn't
 being used, they are basically "wasted gate s") and so we want to
 minimize the number of unique tables that h ardware must support.
 However OpenGL supports various component s izes for RGB and RGBA
 textures.

 Various RGB texture formats have different bit sizes for R, G,
 and B that map to [0,1]. Think about RGB5. It encodes values
 0/15, 1/15, 2/15, ... 14/15, and 15/15. Ex cepting 0/15==0.0
 and 15/15==1.0, those values are different than the values
 for RGB8 which would be 0/255, 1/255, ... 2 54/255, 255/255.
 Technically, you'd need a different sRGB ta ble to toggle between
 RGB4 and sRGB4 than you'd need to toggle be tween RGB8 and sRGB8.
 There are also RGB12 and RGB16 textures whe re it is simply not
 tractable to implement 4096 and 65,536 entr y tables, nor is the
 "real" sRGB conversion math cheap enough to evaluate directly
 at those precisions.

 What this extension shouldn't require is sR GB conversion for
 any component sizes beyond 8-bit. Indeed, it appears the only
 component sizes sRGB users really care abou t are 8-bit components.
 This is because if you have more than 8 bit s per component,
 you typically have enough precision to avoi d the complexity
 created by a non-linear RGB component encod ing. Additionally,
 sRGB users are picky about color reproducti on so fewer than 8
 bits is generally not acceptable to them.

 The problem with making a "toggle" (say con trolled by
 glTexParameter) is that hardware would very likely (indeed
 it's pretty much certain) not implement tog gling between RGB12
 and sRGB12 formats. Recall that OpenGL doe sn't mandate internal
 formats so you can request GL_RGB8 and have the implementation
 actually given you RGB12 or RGB10 or R5G6B5 .

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 53

 It is inappropriate to put in a texture par ameter mode where
 we say "this mode works just with GL_RGB8 a nd GL_RGBA8 and yet
 only when the underlying internal format is actually RGB8 or
 RGBA8". We'd also surely preclude floating -point RGB formats,
 signed RGB formats, new HDR formats, and ce rtain compressed RGB
 formats from being included because such fo rmats don't really
 even make sense for sRGB.

 By adding new formats specifically for the sRGB color space,
 we avoid all these problems.

 We also avoid an awkward precedent where ot her more varied
 color spaces (CYMK, XYZ, and YUV being obvi ous examples) have
 to "toggle" between RGB and RGBA formats. Indeed, already
 extensions for such other color spaces (YUV and CMYK at least)
 set the precedent of introducing new textur e formats.

 18) How is the texture border color handled for sRGB formats?

 RESOLVED: The texture border color is spec ified as four
 floating-point values. Given that the text ure border color can
 be specified at such high precision, it is always treated as a
 linear RGBA value.

 Only texel components are converted from th e sRGB encoding to a
 linear RGB value ahead of texture filtering . The border color
 can be used "as is" without any conversion.

 The implication of this is, for example, th at two textures with
 GL_RGBA8 and GL_SRGB8_ALPHA8_EXT internal f ormats respectively and
 a border color of (0.4, 0.2, 0.9, 0.1) and the GL_CLAMP_TO_BORDER
 wrap mode will both return (0.4, 0.2, 0.9, 0.1) if 100% of the
 border color is sampled.

 By keeping the texture border color specifi ed as a linear
 RGB value at the API level allows developer s to specify the
 high-precision texture border color in a si ngle consistent color
 space without concern for how the sRGB conv ersion is implemented
 in relation to filtering.

 An implementation that does post-filtering sRGB conversion is
 likely to store convert the texture border color to sRGB within
 the driver so it can be filtered with the s RGB values coming
 from texels and then the filtered sRGB valu e is converted to
 linear RGB.

 By maintaining the texture border color alw ays in linear RGB,
 we avoid developers having to know if an im plementation is
 performing the sRGB conversion (ideally) pr e-filtering or (less
 ideally) post-filtering.

 19) How does this extension interact with NV_te xture_expand_normal?

 RESOLVED: sRGB components are not affected by the "expand normal"
 mode even though they are unsigned componen ts because they have
 non-linear precision (similar to floating-p oint).

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 54

 The alpha component of GL_SRGB8_ALPHA8_EXT and other sRGB formats
 with an alpha component is affected by the "expand normal" mode.

 The sRGB formats have unsigned components w ith [0,1] range which
 is the requirement for the NV_texture_expan d_normal extension's
 operation.

 Be warned because sRGB formats distribute t heir precision more
 towards zero, enabling the GL_EXPAND_NORMAL _NV mode with sRGB
 textures will mean there are more represent able negative values
 than positive values. For example, the 8-b it value 128 maps
 roughly to zero when encoded with a GL_RGB8 internal format and
 then remapped with the GL_EXPAND_NORMAL_NV mode. In contrast,
 the sRGB encoded 8-bit value 188 maps rough ly to zero when encoded
 with a GL_SRGB8_ALPHA8 internal format and then remapped with
 GL_EXPAND_NORMAL_NV. Still 0 will map to - 1 and 255 will map
 to +1 in either case.

 20) What values should glGetTexImage return? A re the sRGB values
 returned "as-is" or are they converted to l inear RGB first?

 RESOLVED: sRGB values are returned "as-is" without an
 sRGB-to-linear conversion. Unlike other co mmands that transfer
 pixel data, "No pixel transform operations are performed" on
 the queried texture image.

 21) How does glCopyTex[Sub]Image work with sRGB ? Suppose we're
 rendering to a floating point pbuffer or fr amebuffer object and
 do CopyTexImage. Are the linear framebuffe r values converted
 to sRGB during the copy?

 RESOLVED: No, linear framebuffer values wi ll NOT be automatically
 converted to the sRGB encoding during the c opy. If such a
 conversion is desired, as explained in issu e 12, the red, green,
 and blue pixel map functionality can be use d to implement a
 linear-to-sRGB encoding translation.

 22) Should the new COMPRESSED_SRGB_* formats be listed in an
 implementation's GL_COMPRESSED_TEXTURE_FORM ATS list?

 RESOLVED: No. Section 3.8.1 says formats listed by
 GL_COMPRESSED_TEXTURE_FORMATS are "suitable for general-purpose
 usage." The non-linear distribution of red , green, and
 blue for these sRGB compressed formats make s them not really
 general-purpose.

 23) Could this extension be implemented by hard ware with no special
 hardware support for sRGB but does support native GL_RGB12 or
 GL_RGB16 textures? If so, how?

 RESOLVED. Yes.

 The conversion from the sRGB encoding to li near encoding described
 in section 3.8.x could be performed at text ure specification
 time (after the image has been transformed by the pixel path)
 rather than texture fetch time.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 55

 When glTexImage2D, glTexSubImage2D, glCopyT exImage2D, etc. occur,
 the pixels would be transformed by the pixe l path as normal and
 then when pixels are converted to the inter nal texture format,
 the section 3.8.x conversion is applied to the red, green, and
 blue components (not alpha). The result of this conversion
 can be quantized and stored into the respec tive red, green,
 or blue 12-bit or 16-bit component of the s tored texel.

 This means when a texture fetch occurs, no fetch-time conversion
 is required.

 The advantages of this approach is that sRG B conversion is
 pre-filtering (the ideal) and the hardware is not required to have
 texture fetch hardware to perform the speci al sRGB conversion.

 The disadvantage of this technique is that sRGB textures may
 require more space than required if 8-bit c omponent sRGB components
 are stored in texture memory.

 The ability to implement this extension in this manner provides
 one more justification to avoid a "toggle" texture parameter
 for sRGB conversion or not.

 One caveat to this approach is that glGetTe xImage should
 return the texel values with the sRGB conve rsion from section
 3.8.x "reverse converted". (The section 3. 8.x function is
 reversible.) As specified, the conversion i s performed at fetch
 time so the understanding is that data retu rned by glGetTexImage
 should be the texels prior to the conversio n. If the components
 are stored converted, that means they must be reverse-converted
 when returned by glGetTexImage.

New Procedures and Functions

 None

New Tokens

 Accepted by the <internalformat> parameter of T exImage1D, TexImage2D,
 TexImage3D, CopyTexImage1D, CopyTexImage2D:

 SRGB_EXT 0x8C40
 SRGB8_EXT 0x8C41
 SRGB_ALPHA_EXT 0x8C42
 SRGB8_ALPHA8_EXT 0x8C43
 SLUMINANCE_ALPHA_EXT 0x8C44
 SLUMINANCE8_ALPHA8_EXT 0x8C45
 SLUMINANCE_EXT 0x8C46
 SLUMINANCE8_EXT 0x8C47
 COMPRESSED_SRGB_EXT 0x8C48
 COMPRESSED_SRGB_ALPHA_EXT 0x8C49
 COMPRESSED_SLUMINANCE_EXT 0x8C4A
 COMPRESSED_SLUMINANCE_ALPHA_EXT 0x8C4B

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 56

 Accepted by the <internalformat> parameter of T exImage2D,
 CopyTexImage2D, and CompressedTexImage2DARB and the <format> parameter
 of CompressedTexSubImage2DARB:

 COMPRESSED_SRGB_S3TC_DXT1_EXT 0x8C4C
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT 0x8C4D
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT 0x8C4E
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT 0x8C4F

Additions to Chapter 2 of the 1.2 Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 Specification (Rasterization)

 -- Section 3.8.1, Texture Image Specification:

 Add 4 new rows to Table 3.16 (page 154).

 Sized Base R G B A L I D
 Internal Format Internal Format bit s bits bits bits bits bits bits
 --------------------- --------------- --- - ---- ---- ---- ---- ---- ----
 SRGB8_EXT RGB 8 8 8
 SRGB8_ALPHA8_EXT RGBA 8 8 8 8
 SLUMINANCE_EXT LUMINANCE 8
 SLUMINANCE_ALPHA8_EXT LUMINANCE_ALPHA 8 8

 Add 4 new rows to Table 3.17 (page 155).

 Compressed Internal Format Base I nternal Format
 ----------------------------------- ------ --------------
 COMPRESSED_SRGB_S3TC_DXT1_EXT RGB
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT RGBA
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT RGBA
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT RGBA

 Add 4 new rows to Table 3.18 (page 155).

 Generic Compressed Internal Format Base In ternal Format
 ---------------------------------- ------- -------------
 COMPRESSED_SRGB_EXT RGB
 COMPRESSED_SRGB_ALPHA_EXT RGBA
 COMPRESSED_SLUMINANCE_EXT LUMINAN CE
 COMPRESSED_SLUMINANCE_ALPHA_EXT LUMINAN CE_ALPHA

 -- Section 3.8.x, sRGB Texture Color Conversion

 Insert this section AFTER section 3.8.14 Textur e Comparison Modes
 and BEFORE section 3.8.15 Texture Application.

 "If the currently bound texture's internal form at is one
 of SRGB_EXT, SRGB8_EXT, SRGB_ALPHA_EXT, SRGB8_A LPHA8_EXT,
 SLUMINANCE_ALPHA_EXT, SLUMINANCE8_ALPHA8_EXT, S LUMINANCE_EXT,
 SLUMINANCE8_EXT, COMPRESSED_SRGB_EXT, COMPRESSED_SRGB_ALPHA_EXT,
 COMPRESSED_SLUMINANCE_EXT COMPRESSED_SLUMINANCE_ALPHA_EXT,
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 57

 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, the red, g reen, and blue
 components are converted from an sRGB color spa ce to a linear color
 space as part of filtering described in section s 3.8.8 and 3.8.9.
 Any alpha component is left unchanged. Ideally , implementations
 should perform this color conversion on each sa mple prior to filtering
 but implementations are allowed to perform this conversion after
 filtering (though this post-filtering approach is inferior to
 converting from sRGB prior to filtering).

 The conversion from an sRGB encoded component, cs, to a linear
 component, cl, is as follows.

 { cs / 12.92, cs <= 0. 04045
 cl = {
 { ((cs + 0.055)/1.055)^2.4, cs > 0. 04045

 Assume cs is the sRGB component in the range [0 ,1]."

Additions to Chapter 4 of the 1.2 Specification (Per-Fragment Operations
and the Frame Buffer)

 None

Additions to Chapter 5 of the 1.2 Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 Specification (State and State Requests)

 None

Additions to the OpenGL Shading Language specification

 None

Additions to the GLX Specification

 None

Dependencies on ARB_texture_compression and OpenGL 1.3 or later

 If ARB_texture_compression or OpenGL 1.3 or lat er is NOT supported,
 ignore the new COMPRESSED_* tokens, the additio ns to tables 3.17
 and 3.18, and the errors associated with the Co mpressed* commands.

Dependencies on EXT_texture_compression_s3tc

 If EXT_texture_compression_s3tc is NOT supporte d, ignore the new
 COMPRESSED_*_S3TC_DXT* tokens, the additions to table 3.17, errors
 related to the COMPRESSED_*_S3TC_DXT* tokens, a nd related discussion.

 Add COMPRESSED_SRGB_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, and
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT to token li sts in the section
 3.8.2 specification language added by EXT_textu re_compression_s3tc
 when the internal formats COMPRESSED_RGB_S3TC_D XT1_EXT,

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 58

 COMPRESSED_RGBA_S3TC_DXT1_EXT, COMPRESSED_RGBA_S3TC_DXT3_EXT, and
 COMPRESSED_RGBA_S3TC_DXT5_EXT are listed.

Dependencies on NV_texture_compression_vtc

 If NV_texture_compression_vtc IS supported, all ow the following
 tokens to be accepted by the <internalformat> p arameter
 of CompressedTexImage3DARB and the <format> par ameter of
 CompressedTexSubImage3DARB:

 COMPRESSED_SRGB_S3TC_DXT1_EXT
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT

GLX Protocol

 None.

Errors

 Relaxation of INVALID_ENUM errors

 TexImage1D, TexImage2D, TexImage3D, CopyTexImag e1D, CopyTexImage2D,
 CompressedTexImage2DARB, CompressedTexSubImage2 DARB now accept the
 new tokens as listed in the "New Tokens" sectio n.

 New errors

 INVALID_OPERATION is generated by CompressedTex Image2DARB if
 if <internalformat> is COMPRESSED_SRGB_S3TC_DXT 1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and <border > is not equal to
 zero.

 INVALID_OPERATION is generated by TexSubImage2D
 CopyTexSubImage2D, or CompressedTexSubImage2D i f INTERNAL_FORMAT is
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <xoffset>
 or <yoffset> is not a multiple of four.

 INVALID_ENUM is generated by CompressedTexImage 1DARB if
 <internalformat> is COMPRESSED_SRGB_S3TC_DXT1_E XT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 INVALID_ENUM is generated by CompressedTexSubIm age1DARB if <format> is
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

EXT_texture_sRGB NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 59

 Errors if NV_texture_compression_vtc is NOT sup ported
 --- ------

 INVALID_ENUM is generated by CompressedTexImage 3DARB if
 <internalformat> is COMPRESSED_SRGB_S3TC_DXT1_E XT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 INVALID_ENUM is generated by CompressedTexSubIm age3DARB if <format> is
 COMPRESSED_SRGB_S3TC_DXT1_EXT, COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT.

 Errors if NV_texture_compression_vtc IS support ed
 --- ------

 INVALID_OPERATION is generated by CompressedTex Image3DARB
 if <internalformat> is COMPRESSED_SRGB_S3TC_DXT 1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and <border > is not equal to
 zero.

 INVALID_OPERATION is generated by TexSubImage3D or CopyTexSubImage3D
 if INTERNAL_FORMAT is COMPRESSED_SRGB_S3TC_DXT1 _EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <xoffset>
 or <yoffset> is not a multiple of four.

 INVALID_OPERATION is generated by CompressedTex SubImage3D
 if INTERNAL_FORMAT is COMPRESSED_SRGB_S3TC_DXT1 _EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT,
 COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, or
 COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT and any of the following apply:
 <width> is not a multiple of four or equal to T EXTURE_WIDTH; <height>
 is not a multiple of four or equal to TEXTURE_H EIGHT; <depth> is not
 a multiple of four or equal to TEXTURE_DEPTH; < xoffset> <yoffset>,
 or <zoffset> is not a multiple of four.

New State

 In table 6.17, Textures (page 278), increment t he 42 in "n x Z42*"
 by 16 (or 12 if EXT_texture_compression_s3tc is not supported).

 [NOTE: The OpenGL 2.0 specification actually sh ould read "n x Z48*"
 because of the 6 generic compressed internal fo rmats in table 3.18.]

New Implementation Dependent State

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 EXT_texture_sRGB

NVIDIA Proprietary 60

NVIDIA Implementation Details

 GeForce FX, Quadro FX, and GeForce 6 and 7 Seri es GPUs store
 sRGB texels at 8 bits per component. sRGB conv ersion occurs
 post-filtering.

Revision History

 0.7: Add issue 23 about alternative implementa tion based on
 either GL_RGB12 or GL_RGB16 based on disc ussions with Jeremy
 Sandmel.

 0.6: Add issue 22 about GL_COMPRESSED_TEXTURE_ FORMATS.

 0.5: Fix grammar, add issues 20 and 21 based o n Brian Paul's
 feedback.

 0.4: Update issue 18 based on Matrox feedback.

 0.3: Update NV_texture_expand_normal interacti on.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 61

Name

 NV_fragment_program2

Name Strings

 GL_NV_fragment_program2

Status

 Shipping.

Version

 Last Modified: $Date: 2004/05/17 $
 NVIDIA Revision: 6

Number

 Unassigned

Dependencies

 ARB_fragment_program is required.
 NV_fragment_program_option is required.

Overview

 This extension, like the NV_fragment_program_op tion extension, provides
 additional fragment program functionality to ex tend the standard
 ARB_fragment_program language and execution env ironment. ARB programs
 wishing to use this added functionality need on ly add:

 OPTION NV_fragment_program2;

 to the beginning of their fragment programs.

 New functionality provided by this extension, a bove and beyond that
 already provided by the NV_fragment_program_opt ion extension, includes:

 * structured branching support, including dat a-dependent IF tests, loops
 supporting a fixed number of iterations, an d a data-dependent loop
 exit instruction (BRK),

 * subroutine calls,

 * instructions to perform vector normalizatio n, divide vector components
 by a scalar, and perform two-component dot products (with or without a
 scalar add),

 * an instruction to perform a texture lookup with an explicit LOD,

 * a loop index register for indirect access i nto the texture coordinate
 attribute array, and

 * a facing attribute that indicates whether t he fragment is generated
 from a front- or back-facing primitive.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 62

Issues

 * Should this extension expose projective forms of the LOD-modifying
 texture instructions?

 RESOLVED: No. The user can manually add a D IV instruction to achieve
 the same effect.

 * Should this extension expose precision explic itly?

 RESOLVED: Only for storage using the SHORT TEMP and LONG TEMP syntax
 (similar to NV_fragment_program_option).

 * How are resources (such as registers and cond ition codes) scoped?

 RESOLVED: All resources are globally scoped . This means that if, for
 instance, a subroutine modifies a condition code, that modification
 effects both the caller and the callee.

 * How is the scope determined for instructions required to be within a
 specific loop construct?

 RESOLVED: The scope is determined staticall y at compile time. This means
 that calling BRK and using A0 from a subrou tine called within a loop is
 a compile error.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_EXEC_INSTRUCTIONS_NV 0x88F4
 MAX_PROGRAM_CALL_DEPTH_NV 0x88F5
 MAX_PROGRAM_IF_DEPTH_NV 0x88F6
 MAX_PROGRAM_LOOP_DEPTH_NV 0x88F7
 MAX_PROGRAM_LOOP_COUNT_NV 0x88F8

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

 Modify Section 3.11 of ARB_fragment_program (Fragment Program):

 Delete the sentence referring to the lack of br anching or looping.

 Modify Section 3.11.2 of ARB_fragment_program (Fragment Program Grammar
 and Restrictions):

 (mostly add to existing grammar rules, as exten ded by
 NV_fragment_program_option)

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 63

 <optionName> ::= "NV_fragment_progra m2"

 <statement> ::= <branchLabel> ":"

 <instruction> ::= <FlowInstruction>

 <ALUInstruction> ::= <VECSCAop_instructi on>

 <FlowInstruction> ::= <BRAop_instruction>
 | <FLOWCCop_instructi on>
 | <IFop_instruction>
 | <LOOPop_instruction >
 | <ENDFLOWop_instruct ion>

 <VECTORop> ::= "NRM"

 <VECSCAop_instruction> ::= <VECSCAop> <instRes ult> "," <instOperandV> ","
 <instOperandS>

 <VECSCAop> ::= "DIV"

 <BINop> ::= "DP2"

 <TRIop> ::= "DP2A"

 <TEXop> ::= "TXL"

 <BRAop_instruction> ::= <BRAop> <branchLabe l> <optBranchCond>

 <BRAop> ::= "CAL"

 <FLOWCCop_instruction> ::= <FLOWCCop> <optBran chCond>

 <FLOWCCop> ::= "RET"
 | "BRK"

 <IFop_instruction> ::= <IFop> <ccTest>

 <IFop> ::= "IF"

 <LOOPop_instruction> ::= <LOOPop> <instOpera ndV>

 <LOOPop> ::= "LOOP"
 | "REP"

 <ENDFLOWop_instruction> ::= <ENDFLOWop>

 <ENDFLOWop> ::= "ELSE"
 | "ENDIF"
 | "ENDLOOP"
 | "ENDREP"

 <optBranchCond> ::= /* empty */
 | <ccMask>

 <branchLabel> ::= <identifier>

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 64

 <attribFragBasic> ::= "texcoord" "[" <arr ayMemRel> "]"
 | "facing"

 <arrayMemRel> ::= <addrUseS> <arrayMe mRelOffset>

 <arrayMemRelOffset> ::= /* empty */
 | "+" <addrRegPosOffs et>

 <addrRegPosOffset> ::= <integer> from 0 to 9

 <addrUseS> ::= <addrVarName> <scal arAddrSuffix>

 <scalarAddrSuffix> ::= "." <addrComponent>

 <addrComponent> ::= "x"

 Note: This extension provides a pre-defined ad dress register (A0) that
 matches the <addrVarName> grammar rule and can be used as a loop counter
 (Section 3.11.3.Y). It is not possible to decl are additional address
 register variables.

 Modify Section 3.11.3.1, Fragment Attributes

 (add new bindings to binding table)

 Fragment Attribute Binding Components Under lying State
 -------------------------- ---------- ----- -----------------------
 ...
 fragment.texcoord[A0.x+n] (s,t,r,q) index ed texture coordinate
 fragment.facing (f,0,0,1) fragm ent facing

 If a fragment attribute binding matches "fragme nt.texcoord[A0.x+n]", a
 texture coordinate number <c> is computed by ad ding the current value of
 the "A0.x" address register (the loop index -- Section 3.11.3.Y) and <n>.
 The "x", "y", "z", and "w" components of the fr agment attribute variable
 are filled with the "s", "t", "r", and "q" comp onents, respectively, of
 the fragment texture coordinates for texture co ordinate set <c>. If <c>
 is negative or greater than or equal to MAX_TEX TURE_COORDS_ARB, the
 fragment attribute variable is undefined.

 If a fragment attribute binding matches "fragme nt.facing", the "x"
 component of the fragment attribute variable is filled with +1.0 or -1.0,
 depending on the orientation of the primitive p roducing the fragment. If
 the fragment is generated by a back-facing poly gon (including point- and
 line-mode polygons), the facing is -1.0; otherw ise, the facing is +1.0.
 The "y", "z", and "w" coordinates are filled wi th 0, 0, and 1,
 respectively.

 Add New Section 3.11.3.Y, Fragment Program Address Register (insert after
 Section 3.11.3.X, Condition Code Register)

 Fragment program address register variables are a set of four-component
 signed integer vectors where only the "x" compo nent of the address
 registers is currently accessible. Address reg isters are used as indices
 when performing relative addressing in the "fra gment.texcoord" attribute
 array (section 3.11.3.1).

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 65

 Fragment program address registers can not be d eclared in a fragment
 program. There is only a single built-in addre ss register, "A0.x" (loop
 index), which is available inside LOOP/ENDLOOP blocks. A fragment program
 that accesses A0.x outside a LOOP/ENDLOOP block will fail to load.

 A0.x is initialized in by the LOOP instruction and updated by the ENDLOOP
 instruction. When LOOP blocks are nested, each block has its own value
 for A0.x, but only the A0.x value for the inner most block can be used. The
 value of A0.x is clamped to be greater than or equal to 0.

 Modify Section 3.11.4, Fragment Program Execution Environment

 (modify instruction table) There are sixty-seve n fragment program
 instructions....

 Modifiers
 Instr. R H X C S Inputs Output Description
 ------- - - - - - ------ ------ --------------------------------
 ABS X X X X X v v absolute value
 ADD X X X X X v,v v add
 BRK - - - - - c - break ou t of loop instruction
 CAL - - - - - c - subrouti ne call
 CMP - - - X X v,v,v v compare
 COS X X - X X s ssss cosine w ith reduction to [-PI,PI]
 DDX X X - X X v v partial derivative relative to X
 DDY X X - X X v v partial derivative relative to Y
 DIV X X - X X v,s v divide v ector components by scalar
 DP2 X X X X X v,v ssss 2-compon ent dot product
 DP2A X X X X X v,v,v ssss 2-comp. dot product w/scalar add
 DP3 X X X X X v,v ssss 3-compon ent dot product
 DP4 X X X X X v,v ssss 4-compon ent dot product
 DPH X X X X X v,v ssss homogene ous dot product
 DST X X - X X v,v v distance vector
 ELSE - - - - - - - start if test else block
 ENDIF - - - - - - - end if t est block
 ENDLOOP - - - - - - - end of l oop block
 ENDREP - - - - - - - end of r epeat block
 EX2 X X - X X s ssss exponent ial base 2
 FLR X X X X X v v floor
 FRC X X X X X v v fraction
 IF - - - - - c - start of if test block
 KIL - - - - - v or c v kill fra gment
 LG2 X X - X X s ssss logarith m base 2
 LIT X X - X X v v compute light coefficients
 LOOP - - - - - v - start of loop block
 LRP X X X X X v,v,v v linear i nterpolation
 MAD X X X X X v,v,v v multiply and add
 MAX X X X X X v,v v maximum
 MIN X X X X X v,v v minimum
 MOV X X X X X v v move
 MUL X X X X X v,v v multiply
 NRM X X - X X v v normaliz e 3-component vector
 PK2H - - - - - v ssss pack two 16-bit floats
 PK2US - - - - - v ssss pack two unsigned 16-bit scalars
 PK4B - - - - - v ssss pack fou r signed 8-bit scalars
 PK4UB - - - - - v ssss pack fou r unsigned 8-bit scalars

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 66

 Modifiers
 Instr. R H X C S Inputs Output Description
 ------- - - - - - ------ ------ --------------------------------
 POW X X - X X s,s ssss exponent iate
 RCP X X - X X s ssss reciproc al
 REP - - - - - v - start of repeat block
 RET - - - - - c - subrouti ne return
 RFL X X - X X v v reflecti on vector
 RSQ X X - X X s ssss reciproc al square root
 SCS X X - X X s ss-- sine/cos ine without reduction
 SEQ X X X X X v,v v set on e qual
 SFL X X X X X v,v v set on f alse
 SGE X X X X X v,v v set on g reater than or equal
 SGT X X X X X v,v v set on g reater than
 SIN X X - X X s ssss sine wit h reduction to [-PI,PI]
 SLE X X X X X v,v v set on l ess than or equal
 SLT X X X X X v,v v set on l ess than
 SNE X X X X X v,v v set on n ot equal
 STR X X X X X v,v v set on t rue
 SUB X X X X X v,v v subtract
 SWZ X X - X X v v extended swizzle
 TEX - - - X X v v texture sample
 TXB - - - X X v v texture sample with bias
 TXD - - - X X v,v,v v texture sample w/partials
 TXL - - - X X v v texture same w/explicit LOD
 TXP - - - X X v v texture sample with projection
 UP2H - - - X X s v unpack t wo 16-bit floats
 UP2US - - - X X s v unpack t wo unsigned 16-bit scalars
 UP4B - - - X X s v unpack f our signed 8-bit scalars
 UP4UB - - - X X s v unpack f our unsigned 8-bit scalars
 X2D X X - X X v,v,v v 2D coord inate transformation
 XPD X X - X X v,v v cross pr oduct

 Table X.5: Summary of fragment program instr uctions. The columns "R",
 "H", "X", "C", and "S" indicate whether the " R", "H", or "X" precision
 modifiers, the C condition code update modifi er, and the "_SAT"/"_SSAT"
 saturation modifiers, respectively, are suppo rted for the opcode. In
 the input/output columns, "v" indicates a flo ating-point vector input or
 output, "s" indicates a floating-point scalar input, "ssss" indicates a
 scalar output replicated across a 4-component result vector, "ss--"
 indicates two scalar outputs in the first two components, and "c"
 indicates a condition code test. Instruction s describe as "texture
 sample" also specify a texture image unit ide ntifier and a texture
 target.

 Modify Section 3.11.4.3, Fragment Program Destination Register Update

 (modify saturation discussion) If the instructi on opcode has the "_SAT"
 suffix, requesting saturated result vectors, ea ch component of the result
 vector is clamped to the range [0,1] before upd ating the destination
 register. If the instruction opcode has the "_ SSAT" suffix, requesting
 signed saturation, each component of the result vector is clamped to the
 range [-1,1] before updating the destination re gister.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 67

 Add Section 3.11.4.X, Fragment Program Branching (before Section 3.11.4.4,
 Fragment Program Result Processing)

 Fragment programs support a limited model of br anching. Fragment programs
 can specify one of several types of instruction blocks: IF/ELSE/ENDIF
 blocks, LOOP/ENDLOOP blocks, and REP/ENDREP blo cks. Examples include the
 following:

 LOOP {5, 0, 1}; # 5 iterations with loop index at 0,1,2,3,4
 ADD R0, R0, R1;
 ENDLOOP;

 REP repCount;
 ADD R0, R0, R1;
 ENDREP;

 MOVC CC, R0;
 IF GT.x;
 MOV R0, R1; # executes if R0.x > 0
 ELSE;
 MOV R0, R2; # executes if R0.x <= 0
 ENDIF;

 Instruction blocks may be nested -- for example , a LOOP block may be
 contained inside an IF/ELSE/ENDIF block. In al l cases, each instruction
 block must be terminated with the appropriate i nstruction (ENDIF for IF,
 ENDLOOP for LOOP, ENDREP for REP). Nested inst ruction blocks must be
 wholly contained within a block -- if a LOOP in struction is found between
 an IF and ELSE instruction, the ENDLOOP must al so be present between the
 IF and ELSE. A fragment program will fail to l oad if any instruction
 block is terminated by an incorrect instruction or is not terminated
 before the block containing it.

 IF/ELSE/ENDIF blocks evaluate a condition to de termine which instructions
 to execute. If the condition is true, all inst ructions between the IF and
 ELSE are executed. If the condition is false, all instructions between
 the ELSE and ENDIF are executed. The ELSE inst ruction is optional. If
 the ELSE is omitted, all instructions between t he IF and ENDIF are
 executed if the condition is true, or skipped i f the condition is false.
 A limited amount of nesting is supported -- a f ragment program will fail
 to load if an IF instruction is nested inside M AX_PROGRAM_IF_DEPTH_NV or
 more IF/ELSE/ENDIF blocks.

 The condition of an IF test is specified by the <ccTest> grammar rule and
 may depend on the contents of the condition cod e register. Branch
 conditions are evaluated by evaluating a condit ion code write mask in
 exactly the same manner as done for register wr ites (section 2.14.2.2).
 If any of the four components of the condition code write mask are
 enabled, the branch is taken and execution cont inues with the instruction
 following the label specified in the instructio n. Otherwise, the
 instruction is ignored and fragment program exe cution continues with the
 next instruction. In the following example cod e,

 MOVC CC, c[0]; # c[0]=(-2, 0, 2, Na N), CC gets (LT,EQ,GT,UN)
 CAL label1 (LT.xyzw); # call taken
 CAL label2 (LT.wyzw); # call not taken

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 68

 the first CAL instruction loads a condition cod e of (LT,EQ,GT,UN) while
 the second CAL instruction loads a condition co de of (UN,EQ,GT,UN). The
 first call will be made because the "x" compone nt evaluates to LT; the
 second call will not be made because no compone nt evaluates to LT.

 LOOP/ENDLOOP and REP/ENDREP blocks involve a lo op counter that indicates
 the number of times the instructions between th e LOOP/REP and
 ENDLOOP/ENDREP are executed. Looping blocks ha ve a number of significant
 limitations. First, the loop counter can not b e computed at run time; it
 must be specified as a program parameter. Seco nd, the number of loop
 iterations is limited to the value MAX_PROGRAM_ LOOP_COUNT_NV, which must
 be at least 255. Third, only a limited amount of nesting is supported --
 a fragment program will fail to load if a LOOP or REP instruction is
 nested inside MAX_PROGRAM_LOOP_DEPTH_NV or more LOOP/ENDLOOP or REP/ENDREP
 blocks.

 The BRK instruction is available to terminate a loop block early. A BRK
 instruction can be conditional; the condition i s evaluated in the same
 manner as the condition of an IF instruction, a nd the loop is terminated
 if the condition is true. A fragment program w ill fail to load if it
 contains a BRK instruction that is not nested i nside a LOOP/ENDLOOP or
 REP/ENDREP block.

 Fragment programs can contain one or more instr uction labels, matching the
 grammar rule <branchLabel>. An instruction lab el can be referred to
 explicitly in subroutine call (CAL) instruction s. Instruction labels can
 be used at any point in the body of a program, and can be used in
 instructions before being defined in the progra m string. Instruction
 labels can be defined anywhere in the program, except inside an
 IF/ELSE/ENDIF, LOOP/ENDLOOP, or REP/ENDREP inst ruction block. A fragment
 program will fail to load if it contains an ins truction label inside an
 instruction block.

 Fragment programs can also specify subroutine c alls. When a subroutine
 call (CAL) instruction is executed, a reference to the instruction
 immediately following the CAL instruction is pu shed onto the call stack.
 When a subroutine return (RET) instruction is e xecuted, an instruction
 reference is popped off the call stack and prog ram execution continues
 with the popped instruction. A fragment progra m will terminate if a CAL
 instruction is executed with MAX_PROGRAM_CALL_D EPTH_NV entries already in
 the call stack or if a RET instruction is execu ted with an empty call
 stack. Subroutine calls may be conditional; th e condition is specified by
 the <optBranchCond> grammar rule and evaluated in the same way as the
 condition of the IF instruction. If no conditi on is specified, it is as
 though "(TR)" were specified -- the branch is u nconditional.

 If a fragment program has an instruction label "main", program execution
 begins with the instruction immediately followi ng the instruction label.
 Otherwise, program execution begins with the fi rst instruction of the
 program. Instructions will be executed sequent ially in the order
 specified in the program, although branch instr uctions will affect the
 instruction execution order, as described above . A fragment program will
 terminate after executing a RET instruction wit h an empty call stack. A
 fragment program will also terminate after exec uting the last instruction
 in the program, unless that instruction was a t aken branch.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 69

 A fragment program will fail to load if an inst ruction refers to a label
 that is not defined in the program string.

 A fragment program will terminate abnormally if a subroutine call
 instruction produces a call stack overflow. Ad ditionally, a fragment
 program will terminate abnormally after executi ng
 MAX_PROGRAM_EXEC_INSTRUCTIONS instructions to p revent hangs caused by
 infinite loops in the program.

 When a fragment program terminates, normally or abnormally, it will emit a
 fragment whose attributes are taken from the fi nal values of the fragment
 program result variables (section 3.11.3.4).

 Add to Section 3.11.4.5 of ARB_fragment_program (Fragment Program
 Options):

 Section 3.11.4.5.3, NV_fragment_program2 Option

 If a fragment program specifies the "NV_fragmen t_program2" option, the
 ARB_fragment_program grammar and execution envi ronment are extended to
 take advantage of all the features of the "NV_f ragment_program" option,
 plus the following features:

 * structured branching support, including dat a-dependent IF tests, loops
 supporting a fixed number of iterations, an d a data-dependent loop
 exit instruction (BRK),

 * subroutine calls,

 * several new instructions:

 * NRM -- vector normalization
 * DIV -- divide vector components by a scal ar
 * DP2 -- two-component dot product
 * DP2A -- two-component dot product with sc alar add
 * TXL -- texture lookup with explicit LOD s pecified
 * IF/ELSE/ENDIF -- conditional execution bl ocks
 * REP/ENDREP -- loop block
 * LOOP/ENDLOOP -- loop block using index re gister
 * BRK -- break out of loop block
 * CAL -- subroutine call
 * RET -- subroutine return

 * a loop index register inside LOOP/ENDLOOP b locks that can be used for
 indirect access into the texture coordinate attribute array, and

 * a facing attribute that indicates whether t he fragment is generated
 from a front- or back-facing primitive.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 70

 Modify Section 3.11.5, Fragment Program ALU Instruction Set

 Section 3.11.5.48, DIV: Divide (Vector Components by Scalar)

 The DIV instruction divides each component of t he first vector operand by
 the second scalar operand to produce a 4-compon ent result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = tmp0.x / tmp1;
 result.y = tmp0.y / tmp1;
 result.z = tmp0.z / tmp1;
 result.w = tmp0.w / tmp1;

 This instruction may not produce results identi cal to a RCP/MUL
 instruction sequence.

 Section 3.11.5.49, DP2: 2-Component Dot Product

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components) and r eplicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 Section 3.11.5.50, DP2A: 2-Component Dot Product w/Scalar Add

 The DP2 instruction computes a two-component do t product of the two
 operands (using the first two components), adds the x component of the
 third operand, and replicates the result to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + tmp2.x;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 71

 Section 3.11.5.51, NRM: 3-Component Vector Normalize

 The NRM instruction normalizes the vector given by the x, y, and z
 components of the vector operand to produce the x, y, and z components of
 the result vector. The w component of the resu lt is undefined.

 tmp = VectorLoad(op0);
 scale = ApproxRSQ(tmp.x * tmp.x + tmp.y * tmp .y + tmp.z * tmp.z);
 result.x = tmp.x * scale;
 result.y = tmp.y * scale;
 result.z = tmp.z * scale;
 result.w = undefined;

 Note that the normalization uses an approximate scale and may be carried
 at lower precision than a corresponding sequenc e of DP3, RSQ, and MUL
 instructions.

 Add Section 3.11.6.6, TXL: Texture Lookup with Explicit LOD

 The TXD instruction takes the x, y, and z compo nents of the vector operand
 and maps them to s, t, and r, respectively. Th ese coordinates are used to
 sample from the specified texture target on the specified texture image
 unit in a manner consistent with its parameters .

 The level of detail is computed as specified in section 3.8.8, except that
 log_2(rho(x,y)) is given by 2^w, where w is the w component of the vector
 operand.

 The resulting sample is mapped to RGBA as descr ibed in table 3.21
 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

 Add Section 3.11.X, Fragment Program Flow Control Instruction Set
 (immediately after Section 3.11.6, Fragment Pro gram Texture Instruction
 Set)

 3.11.X.1, BRK: Break

 The BRK instruction conditionally transfers con trol to the instruction
 immediately following the next ENDLOOP or ENDRE P instruction. A BRK
 instruction has no effect if the condition code test evaluates to FALSE.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at instruction following the next ENDLOOP or
 ENDREP;
 }

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 72

 3.11.X.2, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. A CAL instruction has
 no effect if the condition code test evaluates to FALSE.

 When executed, the CAL instruction pushes a ref erence to the instruction
 immediately following the CAL instruction onto the call stack. When a
 matching RET instruction is executed, execution will continue at that
 instruction after executing the matching RET in struction.

 Implementations may have a limited call stack. If the number of CAL
 instructions that have been performed without r eturning is
 MAX_PROGRAM_CALL_DEPTH_NV, a CAL instruction wi ll cause the call stack to
 overflow and the fragment program to terminate.

 The following pseudocode describes the operatio n of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {

 // Check for call stack overflow.
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPT H_NV) {
 terminate fragment program;
 }

 push instruction following the CAL instruct ion on the call stack;
 continue execution at instruction following <branchLabel>;
 }

 3.11.X.3, ELSE: Beginning of ELSE Block

 The ELSE instruction signifies the end of the " execute if true" portion of
 an IF/ELSE/ENDIF block.

 If the condition evaluated at the IF statement was TRUE, when a program
 reaches the ELSE statement, it has completed th e entire "execute if true"
 portion of the IF/ELSE/ENDIF block. Execution will continue at the
 corresponding ENDIF instruction.

 If the condition evaluated at the IF statement was FALSE, program
 execution would skip over the entire "execute i f true" portion of the
 IF/ELSE/ENDIF block, including the ELSE instruc tion.

 3.11.X.4, ENDIF: End of IF/ELSE Block

 The ENDIF instruction signifies the end of an I F/ELSE/ENDIF block. It has
 no other effect on program execution.

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 73

 3.11.X.5, ENDLOOP: End of LOOP Block

 The ENDLOOP instruction specifies the end of a LOOP block. When an
 ENDLOOP instruction executes, the loop count is decremented and the loop
 index increment value is added to the loop inde x (A0.x). If the
 decremented loop count is greater than zero, ex ecution continues at the
 top of the LOOP block.

 LoopCount--;
 LoopIndex += LoopIncr;
 if (LoopCount > 0) {
 continue execution at instruction following corresponding LOOP
 instruction;
 }

 3.11.X.6, ENDREP: End of REP Block

 The ENDREP instruction specifies the end of a R EP block. When an ENDREP
 instruction executes, the loop count is decreme nted. If the decremented
 loop count is greater than zero, execution cont inues at the top of the REP
 block.

 LoopCount--;
 if (LoopCount > 0) {
 continue execution at instruction following corresponding LOOP
 instruction;
 }

 3.11.X.7, IF: Beginning of IF Block

 The IF instruction conditionally transfers cont rol to the instruction
 immediately following the corresponding ELSE in struction (if present) or
 ENDIF instruction (if no ELSE is present).

 Implementations may have a limited ability to n est IF blocks at run time.
 If the number of IF/ENDIF blocks that are curre ntly active is
 MAX_PROGRAM_IF_DEPTH_NV, an IF instruction will cause the fragment program
 to terminate. If an IF instruction is executed inside a subroutine, any
 active IF/ENDIF blocks in the calling code coun t against this limit.

 if (IF block nested too deeply) {
 terminate fragment program;
 }

 // Evaluate the condition. If the condition is true, continue at the
 // next instruction. Otherwise, continue at the
 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 continue execution at the next instruction;
 } else if (IF block contains an ELSE statemen t) {
 continue execution at instruction following corresponding ELSE;
 } else {
 continue execution at instruction following corresponding ENDIF;
 }

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 74

 3.11.X.8, LOOP: Beginning of LOOP Block

 The LOOP instruction begins a LOOP block. The x, y, and z components of
 the single vector operand specify the initial v alues for the loop count,
 loop index, and loop index increment, respectiv ely.

 The loop count indicates the number of times th e instructions between the
 LOOP and corresponding ENDLOOP instruction will be executed. If the
 initial value of the loop count is not positive , the entire block is
 skipped and execution continues at the correspo nding ENDLOOP instruction.

 The loop index (A0.x) can be used for indirect addressing in the set of
 texture coordinate fragment attributes. A frag ment program can only use
 the loop index of the current LOOP block; loop indices for containing LOOP
 blocks are not available.

 Implementations may have a limited ability to n est LOOP and REP blocks at
 run time. If the number of LOOP/ENDLOOP and RE P/ENDREP blocks that have
 not completed is MAX_PROGRAM_LOOP_DEPTH_NV, a L OOP instruction will cause
 the fragment program to terminate. If a LOOP i nstruction is executed
 inside a subroutine, any active LOOP/ENDLOOP or REP/ENDREP blocks in the
 calling code count against this limit.

 if (LOOP block nested too deeply) {
 terminate fragment program;
 }

 // Set up loop information for the new nestin g level.
 tmp = VectorLoad(op0);
 LoopCount = floor(op0.x);
 LoopIndex = floor(op0.y);
 LoopIncr = floor(op0.z);
 if (LoopCount <= 0) {
 continue execution at the corresponding END LOOP;
 }

 LOOP blocks do not support fully general branch ing -- a fragment program
 will fail to load if the vector operand is not a program parameter.

 3.11.X.9, REP: Beginning of REP Block

 The REP instruction begins a REP block. The x component of the single
 vector operand specifies the initial value for the loop count. REP blocks
 are completely identical to LOOP blocks except that they don't use the
 loop index at all.

 The loop count indicates the number of times th e instructions between the
 REP and corresponding ENDREP instruction will b e executed. If the initial
 value of the loop count is not positive, the en tire block is skipped and
 execution continues at the instruction followin g the corresponding ENDREP
 instruction.

 Implementations may have a limited ability to n est LOOP and REP blocks at
 run time. If the number of LOOP/ENDLOOP and RE P/ENDREP blocks that have
 not completed is MAX_PROGRAM_LOOP_DEPTH_NV, a R EP instruction will cause
 the fragment program to terminate. If a REP in struction is executed
 inside a subroutine, any active LOOP/ENDLOOP or REP/ENDREP blocks in the

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 75

 calling code count against this limit.

 if (REP block nested too deeply) {
 terminate fragment program;
 }

 // Set up loop information for the new nestin g level.
 tmp = VectorLoad(op0);
 LoopCount = floor(op0.x);
 if (LoopCount <= 0) {
 continue execution at the corresponding END REP;
 }

 REP blocks do not support fully general branchi ng -- a fragment program
 will fail to load if the vector operand is not a program parameter.

 3.11.X.10, RET: Subroutine Return

 The RET instruction conditionally returns from a subroutine initiated by a
 CAL instruction. A RET instruction has no effe ct if the condition code
 test evaluates to FALSE.

 When executed, the RET instruction pops a refer ence to the instruction
 immediately following the corresponding CAL ins truction onto the call
 stack and continues execution at that instructi on.

 If a RET instruction is issued when the call st ack is empty, the fragment
 program is terminated.

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {

 if (callStackDepth <= 0) {
 terminate fragment program;
 }

 pop instruction following the CAL instructi on off the call stack;
 continue execution at that instruction;
 }

Additions to Chapter 4 of the OpenGL 1.4 Specification (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specification (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specification (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.4 Specification (Invariance)

 None.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_fragment_program2

NVIDIA Proprietary 76

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_fragment_program

 ARB_fragment_program is required.

 This specification and NV_fragment_program_opti on are based on a modified
 version of the grammar published in the ARB_fra gment_program
 specification. This modified grammar includes a few structural changes to
 better accommodate new functionality from this and other extensions, but
 should be functionally equivalent to the ARB_fr agment_program grammar.
 See NV_fragment_program_option for details on t he base grammar.

Dependencies on NV_fragment_program2_option

 NV_fragment_program_option is required.

 If the NV_fragment_program2 program option is s pecified, all the
 functionality described in both this extension and the
 NV_fragment_program_option specification is ava ilable.

GLX Protocol

 None.

Errors

 None.

New State

 None.

New Implementation Dependent State

 Min
Get Value Type Get Co mmand Value Description Sec At trib
----------------------------------- ---- ------ --------- ------ ----------------- -------- -- ----
MAX_PROGRAM_EXEC_INSTRUCTIONS_NV Z+ GetPro gramivARB 65536 maximum program 3.11.4.X -
 execution inst-
 ruction count
MAX_PROGRAM_CALL_DEPTH_NV Z+ GetPro gramivARB 4 maximum program 3.11.4.X -
 call stack depth
MAX_PROGRAM_IF_DEPTH_NV Z+ GetPro gramivARB 48 maximum program 3.11.4.X -
 if nesting
MAX_PROGRAM_LOOP_DEPTH_NV Z+ GetPro gramivARB 4 maximum program 3.11.4.X -
 loop nesting
MAX_PROGRAM_LOOP_COUNT_NV Z+ GetPro gramivARB 255 maximum program 3.11.4.X -
 initial loop count

 (add to Table X.10. New Implementation-Depende nt Values Introduced by
 ARB_fragment_program. Values queried by GetPr ogramivARB require a <pname>
 of FRAGMENT_PROGRAM_ARB.)

NV_fragment_program2 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 77

Revision History

 Rev. Date Author Changes
 ---- -------- ------- ---------------------- ----------------------
 6 05/16/04 pbrown Documented that "A0" i s a pre-defined address
 register variable for the purposes of the
 grammar, and that no o ther address register
 variables can be decla red.

 5 -------- pbrown Internal pre-release r evisions.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 78

Name

 NV_vertex_program3

Name Strings

 GL_NV_vertex_program3

Status

 Shipping.

Version

 Last Modified Data: $Date: 2004/05/17 $
 NVIDIA Revision: 1

Number

 Unassigned

Dependencies

 ARB_vertex_program is required.
 NV_vertex_program2_option is required.

Overview

 This extension, like the NV_vertex_program2_opt ion extension,
 provides additional vertex program functionalit y to extend the
 standard ARB_vertex_program language and execut ion environment.
 ARB programs wishing to use this added function ality need only add:

 OPTION NV_vertex_program3;

 to the beginning of their vertex programs.

 New functionality provided by this extension, a bove and beyond that
 already provided by NV_vertex_program2_option e xtension, includes:

 * texture lookups in vertex programs,

 * ability to push and pop address registers on the stack,

 * address register-relative addressing for vertex attribute and
 result arrays, and

 * a second four-component condition code.

Issues

 Should we provided a separate "!!VP3.0" program type, like the
 "!!VP2.0" type defined in NV_vertex_program2?

 RESOLVED: No. Since ARB_vertex_program has been fully defined
 (it wasn't in the !!VP2.0 time-frame), we wil l simply define
 language extensions to !!ARBvp1.0 that expose new functionality.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 79

 The NV_vertex_program2_option specification f ollowed this same
 pattern for the NV3X family (GeForce FX, Quad ro FX).

 Should this be called "NV_vertex_program3_optio n"?

 RESOLVED: No. The similar extension to !!AR Bvp1.0 called
 "NV_vertex_program2_option" got that name onl y because the simpler
 "NV_vertex_program2" name had already been us ed.

 Is there a limit on the number of texture units that can be accessed
 by a vertex program?

 RESOLVED: Yes -- same as MAX_VERTEX_TEXTURE_ IMAGE_UNITS_ARB from
 the ARB_vertex_shader extension. !!!

 Since vertices don't have screen space partial derivatives, how is
 the LOD used for texture accesses defined?

 RESOLVED: The TXL instruction allows a progr am to explicitly
 set an LOD; the LOD for all other texture ins tructions is zero.
 The texture LOD bias specified in the texture object and environment
 do apply to all vertex texture lookups.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB 0x8B4C

Additions to Chapter 2 of the OpenGL 1.4 Specification (OpenGL Operation)

 Modify Section 2.14.2, Vertex Program Grammar and Restrictions

 (mostly add to existing grammar rules, as exten ded by
 NV_vertex_program2_option)

 <optionName> ::= "NV_vertex_program3 "

 <instruction> ::= <TexInstruction>

 <ALUInstruction> ::= <ASTACKop_instructi on>

 <TexInstruction> ::= <TEXop_instruction>

 <ASTACKop_instruction> ::= <ASTACKop> <instOpe randAddrVNS>

 <ASTACKop> ::= "PUSHA"
 | "POPA"

 <TEXop_instruction> ::= <TEXop> <instResult > "," <instOperandV> ","
 <texTarget>

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 80

 <TEXop> ::= "TEX"
 | "TXP"
 | "TXB"
 | "TXL"

 <texTarget> ::= <texImageUnit> "," <texTargetType>

 <texImageUnit> ::= "texture" <optTexIm ageUnitNum>

 <optTexImageUnitNum> ::= /* empty */
 | "[" <texImageUnitNu m> "]"

 <texImageUnitNum> ::= <integer>
 /*[0,MAX_TEXTURE_IM AGE_UNITS_ARB-1]*/

 <texTargetType> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"

 <attribVtxBasic> ::= "texcoord" "[" <arr ayMemRel> "]"
 | "attrib" "[" <array MemRel> "]"

 <resultVtxBasic> ::= "texcoord" "[" <arr ayMemRel> "]"

 <ccMaskRule> ::= "EQ0"
 | "GE0"
 | "GT0"
 | "LE0"
 | "LT0"
 | "NE0"
 | "TR0"
 | "FL0"
 | "EQ1"
 | "GE1"
 | "GT1"
 | "LE1"
 | "LT1"
 | "NE1"
 | "TR1"
 | "FL1"

 (modify description of reserved identifiers)

 ... The following strings are reserved keywords and may not be used
 as identifiers:

 ABS, ADD, ADDRESS, ALIAS, ARA, ARL, ARR, AT TRIB, BRA, CAL, COS,
 DP3, DP4, DPH, DST, END, EX2, EXP, FLR, FRC , LG2, LIT, LOG, MAD,
 MAX, MIN, MOV, MUL, OPTION, OUTPUT, PARAM, POPA, POW, PUSHA, RCC,
 RCP, RET, RSQ, SEQ, SFL, SGE, SGT, SIN, SLE , SLT, SNE, SUB, SSG,
 STR, SWZ, TEMP, TEX, TXB, TXL, TXP, XPD, pr ogram, result, state,
 and vertex.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 81

 Modify Section 2.14.3.1, Vertex Attributes

 (add new bindings to binding table)

 Vertex Attribute Binding Components Underly ing State
 ------------------------ ---------- ------- -------------------------
 ...
 vertex.texcoord[A+n] (s,t,r,q) indexed texture coordinate
 vertex.attrib[A+n] (x,y,z,w) indexed generic vertex attribute

 If a vertex attribute binding matches "vertex.t excoord[A+n]", where
 "A" is a component of an address register (Sect ion 2.14.3.5), a
 texture coordinate number <c> is computed by ad ding the current
 value of the address register component and <n> . The "x", "y",
 "z", and "w" components of the vertex attribute variable are
 filled with the "s", "t", "r", and "q" componen ts, respectively,
 of the vertex texture coordinates for texture u nit <c>. If <c>
 is negative or greater than or equal to MAX_TEX TURE_COORDS_ARB,
 the vertex attribute variable is undefined.

 If a vertex attribute binding matches "vertex.a ttrib[A+n]", where
 "A" is a component of an address register (Sect ion 2.14.3.5), a
 vertex attribute number <a> is computed by addi ng the current value
 of the address register component and <n>. The "x", "y", "z", and
 "w" components of the vertex attribute variable are filled with the
 "x", "y", "z", and "w" components, respectively , of generic vertex
 attribute <a>. If <a> is negative or greater t han or equal to
 MAX_VERTEX_ATTRIBS_ARB, the vertex attribute va riable is undefined.

 Modify Section 2.14.3.4, Vertex Program Results

 (add new binding to binding table)

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 ...
 result.texcoord[A+n] (s,t,r,q) in dexed texture coordinate

 If a result variable binding matches "result.te xcoord[A+n]", where "A"
 is a component of an address register (Section 2.14.3.5), a texture
 coordinate number <c> is computed by adding the current value of
 the address register component and <n>. Update s to the "x", "y",
 "z", and "w" components of the result variable set the "s", "t",
 "r" and "q" components, respectively, of the tr ansformed vertex's
 texture coordinates for texture unit <c>. If < c> is negative or
 greater than or equal to MAX_TEXTURE_COORDS_ARB , the effects of
 updates to vertex attribute variable are undefi ned and may overwrite
 other programs results.

 Modify Section 2.14.3.X, Condition Code Registers (added in
 NV_Vertex_program2_option)

 The vertex program condition code registers are two four-component
 vectors, called CC0 and CC1. Each component of this register is one
 of four enumerated values: GT (greater than), E Q (equal), LT (less
 than), or UN (unordered). The condition code r egister can be used
 to mask writes to registers and to evaluate con ditional branches.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 82

 Most vertex program instructions can optionally update one of the
 two condition code registers. When a vertex pr ogram instruction
 updates a condition code register, a condition code component is set
 to LT if the corresponding component of the res ult is less than zero,
 EQ if it is equal to zero, GT if it is greater than zero, and UN if
 it is NaN (not a number).

 The condition code registers are initialized to vectors of EQ values
 each time a vertex program executes.

 Modify Section 2.14.4, Vertex Program Execution Environment

 (modify instruction table) There are forty-eigh t vertex program
 instructions. Vertex program instructions may have up to eight
 variants, including a suffix of "C" or "C0" to allow an update of
 condition code register zero (section 2.14.3.X) , a suffix of "C1"
 to allow an update of condition code register o ne, and a suffix of
 "_SAT" to clamp the result vector components to the range [0,1].
 For example, the eight forms of the "ADD" instr uction are "ADD",
 "ADDC", "ADDC0", "ADDC1", "ADD_SAT", "ADDC_SAT" , "ADDC0_SAT", and
 "ADDC1_SAT". The instructions and their respec tive input and output
 parameters are summarized in Table X.5.

 Modifiers
 Instruction C S Inputs Output Description
 ----------- - - ------ ------ --------------------------------
 ABS X X v v absolute value
 ADD X X v,v v add
 ARA X - a a address register add
 ARL X - s a address register load
 ARR X - v a address register load (round)
 BRA - - c - branch
 CAL - - c - subrouti ne call
 COS X X s ssss cosine
 DP3 X X v,v ssss 3-compon ent dot product
 DP4 X X v,v ssss 4-compon ent dot product
 DPH X X v,v ssss homogene ous dot product
 DST X X v,v v distance vector
 EX2 X X s ssss exponent ial base 2
 EXP X X s v exponent ial base 2 (approximate)
 FLR X X v v floor
 FRC X X v v fraction
 LG2 X X s ssss logarith m base 2
 LIT X X v v compute light coefficients
 LOG X X s v logarith m base 2 (approximate)
 MAD X X v,v,v v multiply and add
 MAX X X v,v v maximum
 MIN X X v,v v minimum
 MOV X X v v move
 MUL X X v,v v multiply
 POPA - - - a pop addr ess register
 POW X X s,s ssss exponent iate
 PUSHA - - a - push add ress register
 RCC X X s ssss reciproc al (clamped)
 RCP X X s ssss reciproc al
 RET - - c - subrouti ne return

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 83

 Modifiers
 Instruction C S Inputs Output Description
 ----------- - - ------ ------ --------------------------------
 RSQ X X s ssss reciproc al square root
 SEQ X X v,v v set on e qual
 SFL X X v,v v set on f alse
 SGE X X v,v v set on g reater than or equal
 SGT X X v,v v set on g reater than
 SIN X X s ssss sine
 SLE X X v,v v set on l ess than or equal
 SLT X X v,v v set on l ess than
 SNE X X v,v v set on n ot equal
 SSG X X v v set sign
 STR X X v,v v set on t rue
 SUB X X v,v v subtract
 SWZ X X v v extended swizzle
 TEX X X v v texture lookup
 TXB X X v v texture lookup with LOD bias
 TXL X X v v texture lookup with explicit LOD
 TXP X X v v projecti ve texture lookup
 XPD X X v,v v cross pr oduct

 Table X.5: Summary of vertex program instruc tions. The columns
 "C" and "S" indicate whether the "C", "C0", a nd "C1" condition code
 update modifiers, and the "_SAT" saturation m odifiers, respectively,
 are supported for the opcode. "v" indicates a floating-point vector
 input or output, "s" indicates a floating-poi nt scalar input,
 "ssss" indicates a scalar output replicated a cross a 4-component
 result vector, "a" indicates a vector address register, and "c"
 indicates a condition code test.

 Rewrite Section 2.14.4.3, Vertex Program Destination Register Update

 A vertex program instruction can optionally cla mp the results of
 a floating-point result vector to the range [0, 1]. The components
 of the result vector are clamped to [0,1] if th e saturation suffix
 "_SAT" is present in the instruction.

 Most vertex program instructions write a 4-comp onent result vector to
 a single temporary or vertex result register. Writes to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "",
 all components are enabled. Otherwise, the opt ional mask names
 the individual components to enable. The chara cters "x", "y",
 "z", and "w" match the x, y, z, and w component s respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be enabled for writing but the y component
 should not. The grammar requires that the dest ination register mask
 components must be listed in "xyzw" order. The condition code write
 mask is specified by the <ccMask> rule found in the <instResultCC>
 and <instResultAddrCC> rules. Otherwise, the s elected condition
 code register is loaded and swizzled according to the swizzle
 codes specified by <swizzleSuffix>. Each compo nent of the swizzled
 condition code is tested according to the rule given by <ccMaskRule>.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 84

 <ccMaskRule> may have the values "EQ", "NE", "L T", "GE", LE", or "GT",
 which mean to enable writes if the correspondin g condition code field
 evaluates to equal, not equal, less than, great er than or equal, less
 than or equal, or greater than, respectively. Comparisons involving
 condition codes of "UN" (unordered) evaluate to true for "NE" and
 false otherwise. For example, if the condition code is (GT,LT,EQ,GT)
 and the condition code mask is "(NE.zyxw)", the swizzle operation
 will load (EQ,LT,GT,GT) and the mask will thus will enable writes on
 the y, z, and w components. In addition, "TR" always enables writes
 and "FL" always disables writes, regardless of the condition code.
 If the condition code mask is empty, it is trea ted as "(TR)".

 Each component of the destination register is u pdated with the result
 of the vertex program instruction if and only i f the component is
 enabled for writes by both the component write mask and the condition
 code write mask. Otherwise, the component of t he destination register
 remains unchanged.

 A vertex program instruction can also optionall y update the condition
 code register. The condition code is updated i f the condition
 code register update suffix "C" is present in t he instruction.
 The instruction "ADDC" will update the conditio n code; the otherwise
 equivalent instruction "ADD" will not. If cond ition code updates
 are enabled, each component of the destination register enabled
 for writes is compared to zero. The correspond ing component of
 the condition code is set to "LT", "EQ", or "GT ", if the written
 component is less than, equal to, or greater th an zero, respectively.
 Condition code components are set to "UN" if th e written component is
 NaN (not a number). Values of -0.0 and +0.0 bo th evaluate to "EQ".
 If a component of the destination register is n ot enabled for writes,
 the corresponding condition code component is a lso unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the
 condition code to (LT,EQ,GT,UN). The second in struction, only the
 "x", "y", and "z" components of R0 and the cond ition code are updated,
 so R0 ends up with (0,2,NaN,NaN) and the condit ion code ends up with
 (EQ,GT,UN,UN). In the third instruction, the c ondition code mask
 disables writes to the x component (its conditi on code field is "EQ"),
 so R0 ends up with (0,0,NaN,-2) and the conditi on code ends up with
 (EQ,EQ,UN,LT).

 The following pseudocode illustrates the proces s of writing a
 result vector to the destination register. In the pseudocode,
 "instrSaturate" is TRUE if and only if result s aturation is
 enabled, "instrMask" refers to the component wr ite mask given by
 the <optWriteMask> rule. "ccMaskRule" refers t o the condition code
 mask rule given by <ccMask> and "updatecc" is T RUE if and only if
 condition code updates are enabled. "result", "destination", and "cc"
 refer to the result vector, the register select ed by <dstRegister>
 and the condition code, respectively. Conditio n codes do not exist

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 85

 in the VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 86

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Clamp result components to [0,1] if re quested in the instruction.
 if (instrSaturate) {
 if (result.x < 0) result.x = 0;
 else if (result.x > 1) result.x = 1;
 if (result.y < 0) result.y = 0;
 else if (result.y > 1) result.y = 1;
 if (result.z < 0) result.z = 0;
 else if (result.z > 1) result.z = 1;
 if (result.w < 0) result.w = 0;
 else if (result.w > 1) result.w = 1;
 }

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 While this rule describes floating-point result s, the same logic
 applies to the integer results generated by the ARA, ARL, and ARR
 instructions.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 87

 Add to Section 2.14.4.5, Vertex Program Options

 Section 2.14.4.5.3, NV_vertex_program3 Program Option

 If a vertex program specifies the "NV_vertex_pr ogram3" option, the
 ARB_vertex_program grammar and execution enviro nment are extended
 to take advantage of all the features of the "N V_vertex_program2"
 option, plus the following features:

 * several new instructions:

 * POPA -- pop address register off stack
 * PUSHA -- push address register onto sta ck
 * TEX -- texture lookup
 * TXB -- texture lookup w/LOD bias
 * TXL -- texture lookup w/explicit LOD
 * TXP -- projective texture lookup

 * address register-relative addressing for vertex texture
 coordinate and generic attribute arrays,

 * address register-relative addressing for vertex texture
 coordinate result array, and

 * a second four-component condition code.

 Add to Section 2.14.5, Vertex Program Instruction Set

 Section 2.14.5.43, POPA: Pop Address Register Stack

 The POPA instruction generates a integer result vector by popping
 an entry off of the call stack.

 if (callStackDepth <= 0) {
 terminate vertex program;
 } else {
 callStackDepth--;
 if (callStack[callStackDepth] is an address register) {
 iresult = callStack[callStackDepth];
 } else {
 terminate vertex program;
 }
 }

 In the pseudocode, <callStackDepth> is the curr ent depth of the call
 stack and <callStack> is an array holding the c all stack.

 The vertex program terminates abnormally if it executes a POPA
 instruction when the call stack is empty, or wh en the entry at the
 top of the call stack is not an address registe r pushed by PUSHA.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 88

 Section 2.14.5.44, PUSHA: Push Address Register Stack

 The PUSHA instruction pushes the address regist er operand onto the
 call stack, which is also used for subroutine c alls. The PUSHA
 instruction does not generate a result vector.

 tmp = AddrVectorLoad(op0);
 if (callStackDepth >= MAX_PROGRAM_CALL_STACK_ DEPTH_NV) {
 terminate vertex program;
 } else {
 callStack[callStackDepth] = tmp;
 callStackDepth++;
 }

 In the pseudocode, <callStackDepth> is the curr ent depth of the call
 stack and <callStack> is an array holding the c all stack.

 The vertex program terminates abnormally if it executes a PUSHA
 instruction when the call stack is full.

 Component swizzling is not supported when the o perand is loaded.

 Section 2.14.5.45, TEX: Texture Lookup

 The TEX instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,1), wher e x, y, and z are
 components of the vector operand.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 1 .0, 0.0, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 Since partial derivatives of the texture coordi nates are not defined,
 the base LOD value for vertex texture lookups i s defined to be
 zero. The value of lambda' used in equation 3. 16 will be simply
 clamp(texobj_bias + texunit_bias).

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 89

 Section 2.14.5.46, TXB: Texture Lookup (With LOD Bias)

 The TXB instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,1), wher e x, y, and z are
 components of the vector operand. The w compon ent of the operand
 is used as an additional LOD bias.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 1 .0, tmp.w, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 Since partial derivatives of the texture coordi nates are not defined,
 the base LOD value for vertex texture lookups i s defined to be
 zero. The value of lambda' used in equation 3. 16 will be simply
 clamp(texobj_bias + texunit_bias + tmp.w).

 Since the base LOD value is zero, the TXB instr uction is completely
 equivalent to the TXL instruction, where the w component contains
 an explicit base LOD value.

 Section 2.14.5.47, TXL: Texture Lookup (With Explicit LOD)

 The TXL instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,1), wher e x, y, and z are
 components of the vector operand. The w compon ent of the operand
 is used as the base LOD for the texture lookup.

 tmp = VectorLoad(op0);
 result = TextureSampleLOD(tmp.x, tmp.y, tmp.z , 1.0, tmp.w, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 The value of lambda' used in equation 3.16 will be simply tmp.w +
 clamp(texobj_bias + texunit_bias), where tmp.w is the base LOD.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 NV_vertex_program3

NVIDIA Proprietary 90

 Section 2.14.5.48, TXP: Texture Lookup (Projective)

 The TXP instruction uses the single vector oper and to perform a
 lookup in the specified texture map, yielding a 4-component result
 vector containing filtered texel values. The (s,t,r,q) coordinates
 used for the texture lookup are (x,y,z,w), wher e x, y, z, and w are
 the four components of the vector operand.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, t mp.w, 0.0, unit, target);

 where <unit> and <target> are the texture image unit number and
 target type, matching the <texImageUnitNum> and <texTargetType>
 grammar rules.

 The resulting sample is mapped to RGBA as descr ibed in Table 3.21,
 and the R, G, B, and A values are written to th e x, y, z, and w
 components, respectively, of the result vector.

 Since partial derivatives of the texture coordi nates are not defined,
 the base LOD value for vertex texture lookups i s defined to be
 zero. The value of lambda' used in equation 3. 16 will be simply
 clamp(texobj_bias + texunit_bias).

Additions to Chapter 3 of the OpenGL 1.4 Specification (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.4 Specification (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specification (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specification (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.4 Specification (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

NV_vertex_program3 NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 91

Dependencies on ARB_vertex_program

 ARB_vertex_program is required.

 This specification and NV_vertex_program2_optio n are based on a
 modified version of the grammar published in th e ARB_vertex_program
 specification. This modified grammar includes a few structural
 changes to better accommodate new functionality from this and
 other extensions, but should be functionally eq uivalent to the
 ARB_vertex_program grammar. See NV_vertex_prog ram2_option for
 details on the base grammar.

Dependencies on NV_vertex_program2_option

 NV_vertex_program2_option is required.

 If the NV_vertex_program3 program option is spe cified, all
 the functionality described in both this extens ion and the
 NV_vertex_program2_option specification is avai lable.

Errors

 None.

New State

 None.

Revision History

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_ATI_pixel_format_float

NVIDIA Proprietary 92

Name

 WGL_ATI_pixel_format_float

Name Strings

 WGL_ATI_pixel_format_float

Contact

 Rob Mace, ATI Research (mace 'at' ati.com)

Status

 Complete.

Version

 Last Modified Date: December 4, 2002
 Revision: 5

Number

 278

Dependencies

 WGL_ARB_pixel_format is required.

 This extension is written against the OpenGL 1. 3 Specification.

Overview

 This extension adds pixel formats with floating -point RGBA color
 components.

 The size of each float components is specified using the same
 WGL_RED_BITS_ARB, WGL_GREEN_BITS_ARB, WGL_BLUE_ BITS_ARB and
 WGL_ALPHA_BITS_ARB pixel format attributes that are used for
 defining the size of fixed-point components. 3 2 bit floating-
 point components are in the standard IEEE float format. 16 bit
 floating-point components have 1 sign bit, 5 ex ponent bits,
 and 10 mantissa bits.

 In standard OpenGL RGBA color components are no rmally clamped to
 the range [0,1]. The color components of a flo at buffer are
 clamped to the limits of the range representabl e by their format.

Issues

 1. Should we expose a GL_FLOAT16_ATI pixel type ?

 RESOLUTION: This will be exposed in a separ ate extension.

New Procedures and Functions

 None

WGL_ATI_pixel_format_float NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 93

New Tokens

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 RGBA_FLOAT_MODE_ATI 0x8 820
 COLOR_CLEAR_UNCLAMPED_VALUE_ATI 0x8 835

 Accepted as a value in the <piAttribIList> and <pfAttribFList>
 parameter arrays of wglChoosePixelFormatARB, an d returned in the
 <piValues> parameter array of wglGetPixelFormat AttribivARB, and the
 <pfValues> parameter array of wglGetPixelFormat AttribfvARB:

 WGL_TYPE_RGBA_FLOAT_ATI 0x2 1A0

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL
Operation)

 Add a new Section 2.1.2, (p. 6):

 2.1.2 16 Bit Floating-Point

 A 16 bit floating-point number has 1 sign bit (s), 5 exponent
 bits (e), and 10 mantissa bits (m). The valu e (v) of a 16 bit
 floating-point number is determined by the fo llowing pseudo code:

 if (e != 0)
 v = (-1)^s * 2^(e-15) * 1.m # normaliz ed
 else if (f == 0)
 v = (-1)^s * 0 # zero
 else
 v = (-1)^s * 2^(e-14) * 0.m # denormal ized

 It is acceptable for an implementation to tre at denormalized 16
 bit floating-point numbers as zero.

 There are no NAN or infinity values for 16 bi t floating-point.

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

 Section 3.6.4, (p. 92), Add to figure 3.7 a blo ck to "final
 conversion" for "RGBA float pixel data out" tha t says "clamp
 to float format range".

 Section 3.6.4, (p. 102), change the first parag raph of the "Final
 Conversion" to:

 For a color index, final conversion consists of masking the bits
 of the index to the left of the binary point by 2^n - 1, where n
 is the number of bits in an index buffer. Fo r RGBA components the
 conversion is based on whether the components in the destination
 color buffer are fixed-point or floating-poin t. For fixed-point
 destination buffers components are clamped to [0,1]. The resulting
 values are converted to fixed-point according to the rules given in
 section 2.13.9 (Final Color Processing). For floating-point

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_ATI_pixel_format_float

NVIDIA Proprietary 94

 destination buffers components are clamped to the limits of the
 range representable by the destination format .

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

 Chapter 4 Introduction, (p. 156), change the fi rst line of the third
 paragraph to:

 Color buffers consist of either unsigned inte ger color indices,
 RGB and optionally A unsigned integer values, of RGBA floating-
 point values.

 Section 4.1.7, (p. 162), change the third parag raph of the page to:

 Fixed-point destination (framebuffer) compone nts and source
 (fragment) components are taken to be values represented according
 to the scheme given in section 2.13.9 (Final Color Processing).
 Floating-point destination and source compone nts are taken as is.
 Constant color components are taken to be flo ating-point values.

 Section 4.1.7, (p. 163), change the forth line of the second paragraph
 of "Using BlendFunc" to:

 If destination color components are fixed-poi nt, each floating-
 point value in this quadruplet is clamped to [0,1] and converted
 back to a fixed-point value in the manner des cribed in section
 2.13.9.

 Section 4.1.8, (p. 165), insert after the first sentence:

 Dithering has no effect if the destination co lor buffer components
 are floating-point.

 Section 4.1.9, (p. 165), insert after the first sentence:

 Logical operation has no effect if the destin ation color buffer
 components are floating-point.

 Section 4.2.3, (p. 170), change the third parag raph to:

 void ClearColor(float r, float g, float b , float a);

 sets the clear value for the color buffers in RGBA mode. When
 clearing a fixed-point color buffer each of t he specified
 components is clamped to [0; 1] and converted to fixed-point
 according to the rules of section 2.13.9. Wh en clearing a
 floating-point color buffer the specified com ponents are not
 clamped.

 Section 4.3.2, (p. 176), change the "Conversion of RGBA values" to:

 This step applies only if the GL is in RGBA m ode, and then only
 if format is neither STENCIL INDEX nor DEPTH COMPONENT. The R,
 G, B, and A values form a group of elements. When reading from a
 fixed-point color buffer each element is take n to be a fixed-point
 value in [0; 1] with m bits, where m is the n umber of bits in the

WGL_ATI_pixel_format_float NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 95

 corresponding color component of the selected buffer (see section
 2.13.9).

 Section 4.3.2, (p. 177), change the second para graph of the "Final
 Conversion" to:

 For a fixed-point RGBA color buffer, each com ponent is first
 clamped to [0,1]. For floating-point RGBA co lor buffer, components
 are not clamped if the <type> is FLOAT, clamp ed to [0,1] if the
 <type> is unsigned, and clamped to [-1,1] if the <type> is signed.
 After clamping the appropriate conversion for mula from table 4.7
 is applied to the component.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

 None

Additions to the GLX Specification

 This specification is written for WGL.

GLX Protocol

 This specification is written for WGL.

Additions to the WGL Specification

 Modify the values accepted by WGL_PIXEL_TYPE_AR B to:

 WGL_PIXEL_TYPE_ARB
 The type of pixel data. This can be set to WGL_TYPE_RGBA_ARB,
 WGL_TYPE_RGBA_FLAOT_ARB, or WGL_TYPE_COLORI NDEX_ARB.

Dependencies on WGL_ARB_pixel_format

 The WGL_ARB_pixel_format extension must be used to determine a
 pixel format with float components.

Dependencies on WGL_ARB_extensions_string

 Because this extension is a WGL extension, it i s not included in
 the GL_EXTENSIONS string. Its existence can be determined with
 the WGL_ARB_extensions_string extension.

Errors

 None

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_ATI_pixel_format_float

NVIDIA Proprietary 96

New State

 (table 6.19, p227) modify COLOR_CLEAR_VALUE and add
 COLOR_CLEAR_UNCLAMPED_VALUE:

Get Value Type Get Command Initial Value Description Section Attri bute
------------------------------- ----- ----------- ------------- ------------------ ------- ----- -------
COLOR_CLEAR_VALUE C GetFloatv 0,0,0,0 Color buffer clear 4.2.3 color -buffer
 value (RGBA mode)
 clamped to [0,1]
COLOR_CLEAR_UNCLAMPED_VALUE_ATI 4 x R GetFloatv 0,0,0,0 Color buffer clear 4.2.3 color -buffer
 value (RGBA mode)
 unclamped

 (table 6.28, p236) add the following entry:

Get Value Type Get Command Minimum V alue Description Section Attribute
------------------- ----- ------------ --------- ---- --------------- -------- ---------
RGBA_FLOAT_MODE_ATI B GetBooleanv - True if RGBA 2.7 -
 components are
 floats

New Implementation Dependent State

 None

Revision History

 Date: 12/4/2002
 Revision: 5
 - Added Section 2.1.2 16 Bit Floating-Point.

 Date: 9/12/2002
 Revision: 4
 - Fixed typo, CLEAR_COLOR_VALUE is really COL OR_CLEAR_VALUE.

 Date: 9/11/2002
 Revision: 3
 - Added enum numbers to New Tokens.
 - Added CLEAR_COLOR_UNCLAMPED_VALUE_ATI and d efined behavior of
 CLEAR_COLOR_VALUE.
 - Added description of change to figure 3.7.
 - Clarified float clamping in section 3.6.4.

 Date: 9/9/2002
 Revision: 2
 - Changed wording of how float clamping is de scribed in Overview.

 Date: 9/6/2002
 Revision: 1
 - First draft for circulation.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 97

Name

 WGL_NV_gpu_affinity

Name Strings

 WGL_NV_gpu_affinity

Contact

 Barthold Lichtenbelt, NVIDIA (blichtenbelt 'a t' nvidia.com)

Notice

 Copyright NVIDIA Corporation, 2005-2006.

Status

 Completed.

Version

 Last Modified Date: 11/08/2006
 Author revision: 11

Number

 Unassigned

Dependencies

 WGL_ARB_extensions_string is required.

 This extension interacts with WGL_ARB_make_cu rrent_read.

 This extension interacts with WGL_ARB_pbuffer .

 This extension interacts with GL_EXT_framebuf fer_object

Overview

 On systems with more than one GPU it is desir able to be able to
 select which GPU(s) in the system become the target for OpenGL
 rendering commands. This extension introduces the concept of a GPU
 affinity mask. OpenGL rendering commands are directed to the
 GPU(s) specified by the affinity mask. GPU af finity is immutable.
 Once set, it cannot be changed.

 This extension also introduces the concept ca lled affinity-DC. An
 affinity-DC is a device context with a GPU af finity mask embedded
 in it. This restricts the device context to o nly allow OpenGL
 commands to be sent to the GPU(s) in the affi nity mask.

 Handles for the GPUs present in a system are enumerated with the
 command wglEnumGpusNV. An affinity-DC is crea ted by calling
 wglCreateAffinityDCNV. This function takes a list of GPU handles,
 which make up the affinity mask. An affinity- DC can also

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_NV_gpu_affinity

NVIDIA Proprietary 98

 indirectly be created by obtaining a DC from a pBuffer handle, by
 calling wglGetPbufferDC, which in turn was cr eated from an
 affinity-DC by calling wglCreatePbuffer.

 A context created from an affinity DC will in herit the GPU
 affinity mask from the DC. Once inherited, it cannot be changed.
 Such a context is called an affinity-context. This restricts the
 affinity-context to only allow OpenGL command s to be sent to those
 GPU(s) in its affinity mask. Once created, th is context can be
 used in two ways:

 1. Make the affinity-context current to an affinity-DC. This
 will only succeed if the context's affin ity mask is the same
 as the affinity mask in the DC. There is no window
 associated with an affinity DC, therefor e this is a way to
 achieve off-screen rendering to an OpenG L context. This can
 either be rendering to a pBuffer, or an application created
 framebuffer object. In the former case, the affinity-mask of
 the pBuffer DC, which is obtained from a pBuffer handle,
 will be the same affinity-mask as the DC used to created the
 pBuffer handle. In the latter case, the default framebuffer
 object will be incomplete because there is no window-system
 created framebuffer. Therefore, the appl ication will have to
 create and bind a framebuffer object as the target for
 rendering.
 2. Make the affinity-context current to a D C obtained from a
 window. Rendering only happens to the su b rectangles(s) of
 the window that overlap the parts of the desktop that are
 displayed by the GPU(s) in the affinity mask of the context.

 Sharing OpenGL objects between affinity-conte xts, by calling
 wglShareLists, will only succeed if the conte xts have identical
 affinity masks.

 It is not possible to make a regular context (one without an
 affinity mask) current to an affinity-DC. Thi s would mean a way
 for a context to inherit affinity information , which makes the
 context affinity mutable, which is counter to the premise of this
 extension.

New Procedures, Functions and Structures:

 DECLARE_HANDLE(HGPUNV);

 typedef struct _GPU_DEVICE {
 DWORD cb;
 CHAR DeviceName[32];
 CHAR DeviceString[128];
 DWORD Flags;
 RECT rcVirtualScreen;
 } GPU_DEVICE, *PGPU_DEVICE;

 BOOL wglEnumGpusNV(UINT iGpuIndex,
 HGPUNV *phGpu);

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 99

 BOOL wglEnumGpuDevicesNV(HGPUNV hGpu,
 UINT iDeviceIndex,
 PGPU_DEVICE lpGpuDev ice);

 HDC wglCreateAffinityDCNV(const HGPUNV *phGpu List);

 BOOL wglEnumGpusFromAffinityDCNV(HDC hAffinit yDC,
 UINT iGpuInd ex,
 HGPUNV *hGpu);

 BOOL wglDeleteDCNV(HDC hdc);

New Tokens

 New error codes set by wglShareLists, wglMake Current and
 wglMakeContextCurrentARB:

 ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV 0x20D 0

 New error codes set by wglMakeCurrent and
 wglMakeContextCurrentARB:

 ERROR_MISSING_AFFINITY_MASK_NV 0x20D 1

Additions to the WGL Specification

 GPU Affinity

 To query handles for all GPUs in a system cal l:

 BOOL wglEnumGpusNV(UINT iGpuIndex, HGPUN V *phGPU);

 <iGpuIndex> is an index value that specifies a GPU.

 <phGPU> upon return will contain a handle for GPU number
 <iGpuIndex>. The first GPU will be index 0.

 By looping over wglEnumGpusNV and incrementin g <iGpuIndex>,
 starting at index 0, all GPU handles can be q ueried. If the
 function succeeds, the return value is TRUE. If the function
 fails, the return value is FALSE and <phGPU> will be unmodified.
 The function fails if <iGpuIndex> is greater or equal than the
 number of GPUs supported by the system.

 To retrieve information about the display dev ices supported by a
 GPU call:

 BOOL wglEnumGpuDevicesNV(HGPUNV hGpu,
 UINT iDeviceInde x,
 PGPU_DEVICE lpGp uDevice);

 <hGpu> is a handle to the GPU to query.

 <iDeviceIndex> is an index value that specifi es a display device,
 supported by <hGpu>, to query. The first disp lay device will be
 index 0.

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_NV_gpu_affinity

NVIDIA Proprietary 100

 <lpGpuDevice> pointer to a GPU_DEVICE structu re which will receive
 information about the display device at index <iDeviceIndex>.

 By looping over the function wglEnumGpuDevice sNV and incrementing
 <iDeviceIndex>, starting at index 0, all disp lay devices can be
 queried. If the function succeeds, the return value is TRUE. If
 the function fails, the return value is FALSE and <lpGpuDevice>
 will be unmodified. The function fails if <iD eviceIndex> is
 greater or equal than the number of display d evices supported by
 <hGpu>.

 The GPU_DEVICE structure has the following me mbers:

 typedef struct _GPU_DEVICE {
 DWORD cb;
 CHAR DeviceName[32];
 CHAR DeviceString[128];
 DWORD Flags;
 RECT rcVirtualScreen;
 } GPU_DEVICE, *PGPU_DEVICE;

 <cb> is the size of the GPU_DEVICE structure. Before calling
 wglEnumGpuDevicesNV, set <cb> to the size, in bytes, of
 GPU_DEVICE.

 <DeviceName> is a string identifying the disp lay device name. This
 will be the same string as stored in the <Dev iceName> field of the
 DISPLAY_DEVICE structure, which is filled in by
 EnumDisplayDevices.

 <DeviceString> is a string describing the GPU for this display
 device. It is the same string as stored in th e <DeviceString>
 field in the DISPLAY_DEVICE structure that is filled in by
 EnumDisplayDevices when it describes a displa y adapter (and not a
 monitor).

 <Flags> Indicates the state of the display de vice. It can be a
 combination of any of the following:

 DISPLAY_DEVICE_ATTACHED_TO_DESKTOP If se t, the device is part
 of the desktop.

 DISPLAY_DEVICE_PRIMARY_DEVICE If se t, the primary
 desktop is on this device. Only one device in the system can have
 this set.

 <rcVirtualScreen> specifies the display devic e rectangle, in
 virtual screen coordinates. The value of <rcV irtualScreen> is
 undefined if the device is not part of the de sktop, i.e.
 DISPLAY_DEVICE_ATTACHED_TO_DESKTOP is not set in the <Flags>
 field.

 The function wglEnumGpuDevicesNV can fail for a variety of
 reasons. Call GetLastError to get extended er ror information.
 Possible errors are as follows:

 ERROR_INVALID_HANDLE <hGpu> is not a valid GPU handle.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 101

 A new type of DC, called an affinity-DC, can be used to direct
 OpenGL commands to a specific GPU or set of G PUs. An affinity-DC
 is a device context with a GPU affinity mask embedded in it. This
 restricts the device context to only allow Op enGL commands to be
 sent to the GPU(s) in the affinity mask. An a ffinity-DC can be
 created directly, using the new function wglC reateAffinityDCNV and
 also indirectly by calling wglCreatePbufferAR B followed by
 wglGetPbufferDCARB. To create an affinity-DC directly call:

 HDC wglCreateAffinityDCNV(const HGPUNV * phGpuList);

 <phGpuList> is a NULL-terminated array of GPU handles to which the
 affinity-DC will be restricted. If an element in the list is not a
 GPU handle, as returned by wglEnumGpusNV, it is silently ignored.

 If successful, the function returns an affini ty-DC. If it fails,
 NULL will be returned.

 To create an affinity-DC indirectly, first ca ll
 wglCreatePbufferARB passing it an affinity-DC . Next, pass the
 handle returned by the call to wglCreatePbuff erARB to
 wglGetPbufferDCARB to create an affinity-DC f or the pBuffer. The
 DC returned by wglGetPbufferDCARB will have t he same affinity mask
 as the DC used to create the pBuffer handle b y calling
 wglCreatePbufferARB.

 An affinity-DC has no window associated with it, and therefore it
 has no default window-system-provided framebu ffer. (Note: This is
 terminology borrowed from EXT_framebuffer_obj ect). A context made
 current to an affinity-DC will only be able t o render into an
 application-created framebuffer object, or a pBuffer. The default
 window-system-framebuffer object, when bound, will be incomplete.
 The EXT_framebuffer_object specification defi nes what 'incomplete'
 means exactly.

 A context created from an affinity-DC, by cal ling wglCreateContext
 and passing it an affinity-DC, is called an a ffinity-context. This
 context will inherit the affinity mask from t he DC. This affinity-
 mask cannot be changed. The affinity mask res tricts the affinity-
 context to only allow OpenGL commands to be s ent to those GPU(s)
 in its affinity mask.

 The function wglCreateAffinityDCNV can fail f or a variety of
 reasons. Call GetLastError to get extended er ror information.
 Possible errors are as follows:

 ERROR_NO_SYSTEM_RESOURCES Insufficient res ources exist to
 create the affinity-DC.

 ERROR_INVALID_DATA <phGpuList> is e mpty or contains no
 valid GPU handles

 An affinity-context can only be made current to an affinity-DC
 with the same affinity-mask, otherwise wglMak eCurrent and
 wglMakeContextCurrentARB will fail and return FALSE. In the case

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_NV_gpu_affinity

NVIDIA Proprietary 102

 of wglMakeContextCurrentARB, the affinity mas ks of both the "read"
 and "draw" DCs need to match the affinity-mas k of the context.

 If a context that has no affinity mask is mad e current to an
 affinity-DC, wglMakeCurrent and wglMakeContex tCurrentARB will fail
 and return FALSE. In the case of wglMakeConte xtCurrentARB it will
 fail if either the "read" or "draw" DC is an affinity-DC.

 If an affinity-context is made current to a D C obtained from a
 window, by calling GetDC, then rendering will only happen to the
 subrectangle(s) of the window that overlap th e parts of the
 desktop that are displayed by the GPU(s) in t he affinity-mask of
 the context. Note that a DC obtained from a w indow does not have
 an affinity mask set.

 The following error codes are added to the de scription of
 wglMakeCurrent and wglMakeContextCurrentARB:

 ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV The d evice context(s) and
 rendering context have non-matching affinity masks.

 ERROR_MISSING_AFFINITY_MASK_NV The r endering context does
 not have an affinity mask set.

 Sharing OpenGL objects between affinity-conte xts, by calling
 wglShareLists, will only succeed if the conte xts have identical
 affinity masks. The following error codes are added to the
 description of wglShareLists:

 ERROR_INCOMPATIBLE_AFFINITY_MASKS_NV The c ontexts have non-
 matching affinity masks.

 To delete an affinity-DC call:

 BOOL wglDeleteDCNV(HDC hdc)

 <hdc> Is a handle of an affinity-DC to delete .

 If the function succeeds, TRUE is returned. I f the function fails,
 FALSE is returned. Call GetLastError to get e xtended error
 information. Possible errors are as follows:

 ERROR_INVALID_HANDLE <hdc> is not a handle of an affinity-DC.

 To retrieve a list of GPU handles that make u p the affinity-mask
 of an affinity-DC, call:

 BOOL wglEnumGpusFromAffinityDCNV(HDC hAf finityDC,
 UINT iGp uIndex,
 HGPUNV * phGpu);

 <hAffinityDC> is a handle of the affinity-DC to query.

 <iGpuIndex> is an index value of the GPU hand le in the affinity
 mask of <hAffinityDC> to query.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 103

 <phGpu> upon return will contain a handle for GPU number
 <iGpuIndex>. The first GPU will be at index 0 .

 By looping over wglEnumGpusFromAffinityDCNV a nd incrementing
 <iGpuIndex>, starting at index 0, all GPU han dles associated with
 the DC can be queried. If the function succee ds, the return value
 is TRUE. If the function fails, the return va lue is FALSE and
 <phGPU> will be unmodified. The function fail s if <iGpuIndex> is
 greater or equal than the number of GPUs asso ciated with
 <hAffinityDC>.

 Call GetLastError to get extended error infor mation. Possible
 errors are as follows:

 ERROR_INVALID_HANDLE <hAffinityDC> is not a handle of an
 affinity-DC.

Interactions with WGL_ARB_make_current_read

 If the make current read extension is not sup ported, all language
 referring to wglMakeContextCurrentARB is dele ted.

Interactions with WGL_ARB_pbuffer

 If the pbuffer extension is not supported, al l language referring
 to puffers, wglGetPbuferDC and wglCreatePbuff er are deleted.

Interactions with GL_EXT_framebuffer_object

 If the framebuffer object extension is not su pported, all language
 referring to framebuffer objects is deleted.

Usage examples

 // Example 1 - Normal window creation, DC setup and
 // context creation.

 PIXELFORMATDESCRIPTOR pfd;
 int pf;
 HDC hDC;
 HGLRC hRC;
 HWND hWnd;

 hWnd = CreateWindow(...);
 hDC = GetDC(hWnd);

 memset(&pfd, 0, sizeof(pfd));
 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_S UPPORT_OPENGL;
 pfd.iPixelType = PFD_TYPE_RGBA;
 pfd.cColorBits = 32;

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_NV_gpu_affinity

NVIDIA Proprietary 104

 // Note, for ease of code reading no error ch ecking is done.
 pf = ChoosePixelFormat(hDC, &pfd);
 SetPixelFormat(hDC, pf, &pfd);
 DescribePixelFormat(hDC, pf, sizeof(PIXELFORM ATDESCRIPTOR),
 &pfd);

 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 // Example 2 - Offscreen rendering to one GPU using a FBO
 // It is assumed that a context already has b een created (and
 // possibly destroyed) and was used to query the proc addresses
 // of the WGL affinity related entrypoints.

 #define MAX_GPU 4

 PIXELFORMATDESCRIPTOR pfd;
 int pf, gpuIndex = 0;
 HGPUNV hGPU[MAX_GPU];
 HGPUNV GpuMask[MAX_GPU];
 HDC affDC;
 HGLRC affRC;

 // Get a list of the first MAX_GPU GPUs in th e system
 while ((gpuIndex < MAX_GPU) && wglEnumGpusNV(gpuIndex,
 &hGPU[gpuIndex])) {
 gpuIndex++;
 }

 // Create an affinity-DC associated with the first GPU
 GpuMask[0] = hGPU[0];
 GpuMask[1] = NULL;

 affDC = wglCreateAffinityDCNV(GpuMask);

 // Set a pixelformat on the affinity-DC
 pf = ChoosePixelFormat(affDC, &pfd);
 SetPixelFormat(affDC, pf, &pfd);
 DescribePixelFormat(affDC, pf, sizeof(PIXELFO RMATDESCRIPTOR),
 &pfd);

 affRC = wglCreateContext(affDC);
 wglMakeCurrent(affDC, affRC);

 // Make a previously created FBO current so w e have something
 // to render into. Since there's no window, t he default system
 // created FBO is incomplete.
 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fb);

 <Now draw>

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 105

 // Example 3 - Offscreen rendering to one GPU using a pBuffer
 // It is assumed that a context already has b een created (and
 // possibly destroyed) and was used to query the proc addresses
 // of the WGL affinity and pbuffer related en trypoints.

 #define MAX_GPU 4

 int gpuIndex = 0;
 HGPUNV hGPU[MAX_GPU];
 HGPUNV GpuMask[MAX_GPU];
 HDC affDC, pBufferAffDC;
 HGLRC affRC;

 // Get a list of the first MAX_GPU GPUs in th e system
 while ((gpuIndex < MAX_GPU) && wglEnumGpusNV(gpuIndex,
 &hGPU[gpuIndex])) {
 gpuIndex++;
 }

 // Create an affinity-DC associated with the first GPU
 GpuMask[0] = hGPU[0];
 GpuMask[1] = NULL;

 affDC = wglCreateAffinityDCNV(GpuMask);

 // Setup desired pixelformat attributes for t he pbuffer
 // including WGL_DRAW_TO_PBUFFER_ARB.
 HPBUFFERARB handle;
 int width = 512, height = 512, forma t = 0;
 unsigned int nformats;

 int attribList[] =
 {
 WGL_RED_BITS_ARB, 8,
 WGL_GREEN_BITS_ARB, 8,
 WGL_BLUE_BITS_ARB, 8,
 WGL_ALPHA_BITS_ARB, 8,
 WGL_STENCIL_BITS_ARB, 0,
 WGL_DEPTH_BITS_ARB, 0,
 WGL_DRAW_TO_PBUFFER_ARB, true,
 0,
 };

 wglChoosePixelFormatARB(affDC, attribList, NU LL, 1,
 &format, &nformats);

 handle = wglCreatePbufferARB(affDC, format, w idth, height, NULL);

 // pbufferAffDC will have the same affinity-m ask as affDC.
 pBufferAffDC = wglGetPbufferDCARB(handle);

 // affRC will inherit the affinity-mask from pBufferAffDC.
 affRC = wglCreateContext(pBufferAffDC);
 wglMakeCurrent(pBufferAffDC, affRC);

 <Now draw into the pBuffer>

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_NV_gpu_affinity

NVIDIA Proprietary 106

Issues

 1) Do we really need an affinity-DC, or can w e do with just an
 affinity context?

 DISCUSSION: If affinity is not part of a DC, a new function will
 need to be defined to create an affinity-cont ext or set an
 affinity-mask for an existing context. Passin g NULL as a HDC to
 wglMakeCurrent will then be one way to create an off-screen
 rendering context, where rendering will have to go to a FBO. If
 the HDC passed to wglMakeCurrent is one for a pBuffer, the
 affinity-mask in the affinity-context dictate s where rendering is
 direct to. This might mean pBuffer resources will have to move, or
 alternatively, duplicated across all GPUs in a system. That is
 counter to the whole idea of this extension. Thus an affinity-DC
 is definitely needed for a pBuffer.

 Thus the question reduces to, do we need an a ffinity-DC in order
 to facilitate off-screen rendering to a FBO? Having an affinity-DC
 has the following advantages:

 a) It is consistent with making current to a pBuffer or window,
 that does need a DC.
 b) passing NULL as a HDC to wglMakeCurrent mi ght be filtered out
 by the MS layer on future OSes.
 c) The driver implementation might benefit fr om knowing at DC
 creation time what the affinity-mask is, rath er than at
 wglMakeCurrent time.

 RESOLUTION: Yes.

 2) Should the GPU affinity concept also apply to D3D and/or GDI
 commands?

 DISCUSSION: It could be especially desirable to apply the
 affinity concept to D3D. However, D3D is suff iciently different
 that this extension doesn't directly apply.

 RESOLUTION: That falls outside this extension .

 3) Should setting a pixelformat on an affinit y-DC be required?

 DISCUSSION: Setting a pixelformat on an affin ity-DC is not
 strictly necessary if the application does of f-screen rendering to
 a FBO. However, the Microsoft layer of wglMak eCurrent requires
 that the pixelformats of the DC and RC passed to it match. This
 becomes an issue when making an affinity-cont ext current to a DC
 obtained from a window. The DC has a pixelfor mat set by the
 application, and therefore the affinity-conte xt needs to have the
 same pixelformat. This means the affinity-DC, that the affinity-
 context is created from, needs to have the sa me pixelformat set.

 RESOLUTION: YES. Setting a pixelformat on an affinity-DC is
 required.

WGL_NV_gpu_affinity NVIDIA OpenGL Extension Specifications for CineFX 3.0

 NVIDIA Proprietary 107

 4) Is it allowed to make an affinity-context current to an
 affinity-DC where the mask of the context spa ns more GPUs than the
 mask in the DC?

 5) Is it allowed to make an affinity-context current to an
 affinity-DC where the mask of the context spa ns less GPUs than the
 mask in the DC?

 DISCUSSION: Issues 4 and 5 are lumped togethe r in this discussion.
 For example, is this scenario something we wa nt to support: An
 application wants to share objects across two contexts and have
 these two contexts each render to a different GPU. It can do this
 by creating two affinity-DCs. One has an affi nity mask for the
 first GPU, the other for the second GPU. It a lso creates two
 affinity-contexts that both have an affinity- mask that spans both
 GPUs. Making one context current to the first affinity-DC will
 lock the context to the GPU in the mask of th at affinity-DC. Make
 another context current to the second affinit y-DC will lock that
 context to the second GPU. This is effectivel y what issue 4) is
 asking. . The simplest solution is to disallo w these cases, and
 that is how the spec is currently written.

 RESOLUTION: NO, we will not allow this to kee p the spec simple. If
 necessary, these restrictions can always be l ifted later.

 6) What should an application do if the enum functions that return
 BOOL fail for another reason than they are do ne? For example, if
 they fail because they run out of memory?

 RESOLUTION: An application will have to call GetLastError to find
 out the reason of failure.

 7) The "Enum" API commands in this extension assume that the list
 of things being enumerated does not change dy namically. Is that
 reasonable?

 DISCUSSION: Display devices, and possibly GPU s in the future, can
 be changed dynamically and/or hotplugged. Thu s yes, this is a
 potential issue. Existing OS functionality li ke EnumDisplayDevices
 and even wglMakeCurrent will suffer from this too. In the latter
 case, the application could make a context cu rrent to a device
 that was removed from the system. A possible solution would be
 some sort of notification mechanism to the ap plication. Possibly
 combined with being able to snapshot state fi rst, then enumerate
 that snapshot. That snapshot of state might i mmediately become
 invalid, but at least the enumeration will wa lk a consistent list.

 RESOLUTION: This is a wider issue than just t his specification,
 and not currently addressed.

 8) How do I transfer data efficiently between two affinity-
 contexts?

 DISCUSSION: It is desired for an application to render in one
 context, and transfer the result of that rend ering to another
 context. These two contexts can be on differe nt GPUs. If they are,

NVIDIA OpenGL Extension Specifcations for CineFX 3.0 WGL_NV_gpu_affinity

NVIDIA Proprietary 108

 how does the application efficiently transfer this data? Currently
 OpenGL provides two mechanisms, neither of wh ich are ideal:

 1) The application can do a ReadPixels follow ed by a DrawPixels /
 TexImage call. This involves transfer through host memory, which
 can be slow.

 2) The application can share objects among th e two contexts using
 wglShareLists(). This will work, but is count er to the premise of
 this extension where each GPU has its own set of resources, not
 shared with another GPU.

 RESOLUTION: This is a hole which needs to be addressed separately.

Revision history

 None

	Table of NVIDIA OpenGL Extension Support
	ARB_texture_non_power_of_two
	ATI_draw_buffers
	ATI_texture_float
	ATI_texture_mirror_once
	EXT_blend_equation_separate
	EXT_texture_mirror_clamp
	EXT_texture_sRGB
	NV_fragment_program2
	NV_vertex_program3
	WGL_ATI_pixel_format_float
	WGL_NV_gpu_affinity

