
 NVIDIA OpenGL Extension Specifications

1

NVIDIA OpenGL
Extension Specifications for the

CineFX Architecture (NV3x)

November 13, 2006

 NVIDIA OpenGL Extension Specifications

 2

Copyright NVIDIA Corporation, 1999-2006.

This document is protected by copyright and contain s information
proprietary to NVIDIA Corporation.

This document is an abridged collection of OpenGL e xtension
specifications limited to those extensions for new OpenGL functionality
introduced by the GeForce 8 Series (G8 x) architecture. See the
unabridged document “NVIDIA OpenGL Extension Specif ications” for a
complete collection.

NVIDIA-specific OpenGL extension specifications, po ssibly more up-to-
date, can be found at:

 http://developer.nvidia.com/view.asp?IO=nvidia_ope ngl_specs

Other OpenGL extension specifications can be found at:

 http://oss.sgi.com/projects/ogl-sample/registry/

Corrections? Email opengl-specs@nvidia.com

http://developer.nvidia.com/view.asp?IO=nvidia_opengl_specs
http://oss.sgi.com/projects/ogl-sample/registry/

NVIDIA OpenGL Extension Specifications

 3

Table of Contents

Table of NVIDIA OpenGL Extension Support 4
ARB_fragment_program............................... 9
ARB_fragment_program_shadow........................ 100
EXT_blend_func_separate............................ 107
EXT_depth_bounds_test.............................. 110
EXT_stencil_two_side............................... 116
NV_float_buffer.................................... 125
NV_fragment_program................................ 144
NV_fragment_program_option......................... 225
NV_half_float...................................... 255
NV_primitive_restart............................... 267
NV_texture_expand_normal........................... 272
NV_vertex_program2................................. 276
NV_vertex_program2_option.......................... 342

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 4

Table of NVIDIA OpenGL Extension Support

Extension NV1x NV2 x NV3x NV4x G8x Notes
ARB_color_buffer_float R75 X
ARB_depth_texture R25+ X X X 1.4 functionality
ARB_draw_buffers R75 X 2.0 functionality
ARB_fragment_program X X X
ARB_fragment_program_shadow R55 X X
ARB_fragment_shader R60 X X 2.0 functionality, GL SL
ARB_half_float_pixel R75 R75 X
ARB_imaging R10 X X X X 1.2 imaging subset
ARB_multisample X X X X 1.3 functionality
ARB_multitexture X X X X X 1.3 functionality
ARB_occlusion_query R50 R50 R50 X 1.5 functionalit y
ARB_pixel_buffer_object R80 R80 R80 R80 X 2.1 funct ionality
ARB_point_parameters R35 R35 X X X 1.4 functionalit y
ARB_point_sprite R50 R50 R50 X X
ARB_shader_objects R60 R60 R60 X X 2.0 functionalit y, GLSL
ARB_shading_language_100 R60 R60 R60 X X 2.0 functi onality, GLSL
ARB_shadow R25+ X X X 1.4 functionality
ARB_texture_border_clamp X X X X 1.3 functionality
ARB_texture_compression X X X X X 1.3 functionality
ARB_texture_cube_map X X X X X 1.3 functionality
ARB_texture_env_add X X X X X 1.3 functionality
ARB_texture_env_combine X X X X X 1.3 functionality
ARB_texture_env_crossbar see explanation
ARB_texture_env_dot3 X X X X X 1.3 functionality
ARB_texture_mirrored_repeat R40 R40 X X X 1.4, same as IBM
ARB_texture_non_power_of_two X X 2.0 functionali ty
ARB_texture_rectangle R62 R60+ R62 R62 X
ARB_transpose_matrix X X X X X 1.3 functionality
ARB_vertex_buffer_object R65 R65 R65 R65 X 1.5 func tionality
ARB_vertex_program R40+ R40+ X X X
ARB_vertex_shader R60 R60 R60 R60 X 2.0 functionali ty, GLSL
ARB_window_pos R40 R40 X X X 1.4 functionality
ATI_draw_buffers X X
ATI_texture_float X X
ATI_texture_mirror_once X X use EXT_texture_mirr or_clamp
EXT_abgr X X X X X
EXT_bgra X X X X X 1.2 functionality
EXT_bindable_uniform X GLSL extension
EXT_blend_color X X X X X 1.4 functionality
EXT_blend_equation_separate R60 X 2.0 functional ity
EXT_blend_func_separate X X X 1.4 functionality
EXT_blend_minmax X X X X X 1.4 functionality
EXT_blend_subtract X X X X X 1.4 functionality
EXT_Cg_shader R60 R60 R60 R60 X Cg through GLSL API
EXT_clip_volume_hint R20+
EXT_compiled_vertex_array X X X X X
EXT_depth_bounds_test R50 X X NV35, NV36, NV4x in hw only
EXT_draw_buffers2 X ARB_draw_buffers extension
EXT_draw_instanced X
EXT_draw_range_elements R20 R20 X X X 1.2 functiona lity
EXT_fog_coord X X X X X 1.4 functionality
EXT_framebuffer_blit R95 R95 X
EXT_framebuffer_multisample R95 R95 X
EXT_framebuffer_object R75 R75 X
EXT_framebuffer_sRGB X
EXT_geometry_shader4 X GLSL extension
EXT_gpu_program_parameters R95 R95 R95 R95 X
EXT_gpu_shader4 X GLSL extension
EXT_multi_draw_arrays R25 R25 X X X 1.4 functionali ty
EXT_packed_depth_stencil R80 X X
EXT_packed_float X
EXT_packed_pixels X X X X X 1.2 functionality

NVIDIA OpenGL Extension Specifications Table of NVIDIA OpenGL Extension Support

 5

Extension NV1x NV2 x NV3x NV4x G8x Notes
EXT_paletted_texture X X X no NV4x hw support
EXT_pixel_buffer_object R55 R55 R55 X X 2.1 functio nality
EXT_point_parameters X X X X X 1.4 functionality
EXT_rescale_normal X X X X X 1.2 functionality
EXT_secondary_color X X X X X 1.4 functionality
EXT_separate_specular_color X X X X X 1.2 functiona lity
EXT_shadow_funcs R25+ X X X 1.5 functionality
EXT_shared_texture_palette X X X no NV4x hw suppo rt
EXT_stencil_clear_tag R70 NV44 only
EXT_stencil_two_side X X X 2.0 functionality
EXT_stencil_wrap X X X X X 1.4 functionality
EXT_texture3D sw X X X X 1.2 functionality
EXT_texture_array X
EXT_texture_buffer_object X
EXT_texture_compression_latc X
EXT_texture_compression_rgtc X
EXT_texture_compression_s3tc X X X X X
EXT_texture_cube_map X X X X X 1.2 functionality
EXT_texture_edge_clamp X X X X X 1.2 functionality
EXT_texture_env_add X X X X X 1.3 functionality
EXT_texture_env_combine X X X X X 1.3 functionality
EXT_texture_env_dot3 X X X X X 1.3 functionality
EXT_texture_filter_anisotropic X X X X X
EXT_texture_integer X
EXT_texture_lod X X X X X 1.2 functionality; no spe c
EXT_texture_lod_bias X X X X X 1.4 functionality
EXT_texture_mirror_clamp X X
EXT_texture_object X X X X X 1.1 functionality
EXT_texture_shared_exponent X
EXT_texture_sRGB X X 2.1 functionality
EXT_timer_query R80 R80 R80 X
EXT_vertex_array X X X X X 1.1 functionality
EXT_vertex_weighting X X Discontinued
KTX_buffer_region X X X X X
HP_occlusion_test R25 X X X
IBM_rasterpos_clip R40+ R40+ R40+ X X
IBM_texture_mirrored_repeat X X X X X 1.4 functiona lity
KTX_buffer_region X X X X X use ARB_buffer_region
NV_blend_square X X X X X 1.4 functionality
NV_copy_depth_to_color R20 X X X
NV_depth_buffer_float X
NV_depth_clamp R25+ X X X
NV_evaluators R10 X Discontinued
NV_fence X X X X X
NV_float_buffer X X X
NV_fog_distance X X X X X
NV_fragment_program X X X
NV_fragment_program_option R55 X X NV_fp features for ARB_fp
NV_fragment_program2 X X
NV_fragment_program4 X See NV_gpu_program4
NV_framebuffer_multisample_coverage Nf Nf X FBO e xtension
NV_geometry_program4 X See NV_gpu_program4
NV_gpu_program4 X
NV_half_float X X X
NV_light_max_exponent X X X X X
NV_multisample_filter_hint X X X X
NV_occlusion_query R25 X X X
NV_packed_depth_stencil R10+ R10+ X X X
NV_parameter_buffer_object X See NV_gpu_program 4
NV_pixel_data_range R40 R40 X X X
NV_point_sprite R35+ R25 X X X
NV_primitive_restart X X X
NV_register_combiners X X X X X
NV_register_combiners2 X X X X

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 6

Extension NV1x NV2 x NV3x NV4x G8x Notes
NV_texgen_emboss X Discontinued
NV_texgen_reflection X X X X X use 1.3 functionalit y
NV_texture_compression_vtc X X X X
NV_texture_env_combine4 X X X X X
NV_texture_expand_normal X X X
NV_texture_rectangle X X X X X
NV_texture_shader X X X X
NV_texture_shader2 X X X X
NV_texture_shader3 R25 X X X only NV25 and up in H W
NV_transform_feedback X
NV_vertex_array_range X X X X X
NV_vertex_array_range2 R10 R10 X X X
NV_vertex_program R10 X X X X
NV_vertex_program1_1 R25 R25 X X X
NV_vertex_program2 X X X
NV_vertex_program2_option R55 X X
NV_vertex_program3 X X
NV_vertex_program4 X See NV_gpu_program4
S3_s3tc X X X X X no spec; use EXT_t_c_s3tc
SGIS_generate_mipmap R10 X X X X 1.4 functionality
SGIS_multitexture X X use 1.3 version
SGIS_texture_lod X X X X X 1.2 functionality
SGIX_depth_texture X X X X use 1.4 version
SGIX_shadow X X X X use 1.4 version
SUN_slice_accum R50 R50 R50 X X accelerated on NV3x /NV4x
WGL_ARB_buffer_region X X X X X Win32
WGL_ARB_extensions_string X X X X X Win32
WGL_ARB_make_current_read R55 R55 R55 X X
WGL_ARB_multisample X X X X see ARB_multisample
WGL_ARB_pixel_format R10 X X X X Win32
WGL_ARB_pbuffer R10 X X X X Win32
WGL_ARB_render_texture R25 R25 X X X Win32
WGL_ATI_pixel_format_float X X Win32
WGL_EXT_extensions_string X X X X X Win32
WGL_EXT_swap_control X X X X X Win32
WGL_NV_float_buffer X X X Win32, see NV_float_buf fer
WGL_NV_gpu_affinity R95 X Win32 SLI
WGL_NV_render_depth_texture R25 X X X Win32
WGL_NV_render_texture_rectangle R25 R25 X X X Win32
WIN_swap_hint X X X X X Win32, no spec

NVIDIA OpenGL Extension Specifications Table of NVIDIA OpenGL Extension Support

 7

Key for table entries:

X = supported

sw = supported by software rasterization (expect poo r performance)

Nf = Extension advertised but rendering functionality not available

R10 = introduced in the Release 10 OpenGL driver (not supported by earlier
drivers)

R20 = introduced in the Detanator XP (also known as Re lease 20) OpenGL driver
(not supported by earlier drivers)

R20+ = introduced after the Detanator XP (also known as Release 20) OpenGL
driver (not supported by earlier drivers)

R25 = introduced in the GeForce4 launch (also known as Release 25) OpenGL driver
(not supported by earlier drivers)

R25+ = introduced after the GeForce4 launch (also known as Release 25) OpenGL
driver (not supported by earlier drivers)

R35 = post-GeForce4 launch OpenGL driver release (not supported by earlier
drivers)

R40 = Detonator 40 release, August 2002.

R40+ = introduced after the Detanator 40 (also known as Release 40) OpenGL
driver (not supported by earlier drivers)

R50 = Detonator 50 release

R55 = Detonator 55 release

R60 = Detonator 60 release, May 2004

R65 = Release 65

R70 = Release 70

R80 = Release 80

R95 = Release 95

no spec = no suitable specification available

Discontinued = earlier drivers (noted by 25% gray entries) suppo rted this
extension but support for the extension is disconti nued in current and future
drivers

Table of NVIDIA OpenGL Extension Support NVIDIA OpenGL Extension Specifications

 8

Notices:

Emulation: While disabled by default, older GPUs can support e xtensions
supported in hardware by newer GPUs through a proce ss called emulation though
any functionality unsupported by the older GPU must be emulated via software.
For more details see: http://developer.nvidia.com/object/nvemulate.html

Warning: The extension support columns are based on the late st & greatest
NVIDIA driver release (unless otherwise noted). Ch eck your GL_EXTENSIONS string
with glGetString at run-time to determine the speci fic supported extensions for
a particular driver version.

Discontinuation of support: NVIDIA drivers from release 95 no longer support
NV1x- and NV2x-based GPUs.

http://developer.nvidia.com/object/nvemulate.html

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 9

 Name

 ARB_fragment_program

Name Strings

 GL_ARB_fragment_program

IP Status

 Microsoft claims to own intellectual property r elated to this
 extension.

Status

 Complete. Approved by ARB on September 18, 200 2

Version

 Last Modified Date: August 22, 2003
 Revision: 26

Number

 ARB Extension #27

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

 OpenGL 1.3 is required.

 EXT_texture_lod_bias or OpenGL 1.4 is required.

 OpenGL 1.4 affects the definition of this exten sion.

 ARB_vertex_blend and EXT_vertex_weighting affec t the definition of
 this extension.

 ARB_matrix_palette affects the definition of th is extension.

 ARB_transpose_matrix affects the definition of this extension.

 EXT_fog_coord affects the definition of this ex tension.

 EXT_texture_rectangle affects the definition of this extension.

 ARB_shadow interacts with this extension.

 ARB_vertex_program interacts with this extensio n.

 ATI_fragment_shader interacts with this extensi on.

 NV_fragment_program interacts with this extensi on.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 10

Overview

 Unextended OpenGL mandates a certain set of con figurable per-
 fragment computations defining texture applicat ion, texture
 environment, color sum, and fog operations. Se veral extensions have
 added further per-fragment computations to Open GL. For example,
 extensions have defined new texture environment capabilities
 (ARB_texture_env_add, ARB_texture_env_combine, ARB_texture_env_dot3,
 ARB_texture_env_crossbar), per-fragment depth c omparisons
 (ARB_depth_texture, ARB_shadow, ARB_shadow_ambi ent,
 EXT_shadow_funcs), per-fragment lighting (EXT_f ragment_lighting,
 EXT_light_texture), and environment mapped bump mapping
 (ATI_envmap_bumpmap).

 Each such extension adds a small set of relativ ely inflexible per-
 fragment computations.

 This inflexibility is in contrast to the typica l flexibility
 provided by the underlying programmable floatin g point engines
 (whether micro-coded fragment engines, DSPs, or CPUs) that are
 traditionally used to implement OpenGL's textur ing computations.
 The purpose of this extension is to expose to t he OpenGL application
 writer a significant degree of per-fragment pro grammability for
 computing fragment parameters.

 For the purposes of discussing this extension, a fragment program is
 a sequence of floating-point 4-component vector operations that
 determines how a set of program parameters (not specific to an
 individual fragment) and an input set of per-fr agment parameters are
 transformed to a set of per-fragment result par ameters.

 The per-fragment computations for standard Open GL given a particular
 set of texture and fog application modes (along with any state for
 extensions defining per-fragment computations) is, in essence, a
 fragment program. However, the sequence of ope rations is defined
 implicitly by the current OpenGL state settings rather than defined
 explicitly as a sequence of instructions.

 This extension provides an explicit mechanism f or defining fragment
 program instruction sequences for application-d efined fragment
 programs. In order to define such fragment pro grams, this extension
 defines a fragment programming model including a floating-point
 4-component vector instruction set and a relati vely large set of
 floating-point 4-component registers.

 The extension's fragment programming model is d esigned for efficient
 hardware implementation and to support a wide v ariety of fragment
 programs. By design, the entire set of existin g fragment programs
 defined by existing OpenGL per-fragment computa tion extensions can
 be implemented using the extension's fragment p rogramming model.

Issues

 This extension is closely related to ARB_vertex _program, and is in
 sync with revision 36 of that spec. ARB_fragme nt_program will
 continue to track changes made to ARB_vertex_pr ogram.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 11

 (1) Should we provide precision queries?

 RESOLVED: We've decided not to include precis ion queries.
 Implementations are expected to meet or excee d the precision
 guidelines set forth in the core GL spec, sec tion 2.1.1, p. 6,
 as ammended by this extension.

 To summarize section 2.1.1, the maximum repre sentable magnitude of
 colors must be at least 2^10, while the maxim um representable
 magnitude of other floating-point values must be at least 2^32.
 The individual results of floating-point oper ations must be
 accurate to about 1 part in 10^5.

 Here are the reasons why precision queries we re not included:
 1. It is unclear what the queries should be :
 a) min, max, [0,1) granularity
 b) min +, max +, min -, max -, [0,1) gra nularity
 c) IEEE mantissa bits, IEEE exponent bit s
 2. Due to instruction emulation, there is n o way to query the
 actual precision that can be expected. Should the query
 return the best-case or worst-case preci sion?
 3. Implementations may support multiple pre cisions, on a per-
 instruction basis or across the board. How would this be
 exposed?
 4. Current implementations are able to meet the minimum
 requirements specified in the core GL, t hanks to its
 sufficiently loose wording "... so that the individual
 results of floating-point operations are accurate to ABOUT
 1 part in 10^5." (Emphasis added.)
 5. A conformance test can act as watchdog t o ensure
 implementations are not cutting corners on precision.
 6. Adding precision queries would require a new entrypoint.

 See issue 22 regarding reduced-precision mode s.

 (2) Should the LOD biased texture sample be opt ional?

 RESOLVED: TXB support is mandatory. This exp oses useful
 functionality which enables blurring and shar pening effects. It
 will be more useful to entirely override deri vatives (scale
 factor) rather than just biasing the level-of -detail. This would
 be a future extension to fragment programs.

 It should be noted here that the bias introdu ced per-fragment by
 TXB is added to any per-object or per-stage L OD bias. If per-
 fragment LOD bias is not necessary, using the per-object and/or
 per-stage LOD biases may perform better.

 (3) Should we include the ability to bind to th e color matrix? How
 about others? Program matrices?

 RESOLVED: We will not specifically add anythi ng that depends on
 the ARB_imaging subset. So we have not inclu ded matrix bindings
 to the color matrix (or parameter bindings to the color biases,
 etc.). However, we have included matrix bind ing support and
 support for all of the matrices present in AR B_vertex_program.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 12

 (4) Should we include the ability to bind to ju st a texcoord
 attribute's S,T components? (Or just S, or S,T ,P for that matter?)

 RESOLVED: No. Issue #15 below obviates this issue by making the
 texture coordinate usage within a program exp licit, thereby making
 optimizations to reduce the number of interpo lated texture
 coordinates something an implementation can d o at compile time
 instead of having to do it during every textu re target change.

 (5) What other instructions should be added? S hould any be removed?

 RESOLVED: The differences between the ARB_ver tex_program
 instruction set and the ARB_fragment_program instruction set are
 minimal. ARB_fragment_program removes the LO G and EXP rough
 approximation instructions and the ARL addres s register load
 instruction. ARB_fragment_program adds the S IN/COS/SCS
 trigonometric instructions, the LRP linear in terpolation
 instruction, the CMP compare instruction, and the TEX/TXP/TXB/KIL
 texture instructions.

 (6) Should depth output be a program option or a mandatory feature?

 RESOLVED: Depth output capability should be m andatory.

 (6a) How should per-vertex geometric depth clip ping be handled when
 replacing depth in a fragment program?

 RESOLVED: Per-vertex geometric depth clipping should be performed
 by the GL as usual, so no spec change is requ ired. The ideal
 behavior would be to disable near and far cli pping planes when
 replacing depth, but not all implementations can natively support
 disabling individual clip planes.

 (6b) How should depth output from the fragment program be further
 processed before being handed to the per-fragme nt operations?

 RESOLVED: Depth gets clamped by GL to [0,1]. App has access to
 depth range as a bindable parameter if it wan ts to either scale
 and bias its depth to fall within the depth r ange, or to kill
 fragments outside the depth range.

 (7) If a fragment program does not write a colo r value, what should
 be the final color of the fragment ?

 RESOLVED: The final fragment color is undefin ed. Note that it may
 be perfectly reasonable to have a program tha t computes depth
 values but not colors. Fragment colors are o ften irrelevant if
 color writes are disabled (via ColorMask).

 (7a) If a fragment program does not write a dep th value, what should
 be the final depth value of the fragment?

 RESOLVED: "Depth fly-over" (using the convent ional depth produced
 by rasterization) should happen whenever a de pth-replacing program
 is not in use. A depth-replacing program is defined as a program
 that writes to result.depth in at least one i nstruction. The
 presence of a depth declaration alone DOES NO T designate a depth-

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 13

 replacing program. The intention is that a f uture extension
 introducing conditional execution will still consider a program to
 be depth-replacing even if the instruction(s) writing to
 result.depth do(es) not execute.

 Other considered definitions of depth-replaci ng program:
 1. The presence of a depth declaration -OR- the use of
 result.depth as an instruction destinati on anywhere in the
 program designates a depth-replacing pro gram.
 2. Every program is a depth-replacing progr am, but the GL
 initializes the depth output to be the d epth produced by
 rasterization. The app may then overwri te the depth output.
 3. Every program is a depth-replacing progr am, and the app is
 solely responsible for copying the depth input to depth
 output if desired.

 (8) Should relative addressing, like that defin ed in
 ARB_vertex_program, be supported in this spec?

 RESOLVED: No, relative addressing won't be in cluded in this spec.

 (9) Should full-featured operand component swiz zling, like that
 defined in ARB_vertex_program, be supported in this spec?

 RESOLVED: Yes, full swizzling is mandatory.

 (10) Should texture instructions contain specif ic limitations on
 operations that can be performed? For example, should write masks
 or operand component swizzling be disallowed?

 RESOLVED: Texture instructions are specified to be very similar to
 ALU instructions. They have been given 3-let ter names, they allow
 writemasking and saturation (which would be u seful for floating-
 point texture formats), source swizzles and n egates, and the
 ability to use parameters as sources.

 (11) Should we standardize options for stencil or aux data buffer
 outputs?

 RESOLVED: Stencil and aux data buffers will b e saved for a
 possible future extension to fragment program s.

 (12) Should depth output be pulled from the 3rd or 4th component?

 RESOLVED: 3rd component, as the 3rd component is also used for
 depth input from the "fragment.position" attr ibute.

 (13) Which stages are subsumed by fragment prog rams?

 RESOLVED: Texturing, color sum, and fog.

 (14) What should the minimum resource limits be ?

 RESOLVED: 10 attributes, 24 parameters, 4 tex ture indirections,
 48 ALU instructions, 24 texture instructions, and 16 temporaries.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 14

 (15) OpenGL provides a hierarchy of texture ena bles (cube map, 3D,
 2D, 1D). Should the texture sampling instructi ons here override
 that hierarchy and select specific texture targ ets?

 RESOLVED: Yes. This removes a potential pitf all for developers:
 leaving the hierarchy of enables in an undesi red state. It makes
 programs more readable as the intent of the s ample is more
 obvious. Finally, it allows compilers to be more aggressive as
 to which texcoord components are "don't cares " without having to
 recompile programs when fixed-function texena bles change. One
 drawback is that programs cannot be reused fo r both 2D and 3D
 texturing, for example, by simply changing th e texture enables.

 Texture sampling can be specified by instruct ions like

 TEX myTexel, fragment.texcoord[1], texture[2], 3D;

 which would indicate to use texture coordinat e set number 1 to
 sample from the texture object bound to the T EXTURE_3D target on
 texture image unit 2.

 Each texture unit can have only one "active" target. Programs are
 not allowed to reference different texture ta rgets in the same
 texture image unit. In the example above, an y other texture
 instructions using texture image unit 2 must specify the 3D
 texture target.

 Note that every texture image unit always has a texture bound to
 every texture target, whether it is a named t exture object or a
 default texture. However, the texture may no t be complete as
 defined in section 3.8.9 of the core GL spec. See issue 23.

 (16) Should aux texture units be additional uni ts on top of existing
 full-featured texture units, or should this spe c fully deprecate
 "legacy" texture units and only expose texture coordinate sets and
 texture image units?

 Background: Some implementations are able to expose more
 "texture image units" (texture maps and assoc iated parameters)
 than "texture coordinate sets" (current texco ords, texgen, and
 texture matrices). A conventional GL "textur e unit" encompasses
 both a texture image unit and a texture coord inate set as well as
 texture environment state.

 RESOLVED: Yes, deprecate "legacy" texture uni ts. This is a more
 flexible model.

 (17) Should fragment programs affect all fragme nts, or just those
 produced by the rasterization of points, lines, and triangles?

 RESOLVED: Every fragment generated by the GL is subject to
 fragment program mode. This includes point, line, and polygon
 primitives as well as pixel rectangles and bi tmaps.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 15

 (18) Should per-fragment position and fogcoord be bindable as
 fragment attributes?

 RESOLVED: Yes, interpolated fogcoord will mak e per-fragment
 fog application possible, in addition to full fog stage
 subsummation. Interpolated window position, especially depth,
 enables interesting depth-replacing algorithm s.

 (19) What characters should be used to identify individual
 components in swizzle selectors and write masks ?

 RESOLVED: ARB_vertex_program provides "xyzw". This extension
 supports "xyzw" and also provides "rgba" for better readability
 when dealing with RGBA color values. Adding support for special
 identifiers for dealing with texture coordina tes was considered
 and rejected. "strq" could be used to identi fy texture coordinate
 components, but the "r" would conflict with t he "r" from "rgba".
 "stpq" would be another possibility, but coul d be a source of
 confusion.

 (20) Should implementations be required to supp ort all programs that
 fit within the exported limits on the number of resources (e.g.,
 instructions, temporaries) that can be present in a program, even if
 it means falling back to software? Should impl ementations be
 required to reject programs that could never be accelerated?

 RESOLVED: No and no. An implementation is al lowed to fail
 ProgramStringARB due to the program exceeding native resources.
 Note that this failure must be invariant with respect to all other
 OpenGL state. In other words, a program cann ot succeed to load
 with default state, but then fail to load whe n certain GL state
 is altered. However, an implementation is no t required to fail
 when a program would exceed native resources, and is in fact
 encouraged to fallback to a software path. S ee issue 21 for a way
 of determining if this has happened.

 This notable departure from ARB_vertex_progra m was made as an
 accommodation to vendors who could not justif y implementing a
 software fallback path which would be relativ ely slow even
 compared to an ARB_vertex_program software fa llback path.

 Two issues with this decision:
 1. The API limits become hints, and one ca n no longer tell by
 visual inspection whether or not a prog ram will load on
 every implementation.
 2. Program loading will now depend on the optimizer, which may
 vary from release to release of an impl ementation. A
 program that succeeded to load when an ISV first wrote it
 may fail to load in a future driver ver sion, and vice versa.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 16

 (21) How can applications determine if their pr ograms are too large
 to run on the native (likely hardware) implemen tation, and therefore may
 run with reduced performance?

 RESOLVED: The following code snippet uses a n ative resource
 query to guarantee a program is loaded native ly (or not at all):

 GLboolean ProgramStringIsNative(GLenum target , GLenum format,
 GLsizei len, c onst GLvoid *string)
 {
 GLint errorPos, isNative;
 glProgramStringARB(target, format, len, s tring);
 glGetIntegerv(GL_PROGRAM_ERROR_POSITION_A RB, &errorPos);
 glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB ,
 GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB, & isNative);
 if ((errorPos == -1) && (isNative == 1))
 return GL_TRUE;
 else
 return GL_FALSE;
 }

 Note that a program that successfully loads, and falls under the
 native limits, is still not guaranteed to exe cute in hardware.
 Lack of other resources (e.g., texture memory) or the use of other
 OpenGL features not natively supported by the implementation
 (e.g., textures with borders) may also preven t the program from
 executing in hardware.

 (22) Should we provide applications with a meth od to control the
 level of precision used to carry out fragment p rogram computations?

 RESOLVED: Yes. The GL implementation ultima tely has control over
 the level of precision used for fragment prog ram computations.
 However, the "ARB_precision_hint_fastest" and
 "ARB_precision_hint_nicest" program options a llow applications to
 guide the GL implementation in its precision selection. The
 "fastest" option encourages the GL to minimiz e execution time,
 with possibly reduced precision. The "nicest " option encourages
 the GL to maximize precision, with possibly i ncreased execution
 time.

 If the precision hint is not "fastest", GL im plementations should
 perform low-precision operations only if they could not
 appreciably affect the final results of the p rogram. Regardless
 of the precision hint, GL implementations are discouraged from
 reducing the precision of computations so agg ressively that final
 rendering results could be seriously compromi sed due to overflow
 of intermediate values or insufficient number of mantissa bits.

 Some implementations may provide only a singl e level of precision,
 in which case these hints may have no effect. However, all
 implementations will accept these options, ev en if they are
 silently ignored.

 More explicit control of precision, such as p rovided in "C" with
 data types such as "short", "int", "float", " double", may also be

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 17

 a desirable feature, but this level of detail is left to a
 separate extension.

 (23) What is the result of a sample from an inc omplete texture?
 The definition of texture completeness can be f ound in section 3.8.9
 of the core GL spec.

 RESOLVED: The result of a sample from an inco mplete texture is the
 constant vector (0,0,0,1). The benefit of de fining the result to
 be a constant is that broken apps are guarant eed to generate
 unexpected (black) results from their bad sam ples. If we were to
 leave the result undefined, some implementati ons may generate
 expected results some of the time, for exampl e when magfiltering,
 giving app developers a false sense of correc tness in their apps.

 (24) What is a texture indirection, and how is it counted?

 RESOLVED: On some implementations, fragment programs that have
 complex texture dependency chains may not be supported, even if
 the instruction counts fit within the export ed limits. A texture
 dependency occurs when a texture instruction depends on the
 result of a previous instruction (ALU or tex ture) for use as its
 texture coordinate.

 A texture indirection can be considered a no de in the texture
 dependency chain. Each node contains a set of texture
 instructions which execute in parallel, foll owed by a sequence of
 ALU instructions. A dependent texture instr uction is one that
 uses a temporary as an input coordinate rath er than an attribute
 or a parameter. A program with no dependent texture instructions
 (or no texture instructions at all) will hav e a single node in
 its texture dependency chain, and thus a sin gle indirection.

 API-level texture indirections are counted b y keeping track of
 which temporaries are read and written withi n the current node in
 the texture dependency chain. When a textur e instruction is
 encountered, an indirection may be added and a new node started
 if either of the following two conditions is true:

 1. the source coordinate of the texture in struction is a
 temporary that has already been written in the current node,
 either by a previous texture instructio n or ALU instruction;

 2. the result of the texture instruction i s a temporary that
 has already been read or written in the current node by an
 ALU instruction.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 18

 The texture instruction provoking a new indi rection and all
 subsequent instructions are added to the new node. This process
 is repeated until the end of the program is encountered. Below
 is some pseudo-code to describe this:

 indirections = 1;
 tempsOutput = 0;
 aluTemps = 0;
 while (i = getInst())
 {
 if (i.type == TEX)
 {
 if (((i.input.type == TEMP) &&
 (tempsOutput & (1 << i.input.ind ex))) ||
 ((i.op != KILL) && (i.output.type == TEMP) &&
 (aluTemps & (1 << i.output.index))))
 {
 indirections++;
 tempsOutput = 0;
 aluTemps = 0;
 }
 } else {
 if (i.input1.type == TEMP)
 aluTemps |= (1 << i.input1.index);
 if (i.input2 && i.input2.type == TEMP)
 aluTemps |= (1 << i.input2.index);
 if (i.input3 && i.input3.type == TEMP)
 aluTemps |= (1 << i.input3.index);
 if (i.output.type == TEMP)
 aluTemps |= (1 << i.output.index);
 }
 if ((i.op != KILL) && (i.output.type == TEMP))
 tempsOutput |= (1 << i.output.index);
 }

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 19

 For example, the following programs would ha ve 1, 2, and 3
 texture indirections, respectively:

 !!ARBfp1.0
 # No texture instructions, but always 1 in direction
 MOV result.color, fragment.color;
 END

 !!ARBfp1.0
 # A simple dependent texture instruction, 2 indirections
 TEMP myColor;
 MUL myColor, fragment.texcoord[0], fragmen t.texcoord[1];
 TEX result.color, myColor, texture[0], 2D;
 END

 !!ARBfp1.0
 # A more complex example with 3 indirectio ns
 TEMP myColor1, myColor2;
 TEX myColor1, fragment.texcoord[0], textur e[0], 2D;
 MUL myColor1, myColor1, myColor1;
 TEX myColor2, fragment.texcoord[1], textur e[1], 2D;
 # so far we still only have 1 indirection
 TEX myColor2, myColor1, texture[2], 2D; # This is #2
 TEX result.color, myColor2, texture[3], 2D ; # And #3
 END

 Note that writemasks for the temporaries wri tten and swizzles
 for the temporaries read are not taken into consideration when
 counting indirections. This makes hand-coun ting of indirections
 by a developer an easier task.

 Native texture indirections may be counted d ifferently by an
 implementation to reflect its exact restrict ions, to reflect the
 true dependencies taking into account writem asks and swizzles,
 and to reflect optimizations such as instruc tion reordering.

 For implementations with no restrictions on the number of
 indirections, the maximum indirection count will equal the
 maximum texture instruction count.

 (25) How can a program reduce SCS's scalar oper and to the
 fundamental period [-PI,PI]?

 RESOLVED: Unlike the individual SIN and COS instructions, SCS
 requires that its argument be reduced ahead of time to the
 fundamental period. The reason SCS doesn't perform this
 operation automatically is that it may make unnecessary redundant
 work for programs that already have their op erand in the correct
 range. Other programs that do need to reduc e their operand
 simply need to add a block of code before th e SCS instruction:

 PARAM myParams = { 0.5, -3.14159, 6.28319, 0.15915 };
 MAD myOperand.x, myOperand.x, myParams.w, myParams.x; # a = (a/(2*PI))+0.5
 FRC myOperand.x, myOperand.x; # a = frac(a)
 MAD myOperand.x, myOperand.x, myParams.z, myParams.y # a = (a*2*PI)-PI
 ...
 SCS myResult, myOperand.x;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 20

 (26) Is depth output from a fragment program gu aranteed to be
 invariant with respect to depth produced via co nventional
 rasterization?

 RESOLVED: No. The floating-point representa tion of depth values
 output from a fragment program may lead to th e output of depth
 with less precision than the depth output by convention GL
 rasterization. For example, a floating-point representation with
 16 bits of mantissa will certainly produce de pth with lesser
 precision than that of conventional rasteriza tion used in
 conjunction with a 24-bit depth buffer, where all values are
 maintained as integers. Be aware of this whe n mixing conventional
 GL rendering with fragment program rendering.

 (27) How can conventional GL fog application be achieved within a
 fragment program?

 RESOLVED: Program options have been introduce d that allow a
 program to request fog to be applied to the f inal clamped fragment
 color before being passed along to the antial iasing application
 stage. This makes it easy for:
 1. developers to request conventional fog b ehavior
 2. implementations with dedicated fog hardw are to use it
 3. implementations without dedicated fog ha rdware, so they need
 not track fog state after compilation, a nd constantly
 recompile when fog state changes.

 The three mandatory options are ARB_fog_exp, ARB_fog_exp2, and
 ARB_fog_linear. As these options are mutuall y exclusive by
 nature, specifying more than one is not usefu l. If more than one
 is specified, the last one encountered in the <optionSequence>
 will be the one to actually modify the execut ion environment.

 (28) Why have all of the enums, entrypoints, GL X protocol, and spec
 language shared with ARB_vertex_program been re produced here?

 RESOLVED: The two extensions are independent of one another, in
 so far as an implementation need not support both of them in order
 to support one of them. Everything needed to implement or make
 use of ARB_fragment_program is present in thi s spec without the
 need to refer to the ARB_vertex_program spec. When and if these
 two extensions are incorporated into the core OpenGL, the
 significant overlap of the two will be collap sed into a single
 instance of the shared parts.

 (29) How might an implementation implement the fog options? To What
 does the extra resource consumption described i n 3.11.4.5.1
 correspond?

 RESOLVED: The following code snippets reflect possible
 implementations of the fog options. While an implementation may
 use other instruction sequences to achieve th e same result, or may
 use external fog hardware if available, all i mplementations must
 enforce the API-level resource consumption as described: 2 params,
 1 temp, 1 attribute, and 3, 4, or 2 instructi ons. "finalColor" in
 the examples below is the color that would ot herwise be

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 21

 "result.color", with components clamped to th e range [0,1].
 "result.color.a" is assumed to have already b een written, as fog
 blending does not affect the alpha component.

 EXP:
 # Exponential fog
 # f = exp(-d*z)
 #
 PARAM p = {DENSITY/LN(2), NOT USED, NOT USE D, NOT USED};
 PARAM fogColor = state.fog.color;
 TEMP fogFactor;
 ATTRIB fogCoord = fragment.fogcoord.x;
 MUL fogFactor.x, p.x, fogCoord.x;
 EX2_SAT fogFactor.x, -fogFactor.x;
 LRP result.color.rgb, fogFactor.x, finalCol or, fogColor;

 EXP2:
 #
 # 2nd-order Exponential fog
 # f = exp(-(d*z)^2)
 #
 PARAM p = {DENSITY/SQRT(LN(2)), NOT USED, N OT USED, NOT USED};
 PARAM fogColor = state.fog.color;
 TEMP fogFactor;
 ATTRIB fogCoord = fragment.fogcoord.x;
 MUL fogFactor.x, p.x, fogCoord.x;
 MUL fogFactor.x, fogFactor.x, fogFactor.x;
 EX2_SAT fogFactor.x, -fogFactor.x;
 LRP result.color.rgb, fogFactor.x, finalCol or, fogColor;

 LINEAR:
 #
 # Linear fog
 # f = (end-z)/(end-start)
 #
 PARAM p = {-1/(END-START), END/(END-START), NOT USED, NOT USED};
 PARAM fogColor = state.fog.color;
 TEMP fogFactor;
 ATTRIB fogCoord = fragment.fogcoord.x;
 MAD_SAT fogFactor.x, p.x, fogCoord.x, p.y;
 LRP result.color.rgb, fogFactor.x, finalCol or, fogColor;

 (30) Why is the order of operands for the CMP i nstruction different
 than the order used by another popular graphics API?

 RESOLVED: No other graphics API was used as a basis for the
 design of ARB_fragment_program except ARB_ver tex_program, which
 did not have a CMP instruction. This indepen dent evolution
 naturally led to differences in minor details such as order of
 operands. This discrepancy is noted here to help developers
 familiar with the other API to avoid this pot ential pitfall.

 (31) Is depth offset applied to the window z va lue before it enters
 the fragment program?

 RESOLVED: As in the base OpenGL specification , the depth offset
 generated by polygon offset is added during p olygon rasterization.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 22

 The depth value provided to shaders in the fr agment.position.z
 attribute already includes polygon offset, if enabled. If the
 depth value is replaced by a fragment program , the polygon offset
 value will NOT be recomputed and added back a fter fragment program
 execution.

 NOTE: This is probably not desirable for frag ment programs that
 modify depth values since the partials used t o generate the offset
 may not match the partials of the computed de pth value.

New Procedures and Functions

 void ProgramStringARB(enum target, enum format, sizei len,
 const void *string);

 void BindProgramARB(enum target, uint program);

 void DeleteProgramsARB(sizei n, const uint *pro grams);

 void GenProgramsARB(sizei n, uint *programs);

 void ProgramEnvParameter4dARB(enum target, uint index,
 double x, double y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, uin t index,
 const double *pa rams);
 void ProgramEnvParameter4fARB(enum target, uint index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, uin t index,
 const float *par ams);

 void ProgramLocalParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramLocalParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, u int index,
 const float *p arams);

 void GetProgramEnvParameterdvARB(enum target, u int index,
 double *params);
 void GetProgramEnvParameterfvARB(enum target, u int index,
 float *params) ;

 void GetProgramLocalParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramLocalParameterfvARB(enum target, uint index,
 float *param s);

 void GetProgramivARB(enum target, enum pname, i nt *params);

 void GetProgramStringARB(enum target, enum pnam e, void *string);

 boolean IsProgramARB(uint program);

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 23

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled,
 by the <pname> parameter of GetBooleanv, GetInt egerv, GetFloatv,
 and GetDoublev, and by the <target> parameter o f ProgramStringARB,
 BindProgramARB, ProgramEnvParameter4[df][v]ARB,
 ProgramLocalParameter4[df][v]ARB, GetProgramEnv Parameter[df]vARB,
 GetProgramLocalParameter[df]vARB, GetProgramivA RB and
 GetProgramStringARB.

 FRAGMENT_PROGRAM_ARB 0x8804

 Accepted by the <format> parameter of ProgramSt ringARB:

 PROGRAM_FORMAT_ASCII_ARB 0x8875

 Accepted by the <pname> parameter of GetProgram ivARB:

 PROGRAM_LENGTH_ARB 0x8627
 PROGRAM_FORMAT_ARB 0x8876
 PROGRAM_BINDING_ARB 0x8677
 PROGRAM_INSTRUCTIONS_ARB 0x88A0
 MAX_PROGRAM_INSTRUCTIONS_ARB 0x88A1
 PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A2
 MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB 0x88A3
 PROGRAM_TEMPORARIES_ARB 0x88A4
 MAX_PROGRAM_TEMPORARIES_ARB 0x88A5
 PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A6
 MAX_PROGRAM_NATIVE_TEMPORARIES_ARB 0x88A7
 PROGRAM_PARAMETERS_ARB 0x88A8
 MAX_PROGRAM_PARAMETERS_ARB 0x88A9
 PROGRAM_NATIVE_PARAMETERS_ARB 0x88AA
 MAX_PROGRAM_NATIVE_PARAMETERS_ARB 0x88AB
 PROGRAM_ATTRIBS_ARB 0x88AC
 MAX_PROGRAM_ATTRIBS_ARB 0x88AD
 PROGRAM_NATIVE_ATTRIBS_ARB 0x88AE
 MAX_PROGRAM_NATIVE_ATTRIBS_ARB 0x88AF
 MAX_PROGRAM_LOCAL_PARAMETERS_ARB 0x88B4
 MAX_PROGRAM_ENV_PARAMETERS_ARB 0x88B5
 PROGRAM_UNDER_NATIVE_LIMITS_ARB 0x88B6
 PROGRAM_ALU_INSTRUCTIONS_ARB 0x8805
 PROGRAM_TEX_INSTRUCTIONS_ARB 0x8806
 PROGRAM_TEX_INDIRECTIONS_ARB 0x8807
 PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x8808
 PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x8809
 PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x880A
 MAX_PROGRAM_ALU_INSTRUCTIONS_ARB 0x880B
 MAX_PROGRAM_TEX_INSTRUCTIONS_ARB 0x880C
 MAX_PROGRAM_TEX_INDIRECTIONS_ARB 0x880D
 MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB 0x880E
 MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB 0x880F
 MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB 0x8810

 Accepted by the <pname> parameter of GetProgram StringARB:

 PROGRAM_STRING_ARB 0x8628

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 24

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PROGRAM_ERROR_POSITION_ARB 0x864B
 CURRENT_MATRIX_ARB 0x8641
 TRANSPOSE_CURRENT_MATRIX_ARB 0x88B7
 CURRENT_MATRIX_STACK_DEPTH_ARB 0x8640
 MAX_PROGRAM_MATRICES_ARB 0x862F
 MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB 0x862E

 MAX_TEXTURE_COORDS_ARB 0x8871
 MAX_TEXTURE_IMAGE_UNITS_ARB 0x8872

 Accepted by the <name> parameter of GetString:

 PROGRAM_ERROR_STRING_ARB 0x8874

 Accepted by the <mode> parameter of MatrixMode:

 MATRIX0_ARB 0x88C0
 MATRIX1_ARB 0x88C1
 MATRIX2_ARB 0x88C2
 MATRIX3_ARB 0x88C3
 MATRIX4_ARB 0x88C4
 MATRIX5_ARB 0x88C5
 MATRIX6_ARB 0x88C6
 MATRIX7_ARB 0x88C7
 MATRIX8_ARB 0x88C8
 MATRIX9_ARB 0x88C9
 MATRIX10_ARB 0x88CA
 MATRIX11_ARB 0x88CB
 MATRIX12_ARB 0x88CC
 MATRIX13_ARB 0x88CD
 MATRIX14_ARB 0x88CE
 MATRIX15_ARB 0x88CF
 MATRIX16_ARB 0x88D0
 MATRIX17_ARB 0x88D1
 MATRIX18_ARB 0x88D2
 MATRIX19_ARB 0x88D3
 MATRIX20_ARB 0x88D4
 MATRIX21_ARB 0x88D5
 MATRIX22_ARB 0x88D6
 MATRIX23_ARB 0x88D7
 MATRIX24_ARB 0x88D8
 MATRIX25_ARB 0x88D9
 MATRIX26_ARB 0x88DA
 MATRIX27_ARB 0x88DB
 MATRIX28_ARB 0x88DC
 MATRIX29_ARB 0x88DD
 MATRIX30_ARB 0x88DE
 MATRIX31_ARB 0x88DF

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 25

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL
Operation)

 Modify Section 2.1.1, Floating-Point Computatio n (p. 6)

 (modify first paragraph, p. 6) ... The maximum representable
 magnitude of a floating-point number used to re present position,
 normal, or texture coordinates must be at least 2^32; the maximum
 representable magnitude for colors must be at l east 2^10. ...

 Modify Section 2.7, Vertex Specification (p. 19)

 (modify second paragraph, p. 20) Implementation s support more than
 one set of texture coordinates. The commands

 void MultiTexCoord{1234}{sifd}(enum texture, T coords);
 void MultiTexCoord{1234}{sifd}v(enum texture, T coords);

 take the coordinate set to be modified as the < texture> parameter.
 <texture> is a symbolic constant of the form TE XTUREi, indicating
 that texture coordinate set i is to be modified . The constants obey
 TEXTUREi = TEXTURE0 + i (i is in the range 0 to k-1, where k is the
 implementation-dependent number of texture unit s defined by
 MAX_TEXTURE_COORDS_ARB).

 Modify Section 2.8, Vertex Arrays (p. 21)

 (modify first paragraph, p. 21) ... The client may specify up to 5
 plus the value of MAX_TEXTURE_COORDS_ARB arrays : one each to store
 vertex coordinates...

 (modify first paragraph, p. 23) The command

 void ClientActiveTexture(enum texture);

 is used to select the vertex array client state parameters to be
 modified by the TexCoordPointer command and the array affected by
 EnableClientState and DisableClientState with p arameter
 TEXTURE_COORD_ARRAY. This command sets the cli ent state variable
 CLIENT_ACTIVE_TEXTURE. Each texture coordinate set has a client
 state vector which is selected when this comman d is invoked. This
 state vector includes the vertex array state. This call also
 selects the texture coordinate set state used f or queries of client
 state.

 (modify first paragraph, p. 28) If the number o f supported texture
 coordinate sets (the value of MAX_TEXTURE_COORD S_ARB) is k, ...

 Modify Section 2.10.2, Matrices (p. 31)

 (modify first paragraph, p. 31) The projection matrix and model-view
 matrix are set and modified with a variety of c ommands. The
 affected matrix is determined by the current ma trix mode. The
 current matrix mode is set with

 void MatrixMode(enum mode);

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 26

 which takes one of the pre-defined constants TE XTURE, MODELVIEW,
 COLOR, PROJECTION, or MATRIX<i>_ARB as the argu ment. In the case of
 MATRIX<i>_ARB, <i> is an integer between 0 and <n>-1 indicating one
 of <n> program matrices where <n> is the value of the implementation
 defined constant MAX_PROGRAM_MATRICES_ARB. Suc h program matrices
 are described in section 3.11.7. TEXTURE is de scribed later in
 section 2.10.2, and COLOR is described in secti on 3.6.3. If the
 current matrix mode is MODELVIEW, then matrix o perations apply to
 the model-view matrix; if PROJECTION, then they apply to the
 projection matrix.

 (modify first paragraph, p. 34) For each textur e coordinate set, a
 4x4 matrix is applied to the corresponding text ure coordinates...

 (modify first and second paragraphs, p. 35) The command

 void ActiveTexture(enum texture);

 specifies the active texture unit selector, ACT IVE_TEXTURE. Each
 texture unit contains up to two distinct sub-un its: a texture
 coordinate processing unit (consisting of a tex ture matrix stack and
 texture coordinate generation state) and a text ure image unit
 (consisting of all the texture state defined in Section 3.8). In
 implementations with a different number of supp orted texture
 coordinate sets and texture image units, some t exture units may
 consist of only one of the two sub-units.

 The active texture unit selector specifies the texture coordinate
 set accessed by commands involving texture coor dinate processing.
 Such commands include those accessing the curre nt matrix stack (if
 MATRIX_MODE is TEXTURE), TexGen (section 2.10.4), Enable/Disable (if
 any texture coordinate generation enum is selec ted), as well as
 queries of the current texture coordinates and current raster
 texture coordinates. If the texture coordinate set number
 corresponding to the current value of ACTIVE_TE XTURE is greater than
 or equal to the implementation-dependent consta nt
 MAX_TEXTURE_COORDS_ARB, the error INVALID_OPERA TION is generated by
 any such command.

 The active texture unit selector also selects t he texture image unit
 accessed by commands involving texture image pr ocessing (section
 3.8). Such commands include all variants of Te xEnv, TexParameter,
 and TexImage commands, BindTexture, Enable/Disa ble for any texture
 target (e.g., TEXTURE_2D), and queries of all s uch state. If the
 texture image unit number corresponding to the current value of
 ACTIVE_TEXTURE is greater than or equal to the implementation-
 dependent constant MAX_TEXTURE_IMAGE_UNITS_ARB, the error
 INVALID_OPERATION is generated by any such comm and.

 ActiveTexture generates the error INVALID_ENUM if an invalid
 <texture> is specified. <texture> is a symboli c constant of the
 form TEXTUREi, indicating that texture unit i i s to be modified.
 The constants obey TEXTUREi = TEXTURE0 + i (i i s in the range 0 to
 k-1, where k is the larger of the MAX_TEXTURE_C OORDS_ARB and
 MAX_TEXTURE_IMAGE_UNITS_ARB). For compatibilit y with old OpenGL
 specifications, the implementation-dependent co nstant
 MAX_TEXTURE_UNITS specifies the number of conve ntional texture units

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 27

 supported by the implementation. Its value mus t be no larger than
 the minimum of MAX_TEXTURE_COORDS_ARB and
 MAX_TEXTURE_IMAGE_UNITS_ARB.

 (modify last paragraph, p. 35) The state requir ed to implement
 transformations consists of a <n>-value integer indicating the
 current matrix mode (where <n> is 4 + the numbe r of supported
 texture and program matrices), a stack of at le ast two 4x4 matrices
 for each of COLOR, PROJECTION, and TEXTURE with associated stack
 pointers, <n> stacks (where <n> is at least 8) of at least one 4x4
 matrix for each MATRIX<i>_ARB with associated s tack pointers, and a
 stack of at least 32 4x4 matrices with an assoc iated stack pointer
 for MODELVIEW. Initially, there is only one ma trix on each stack,
 and all matrices are set to the identity. The initial matrix mode
 is MODELVIEW. The initial value of ACTIVE_TEXT URE is TEXTURE0.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Chapter 3, Introduction (p. 58)

 (modify first paragraph, p. 58) ... Figure 3.1 diagrams the
 rasterization process. The color value assigne d to a fragment is
 initially determined by the rasterization opera tions (sections 3.3
 through 3.7) and modified by either the executi on of the texturing,
 color sum, and fog operations as defined in sec tions 3.8, 3.9, and
 3.10, or of a fragment program defined in secti on 3.11. The final
 depth value is initially determined by the rast erization operations
 and may be modified or replaced by a fragment p rogram.

 (modify Figure 3.1)

 _ +---------------+ FRAGMENT_PRO GRAM_ARB
 /|| Point | enabl e
 / | Rasterization |\ |
 / +---------------+ \ V o-------------+
 From / +---------------+ \ |
 Primitive ---> | Line |---+++--->o o |
 Assembly \ | Rasterization | / || | |
 \ +---------------+ / || | |
 \ +---------------+/ || +----- +-----+ +----+-----+
 \|| Polygon | || | Text uring | | Fragment |
 - | Rasterization | / | +----- +-----+ | Program |
 +---------------+ / | | +----+-----+
 +---------------+ / | +----- +-----+ |
 | Pixel |/ | | Colo r Sum | |
 DrawPixels --> | Rectangle | / +----- +-----+ |
 | Rasterization | / | V
 +---------------+ / +----- +-----+
 +---------------+ / | F og |---> Fragments
 Bitmap ----> | Bitmap |/ +----- ------+
 | Rasterization |
 +---------------+

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 28

 Modify Section 3.3, Points (p. 63)

 (modify first and second paragraphs, p. 64) All fragments produced
 in rasterizing a non-antialiased point are assi gned the same
 associated data, which are those of the vertex corresponding to the
 point. (delete reference to divide by q)

 If antialiasing is enabled, then ... The data associated with each
 fragment are otherwise the data associated with the point being
 rasterized. (delete reference to divide by q)

 Modify Section 3.4.1, Basic Line Segment Raster ization (p. 66)

 (modify first paragraph, p. 68) ... (Note that t=0 at p_a and t=1 at
 p_b). The value of an associated datum f from the fragment center,
 whether it be R, G, B, or A (in RGBA mode) or a color index (in
 color index mode) or the s, t, r, or q texture coordinate or the
 clip w coordinate (the depth value, window z, m ust be found using
 equation 3.3, below), is found as

 f = (1-t)*(f_a/w_a) + t*(f_b/w_b) (3.2)

 (1-t)*(1/w_a) + t*(1/w_b)

 where f_a and f_b are the data associated with the starting and
 ending endpoints of the segment, respectively; w_a and w_b are the
 clip w coordinates of the starting and ending e ndpoints of the
 segments, respectively. Note that linear inter polation would use

 f = (1-t)*f_a + t*f_b. (3.3)

 ... A GL implementation may choose to approxima te equation 3.2 with
 3.3, but this will normally lead to inacceptabl e distortion effects
 when interpolating texture coordinates or clip w coordinates.

 Modify Section 3.5.1, Basic Polygon Rasterizati on (p. 73)

 (modify third and fourth paragraphs, p. 74) Den ote a datum at p_a,
 p_b, or p_c as f_a, f_b, or f_c, respectively. Then the value f of
 a datum at a fragment produced by rasterizing a triangle is given by

 f = a*(f_a/w_a) + b*(f_b/w_b) + c*(f_c/w_c) (3.4)

 a*(1/w_a) + b*(1/w_b) + c*(1/w_c)

 where w_a, w_b, and w_c are the clip w coordina tes of p_a, p_b, and
 p_c, respectively. a, b, and c are the barycen tric coordinates of
 the fragment for which the data are produced. a, b, and c must
 correspond precisely to the ... at the fragment 's center.

 Just as with line segment rasterization, equati on 3.4 may be
 approximated by

 f = a*f_a + b*f_b + c*f_c;

 this may yield ... for texture coordinates or c lip w coordinates.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 29

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 91)

 (modify third paragraph, p. 103) A fragment ari sing from a group ...
 the color and texture coordinates are given by those associated with
 the current raster position. (delete reference to divide by q)
 Groups arising from DrawPixels...

 Modify Section 3.7, Bitmaps (p. 113)

 (modify third paragraph, p. 114) Otherwise, a r ectangular array ...
 The associated data for each fragment are those associated with the
 current raster position. (delete reference to divide by q) Once
 the fragments have been produced ...

 Modify Section 3.8, Texturing (p. 115)

 (add new paragraphs before first paragraph, p. 115) Texture
 coordinate sets are mapped to RGBA colors for a pplication to
 primitives in one of two modes. The first mode , described in this
 and subsequent sections, is GL's conventional m ultitexture pipeline,
 describing texture environment and texture appl ication. The second
 mode, referred to as fragment program mode and described in section
 3.11, applies textures, color sum, and fog as s pecified in an
 application-supplied fragment program.

 The fragment program mode is enabled and disabl ed using the generic
 Enable and Disable commands, respectively, with the symbolic
 constant FRAGMENT_PROGRAM_ARB. The required st ate is one bit
 indicating whether the fragment program mode is enabled or disabled.
 In the initial state, the fragment program mode is disabled. When
 fragment program mode is enabled, texturing, co lor sum, and fog
 application stages are ignored and a general pu rpose program is
 executed instead.

 (modify first and second paragraph, p. 115) Con ventional texturing
 is employed when fragment program mode is disab led. Texturing maps
 ... color of an image at the location indicated by a fragment's
 texture coordinates to modify the fragment's pr imary RGBA color.
 Texturing does not affect the secondary color.

 An implementation may support texturing using m ore than one image at
 a time. In this case the fragment carries mult iple sets of texture
 coordinates which are used to index ...

 (add paragraph before 1st paragraph, p. 116) Ex cept when in fragment
 program mode (section 3.11), the (s,t,r) textur e coordinates used
 for texturing are the values s/q, t/q, and r/q, respectively, where
 s, t, r, and q are the texture coordinates asso ciated with the
 fragment. When in fragment program mode, the (s,t,r) texture
 coordinates are specified by the program. If q is less than or
 equal to zero, the results of texturing are und efined.

 Modify Section 3.8.7, Texture Minification (p. 135)

 (add new paragraph after first paragraph, p. 13 7) When fragment
 program mode is enabled, the derivatives of the coordinates may be
 ill-defined or non-existent. As a result, the implementation is

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 30

 free to approximate these derivatives with such techniques as
 differencing. The only requirement is that tex ture samples be
 equivalent across the two modes. In other word s, the texture sample
 chosen for a fragment of a primitive must be in variant between
 fragment program mode and conventional mode sub ject to the rules
 set forth in Appendix A, Invariance.

 Modify Section 3.8.13, Texture Application (p. 149)

 (modify fourth paragraph, p. 152) Texturing is enabled and disabled
 individually for each texture unit. If texturi ng is disabled for
 one of the units, then the fragment resulting f rom the previous unit
 is passed unaltered to the following unit. Ind ividual texture units
 beyond those specified by MAX_TEXTURE_UNITS may be incomplete and
 are always treated as disabled.

 Insert a new Section 3.11, (p. 154), between ex isting sections 3.10
 and 3.11. Renumber 3.11, Antialiasing Applicat ion, to 3.12.

 3.11 Fragment Programs

 The conventional GL texturing model described i n section 3.8 is a
 configurable but essentially hard-wired sequenc e of per-fragment
 computations based on a canonical set of per-fr agment parameters
 and texturing-related state such as texture ima ges, texture
 parameters, and texture environment parameters. The general success
 and utility of the conventional GL texturing mo del reflects its
 basic correspondence to the typical texturing r equirements of 3D
 applications.

 However when the conventional GL texturing mode l is not sufficient,
 the fragment program mode provides a substantia lly more flexible
 model for generating fragment colors. The frag ment program mode
 permits applications to define their own fragme nt programs.

 A fragment program is a character string that s pecifies a sequence
 of operations to perform. Fragment program ins tructions are
 typically 4-component vector operations that op erate on per-fragment
 attributes and program parameters. Fragment pr ograms execute on a
 per-fragment basis and operate on each fragment completely
 independently from any other fragments. Fragme nt programs execute a
 finite fixed sequence of instructions with no b ranching or looping.
 Fragment programs execute without data hazards so results computed
 in one instruction can be used immediately afte rwards. The result
 of a fragment program is a set of fragment resu lt registers that
 becomes the color used by antialiasing applicat ion and/or a depth
 value used in place of the interpolated depth v alue generated by
 conventional rasterization.

 In fragment program mode, the color sum is subs umed by the fragment
 program. An application desiring the primary a nd secondary colors
 to be summed must explicitly include this opera tion in its program.

 Fragment programs are defined to operate only i n RGBA mode. The
 results of fragment program execution are undef ined if the GL is in
 color index mode.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 31

 3.11.1 Program Objects

 The GL provides one or more program targets, ea ch identifying a
 portion of the GL that can be controlled throug h application-
 specified programs. The program target for fra gment programs is
 FRAGMENT_PROGRAM_ARB. Each program target has an associated program
 object, called the current program object. Eac h program target also
 has a default program object, which is initiall y the current program
 object.

 Each program object has an associated program s tring. The command

 ProgramStringARB(enum target, enum format, si zei len,
 const void *string);

 updates the program string for the current prog ram object for
 <target>. <format> describes the format of the program string,
 which must currently be PROGRAM_FORMAT_ASCII_AR B. <string> is a
 pointer to the array of bytes representing the program string being
 loaded, which need not be null-terminated. The length of the array
 is given by <len>. If <string> is null-termina ted, <len> should not
 include the terminator.

 When a program string is loaded, it is interpre ted according to
 syntactic and semantic rules corresponding to t he program target
 specified by <target>. If a program violates t he syntactic or
 semantic restrictions of the program target, Pr ogramStringARB
 generates the error INVALID_OPERATION. An impl ementation may also
 generate the error INVALID_OPERATION if the pro gram would exceed
 the native resource limits defined in section 6 .1.12. A program
 which fails to load due to exceeding native res ource limits must
 always fail, regardless of any other GL state.

 Additionally, ProgramString will update the pro gram error position
 (PROGRAM_ERROR_POSITION_ARB) and error string
 (PROGRAM_ERROR_STRING_ARB). If a program fails to load, the value
 of the program error position is set to the uby te offset into the
 specified program string indicating where the f irst program error
 was detected. If the program fails to load bec ause of a semantic
 restriction that is not detected until the prog ram is fully
 scanned, the error position is set to the value of <len>. If a
 program loads successfully, the error position is set to the value
 negative one. The implementation-dependent pro gram error string
 contains one or more error or warning messages. If a program loads
 succesfully, the error string may either contai n warning messages or
 be empty.

 Each program object has an associated array of program local
 parameters. The number and type of program loc al parameters is
 target- and implementation-dependent. For frag ment programs,
 program local parameters are four-component flo ating-point vectors.
 The number of vectors is given by the implement ation-dependent
 constant MAX_PROGRAM_LOCAL_PARAMETERS_ARB, whic h must be at least
 24. The commands

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 32

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 update the values of the program local paramete r numbered <index>
 belonging to the program object currently bound to <target>. For
 ProgramLocalParameter4fARB and ProgramLocalPara meter4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>,
 <z>, and <w>, respectively. For ProgramLocalPa rameter4fvARB and
 ProgramLocalParameter4dvARB, the four component s of the parameter
 are updated with the array of four values point ed to by <params>.
 The error INVALID_VALUE is generated if <index> is greater than or
 equal to the number of program local parameters supported by
 <target>.

 Additionally, each program target has an associ ated array of program
 environment parameters. Unlike program local p arameters, program
 environment parameters are shared by all progra m objects of a given
 target. The number and type of program environ ment parameters is
 target- and implementation-dependent. For frag ment programs,
 program environment parameters are four-compone nt floating-point
 vectors. The number of vectors is given by the implementation-
 dependent constant MAX_PROGRAM_ENV_PARAMETERS_A RB, which must be at
 least 24. The commands

 void ProgramEnvParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramEnvParameter4fvARB(enum target, u int index,
 const float *p arams);
 void ProgramEnvParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramEnvParameter4dvARB(enum target, u int index,
 const double * params);

 update the values of the program environment pa rameter numbered
 <index> for the given program target <target>. For
 ProgramEnvParameter4fARB and ProgramEnvParamete r4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>,
 <z>, and <w>, respectively. For ProgramEnvPara meter4fvARB and
 ProgramEnvParameter4dvARB, the four components of the parameter are
 updated with the array of four values pointed t o by <params>. The
 error INVALID_VALUE is generated if <index> is greater than or equal
 to the number of program environment parameters supported by
 <target>.

 Each program target has a default program objec t. Additionally,
 named program objects can be created and operat ed upon. The name
 space for program objects is the positive integ ers and is shared by
 programs of all targets. The name zero is rese rved by the GL.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 33

 A named program object is created by binding an unused program
 object name to a valid program target. The bin ding is effected by
 calling

 BindProgramARB(enum target, uint program);

 with <target> set to the desired program target and <program> set to
 the unused program name. The resulting program object has a program
 target given by <target> and is assigned target -specific default
 values (see section 3.11.8 for fragment program s). BindProgramARB
 may also be used to bind an existing program ob ject to a program
 target. If <program> is zero, the default prog ram object for
 <target> is bound. If <program> is the name of an existing program
 object whose associated program target is <targ et>, the named
 program object is bound. The error INVALID_OPE RATION is generated
 if <program> names an existing program object w hose associated
 program target is anything other than <target>.

 Programs objects are deleted by calling

 void DeleteProgramsARB(sizei n, const uint *p rograms);

 <programs> contains <n> names of programs to be deleted. After a
 program object is deleted, its name is again un used. If a program
 object that is bound to any target is deleted, it is as though
 BindProgramARB is first executed with same targ et and a <program> of
 zero. Unused names in <programs> are silently ignored, as is the
 value zero.

 The command

 void GenProgramsARB(sizei n, uint *programs);

 returns <n> currently unused program names in < programs>. These
 names are marked as used, for the purposes of G enProgramsARB only,
 but objects are created only when they are firs t bound using
 BindProgramARB.

 3.11.2 Fragment Program Grammar and Semantic R estrictions

 Fragment program strings are specified as an ar ray of ASCII
 characters containing the program text. When a fragment program is
 loaded by a call to ProgramStringARB, the progr am string is parsed
 into a set of tokens possibly separated by whit espace. Spaces,
 tabs, newlines, carriage returns, and comments are considered
 whitespace. Comments begin with the character "#" and are
 terminated by a newline, a carriage return, or the end of the
 program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically
 valid sequences for fragment programs. The set of valid tokens can
 be inferred from the grammar. The token "" rep resents an empty
 string and is used to indicate optional rules. A program is invalid
 if it contains any undefined tokens or characte rs.

 A fragment program is required to begin with th e header string
 "!!ARBfp1.0", without any preceding whitespace. This string

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 34

 identifies the subsequent program text as a fra gment program
 (version 1.0) that should be parsed according t o the following
 grammar and semantic rules. Program string par sing begins with the
 character immediately following the header stri ng.

 <program> ::= <optionSequence> <st atementSequence> "END"

 <optionSequence> ::= <optionSequence> <op tion>
 | ""

 <option> ::= "OPTION" <identifier > ";"

 <statementSequence> ::= <statementSequence> <statement>
 | ""

 <statement> ::= <instruction> ";"
 | <namingStatement> "; "

 <instruction> ::= <ALUInstruction>
 | <TexInstruction>

 <ALUInstruction> ::= <VECTORop_instructio n>
 | <SCALARop_instructio n>
 | <BINSCop_instruction >
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZ_instruction>

 <TexInstruction> ::= <SAMPLE_instruction>
 | <KIL_instruction>

 <VECTORop_instruction> ::= <VECTORop> <maskedDs tReg> ","
 <vectorSrcReg>

 <VECTORop> ::= "ABS" | "ABS_SAT"
 | "FLR" | "FLR_SAT"
 | "FRC" | "FRC_SAT"
 | "LIT" | "LIT_SAT"
 | "MOV" | "MOV_SAT"

 <SCALARop_instruction> ::= <SCALARop> <maskedDs tReg> ","
 <scalarSrcReg>

 <SCALARop> ::= "COS" | "COS_SAT"
 | "EX2" | "EX2_SAT"
 | "LG2" | "LG2_SAT"
 | "RCP" | "RCP_SAT"
 | "RSQ" | "RSQ_SAT"
 | "SIN" | "SIN_SAT"
 | "SCS" | "SCS_SAT"

 <BINSCop_instruction> ::= <BINSCop> <maskedDst Reg> ","
 <scalarSrcReg> "," < scalarSrcReg>

 <BINSCop> ::= "POW" | "POW_SAT"

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 35

 <BINop_instruction> ::= <BINop> <maskedDstRe g> ","
 <vectorSrcReg> "," < vectorSrcReg>

 <BINop> ::= "ADD" | "ADD_SAT"
 | "DP3" | "DP3_SAT"
 | "DP4" | "DP4_SAT"
 | "DPH" | "DPH_SAT"
 | "DST" | "DST_SAT"
 | "MAX" | "MAX_SAT"
 | "MIN" | "MIN_SAT"
 | "MUL" | "MUL_SAT"
 | "SGE" | "SGE_SAT"
 | "SLT" | "SLT_SAT"
 | "SUB" | "SUB_SAT"
 | "XPD" | "XPD_SAT"

 <TRIop_instruction> ::= <TRIop> <maskedDstRe g> ","
 <vectorSrcReg> "," < vectorSrcReg> ","
 <vectorSrcReg>

 <TRIop> ::= "CMP" | "CMP_SAT"
 | "LRP" | "LRP_SAT"
 | "MAD" | "MAD_SAT"

 <SWZ_instruction> ::= <SWZop> <maskedDstRe g> ","
 <srcReg> "," <extend edSwizzle>

 <SWZop> ::= "SWZ" | "SWZ_SAT"

 <SAMPLE_instruction> ::= <SAMPLEop> <maskedDs tReg> ","
 <vectorSrcReg> "," < texImageUnit> ","
 <texTarget>

 <SAMPLEop> ::= "TEX" | "TEX_SAT"
 | "TXP" | "TXP_SAT"
 | "TXB" | "TXB_SAT"

 <KIL_instruction> ::= "KIL" <vectorSrcReg>

 <texImageUnit> ::= "texture" <optTexIma geUnitNum>

 <texTarget> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"

 <optTexImageUnitNum> ::= ""
 | "[" <texImageUnitNum > "]"

 <texImageUnitNum> ::= <integer> from 0 to
 MAX_TEXTURE_IMAGE_UN ITS_ARB-1

 <scalarSrcReg> ::= <optionalSign> <srcR eg> <scalarSuffix>

 <vectorSrcReg> ::= <optionalSign> <srcR eg> <optionalSuffix>

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 36

 <maskedDstReg> ::= <dstReg> <optionalMa sk>

 <extendedSwizzle> ::= <xyzwExtendedSwizzle >
 | <rgbaExtendedSwizzle >

 <xyzwExtendedSwizzle> ::= <xyzwExtSwizComp> ", " <xyzwExtSwizComp> ","
 <xyzwExtSwizComp> ", " <xyzwExtSwizComp>

 <rgbaExtendedSwizzle> ::= <rgbaExtSwizComp> ", " <rgbaExtSwizComp> ","
 <rgbaExtSwizComp> ", " <rgbaExtSwizComp>

 <xyzwExtSwizComp> ::= <optionalSign> <xyzw ExtSwizSel>

 <rgbaExtSwizComp> ::= <optionalSign> <rgba ExtSwizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <rgbaExtSwizSel> ::= "0"
 | "1"
 | <rgbaComponent>

 <srcReg> ::= <fragmentAttribReg>
 | <temporaryReg>
 | <progParamReg>

 <dstReg> ::= <temporaryReg>
 | <fragmentResultReg>

 <fragmentAttribReg> ::= <establishedName>
 | <fragAttribBinding>

 <temporaryReg> ::= <establishedName>

 <progParamReg> ::= <progParamSingle>
 | <progParamArray> "[" <progParamArrayAbs> "]"
 | <paramSingleItemUse>

 <progParamSingle> ::= <establishedName>

 <progParamArray> ::= <establishedName>

 <progParamArrayAbs> ::= <integer>

 <fragmentResultReg> ::= <establishedName>
 | <resultBinding>

 <scalarSuffix> ::= "." <component>

 <optionalSuffix> ::= ""
 | "." <component>
 | "." <xyzwComponent> <xyzwComponent>
 <xyzwComponent> <xyzwComponent>
 | "." <rgbaComponent> <rgbaComponent>
 <rgbaComponent> <rgbaComponent>

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 37

 <component> ::= <xyzwComponent>
 | <rgbaComponent>

 <xyzwComponent> ::= "x" | "y" | "z" | "w "

 <rgbaComponent> ::= "r" | "g" | "b" | "a "

 <optionalMask> ::= ""
 | <xyzwMask>
 | <rgbaMask>

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <rgbaMask> ::= "." "r"
 | "." "g"
 | "." "rg"
 | "." "b"
 | "." "rb"
 | "." "gb"
 | "." "rgb"
 | "." "a"
 | "." "ra"
 | "." "ga"
 | "." "rga"
 | "." "ba"
 | "." "rba"
 | "." "gba"
 | "." "rgba"

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establishN ame> "="
 <fragAttribBinding >

 <fragAttribBinding> ::= "fragment" "." <frag AttribItem>

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 38

 <fragAttribItem> ::= "color" <optColorTyp e>
 | "texcoord" <optTexCo ordNum>
 | "fogcoord"
 | "position"

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt>

 <PARAM_singleStmt> ::= "PARAM" <establishNa me> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishNa me> "[" <optArraySize> "]"
 <paramMultipleIn it>

 <optArraySize> ::= ""
 | <integer> from 1 to MAX_PROGRAM_PARAMETERS_ARB
 (maximum number of allowed program
 parameter binding s)

 <paramSingleInit> ::= "=" <paramSingleItem Decl>

 <paramMultipleInit> ::= "=" "{" <paramMultIn itList> "}"

 <paramMultInitList> ::= <paramMultipleItem>
 | <paramMultipleItem> "," <paramMultInitList>

 <paramSingleItemDecl> ::= <stateSingleItem>
 | <programSingleItem>
 | <paramConstDecl>

 <paramSingleItemUse> ::= <stateSingleItem>
 | <programSingleItem>
 | <paramConstUse>

 <paramMultipleItem> ::= <stateMultipleItem>
 | <programMultipleItem >
 | <paramConstDecl>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateMa trixRows>

 <stateSingleItem> ::= "state" "." <stateMa terialItem>
 | "state" "." <stateLi ghtItem>
 | "state" "." <stateLi ghtModelItem>
 | "state" "." <stateLi ghtProdItem>
 | "state" "." <stateTe xEnvItem>
 | "state" "." <stateFo gItem>
 | "state" "." <stateDe pthItem>
 | "state" "." <stateMa trixRow>

 <stateMaterialItem> ::= "material" <optFaceT ype> "." <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 39

 <stateLightItem> ::= "light" "[" <stateLi ghtNumber> "]" "."
 <stateLightPropert y>

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSpo tProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" <stateL ModProperty>

 <stateLModProperty> ::= "." "ambient"
 | <optFaceType> "." "s cenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <sta teLightNumber> "]"
 <optFaceType> "." <stateLProdProperty>

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> from 0 to MAX_LIGHTS-1

 <stateTexEnvItem> ::= "texenv" <optLegacyT exUnitNum> "."
 <stateTexEnvProper ty>

 <stateTexEnvProperty> ::= "color"

 <optLegacyTexUnitNum> ::= ""
 | "[" <legacyTexUnitNu m> "]"

 <legacyTexUnitNum> ::= <integer> from 0 to MAX_TEXTURE_UNITS-1

 <stateFogItem> ::= "fog" "." <stateFogP roperty>

 <stateFogProperty> ::= "color"
 | "params"

 <stateDepthItem> ::= "depth" "." <stateDe pthProperty>

 <stateDepthProperty> ::= "range"

 <stateMatrixRow> ::= <stateMatrixItem> ". " "row" "["
 <stateMatrixRowNu m> "]"

 <stateMatrixRows> ::= <stateMatrixItem> <o ptMatrixRows>

 <optMatrixRows> ::= ""
 | "." "row" "[" <state MatrixRowNum> ".."
 <stateMatrixRowNu m> "]"

 <stateMatrixItem> ::= "matrix" "." <stateM atrixName>
 <stateOptMatModifier >

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 40

 <stateOptMatModifier> ::= ""
 | "." <stateMatModifie r>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixRowNum> ::= <integer> from 0 to 3

 <stateMatrixName> ::= "modelview" <stateOp tModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCoo rdNum>
 | "palette" "[" <state PaletteMatNum> "]"
 | "program" "[" <state ProgramMatNum> "]"

 <stateOptModMatNum> ::= ""
 | "[" <stateModMatNum> "]"

 <stateModMatNum> ::= <integer> from 0 to MAX_VERTEX_UNITS_ARB-1

 <optTexCoordNum> ::= ""
 | "[" <texCoordNum> "] "

 <texCoordNum> ::= <integer> from 0 to MAX_TEXTURE_COORDS_ARB-1

 <statePaletteMatNum> ::= <integer> from 0 to MAX_PALETTE_MATRICES_ARB-1

 <stateProgramMatNum> ::= <integer> from 0 to MAX_PROGRAM_MATRICES_ARB-1

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env"
 "[" <progEnvParamN ums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> ". ." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env"
 "[" <progEnvParamN um> "]"

 <progLocalParams> ::= "program" "." "local "
 "[" <progLocalPara mNums> "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "local "
 "[" <progLocalPara mNum> "]"

 <progEnvParamNum> ::= <integer> from 0 to
 MAX_PROGRAM_ENV_PARA METERS_ARB - 1

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 41

 <progLocalParamNum> ::= <integer> from 0 to
 MAX_PROGRAM_LOCAL_PA RAMETERS_ARB - 1

 <paramConstDecl> ::= <paramConstScalarDec l>
 | <paramConstVector>

 <paramConstUse> ::= <paramConstScalarUse >
 | <paramConstVector>

 <paramConstScalarDecl> ::= <signedFloatConstant >

 <paramConstScalarUse> ::= <floatConstant>

 <paramConstVector> ::= "{" <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> "}"
 | "{" <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> ","
 <signedFloatCons tant> "}"

 <signedFloatConstant> ::= <optionalSign> <floa tConstant>

 <floatConstant> ::= see text

 <optionalSign> ::= ""
 | "-"
 | "+"

 <TEMP_statement> ::= "TEMP" <varNameList>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <OUTPUT_statement> ::= "OUTPUT" <establishN ame> "="
 <resultBinding>

 <resultBinding> ::= "result" "." "color"
 | "result" "." "depth"

 <optFaceType> ::= ""
 | "." "front"
 | "." "back"

 <optColorType> ::= ""
 | "." "primary"
 | "." "secondary"

 <ALIAS_statement> ::= "ALIAS" <establishNa me> "="
 <establishedName>

 <establishName> ::= <identifier>

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 42

 <establishedName> ::= <identifier>

 <identifier> ::= see text

 The <integer> rule matches an integer constant. The integer
 consists of a sequence of one or more digits (" 0" through "9").

 The <floatConstant> rule matches a floating-poi nt constant
 consisting of an integer part, a decimal point, a fraction part, an
 "e" or "E", and an optionally signed integer ex ponent. The integer
 and fraction parts both consist of a sequence o f one or more digits
 ("0" through "9"). Either the integer part or the fraction parts
 (not both) may be missing; either the decimal p oint or the "e" (or
 "E") and the exponent (not both) may be missing .

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z"), digits ("0" thro ugh "9), underscores
 ("_"), or dollar signs ("$"); the first charact er must not be a
 number. Upper and lower case letters are consi dered different
 (names are case-sensitive). The following stri ngs are reserved
 keywords and may not be used as identifiers:

 ABS, ABS_SAT, ADD, ADD_SAT, ALIAS, ATTRIB, CMP, CMP_SAT, COS,
 COS_SAT, DP3, DP3_SAT, DP4, DP4_SAT, DPH, D PH_SAT, DST, DST_SAT,
 END, EX2, EX2_SAT, FLR, FLR_SAT, FRC, FRC_S AT, KIL, LG2,
 LG2_SAT, LIT, LIT_SAT, LRP, LRP_SAT, MAD, M AD_SAT, MAX, MAX_SAT,
 MIN, MIN_SAT, MOV, MOV_SAT, MUL, MUL_SAT, O PTION, OUTPUT, PARAM,
 POW, POW_SAT, RCP, RCP_SAT, RSQ, RSQ_SAT, S IN, SIN_SAT, SCS,
 SCS_SAT, SGE, SGE_SAT, SLT, SLT_SAT, SUB, S UB_SAT, SWZ, SWZ_SAT,
 TEMP, TEX, TEX_SAT, TXB, TXB_SAT, TXP, TXP_ SAT, XPD, XPD_SAT,
 fragment, program, result, state, and textu re.

 The error INVALID_OPERATION is generated if a f ragment program fails
 to load because it is not syntactically correct or for one of the
 semantic restrictions described in the followin g sections.

 A successfully loaded fragment program is parse d into a sequence of
 instructions. Each instruction is identified b y its tokenized name.
 The operation of these instructions when execut ed is defined in
 section 3.11.5.

 A successfully loaded program string replaces t he program string
 previously loaded into the specified program ob ject. If the
 OUT_OF_MEMORY error is generated by ProgramStri ngARB, no change is
 made to the previous contents of the current pr ogram object.

 3.11.3 Fragment Program Variables

 Fragment programs may access a number of differ ent variables during
 their execution. The following sections define the variables that
 can be declared and used by a fragment program.

 Explicit variable declarations allow a fragment program to establish
 a variable name that can be used to refer to a specified resource in
 subsequent instructions. A fragment program wi ll fail to load if it
 declares the same variable name more than once or if it refers to a

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 43

 variable name that has not been previously decl ared in the program
 string.

 Implicit variable declarations allow a fragment program to use the
 name of certain available resources by name.

 3.11.3.1 Fragment Attributes

 Fragment program attribute variables are a set of four-component
 floating-point vectors holding the attributes o f the fragment being
 processed. Fragment attribute variables are re ad-only during
 fragment program execution.

 Fragment attribute variables can be declared ex plicitly using the
 <ATTRIB_statement> grammar rule, or implicitly using the
 <fragAttribBinding> grammar rule in an executab le instruction.

 Each fragment attribute variable is bound to a single item of
 fragment state according to the <fragAttrBindin g> grammar rule. The
 set of GL state that can be bound to a fragment attribute variable
 is given in Table X.1. Fragment attribute vari ables are initialized
 at each fragment program invocation with the cu rrent values of the
 bound state.

 Fragment Attribute Binding Components Under lying State
 -------------------------- ---------- ----- -----------------------
 fragment.color (r,g,b,a) prima ry color
 fragment.color.primary (r,g,b,a) prima ry color
 fragment.color.secondary (r,g,b,a) secon dary color
 fragment.texcoord (s,t,r,q) textu re coordinate, unit 0
 fragment.texcoord[n] (s,t,r,q) textu re coordinate, unit n
 fragment.fogcoord (f,0,0,1) fog d istance/coordinate
 fragment.position (x,y,z,1/w) windo w position

 Table X.1: Fragment Attribute Bindings. The "Components" column
 indicates the mapping of the state in the "Un derlying State"
 column. Bindings containing "[n]" require an integer value of <n>
 to select an individual item.

 If a fragment attribute binding matches "fragme nt.color" or
 "fragment.color.primary", the "x", "y", "z", an d "w" components of
 the fragment attribute variable are filled with the "r", "g", "b",
 and "a" components, respectively, of the fragme nt color. Each
 fixed-point color component undergoes an implie d conversion to
 floating point. This conversion must leave the values 0 and 1
 invariant.

 If a fragment attribute binding matches "fragme nt.color.secondary",
 the "x", "y", "z", and "w" components of the fr agment attribute
 variable are filled with the "r", "g", "b", and "a" components,
 respectively, of the fragment secondary color. Each fixed-point
 color component undergoes an implied conversion to floating point.
 This conversion must leave the values 0 and 1 i nvariant.

 If a fragment attribute binding matches "fragme nt.texcoord" or
 "fragment.texcoord[n]", the "x", "y", "z", and "w" components of the
 fragment attribute variable are filled with the "s", "t", "r", and

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 44

 "q" components, respectively, of the fragment t exture coordinates
 for texture unit <n>. If "[n]" is omitted, tex ture unit zero is
 used.

 If a fragment attribute binding matches "fragme nt.fogcoord", the "x"
 component of the fragment attribute variable is filled with either
 the fragment eye distance or the fog coordinate , depending on
 whether the fog source is set to FRAGMENT_DEPTH _EXT or
 FOG_COORDINATE_EXT, respectively. The "y", "z" , and "w" coordinates
 are filled with 0, 0, and 1, respectively.

 If a fragment attribute binding matches "fragme nt.position", the "x"
 and "y" components of the fragment attribute va riable are filled
 with the (x,y) window coordinates of the fragme nt center, relative
 to the lower left corner of the window. The "z " component is filled
 with the fragment's z window coordinate. This z window coordinate
 undergoes an implied conversion to floating poi nt. This conversion
 must leave the values 0 and 1 invariant. The " w" component is
 filled with the reciprocal of the fragment's cl ip w coordinate.

 On some implementations, the components of frag ment.position may be
 generated by interpolating per-vertex position values. This may
 produce x and y window coordinates that don't e xactly match those of
 the fragment center and z window coordinates th at do not exactly
 match those generated by fixed-function rasteri zation. Therefore,
 there is no guaranteed invariance between the f inal z window
 coordinates of fragments processed by fragment programs that write
 depth values and fragments processed by any oth er means, even if the
 fragment programs in question simply copy the z value from the
 fragment.position binding.

 3.11.3.2 Fragment Program Parameters

 Fragment program parameter variables are a set of four-component
 floating-point vectors used as constants during fragment program
 execution. Fragment program parameters retain their values across
 fragment program invocations, although their va lues can change
 between invocations due to GL state changes.

 Single program parameter variables and arrays o f program parameter
 variables can be declared explicitly using the <PARAM_statement>
 grammar rule. Single program parameter variabl es can also be
 declared implicitly using the <paramSingleItemU se> grammar rule in
 an executable instruction.

 Each single program parameter variable is bound to a constant vector
 or to a GL state vector according to the <param SingleInit> grammar
 rule. Individual items of a program parameter array are bound to
 constant vectors or GL state vectors according to the
 <programMultipleInit> grammar rule. The set of GL state that can be
 bound to program parameter variables are given in Tables X.2.1
 through X.2.4.

 Constant Bindings

 A program parameter variable can be bound to a scalar or vector
 constant using the <paramConstDecl> grammar rul e (explicit

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 45

 declarations) or the <paramConstUse> grammar ru le (implicit
 declarations).

 If a program parameter binding matches the <par amConstScalarDecl> or
 <paramConstScalarUse> grammar rules, the corres ponding program
 parameter variable is bound to the vector (X,X, X,X), where X is the
 value of the specified constant. Note that the
 <paramConstScalarUse> grammar rule, used only i n implicit
 declarations, allows only non-negative constant s. This
 disambiguates cases like "-2", which could conc eivably be taken to
 mean either the vector "(2,2,2,2)" with all com ponents negated or
 "(-2,-2,-2,-2)" without negation. Only the for mer interpretation is
 allowed by the grammar.

 If a program parameter binding matches <paramCo nstVector>, the
 corresponding program parameter variable is bou nd to the vector
 (X,Y,Z,W), where X, Y, Z, and W are the values corresponding to the
 first, second, third, and fourth match of <sign edFloatConstant>. If
 fewer than four constants are specified, Y, Z, and W assume the
 values 0.0, 0.0, and 1.0, if their respective c onstants are not
 specified.

 Program parameter variables initialized to cons tant values can never
 be modified.

 Program Environment/Local Parameter Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 program.env[a] (x,y,z,w) pr ogram environment
 pa rameter a
 program.local[a] (x,y,z,w) pr ogram local parameter a
 program.env[a..b] (x,y,z,w) pr ogram environment
 pa rameters a through b
 program.local[a..b] (x,y,z,w) pr ogram local parameters
 a through b

 Table X.2.1: Program Environment/Local Param eter Bindings. <a>
 and indicate parameter numbers, where <a> must be less than or
 equal to .

 If a program parameter binding matches "program .env[a]" or
 "program.local[a]", the four components of the program parameter
 variable are filled with the four components of program environment
 parameter <a> or program local parameter <a>, r espectively.

 Additionally, for program parameter array bindi ngs,
 "program.env[a..b]" and "program.local[a..b]" a re equivalent to
 specifying program environment parameters <a> t hrough in order
 or program local parameters <a> through in order, respectively.
 In either case, a program will fail to load if <a> is greater than
 .

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 46

 Material Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.material.ambient (r,g,b,a) fr ont ambient material color
 state.material.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.specular (r,g,b,a) fr ont specular material color
 state.material.emission (r,g,b,a) fr ont emissive material color
 state.material.shininess (s,0,0,1) fr ont material shininess
 state.material.front.ambient (r,g,b,a) fr ont ambient material color
 state.material.front.diffuse (r,g,b,a) fr ont diffuse material color
 state.material.front.specular (r,g,b,a) fr ont specular material color
 state.material.front.emission (r,g,b,a) fr ont emissive material color
 state.material.front.shininess (s,0,0,1) fr ont material shininess
 state.material.back.ambient (r,g,b,a) ba ck ambient material color
 state.material.back.diffuse (r,g,b,a) ba ck diffuse material color
 state.material.back.specular (r,g,b,a) ba ck specular material color
 state.material.back.emission (r,g,b,a) ba ck emissive material color
 state.material.back.shininess (s,0,0,1) ba ck material shininess

 Table X.2.2: Material Property Bindings. If a material face is
 not specified in the binding, the front prope rty is used.

 If a program parameter binding matches any of t he material
 properties listed in Table X.2.2, the program p arameter variable is
 filled according to the table. For ambient, di ffuse, specular, or
 emissive colors, the "x", "y", "z", and "w" com ponents are filled
 with the "r", "g", "b", and "a" components, res pectively, of the
 corresponding material color. For material shi niness, the "x"
 component is filled with the material's specula r exponent, and the
 "y", "z", and "w" components are filled with 0, 0, and 1,
 respectively. Bindings containing ".back" refe r to the back
 material; all other bindings refer to the front material.

 Material properties can be changed inside a Beg in/End pair, either
 directly by calling Material, or indirectly thr ough color material.
 However, such property changes are not guarante ed to update program
 parameter bindings until the following End comm and. Program
 parameter variables bound to material propertie s changed inside a
 Begin/End pair are undefined until the followin g End command.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 47

 Light Property Bindings

 Binding Components Un derlying State
 ----------------------------- ---------- -- --------------------------
 state.light[n].ambient (r,g,b,a) li ght n ambient color
 state.light[n].diffuse (r,g,b,a) li ght n diffuse color
 state.light[n].specular (r,g,b,a) li ght n specular color
 state.light[n].position (x,y,z,w) li ght n position
 state.light[n].attenuation (a,b,c,e) li ght n attenuation constants
 an d spot light exponent
 state.light[n].spot.direction (x,y,z,c) li ght n spot direction and
 cu toff angle cosine
 state.light[n].half (x,y,z,1) li ght n infinite half-angle
 state.lightmodel.ambient (r,g,b,a) li ght model ambient color
 state.lightmodel.scenecolor (r,g,b,a) li ght model front scene color
 state.lightmodel . (r,g,b,a) li ght model front scene color
 front.scenecolor
 state.lightmodel . (r,g,b,a) li ght model back scene color
 back.scenecolor
 state.lightprod[n].ambient (r,g,b,a) li ght n / front material
 am bient color product
 state.lightprod[n].diffuse (r,g,b,a) li ght n / front material
 di ffuse color product
 state.lightprod[n].specular (r,g,b,a) li ght n / front material
 sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / front material
 front.specular sp ecular color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.ambient am bient color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.diffuse di ffuse color product
 state.lightprod[n]. (r,g,b,a) li ght n / back material
 back.specular sp ecular color product

 Table X.2.3: Light Property Bindings. <n> in dicates a light
 number.

 If a program parameter binding matches "state.l ight[n].ambient",
 "state.light[n].diffuse", or "state.light[n].sp ecular", the "x",
 "y", "z", and "w" components of the program par ameter variable are
 filled with the "r", "g", "b", and "a" componen ts, respectively, of
 the corresponding light color.

 If a program parameter binding matches "state.l ight[n].position",
 the "x", "y", "z", and "w" components of the pr ogram parameter
 variable are filled with the "x", "y", "z", and "w" components,
 respectively, of the light position.

 If a program parameter binding matches "state.l ight[n].attenuation",
 the "x", "y", and "z" components of the program parameter variable
 are filled with the constant, linear, and quadr atic attenuation
 parameters of the specified light, respectively (section 2.13.1).

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 48

 The "w" component of the program parameter vari able is filled with
 the spot light exponent of the specified light.

 If a program parameter binding matches
 "state.light[n].spot.direction", the "x", "y", and "z" components of
 the program parameter variable are filled with the "x", "y", and "z"
 components of the spot light direction of the s pecified light,
 respectively (section 2.13.1). The "w" compone nt of the program
 parameter variable is filled with the cosine of the spot light
 cutoff angle of the specified light.

 If a program parameter binding matches "state.l ight[n].half", the
 "x", "y", and "z" components of the program par ameter variable are
 filled with the x, y, and z components, respect ively, of the
 normalized infinite half-angle vector

 h_inf = || P + (0, 0, 1) ||.

 The "w" component is filled with 1. In the com putation of h_inf, P
 consists of the x, y, and z coordinates of the normalized vector
 from the eye position P_e to the eye-space ligh t position P_pli
 (section 2.13.1). h_inf is defined to correspo nd to the normalized
 half-angle vector when using an infinite light (w coordinate of the
 position is zero) and an infinite viewer (v_bs is FALSE). For local
 lights or a local viewer, h_inf is well-defined but does not match
 the normalized half-angle vector, which will va ry depending on the
 vertex position.

 If a program parameter binding matches "state.l ightmodel.ambient",
 the "x", "y", "z", and "w" components of the pr ogram parameter
 variable are filled with the "r", "g", "b", and "a" components of
 the light model ambient color, respectively.

 If a program parameter binding matches "state.l ightmodel.scenecolor"
 or "state.lightmodel.front.scenecolor", the "x" , "y", and "z"
 components of the program parameter variable ar e filled with the
 "r", "g", and "b" components respectively of th e "front scene color"

 c_scene = a_cs * a_cm + e_cm,

 where a_cs is the light model ambient color, a_ cm is the front
 ambient material color, and e_cm is the front e missive material
 color. The "w" component of the program parame ter variable is
 filled with the alpha component of the front di ffuse material color.
 If a program parameter binding matches
 "state.lightmodel.back.scenecolor", a similar b ack scene color,
 computed using back-facing material properties, is used. The front
 and back scene colors match the values that wou ld be assigned to
 vertices using conventional lighting if all lig hts were disabled.

 If a program parameter binding matches anything beginning with
 "state.lightprod[n]", the "x", "y", and "z" com ponents of the
 program parameter variable are filled with the "r", "g", and "b"
 components, respectively, of the corresponding light product. The
 three light product components are the products of the corresponding
 color components of the specified material prop erty and the light
 color of the specified light (see Table X.2.3). The "w" component

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 49

 of the program parameter variable is filled wit h the alpha component
 of the specified material property.

 Light products depend on material properties, w hich can be changed
 inside a Begin/End pair. Such property changes are not guaranteed
 to take effect until the following End command. Program parameter
 variables bound to light products whose corresp onding material
 property changes inside a Begin/End pair are un defined until the
 following End command.

 Texture Environment Property Bindings

 Binding Components Underl ying State
 ------------------------- ---------- ------ ----------------------
 state.texenv[n].color (r,g,b,a) textur e environment n color

 Table X.2.4: Texture Environment Property Bi ndings. "[n]" is
 optional -- texture unit <n> is used if speci fied; texture unit 0
 is used otherwise.

 If a program parameter binding matches "state.t exenv[n].color", the
 "x", "y", "z", and "w" components of the progra m parameter variable
 are filled with the "r", "g", "b", and "a" comp onents, respectively,
 of the corresponding texture environment color. Note that only
 "legacy" texture units, as queried by MAX_TEXTU RE_UNITS, include
 texture environment state. Texture image units and texture
 coordinate sets do not have associated texture environment state.

 Fog Property Bindings

 Binding Components Unde rlying State
 --------------------------- ---------- ---- ------------------------
 state.fog.color (r,g,b,a) RGB fog color (section 3.11)
 state.fog.params (d,s,e,r) fog density, linear start
 and end, and 1/(end-start)
 (sec tion 3.11)

 Table X.2.5: Fog Property Bindings

 If a program parameter binding matches "state.f og.color", the "x",
 "y", "z", and "w" components of the program par ameter variable are
 filled with the "r", "g", "b", and "a" componen ts, respectively, of
 the fog color (section 3.11).

 If a program parameter binding matches "state.f og.params", the "x",
 "y", and "z" components of the program paramete r variable are filled
 with the fog density, linear fog start, and lin ear fog end
 parameters (section 3.11), respectively. The " w" component is
 filled with 1/(end-start), where end and start are the linear fog
 end and start parameters, respectively.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 50

 Depth Property Bindings

 Binding Components Unde rlying State
 --------------------------- ---------- ---- ------------------------
 state.depth.range (n,f,d,1) Dept h range near, far, and
 (far -near) (section 2.10.1)

 Table X.2.6: Depth Property Bindings

 If a program parameter binding matches "state.d epth.range", the "x"
 and "y" components of the program parameter var iable are filled with
 the mappings of near and far clipping planes to window coordinates,
 respectively. The "z" component is filled with the difference of
 the mappings of near and far clipping planes, f ar minus near. The
 "w" component is filled with 1.

 Matrix Property Bindings

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 * state.matrix.modelview[n] modelvi ew matrix n
 state.matrix.projection project ion matrix
 state.matrix.mvp modelvi ew-projection matrix
 * state.matrix.texture[n] texture matrix n
 state.matrix.palette[n] modelvi ew palette matrix n
 state.matrix.program[n] program matrix n

 Table X.2.7: Base Matrix Property Bindings. The "[n]" syntax
 indicates a specific matrix number. For mode lview and texture
 matrices, a matrix number is optional, and ma trix zero will be
 used if the matrix number is omitted. These base bindings may
 further be modified by a inverse/transpose se lector and a row
 selector.

 If the beginning of a program parameter binding matches any of the
 matrix binding names listed in Table X.2.7, the binding corresponds
 to a 4x4 matrix. If the parameter binding is f ollowed by
 ".inverse", ".transpose", or ".invtrans" (<stat eMatModifier> grammar
 rule), the inverse, transpose, or transpose of the inverse,
 respectively, of the matrix specified in Table X.2.7 is selected.
 Otherwise, the matrix specified in Table X.2.7 is selected. If the
 specified matrix is poorly-conditioned (singula r or nearly so), its
 inverse matrix is undefined. The binding name "state.matrix.mvp"
 refers to the product of modelview matrix zero and the projection
 matrix, defined as

 MVP = P * M0,

 where P is the projection matrix and M0 is mode lview matrix zero.

 If the selected matrix is followed by ".row[<a>]" (matching the
 <stateMatrixRow> grammar rule), the "x", "y", " z", and "w"
 components of the program parameter variable ar e filled with the
 four entries of row <a> of the selected matrix. In the example,

 PARAM m0 = state.matrix.modelview[1].row[0];
 PARAM m1 = state.matrix.projection.transpose. row[3];

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 51

 the variable "m0" is set to the first row (row 0) of modelview
 matrix 1 and "m1" is set to the last row (row 3) of the transpose of
 the projection matrix.

 For program parameter array bindings, multiple rows of the selected
 matrix can be bound via the <stateMatrixRows> g rammar rule. If the
 selected matrix binding is followed by ".row[<a >..]", the result
 is equivalent to specifying matrix rows <a> thr ough , in order.
 A program will fail to load if <a> is greater t han . If no row
 selection is specified (<optMatrixRows> matches ""), matrix rows 0
 through 3 are bound in order. In the example,

 PARAM m2[] = { state.matrix.program[0].row[1. .2] };
 PARAM m3[] = { state.matrix.program[0].transp ose };

 the array "m2" has two entries, containing rows 1 and 2 of program
 matrix zero, and "m3" has four entries, contain ing all four rows of
 the transpose of program matrix zero.

 Program Parameter Arrays

 A program parameter array variable can be decla red explicitly by
 matching the <PARAM_multipleStmt> grammar rule. Programs can
 optionally specify the number of individual pro gram parameters in
 the array, using the <optArraySize> grammar rul e. Program parameter
 arrays may not be declared implicity.

 Individual parameter variables in a program par ameter array are
 bound to GL state vectors or constant vectors a s specified by the
 grammar rule <paramMultInitList>. Each individ ual parameter in the
 array is bound in turn as described above.

 The total number of entries in the array is equ al to the number of
 parameters bound in the initializer list. A fr agment program that
 specifies an array size (<optArraySize> matches <integer>) that does
 not match the number of parameter bindings in t he initialization
 list will fail to load.

 Program parameter array variables may only be a ccessed using
 absolute addressing by matching the <progParamA rrayAbs> grammar
 rule. Array accesses are checked against the l imits of the array.
 If any fragment program instruction accesses a program parameter
 array with an out-of-range index (greater than or equal to the size
 of the array), the fragment program will fail t o load.

 Individual state vectors can have no more than one unique binding in
 any given program. The GL will automatically c ombine multiple
 bindings of the same state vector into a single unique binding.

 3.11.3.3 Fragment Program Temporaries

 Fragment program temporary variables are a set of four-component
 floating-point vectors used to hold temporary r esults during
 fragment program execution. Temporaries do not persist between
 program invocations, and are undefined at the b eginning of each
 fragment program invocation.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 52

 Fragment program temporary variables can be dec lared explicitly
 using the <TEMP_statement> grammar rule. Each such statement can
 declare one or more temporaries. Fragment prog ram temporary
 variables can not be declared implicitly.

 3.11.3.4 Fragment Program Results

 Fragment program result variables are a set of four component
 floating-point vectors used to hold the final r esults of a fragment
 program. Fragment program result variables are write-only during
 fragment program execution.

 Fragment program result variables can be declar ed explicitly using
 the <OUTPUT_statement> grammar rule, or implici tly using the
 <resultBinding> grammar rule in an executable i nstruction. Each
 fragment program result variable is bound to a fragment attribute
 used in subsequent back-end processing. The se t of fragment program
 result variable bindings is given in Table X.3.

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.color (r,g,b,a) co lor
 result.depth (*,*,d,*) de pth coordinate

 Table X.3: Fragment Result Variable Bindings . Components labeled
 "*" are unused.

 If a result variable binding matches "result.co lor", updates to the
 "x", "y", "z", and "w" components of the result variable modify the
 "r", "g", "b", and "a" components, respectively , of the fragment's
 output color. If "result.color" is not both bo und by the fragment
 program and written by some instruction of the program, the output
 color of the fragment program is undefined.

 If a result variable binding matches "result.de pth", updates to the
 "z" component of the result variable modify the fragment's output
 depth value. If "result.depth" is not both bou nd by the fragment
 program and written by some instruction of the program, the
 interpolated depth value produced by rasterizat ion is used as if
 fragment program mode is not enabled. Writes t o any component of
 depth other than the "z" component have no effe ct.

 3.11.3.5 Fragment Program Aliases

 Fragment programs can create aliases by matchin g the
 <ALIAS_statement> grammar rule. Aliases allow programs to use
 multiple variable names to refer to a single un derlying variable.
 For example, the statement

 ALIAS var1 = var0

 establishes a variable name named "var1". Subs equent references to
 "var1" in the program text are treated as refer ences to "var0". The
 left hand side of an ALIAS statement must be a new variable name,
 and the right hand side must be an established variable name.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 53

 Aliases are not considered variable declaration s, so do not count
 against the limits on the number of variable de clarations allowed in
 the program text.

 3.11.3.6 Fragment Program Resource Limits

 The fragment program execution environment prov ides implementation-
 dependent resource limits on the number of ALU instructions, texture
 instructions, total instructions (ALU or textur e), temporary
 variable declarations, program parameter bindin gs, or texture
 indirections. A program that exceeds any of th ese resource limits
 will fail to load. The resource limits for fra gment programs can be
 queried by calling GetProgramiv (section 6.1.12) with a target of
 FRAGMENT_PROGRAM_ARB.

 The limit on fragment program ALU instructions can be queried with
 a <pname> of MAX_PROGRAM_ALU_INSTRUCTIONS_ARB, and must be at least
 48. Each ALU instruction in the program (match es of the
 <ALUInstruction> grammar rule) counts against t his limit.

 The limit on fragment program texture instructi ons can be queried
 with a <pname> of MAX_PROGRAM_TEX_INSTRUCTIONS_ ARB, and must be at
 least 24. Each texture instruction in the prog ram (matches of the
 <TexInstruction> grammar rule) counts against t his limit.

 The limit on fragment program total instruction s can be queried with
 a <pname> of MAX_PROGRAM_INSTRUCTIONS_ARB, and must be at least 72.
 Each instruction in the program (matching the < instruction> grammar
 rule) counts against this limit. Note that the limit on total
 instructions is not necessarily equal to the su m of the limits on
 ALU instructions and texture instructions.

 The limit on fragment program texture indirecti ons can be queried
 with a <pname> of MAX_PROGRAM_TEX_INDIRECTIONS_ ARB, and must be at
 least 4. Texture indirections are described in 3.11.6. If an
 implementation has no limit on texture indirect ions, the limit will
 be equal to the limit on texture instructions.

 The limit on fragment program temporary variabl e declarations can be
 queried with a <pname> of MAX_PROGRAM_TEMPORARI ES_ARB, and must be at
 least 16. Each temporary declared in the progr am, using the
 <TEMP_statement> grammar rule, counts against t his limit. Aliases
 of declared temporaries do not.

 The limit on fragment program attribute binding s can be queried with
 a <pname> of MAX_PROGRAM_ATTRIBS_ARB and must b e at least 10. Each
 distinct vertex attribute bound explicitly or i mplicitly in the
 program counts against this limit; vertex attri butes bound multiple
 times count only once.

 The limit on fragment program parameter binding s can be queried with
 a <pname> of MAX_PROGRAM_PARAMETERS_ARB, and mu st be at least 24.
 Each distinct GL state vector bound explicitly or implicitly in the
 program counts against this limit; GL state vec tors bound multiple
 times count only once. Every other constant ve ctor bound in the
 program is counted if and only if an identical constant vector has
 not already been counted. Two constant vectors are considered

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 54

 identical if the four component values are nume rically equivalent.
 Recall that scalar constants bound in a program are treated as
 vector constants with the scalar value replicat ed.

 In addition to the limits described above, the GL provides a similar
 set of implementation-dependent native resource limits. These
 limits, specified in Section 6.1.12, provide gu idance as to whether
 the program is small enough to use a "native" m ode where fragment
 programs may be executed with higher performanc e. The native
 resource limits and usage counts are implementa tion-dependent and
 may not exactly correspond to limits and counts described above.
 A program's native resource consumption may be reduced by program
 optimizations performed by the GL. Native reso urce consumption may
 be increased due to emulation of instructions o r any other program
 features not natively supported by an implement ation. Notably, an
 additional texture indirection may be consumed due to an
 implementation's lack of native support for tex ture instructions
 with source coordinate swizzles or parameter so urce coordinates,
 which may require emulation by prepending ALU i nstructions. An
 implementation may also fail to natively suppor t all combinations of
 attributes described in Table X.1, even if the total number of
 bound attributes is fewer than the native attri bute limit. In this
 case the program is still considered to exceed the native resource
 limits, as queried by PROGRAM_UNDER_NATIVE_LIMI TS_ARB (section
 6.1.12).

 To assist in resource counting, the GL addition ally provides
 GetProgram queries to determine the resource us age and native
 resource usage of the currently bound program, and to determine
 whether the bound program exceeds any native re source limit.

 Programs that exceed any native resource limit may or may not load
 depending on the implementation.

 3.11.4 Fragment Program Execution Environment

 If fragment program mode is enabled, the curren tly bound fragment
 program is executed when any fragment is produc ed by rasterization.

 If fragment program mode is enabled and the cur rently bound program
 object does not contain a valid fragment progra m, the error
 INVALID_OPERATION will be generated by Begin, R asterPos, and any
 command that implicitly calls Begin (e.g., Draw Arrays).

 Fragment programs execute a sequence of instruc tions without
 branching. Fragment programs begin by executin g the first
 instruction in the program, and execute instruc tions in the order
 specified in the program until the last instruc tion is completed.

 There are 33 fragment program instructions. Th e instructions and
 their respective input and output parameters ar e summarized in
 Table X.5.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 55

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS v v absolute valu e
 ADD v,v v add
 CMP v,v,v v compare
 COS s ssss cosine with r eduction to [-PI,PI]
 DP3 v,v ssss 3-component d ot product
 DP4 v,v ssss 4-component d ot product
 DPH v,v ssss homogeneous d ot product
 DST v,v v distance vect or
 EX2 s ssss exponential b ase 2
 FLR v v floor
 FRC v v fraction
 KIL v v kill fragment
 LG2 s ssss logarithm bas e 2
 LIT v v compute light coefficients
 LRP v,v,v v linear interp olation
 MAD v,v,v v multiply and add
 MAX v,v v maximum
 MIN v,v v minimum
 MOV v v move
 MUL v,v v multiply
 POW s,s ssss exponentiate
 RCP s ssss reciprocal
 RSQ s ssss reciprocal sq uare root
 SCS s ss-- sine/cosine w ithout reduction
 SGE v,v v set on greate r than or equal
 SIN s ssss sine with red uction to [-PI,PI]
 SLT v,v v set on less t han
 SUB v,v v subtract
 SWZ v v extended swiz zle
 TEX v,u,t v texture sampl e
 TXB v,u,t v texture sampl e with bias
 TXP v,u,t v texture sampl e with projection
 XPD v,v v cross product

 Table X.5: Summary of fragment program instr uctions. "v"
 indicates a floating-point vector input or ou tput, "s" indicates a
 floating-point scalar input, "ssss" indicates a scalar output
 replicated across a 4-component result vector , "ss--" indicates
 two scalar outputs in the first two component s, "u" indicates a
 texture image unit identifier, and "t" indica tes a texture target.

 3.11.4.1 Fragment Program Operands

 Most fragment program instructions operate on f loating-point vectors
 or scalars, as indicated by the grammar rules < vectorSrcReg> and
 <scalarSrcReg>, respectively.

 Vector and scalar operands can be obtained from fragment attribute,
 program parameter, or temporary registers, as i ndicated by the
 <srcReg> rule. For scalar operands, a single v ector component is
 selected by the <scalarSuffix> rule, where the characters "x", "y",
 "z", and "w", or "r", "g", "b", and "a" select the first, second,
 third, and fourth components, respectively, of the vector.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 56

 Vector operands can be swizzled according to th e <optionalSuffix>
 rule. In its most general form, the <optionalS uffix> rule matches
 the pattern ".????" where each question mark is replaced with one of
 "x", "y", "z", "w", "r", "g", "b", or "a". For such patterns, the
 first, second, third, and fourth components of the operand are taken
 from the vector components named by the first, second, third, and
 fourth character of the pattern, respectively. For example, if the
 swizzle suffix is ".yzzx" or ".gbbr" and the sp ecified source
 contains {2,8,9,0}, the swizzled operand used b y the instruction is
 {8,9,9,2}.

 If the <optionalSuffix> rule matches "", it is treated as though it
 were ".xyzw". If the <optionalSuffix> rule mat ches (ignoring
 whitespace) ".x", ".y", ".z", or ".w", these ar e treated the same as
 ".xxxx", ".yyyy", ".zzzz", and ".wwww" respecti vely. Likewise, if
 the <optionalSuffix> rule matches ".r", ".g", " .b", or ".a", these
 are treated the same as ".rrrr", ".gggg", ".bbb b", and ".aaaa"
 respectively.

 Floating-point scalar or vector operands can op tionally be negated
 according to the <optionalSign> rule in <scalar SrcReg> and
 <vectorSrcReg>. If the <optionalSign> matches "-", each operand or
 operand component is negated.

 The following pseudo-code spells out the operan d generation process.
 In the example, "float" is a floating-point sca lar type, while
 "floatVec" is a four-component vector. "source " refers to the
 register used for the operand, matching the <sr cReg> rule. "negate"
 is TRUE if the <optionalSign> rule in <scalarSr cReg> or
 <vectorSrcReg> matches "-" and FALSE otherwise. The ".c***",
 ".*c**", ".**c*", ".***c" modifiers refer to th e x, y, z, and w
 components obtained by the swizzle operation; t he ".c" modifier
 refers to the single component selected for a s calar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 57

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

 3.11.4.2 Fragment Program Parameter Arrays

 A fragment program can load a single element of a program parameter
 array using only absolute addressing. Program parameter arrays are
 accessed when the <progParamArrayAbs> rule is m atched. The offset
 of the selected entry in the array is given by the number matching
 <progParamRegNum>. If the offset exceeds the s ize of the
 array, the results of the access are undefined, but may not lead to
 program or GL termination.

 3.11.4.3 Fragment Program Destination Register Update

 Fragment program instructions write a 4-compone nt result vector to a
 single temporary or fragment result register. Writes to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.
 Optional clamping of each component of the dest ination register to
 the range [0,1] is controlled by an opcode modi fier.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "", all
 components are enabled. Otherwise, the optiona l mask names the
 individual components to enable. The character s "x", "y", "z", and
 "w", or "r", "g", "b", and "a" match the first, second, third, and
 fourth components, respectively. For example, an optional mask of
 ".xzw" indicates that the x, z, and w component s should be enabled
 for writing but the y component should not. Th e grammar requires
 that the destination register mask components m ust be listed in
 "xyzw", or "rgba" order. Component names from one set (xyzw or
 rgba) cannot be mixed with component names from another set. For
 example, ".rgw" is not a valid writemask.

 Each component of the destination register is u pdated with the
 result of the fragment program instruction if a nd only if the
 component is enabled for writes by the componen t write mask.
 Otherwise, the component of the destination reg ister remains
 unchanged.

 If the instruction opcode has the "_SAT" suffix , requesting
 saturated result vectors, each component of the result vector
 enabled in the writemask is clamped to the rang e [0,1] before being
 updated in the destination register.

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask"

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 58

 refers to the component write mask given by the <optionalMask> rule.
 "clamp" is TRUE if the instruction specifies th at the result should
 be clamped. "result" and "destination" refer t o the result vector
 and the register selected by <dstReg>, respecti vely.

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;

 // Clamp the result vector components to [0,1], if requested.
 if (instrClamp) {
 if (result.x < 0) result.x = 0;
 else if (result.x > 1) result.x = 1;
 if (result.y < 0) result.y = 0;
 else if (result.y > 1) result.y = 1;
 if (result.z < 0) result.z = 0;
 else if (result.z > 1) result.z = 1;
 if (result.w < 0) result.w = 0;
 else if (result.w > 1) result.w = 1;
 }

 // Merge the converted result into the de stination register,
 // under control of the compile-time writ e mask.
 merged = destination;
 if (instrMask.x) {
 merged.x = result.x;
 }
 if (instrMask.y) {
 merged.y = result.y;
 }
 if (instrMask.z) {
 merged.z = result.z;
 }
 if (instrMask.w) {
 merged.w = result.w;
 }

 // Write out the new destination register .
 destination = merged;
 }

 3.11.4.4 Fragment Program Result Processing

 As a fragment program executes, it will write t o either one or two
 result registers that are mapped to the fragmen t's color and depth.

 The fragment's color components are first clamp ed to the range [0,1]
 then converted to fixed point as in section 2.1 3.9. If the fragment
 program does not write result.color, the color will be undefined in
 subsequent stages.

 If the fragment program contains an instruction to write to
 result.depth, the fragment's depth is replaced by the value of the
 "z" component of result.depth. This z value is first clamped to the
 range [0,1] then converted to fixed-point as if it were a window z
 value (section 2.10.1). If the fragment progra m does not write
 result.depth, the fragment's original depth is unmodified.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 59

 3.11.4.5 Fragment Program Options

 The <optionSequence> grammar rule provides a me chanism for programs
 to indicate that one or more extended language features are used by
 the program. All program options used by the p rogram must be
 declared at the beginning of the program string . Each program
 option specified in a program string will modif y the syntactic or
 semantic rules used to interpet the program and the execution
 environment used to execute the program. Progr am options not
 present in the program string are ignored, even if they are
 supported by the GL.

 The <identifier> token in the <option> rule mus t match the name of a
 program option supported by the implementation. To avoid option
 name conflicts, option identifiers are required to begin with a
 vendor prefix. A program will fail to load if it specifies a
 program option not supported by the GL.

 Fragment program options should confine their s emantic changes to
 the domain of fragment programs. Support for a fragment program
 option should not change the specification and behavior of fragment
 programs not requesting use of that option.

 3.11.4.5.1 Fog Application Fragment Program Op tions

 If a fragment program specifies one of the opti ons "ARB_fog_exp",
 "ARB_fog_exp2", or "ARB_fog_linear", the progra m will apply fog to
 the program's final clamped color using a fog m ode of EXP, EXP2, or
 LINEAR, respectively, as described in section 3 .10.

 When a fog option is specified in a fragment pr ogram, semantic
 restrictions are added to indicate that a fragm ent program
 will fail to load if the number of temporaries it contains exceeds
 the implementation-dependent limit minus 1, if the number of
 attributes it contains exceeds the implementati on-dependent limit
 minus 1, or if the number of parameters it cont ains exceeds the
 implementation-dependent limit minus 2.

 Additionally, when the ARB_fog_exp option is sp ecified in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit
 minus 3. When the ARB_fog_exp2 option is speci fied in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit
 minus 4. When the ARB_fog_linear option is spe cified in a fragment
 program, a semantic restriction is added to ind icate that a fragment
 program will fail to load if the number of inst ructions or ALU
 instructions it contains exceeds the implementa tion-dependent limit
 minus 2.

 Only one fog application option may be specifie d by any given
 fragment program. A fragment program that spec ifies more than one
 of the program options "ARB_fog_exp", "ARB_fog_ exp2", and
 "ARB_fog_linear", will fail to load.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 60

 3.11.4.5.2 Precision Hint Options

 Fragment program computations are carried out a t an implementation-
 dependent precision. However, some implementat ions may be able to
 perform fragment program computations at more t han one precision,
 and may be able to trade off computation precis ion for performance.

 If a fragment program specifies the "ARB_precis ion_hint_fastest"
 program option, implementations should select p recision to minimize
 program execution time, with possibly reduced p recision. If a
 fragment program specifies the "ARB_precision_h int_nicest" program
 option, implementations should maximize the pre cision, with possibly
 increased execution time.

 Only one precision control option may be specif ied by any given
 fragment program. A fragment program that spec ifies both the
 "ARB_precision_hint_fastest" and "ARB_precision _hint_nicest" program
 options will fail to load.

 3.11.5 Fragment Program ALU Instruction Set

 The following sections describe the set of supp orted fragment
 program instructions. Each section contains ps eudocode describing
 the instruction. Instructions will have up to three operands,
 referred to as "op0", "op1", and "op2". The op erands are loaded
 using the mechanisms specified in section 3.11. 4.1. The variables
 "tmp", "tmp0", "tmp1", and "tmp2" describe scal ars or vectors used
 to hold intermediate results in the instruction . Instructions will
 generate a result vector called "result". The result vector is then
 written to the destination register specified i n the instruction as
 described in section 3.11.4.3.

 3.11.5.1 ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value
 operation on the single operand to yield a resu lt vector.

 tmp = VectorLoad(op0);
 result.x = fabs(tmp.x);
 result.y = fabs(tmp.y);
 result.z = fabs(tmp.z);
 result.w = fabs(tmp.w);

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 61

 3.11.5.2 ADD: Add

 The ADD instruction performs a component-wise a dd of the two
 operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following rules apply to addition:

 1. <x> + <y> == <y> + <x>, for all <x> and <y >.
 2. <x> + 0.0 == <x>, for all <x>.

 3.11.5.3 CMP: Compare

 The CMP instructions performs a component-wise comparison of the
 first operand against zero, and copies the valu es of the second or
 third operands based on the results of the comp are.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = (tmp0.x < 0.0) ? tmp1.x : tmp2.x;
 result.y = (tmp0.y < 0.0) ? tmp1.y : tmp2.y;
 result.z = (tmp0.z < 0.0) ? tmp1.z : tmp2.z;
 result.w = (tmp0.w < 0.0) ? tmp1.w : tmp2.w;

 3.11.5.4 COS: Cosine

 The COS instruction approximates the trigonomet ric cosine of the
 angle specified by the scalar operand and repli cates it to all four
 components of the result vector. The angle is specified in radians
 and does not have to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 3.11.5.5 DP3: Three-Component Dot Product

 The DP3 instruction computes a three-component dot product of the
 two operands (using the first three components) and replicates the
 dot product to all four components of the resul t vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + (tmp0.z * tmp1.z);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 62

 3.11.5.6 DP4: Four-Component Dot Product

 The DP4 instruction computes a four-component d ot product of the two
 operands and replicates the dot product to all four components of
 the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1.w);
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 3.11.5.7 DPH: Homogeneous Dot Product

 The DPH instruction computes a three-component dot product of the
 two operands (using the x, y, and z components) , adds the w
 component of the second operand, and replicates the sum to all four
 components of the result vector. This is equiv alent to a four-
 component dot product where the w component of the first operand is
 forced to 1.0.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.x = dot;
 result.y = dot;
 result.z = dot;
 result.w = dot;

 3.11.5.8 DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA,
 d^2, d^2, NA] and the second operand should be of the form [NA, 1/d,
 NA, 1/d], where NA values are not relevant to t he calculation and d
 is a vector length. If both vectors satisfy th ese conditions, the
 result vector will be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3
 instruction (using the same vector for both ope rands) and 1/d can be
 obtained from d^2 using the RSQ instruction.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 63

 This distance vector is useful for per-fragment light attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 3.11.5.9 EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates the approximation to all four components of
 the result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 3.11.5.10 FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is
 defined as the largest integer less than or equ al to the value. The
 floor of 2.3 is 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 3.11.5.11 FRC: Fraction

 The FRC instruction extracts the fractional por tion of each
 component of the operand to generate a result v ector. The
 fractional portion of a component is defined as the result after
 subtracting off the floor of the component (see FLR), and is always
 in the range [0.0, 1.0).

 For negative values, the fractional portion is NOT the number
 written to the right of the decimal point -- th e fractional portion
 of -1.7 is not 0.7 -- it is 0.3. 0.3 is produc ed by subtracting the
 floor of -1.7 (-2.0) from -1.7.

 tmp = VectorLoad(op0);
 result.x = fraction(tmp.x);
 result.y = fraction(tmp.y);
 result.z = fraction(tmp.z);
 result.w = fraction(tmp.w);

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 64

 3.11.5.12 LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 If the scalar operand is zero or negative, the result is undefined.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 65

 3.11.5.13 LIT: Light Coefficients

 The LIT instruction accelerates per-fragment li ghting by computing
 lighting coefficients for ambient, diffuse, and specular light
 contributions. The "x" component of the single operand is assumed
 to hold a diffuse dot product (n dot VP_pli, as in the vertex
 lighting equations in Section 2.13.1). The "y" component of the
 operand is assumed to hold a specular dot produ ct (n dot h_i). The
 "w" component of the operand is assumed to hold the specular
 exponent of the material (s_rm), and is clamped to the range (-128,
 +128) exclusive.

 The "x" component of the result vector receives the value that
 should be multiplied by the ambient light/mater ial product (always
 1.0). The "y" component of the result vector r eceives the value
 that should be multiplied by the diffuse light/ material product
 (n dot VP_pli). The "z" component of the resul t vector receives the
 value that should be multiplied by the specular light/material
 product (f_i * (n dot h_i) ^ s_rm). The "w" co mponent of the result
 is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is
 done in the standard per-vertex lighting operat ions. In addition,
 if the diffuse dot product is zero or negative, the specular
 coefficient is forced to zero.

 tmp = VectorLoad(op0);
 if (tmp.x < 0) tmp.x = 0;
 if (tmp.y < 0) tmp.y = 0;
 if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0 -epsilon);
 else if (tmp.w > 128-epsilon) tmp.w = 128-eps ilon;
 result.x = 1.0;
 result.y = tmp.x;
 result.z = (tmp.x > 0) ? RoughApproxPower(tmp .y, tmp.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation function may b e defined in terms of
 the base 2 exponentiation and logarithm approxi mation operations in
 the EX2 and LG2 instructions, where

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 In particular, the approximation may not be any more accurate than
 the underlying EX2 and LG2 operations.

 Also, since 0^0 is defined to be 1, RoughApprox Power(0.0, 0.0) will
 produce 1.0.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 66

 3.11.5.14 LRP: Linear Interpolation

 The LRP instruction performs a component-wise l inear interpolation
 between the second and third operands using the first operand as the
 blend factor.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * t mp2.x;
 result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * t mp2.y;
 result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * t mp2.z;
 result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * t mp2.w;

 3.11.5.15 MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the
 third operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 The multiplication and addition operations in t his instruction are
 subject to the same rules as described for the MUL and ADD
 instructions.

 3.11.5.16 MAX: Maximum

 The MAX instruction computes component-wise max imums of the values
 in the two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp0.x : tmp1. x;
 result.y = (tmp0.y > tmp1.y) ? tmp0.y : tmp1. y;
 result.z = (tmp0.z > tmp1.z) ? tmp0.z : tmp1. z;
 result.w = (tmp0.w > tmp1.w) ? tmp0.w : tmp1. w;

 3.11.5.17 MIN: Minimum

 The MIN instruction computes component-wise min imums of the values
 in the two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? tmp1.x : tmp0. x;
 result.y = (tmp0.y > tmp1.y) ? tmp1.y : tmp0. y;
 result.z = (tmp0.z > tmp1.z) ? tmp1.z : tmp0. z;
 result.w = (tmp0.w > tmp1.w) ? tmp1.w : tmp0. w;

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 67

 3.11.5.18 MOV: Move

 The MOV instruction copies the value of the ope rand to yield a
 result vector.

 result = VectorLoad(op0);

 3.11.5.19 MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two
 operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following rules apply to multiplication:

 1. <x> * <y> == <y> * <x>, for all <x> and <y >.
 2. +/-0.0 * <x> = +/-0.0, at least for all <x > that correspond to
 representable numbers (IEEE "not a number" and "infinity"
 encodings may be exceptions).
 3. +1.0 * <x> = <x>, for all <x>.

 Multiplication by zero and one should be invari ant, as it may be
 used to evaluate conditional expressions withou t branching.

 3.11.5.20 POW: Exponentiate

 The POW instruction approximates the value of t he first scalar
 operand raised to the power of the second scala r operand and
 replicates it to all four components of the res ult vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function may b e implemented using
 the base 2 exponentiation and logarithm approxi mation operations in
 the EX2 and LG2 instructions. In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 Note that a logarithm may be involved even for cases where the
 exponent is an integer. This means that it may not be possible to
 exponentiate correctly with a negative base. I n constrast, it is
 possible in a "normal" mathematical formulation to raise negative
 numbers to integral powers (e.g., (-3)^2== 9, a nd (-0.5)^-2==4).

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 68

 3.11.5.21 RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar
 operand and replicates it to all four component s of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The following rule applies to reciprocation:

 1. ApproxReciprocal(+1.0) = +1.0.

 3.11.5.22 RSQ: Reciprocal Square Root

 The RSQ instruction approximates the reciprocal of the square root
 of the absolute value of the scalar operand and replicates it to all
 four components of the result vector.

 tmp = fabs(ScalarLoad(op0));
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 3.11.5.23 SCS: Sine/Cosine

 The SCS instruction approximates the trigonomet ric sine and cosine
 of the angle specified by the scalar operand an d places the cosine
 in the x component and the sine in the y compon ent of the result
 vector. The z and w components of the result v ector are undefined.
 The angle is specified in radians and must be i n the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxSine(tmp);

 If the scalar operand is not in the range [-PI, PI], the result
 vector is undefined.

 3.11.5.24 SGE: Set On Greater or Equal Than

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the
 corresponding component of the first operands i s greater than or
 equal that of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 69

 3.11.5.25 SIN: Sine

 The SIN instruction approximates the trigonomet ric sine of the angle
 specified by the scalar operand and replicates it to all four
 components of the result vector. The angle is specified in radians
 and does not have to be in the range [-PI,PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 3.11.5.26 SLT: Set On Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the
 corresponding component of the first operand is less than that of
 the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;

 3.11.5.27 SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the
 second operand from the first to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 70

 3.11.5.28 SWZ: Extended Swizzle

 The SWZ instruction loads the single vector ope rand, and performs a
 swizzle operation more powerful than that provi ded for loading
 normal vector operands to yield an instruction vector.

 After the operand is loaded, the "x", "y", "z", and "w" components
 of the result vector are selected by the first, second, third, and
 fourth matches of the <xyzwExtSwizComp> or <rgb aExtSwizComp> pattern
 in the <extendedSwizzle> rule.

 A result component can be selected from any of the four components
 of the operand or the constants 0.0 and 1.0. T he result component
 can also be optionally negated. The following pseudocode describes
 the component selection method. "operand" refe rs to the vector
 operand. "select" is an enumerant where the va lues ZERO, ONE, X, Y,
 Z, and W correspond to the <xyzwExtSwizSel> rul e matching "0", "1", "x",
 "y", "z", and "w", respectively, or the <rgbaEx tSwizSel> rule
 matching "0", 1", "r", "g", "b", and "a", respe ctively. "negate" is
 TRUE if and only if the <optionalSign> rule in <xyzwExtSwizComp>
 or <rgbaExtSwizComp> matches "-".

 float ExtSwizComponent(floatVec operand, enum select, boolean negate)
 {
 float result;
 switch (select) {
 case ZERO: result = 0.0; break;
 case ONE: result = 1.0; break;
 case X: result = operand.x; break;
 case Y: result = operand.y; break;
 case Z: result = operand.z; break;
 case W: result = operand.w; break;
 }
 if (negate) {
 result = -result;
 }
 return result;
 }

 The entire extended swizzle operation is then d efined using the
 following pseudocode:

 tmp = VectorLoad(op0);
 result.x = ExtSwizComponent(tmp, xSelect, xNe gate);
 result.y = ExtSwizComponent(tmp, ySelect, yNe gate);
 result.z = ExtSwizComponent(tmp, zSelect, zNe gate);
 result.w = ExtSwizComponent(tmp, wSelect, wNe gate);

 "xSelect", "xNegate", "ySelect", "yNegate", "zS elect", "zNegate",
 "wSelect", and "wNegate" correspond to the "sel ect" and "negate"
 values above for the four <xyzwExtSwizComp> or <rgbaExtSwizComp>
 matches.

 Since this instruction allows for component sel ection and negation
 for each individual component, the grammar does not allow the use of
 the normal swizzle and negation operations allo wed for vector
 operands in other instructions.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 71

 3.11.5.29 XPD: Cross Product

 The XPD instruction computes the cross product using the first three
 components of its two vector operands to genera te the x, y, and z
 components of the result vector. The w compone nt of the result
 vector is undefined.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.y * tmp1.z - tmp0.z * tmp1.y;
 result.y = tmp0.z * tmp1.x - tmp0.x * tmp1.z;
 result.z = tmp0.x * tmp1.y - tmp0.y * tmp1.x;

 3.11.6 Fragment Program Texture Instruction Se t

 The first three texture instructions described below specify the
 mapping of 4-tuple vectors to colors of an imag e. The sampling of
 the texture works as described in section 3.8, except that texture
 environments and texture functions are not appl icable, and the
 texture enables hierarchy is replaced by explic it references to
 the desired texture target (i.e., 1D, 2D, 3D, c ube map, rectangle).
 These texture instructions specify how the 4-tu ple is mapped into
 the coordinates used for sampling. The followi ng function is used
 to describe the texture sampling in the descrip tions below:

 vec4 TextureSample(float s, float t, float r, float lodBias,
 int texImageUnit, enum tex Target);

 Note that not all three texture coordinates, s, t, and r, are
 used by all texture targets. In particular, 1D texture targets only
 use the s component, and 2D and rectangle (non- power-of-two) texture
 targets only use the s and t components. The d escriptions of the
 texture instructions below supply all three com ponents, as would be
 the case with 3D or cube map targets.

 If a fragment program samples from a texture ta rget on a texture
 image unit where the bound texture object is no t complete, as
 defined in section 3.8.9, the result will be th e vector
 (R, G, B, A) = (0, 0, 0, 1).

 A fragment program will fail to load if it atte mpts to sample from
 multiple texture targets on the same texture im age unit. For
 example, the following program would fail to lo ad:

 !!ARBfp1.0
 TEX result.color, fragment.texcoord[0], textu re[0], 2D;
 TEX result.depth, fragment.texcoord[1], textu re[0], 3D;
 END

 The fourth texture instruction described below, KIL, does not sample
 from a texture, but rather prevents further pro cessing of the
 current fragment if any component of its 4-tupl e vector is less than
 zero.

 A dependent texture instruction is one that sam ples using a texture
 coordinate residing in a temporary, rather than in an attribute or

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 72

 a parameter. A program may have a chain of dep endent texture
 instructions, where the result of the first tex ture instruction is
 used as the coordinate for a second texture ins truction, which is in
 turn used as the coordinate for a third texture instruction, and so
 on. Each node in this chain is termed an indir ection, and can be
 thought of as a set of texture samples that exe cute in parallel
 followed by a sequence of ALU instructions.

 Some implementations may have limitations on ho w long the dependency
 chain may be, and so indirections are counted a s a resource just
 like instructions or temporaries are counted. All programs have at
 least one indirection, or one node in this chai n, even if the
 program performs no texture operation. Each in struction encountered
 is included in this node until a texture instru ction is encountered

 - whose texture coordinate is a temporary tha t has been previously
 written in the current node; or

 - whose result vector is a temporary that is also the operand or
 result vector of a previous ALU instruction in the current node.

 A new node is then started, including the textu re instruction and
 all subsequent instructions, and the process re peats for all
 instructions in the program. Note that for sim plicity in counting,
 result writemasks and operand suffixes are not taken into
 consideration when counting indirections.

 3.11.6.1 TEX: Map coordinate to color

 The TEX instruction takes the first three compo nents of
 its source vector, and maps them to s, t, and r . These coordinates
 are used to sample from the specified texture t arget on the
 specified texture image unit in a manner consis tent with its
 parameters. The resulting sample is mapped to RGBA as described in
 table 3.21 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

 3.11.6.2 TXP: Project coordinate and map to co lor

 The TXP instruction divides the first three com ponents of its source
 vector by the fourth component and maps the res ults to s, t, and r.
 These coordinates are used to sample from the s pecified texture
 target on the specified texture image unit in a manner consistent
 with its parameters. The resulting sample is m apped to RGBA as
 described in table 3.21 and written to the resu lt vector. If the
 value of the fourth component of the source vec tor is less than or
 equal to zero, the result vector is undefined.

 tmp = VectorLoad(op0);
 tmp.x = tmp.x / tmp.w;
 tmp.y = tmp.y / tmp.w;
 tmp.z = tmp.z / tmp.w;
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 73

 3.11.6.3 TXB: Map coordinate to color while bi asing its LOD

 The TXB instruction takes the first three compo nents of its source
 vector and maps them to s, t, and r. These coo rdinates are used to
 sample from the specified texture target on the specified texture
 image unit in a manner consistent with its para meters.
 Additionally, the fourth component of the sourc e vector is applied
 to equation 3.14 as fragment_bias below to furt her bias the level of
 detail.

 lambda'(x,y) = log2[p(x,y)] +
 clamp(texobj_bias + texunit_bia s + fragment_bias)

 The resulting sample is mapped to RGBA as descr ibed in table 3.21
 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, t mp.w, op1, op2);

 3.11.6.4 KIL: Kill fragment

 Rather than mapping a coordinate set to a color , this function
 prevents a fragment from receiving any future p rocessing. If any
 component of its source vector is negative, the processing of this
 fragment will be discontinued and no further ou tputs to this
 fragment will occur. Subsequent stages of the GL pipeline will be
 skipped for this fragment.

 tmp = VectorLoad(op0);
 if ((tmp.x < 0) || (tmp.y < 0) ||
 (tmp.z < 0) || (tmp.w < 0))
 {
 exit;
 }

 3.11.7 Program Matrices

 In addition to GL's conventional matrices, seve ral additional
 program matrices are available for use as progr am parameters. These
 matrices have names of the form MATRIX<i>_ARB w here <i> is between
 zero and <n>-1 where <n> is the value of the im plementation-
 dependent constant MAX_PROGRAM_MATRICES_ARB. T he MATRIX<i>_ARB
 constants obey MATRIX<i>_ARB = MATRIX0_ARB + <i >. The value of
 MAX_PROGRAM_MATRICES_ARB must be at least eight . The maximum stack
 depth for program matrices is defined by the
 MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB and must be at least 1.

 3.11.8 Required Fragment Program State

 The state required to support program objects o f all targets
 consists of:

 an integer for the program error position, in itially -1;

 an array of ubytes for the program error stri ng, initially empty;

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 74

 and the state that must be maintained to indi cate which integers
 are currently in use as program object names.

 The state required to support the fragment prog ram target consists
 of:

 a bit indicating whether or not fragment prog ram mode is enabled,
 initially disabled;

 a set of MAX_PROGRAM_ENV_PARAMETERS_ARB four- component floating-
 point program environment parameters, initial ly set to (0,0,0,0);

 an unsigned integer naming the currently boun d fragment program,
 initially zero;

 The state required for each fragment program ob ject consists of:

 an unsigned integer indicating the program ob ject name;

 an array of type ubyte containing the program string, initially
 empty;

 an unsigned integer holding the length of the program string,
 initially zero;

 an enum indicating the program string format, initially
 PROGRAM_FORMAT_ASCII_ARB;

 a bit indicating whether or not the program e xceeds the native
 limits;

 six unsigned integers holding the number of i nstruction (ALU,
 texture, and total), texture indirection, tem porary variable, and
 program parameter binding resources used by t he program, initially
 all zero;

 six unsigned integers holding the number of n ative instruction
 (ALU, texture, and total), texture indirectio n, temporary
 variable, and program parameter binding resou rces used by the
 program, initially all zero;

 and a set of MAX_PROGRAM_LOCAL_PARAMETERS_ARB four-component
 floating-point program local parameters, init ially set to
 (0,0,0,0).

 Initially, no fragment program objects exist.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 75

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 Modify Section 5.4, Display Lists (p. 191)

 (modify third paragraph, p. 195) ... These are IsList, GenLists,
 ..., IsProgramARB, GenProgramsARB, and DeletePr ogramsARB, as well as
 IsEnabled and all the Get commands (chapter 6).

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 Modify Section 6.1.2, Data Conversions (p. 198)

 (add before last paragraph, p. 198) The matrix selected by the
 current matrix mode can be queried by calling G etBooleanv,
 GetIntegerv, GetFloatv, and GetDoublev with <pn ame> set to
 CURRENT_MATRIX_ARB; the matrix will be returned in transposed form
 with <pname> set to TRANSPOSE_CURRENT_MATRIX_AR B. The depth of the
 selected matrix stack can be queried with <pnam e> set to
 CURRENT_MATRIX_STACK_DEPTH_ARB. Querying CURRE NT_MATRIX_ARB and
 CURRENT_MATRIX_STACK_DEPTH_ARB is the only mean s for querying the
 matrix and matrix stack depth of the program ma trices described in
 section 3.11.7.

 (add to end of last paragraph, p. 199) Queries of texture state
 variables corresponding to texture coordinate p rocessing unit
 (namely, TexGen state and enables, and matrices) will produce an
 INVALID_OPERATION error if the value of ACTIVE_ TEXTURE is greater
 than or equal to MAX_TEXTURE_COORDS_ARB. All o ther texture state
 queries will result in an INVALID_OPERATION err or if the value of
 ACTIVE_TEXTURE is greater than or equal to
 MAX_TEXTURE_IMAGE_UNITS_ARB.

 Modify Section 6.1.11, Pointer and String Queri es (p. 206)

 (modify last paragraph, p. 206) ... The possibl e values for <name>
 are VENDOR, RENDERER, VERSION, EXTENSIONS, and
 PROGRAM_ERROR_STRING_ARB.

 (add after last paragraph of section, p. 207) Q ueries of
 PROGRAM_ERROR_STRING_ARB return a pointer to an implementation-
 dependent program load error string. If the la st call to
 ProgramStringARB failed to load a program, the returned string
 describes at least one reason why the program f ailed to load. If
 the last call to ProgramStringARB successfully loaded a program, the
 returned string may be empty (containing only a zero terminator) or
 may contain one or more implementation-dependen t warning messages.
 The contents of the error string are guaranteed to remain constant
 only until the next ProgramStringARB command, w hich may overwrite
 the error string.

 Insert a new Section 6.1.12, Program Queries (p . 207), between
 existing sections 6.1.11 and 6.1.12.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 76

 6.1.12 Program Queries

 The commands

 void GetProgramEnvParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramEnvParameterfvARB(enum target, uint index,
 float *param s);

 obtain the current value for the program enviro nment parameter
 numbered <index> for the given program target < target>, and places
 the information in the array <params>. The err or INVALID_ENUM is
 generated if <target> specifies a nonexistent p rogram target or a
 program target that does not support program en vironment parameters.
 The error INVALID_VALUE is generated if <index> is greater than or
 equal to the implementation-dependent number of supported program
 environment parameters for the program target.

 When <target> is FRAGMENT_PROGRAM_ARB, each pro gram parameter
 returned is an array of four values.

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);

 obtain the current value for the program local parameter numbered
 <index> belonging to the program object current ly bound to <target>,
 and places the information in the array <params >. The error
 INVALID_ENUM is generated if <target> specifies a nonexistent
 program target or a program target that does no t support program
 local parameters. The error INVALID_VALUE is g enerated if <index>
 is greater than or equal to the implementation- dependent number of
 supported program local parameters for the prog ram target.

 When the program target type is FRAGMENT_PROGRA M_ARB, each program
 local parameter returned is an array of four va lues.

 The command

 void GetProgramivARB(enum target, enum pname, int *params);

 obtains program state for the program target <t arget>, writing the
 state into the array given by <params>. GetPro gramivARB can be used
 to determine the properties of the currently bo und program object or
 implementation limits for <target>.

 If <pname> is PROGRAM_LENGTH_ARB, PROGRAM_FORMA T_ARB, or
 PROGRAM_BINDING_ARB, GetProgramivARB returns on e integer holding the
 program string length (in bytes), program strin g format, and program
 name, respectively, for the program object curr ently bound to
 <target>.

 If <pname> is MAX_PROGRAM_LOCAL_PARAMETERS_ARB or
 MAX_PROGRAM_ENV_PARAMETERS_ARB, GetProgramivARB returns one integer

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 77

 holding the maximum number of program local par ameters or program
 environment parameters, respectively, supported for the program
 target <target>.

 If <pname> is MAX_PROGRAM_INSTRUCTIONS_ARB,
 MAX_PROGRAM_ALU_INSTRUCTIONS_ARB, MAX_PROGRAM_TEX_INSTRUCTIONS_ARB,
 MAX_PROGRAM_TEX_INDIRECTIONS_ARB, MAX_PROGRAM_TEMPORARIES_ARB,
 MAX_PROGRAM_PARAMETERS_ARB, or MAX_PROGRAM_ATTRIBS_ARB,
 GetProgramivARB returns a single integer giving the maximum number
 of total instructions, ALU instructions, textur e instructions,
 texture indirections, temporaries, parameters, and attributes that
 can be used by a program of type <target>. If <pname> is
 PROGRAM_INSTRUCTIONS_ARB, PROGRAM_ALU_INSTRUCTIONS_ARB,
 PROGRAM_TEX_INSTRUCTIONS_ARB, PROGRAM_TEX_INDIRECTIONS_ARB,
 PROGRAM_TEMPORARIES_ARB, PROGRAM_PARAMETERS_ARB, or
 PROGRAM_ATTRIBS_ARB, GetProgramivARB returns a single integer giving
 the number of total instructions, ALU instructi ons, texture
 instructions, texture indirections, temporaries , parameters, and
 attributes used by the current program for <tar get>.

 If <pname> is MAX_PROGRAM_NATIVE_INSTRUCTIONS_A RB,
 MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB,
 MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB,
 MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB,
 MAX_PROGRAM_NATIVE_TEMPORARIES_ARB,
 MAX_PROGRAM_NATIVE_PARAMETERS_ARB, or
 MAX_PROGRAM_NATIVE_ATTRIBS_ARB, GetProgramivARB returns a single
 integer giving the maximum number of native ins truction, ALU
 instruction, texture instruction, texture indir ection, temporary,
 parameter, and attribute resources available to a program of type
 <target>. If <pname> is PROGRAM_NATIVE_INSTRUC TIONS_ARB,
 PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB,
 PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB,
 PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB,
 PROGRAM_NATIVE_TEMPORARIES_ARB, PROGRAM_NATIVE_PARAMETERS_ARB, or
 PROGRAM_NATIVE_ATTRIBS_ARB, GetProgramivARB ret urns a single integer
 giving the number of native instruction, ALU in struction, texture
 instruction, texture indirection, temporary, pa rameter, and
 attribute resources consumed by the program cur rently bound to
 <target>. Native resource counts will reflect the results of
 implementation-dependent scheduling and optimiz ation algorithms
 applied by the GL, as well as emulation of non- native features. If
 <pname> is PROGRAM_UNDER_NATIVE_LIMITS_ARB, Get ProgramivARB returns
 0 if the native resource consumption of the pro gram currently bound
 to <target> exceeds the number of available res ources for any
 resource type, and 1 otherwise.

 The command

 void GetProgramStringARB(enum target, enum pn ame, void *string);

 obtains the program string for the program obje ct bound to <target>
 and places the information in the array <string >. <pname> must be
 PROGRAM_STRING_ARB. <n> ubytes are returned in to the array program
 where <n> is the length of the program in ubyte s, as returned by
 GetProgramivARB when <pname> is PROGRAM_LENGTH_ ARB. The program
 string is always returned using the format give n when the program

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 78

 string was specified.

 The command

 boolean IsProgramARB(uint program);

 returns TRUE if <program> is the name of a prog ram object. If
 <program> is zero or is a non-zero value that i s not the name of a
 program object, or if an error condition occurs , IsProgramARB
 returns FALSE. A name returned by GenProgramsA RB, but not yet
 bound, is not the name of a program object.

 Modify Section 6.2, State Tables (p. 216)

 (add to caption of Table 6.5) When accessing th e current texture
 coordinates (CURRENT_TEXTURE_COORDS) or the tex ture coordinates
 associated with raster position (CURRENT_RASTER _TEXTURE_COORDS), the
 active texture unit selector (ACTIVE_TEXTURE) m ust be less than the
 implementation dependent maximum number of text ure coordinate sets
 (MAX_TEXTURE_COORDS_ARB).

 (add to caption of Table 6.8) When accessing th e texture matrix
 stack (TEXTURE_MATRIX, TRANSPOSE_TEXTURE_MATRIX) or the texture
 matrix stack pointer (TEXTURE_STACK_DEPTH), the active texture unit
 selector (ACTIVE_TEXTURE) must be less than the implementation
 dependent maximum number of texture coordinate sets
 (MAX_TEXTURE_COORDS_ARB).

 (split Table 6.17 into two tables, Texture Envi ronment and Texture
 Coordinate Generation; move active texture unit selector and texture
 coordinate generation state to table 6.18; renu mber subsequent
 tables)

 (add to captions of Tables 6.14, 6.15, 6.16) Th e active texture unit
 selector (ACTIVE_TEXTURE) identifies which text ure object is
 accessed, and must be less than the implementat ion dependent maximum
 number of texture image units (MAX_TEXTURE_IMAG E_UNITS_ARB).

 (add to caption of Table 6.18) With the excepti on of ACTIVE_TEXTURE,
 the active texture unit selector (ACTIVE_TEXTUR E) identifies which
 texture coordinate set is accessed, and must be less than the
 implementation dependent maximum number of text ure coordinate sets
 (MAX_TEXTURE_COORDS_ARB).

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 Add to end of Section A.3 (p. 242):

 Rule 4. Fragment program instructions not re levant to the
 calculation of any result must have no effect on that result.

 Rule 5. Fragment program instructions releva nt to the calculation
 of any result must always produce the identic al result.

 Instructions relevant to the calculation of a r esult are any
 instructions in a sequence of instructions that eventually determine
 the source values for the calculation under con sideration.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 79

 There is no guaranteed invariance between fragm ent colors generated
 by conventional GL texturing mode and fragment colors generated by
 fragment program mode. Multi-pass rendering al gorithms that require
 rendering invariances to operate correctly shou ld not mix
 conventional GL fragment texturing mode with fr agment program mode
 for different rendering passes. However, such algorithms will
 operate correctly if the algorithms limit thems elves to a single
 mode of fragment color generation.

 There is no guaranteed invariance between the f inal z window
 coordinates of fragments processed by fragment programs that write
 depth values and fragments processed by any oth er means, even if the
 fragment programs in question simply copy the z value from the
 "fragment.position" binding. Multi-pass render ing algorithms that
 use depth-replacing fragment programs should us e depth-replacing
 fragment programs on each pass to guarantee ide ntical z values.

 The texture sample chosen for a fragment of a p rimitive must be
 invariant between fragment program mode and con ventional texture
 application mode subject to these conditions:

 1. All state with the exception of fragment p rogram state is
 identical

 2. The primitives generating the fragments ar e identical

 3. The sample in the fragment program mode is the result of a
 'TEX' instruction (or a 'TXP' instruction with a unity q)

 4. The texture coordinate operand for the tex ture instruction uses
 the same texture coordinate set as the con ventional mode sample

 5. The texture coordinate operand for the tex ture instruction has
 not been the result of any other operation s in the fragment
 program

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share displa y lists. No change
 is made to the AGL/GLX/WGL API.

 Changes to program objects shared between multi ple rendering
 contexts will be serialized (i.e., the changes will occur in a
 specific order).

 Changes to a program object made by one renderi ng context are not
 guaranteed to take effect in another rendering context until the
 other calls BindProgram to bind the program obj ect.

 When a program object is deleted by one renderi ng context, the
 object itself is not destroyed until it is no l onger the current
 program object in any context. However, the na me of the deleted
 object is removed from the program object name space, so the next
 attempt to bind a program using the same name w ill create a new
 program object. Recall that destroying a progr am object bound in

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 80

 the current rendering context effectively unbin ds the object being
 destroyed.

Dependencies on OpenGL 1.4

 If OpenGL 1.4 is not supported, the modified eq uation for the
 calculation of level of detail by the TXB instr uction in 3.11.6.3
 should read

 lambda'(x,y) = log2[p(x,y)] +
 clamp(texunit_bias + fragment_ bias)

Dependencies on EXT_vertex_weighting and ARB_vertex _blend

 If EXT_vertex_weighting and ARB_vertex_blend ar e both not supported,
 all discussions of multiple modelview matrices should be removed.

 In particular, the line in the grammar

 <stateMatrixName> ::= "modelview" <state OptModMatNum>

 should be changed to

 <stateMatrixName> ::= "modelview"

 and the rules <stateOptModMatNum> and <stateMod MatNum> should be
 deleted. The first line of Table X.2.7 should be modified to read:

 Binding Underly ing State
 ------------------------------------ ------- --------------------
 state.matrix.modelview modelvi ew matrix

 The caption for Table X.2.7 should be modified to exclude optional
 modelview matrix number. Subsequent references to "modelview matrix
 zero" and "modelview matrix 1" should be change d to "modelview
 matrix" and the example "state.matrix.modelview [1].row[0]" should be
 changed to "state.matrix.modelview.row[0]".

Dependencies on ARB_matrix_palette:

 If ARB_matrix_palette is not supported, all dis cussions of the
 matrix palette should be removed.

 In particular, the line

 "palette" "[" <statePaletteMatNum> "]"

 should be removed from the <stateMatrixName> gr ammar rule, and the
 <statePaletteMatNum> grammar rule should be rem oved entirely.
 "state.matrix.palette[n]" should be removed fro m Table X.2.7.

Dependencies on ARB_transpose_matrix

 If ARB_transpose_matrix is not supported, the d iscussion of
 TRANSPOSE_CURRENT_MATRIX_ARB in the edits to se ction 6.1.2 should be
 removed.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 81

Dependencies on EXT_fog_coord

 If EXT_fog_coord is not supported, references t o "fog coordinate"
 in the definition of the "fragment.fogcoord" at tribute should be
 removed.

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not supported, the d iscussion of the
 rectangle (non-power-of-two) texture target in section 3.11.6 should
 be removed, and the line

 "RECT"

 should be removed from the <texTarget> grammar rule.

Interactions with ARB_shadow

 The texture comparison introduced by ARB_shadow can be expressed in
 terms of a fragment program, and in fact use th e same internal
 resources on some implementations. Therefore, if fragment program
 mode is enabled, the GL behaves as if TEXTURE_C OMPARE_MODE_ARB is
 NONE.

Interactions with ARB_vertex_program

 The program object management entrypoints descr ibed in sections
 2.14.1 (for vertex programs) and 3.11.1 (for fr agment programs)
 are shared by both program targets. The PROGRA M_ERROR_STRING_ARB
 and program queries in sections 6.1.11 and 6.1. 12 are also shared,
 as are all common tokens.

 The Errors section should be modified to genera te INVALID_OPERATION
 from the Get command with argument CURRENT_MATR IX_ARB,
 TRANSPOSE_CURRENT_MATRIX_ARB, and CURRENT_MATRIX_STACK_DEPTH_ARB
 when the current matrix mode is TEXTURE.

 In the presence of ARB_vertex_program, ARB_frag ment_program must
 recognize and return appropriate values for the GetProgram <pname>
 tokens introduced in that spec but not otherwis e shared by
 ARB_fragment_program:

 PROGRAM_ADDRESS_REGISTERS_ARB 0x88B0
 MAX_PROGRAM_ADDRESS_REGISTERS_ARB 0x88B1
 PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B2
 MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB 0x88B3

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 82

 The following tables list new program object st ate and
 implementation-dependent state:

Get Value Type Get Command Initial Value Description Sec Attrib
-------------------- ----- ----------- -------- --------------- ---------------------- -------- ------
PROGRAM_ADDRESS_REGISTERS_ARB Z+ GetProgrami vARB 0 bound program 6.1.12 -
 address registers
PROGRAM_NATIVE_ADDRESS_ Z+ GetProgrami vARB 0 bound program native 6.1.12 -
 REGISTERS_ARB address registers

 Table X.7. Program Object State. Program obje ct queries return attributes
 of the program object currently bound to the pr ogram target <target>.

 Minimum
Get Value Type Get Comm and Value Description Sec. Attrib
--------- ---- -------- --- ------- ----------- ---- ------
MAX_PROGRAM_ADDRESS_REGISTERS_ARB Z+ GetProgr amivARB 0 maximum program 6.1.12 -
 address registers
MAX_PROGRAM_NATIVE_ADDRESS_ Z+ GetProgr amivARB 0 maximum program native 6.1.12 -
 REGISTERS_ARB address registers

 Table X.10. New Implementation-Dependent Value s Introduced by
 ARB_vertex_program.

 In the presence of ARB_fragment_program, ARB_ve rtex_program must
 recognize and return appropriate values for the GetProgram <pname>
 tokens introduced in this spec. The following tables list new
 program object state and implementation-depende nt state:

Get Value Type Get Com mand Initial Value Description Sec Attrib
-------------------- ----- ------- ------------ --------------- -------------------- -- -------- ------
PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program 6.1.12 -
 ALU instructions
PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program 6.1.12 -
 texture instructions
PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 maximum program 6.1.12 -
 texture indirections
PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program nati ve 6.1.12 -
 ALU instructions
PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 maximum program nati ve 6.1.12 -
 texture instructions
PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 maximum program nati ve 6.1.12 -
 texture indirections

Table X.7. Program Object State. Program object q ueries return attributes of
the program object currently bound to the program t arget <target>.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 83

 Minimum
 Get Value Type Get Command Value Description S ec. Attrib
 --------- ---- ----------- ------- ----------- - --- ------
 MAX_PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 Number of frag. prg. 6 .1.12 -
 ALU instructions
 MAX_PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 Number of frag. prg. 6 .1.12 -
 texture instructions
 MAX_PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetProgramivARB 0 Number of frag. prg. 6 .1.12 -
 texture indirections
 MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 maximum program native 6 .1.12 -
 ALU instructions
 MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetProgramivARB 0 maximum program native 6 .1.12 -
 texture instructions
 MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetProgramivARB 0 maximum program native 6 .1.12 -
 texture indirections

 Table X.10. New Implementation-Dependent Value s Introduced by
 ARB_fragment_program.

Interactions with ATI_fragment_shader

 The existing ATI_fragment_shader extension, if supported, also
 provides a similar fragment programming model. Mixing the two
 models in a single application is possible but not recommended.
 FRAGMENT_PROGRAM_ARB has priority over FRAGMENT _SHADER_ATI if
 both are enabled.

Interactions with NV_fragment_program

 The NV_fragment_program extension, if supported , also provides a
 similar programming model. This extension is i ncompatible with
 NV_fragment_program in a number of different wa ys. Mixing the two
 models in a single application is possible but not recommended. The
 interactions between the extensions are defined below.

 Functions, enumerants, and programs defined in NV_fragment_program
 are called "NV functions", "NV enumerants", and "NV programs,"
 respectively. Functions, enumerants, and progr ams defined in
 ARB_fragment_program are called "ARB functions" , "ARB enumerants",
 and "ARB programs," respectively.

 The following GL state is identical in the two extensions:

 - Fragment program mode enable. The NV and A RB enumerants have
 different values, but the same effect.

 - Program error position.

 - Program error string.

 - NV_fragment_program and ARB_fragment_progra m "program local
 parameters."

 - Fragment program names, targets, formats, p rogram string,
 program string lengths, and residency infor mation. The ARB and
 NV query functions operate differently. Th e ARB query function
 does not allow queries of target (passed in to the query) and
 residency information. The NV query functi on does not allow
 queries of program name (passed in to the q uery) or format. The
 format of NV programs is always PROGRAM_FOR MAT_ASCII_ARB.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 84

 - Program object name space. Program objects are created
 differently in the NV and ARB specs. Under the NV spec, program
 objects are created by calling LoadProgramN V. Under the ARB
 spec, program objects are created by callin g BindProgramARB with
 an unused program name.

 The following state is provided only by ARB_fra gment_program:

 - Program environment parameters.

 - Implementation-dependent limits on the numb er of instructions,
 ALU instructions, texture instructions, tex ture indirections,
 program parameters, fragment attributes, re source counts, and
 native resource counts. The instruction li mit is baked into the
 NV spec. Implementations supporting NV_fra gment_program have no
 specific restrictions on the number of ALU instructions, texture
 instructions, texture indirections, or frag ment attributes used.
 Such implementations also have no limit on program parameters
 used, except that no more than one may be u sed by any single
 program instruction.

 The following state is provided only by NV_frag ment_program:

 - Named program parameters (variables defined in the program text
 and updated by name).

 The following are additional functional differe nces between
 ARB_fragment_program and NV_fragment_program:

 - NV programs use a set of register names, wi th no support for
 user-defined variables (other than paramete rs in the program).
 ARB programs provide no support for fixed v ariable names; all
 variables must be declared, explicitly or i mplicitly, in the
 program.

 - ARB programs support parameter variables th at can be bound to
 selected GL state variables, and are update d automatically when
 the underlying state changes. NV programs provide no such
 support; applications must set program para meters themselves.

 - ARB_fragment_program doesn't provide explic it support for
 multiple data types (fx12, fp16, fp32) desc ribed in
 NV_fragment_program, and provides no mechan ism for controlling
 the precision used to carry out arithmetic operations.

 - ARB_fragment_program doesn't support condit ion codes,
 conditional writemasks, or the "C" instruct ion suffix that
 specifies a condition code update.

 - ARB_fragment_program doesn't support an abs olute value operator
 that can be applied to a source vector as i t is loaded.

 - ARB_fragment_program doesn't define behavio r for many floating-
 point special cases. On platforms where NV _fragment_program is
 supported, ARB programs will have the same special-case
 behavior.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 85

 - Language to declare program parameters is s lightly different
 (NV_fragment_program has "DECLARE" and "DEF INE";
 ARB_fragment_program has "PARAM").

 - NV_fragment_program provides a number of in structions not found
 in ARB_fragment_program:

 * DDX, DDY: partial derivatives relative to x and y.

 * "PK*" and "UP*": packing and unpacking instructions.

 * RFL: reflection vector.

 * SEQ, SFL, SGT, SLE, SNE, STR: set on e qual, false, greater
 than, less than or equal, not equal, an d true, respectively.

 * TXD: texture lookup w/partials.

 * X2D: 2D coordinate transformation.

 - ARB_fragment_program provides several instr uctions not found in
 NV_fragment_program, and there are a few in struction set
 differences:

 * ABS: absolute value. ABS instructions are unnecessary in
 NV_fragment_program because of the fr ee absolute value on
 input operator. Equivalent to:

 MOV dst, |src|;

 * CMP: compare. Roughly equivalent to t he following
 sequence, but may be optimized furthe r:

 SLT tmp, src0;
 LRP dst, tmp, src1, src2;

 * DPH: homogenous dot product. Equivale nt to:

 DP3 tmp, src0, src1;
 ADD dst, tmp, src0.w;

 * KIL: kill fragment. Both extensions s upport this
 instruction, but the ARB instruction takes a vector
 operand rather than a condition code.

 * SCS: sine/cosine. Emulated using the separate SIN and COS
 instructions in NV_fragment_program, which also have no
 restriction on the input values.

 * SWZ: extended swizzle. On NV_fragment _program platforms,
 this instruction will be emulated usi ng a single MAD
 instruction and a program parameter c onstant.

 * TXB: texture sample with bias. Not ex posed in the
 NV_fragment_program API.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 86

 * XPD: cross product. Emulated using a MUL and a MAD
 instruction.

GLX Protocol

 The following rendering commands are sent to t he server as part of
 a glXRender request:

 BindProgramARB
 2 12 rendering c ommand length
 2 4180 rendering c ommand opcode
 4 ENUM target
 4 CARD32 program

 ProgramEnvParameter4fvARB
 2 32 rendering c ommand length
 2 4184 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramEnvParameter4dvARB
 2 44 rendering c ommand length
 2 4185 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 ProgramLocalParameter4fvARB
 2 32 rendering c ommand length
 2 4215 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]

 ProgramLocalParameter4dvARB
 2 44 rendering c ommand length
 2 4216 rendering c ommand opcode
 4 ENUM target
 4 CARD32 index
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]

 The ProgramStringARB is potentially large, and hence can be sent in
 a glXRender or glXRenderLarge request.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 87

 ProgramStringARB
 2 16+len+p rendering c ommand length
 2 4217 rendering c ommand opcode
 4 ENUM target
 4 ENUM format
 4 sizei len
 len LISTofBYTE program
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the
 command opcode and command length fields a bove are expanded to
 4 bytes each:

 4 16+len+p rendering c ommand length
 4 4217 rendering c ommand opcode

 The remaining commands are non-rendering comman ds. These commands
 are sent separately (i.e., not as part of a glX Render or
 glXRenderLarge request), using the glXVendorPri vateWithReply
 request:

 DeleteProgramsARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+n request len gth
 4 1294 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 n*4 LISTofCARD32 programs

 GenProgramsARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1295 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 n reply lengt h
 24 unused
 n*4 LISTofCARD322 programs

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 88

 GetProgramEnvParameterfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1296 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramEnvParameterdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1297 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 89

 GetProgramLocalParameterfvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1305 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 4 FLOAT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofFLOAT32 params

 GetProgramLocalParameterdvARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 6 request len gth
 4 1306 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 CARD32 index
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n*2)
 4 unused
 4 CARD32 n (number o f parameter components)

 if (n=1) this follows:

 8 FLOAT64 params
 8 unused

 otherwise this follows:

 16 unused
 n*8 LISTofFLOAT64 params

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 90

 GetProgramivARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1307 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 m reply lengt h, m=(n==1?0:n)
 4 unused
 4 CARD32 n

 if (n=1) this follows:

 4 INT32 params
 12 unused

 otherwise this follows:

 16 unused
 n*4 LISTofINT32 params

 GetProgramStringARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 5 request len gth
 4 1308 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 ENUM target
 4 ENUM pname
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 (n+p)/4 reply lengt h
 4 unused
 4 CARD32 n
 16 unused
 n STRING program
 p unused, p=p ad(n)

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 91

 IsProgramARB
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4 request len gth
 4 1304 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 n
 =>
 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 4 BOOL32 return valu e
 20 unused

Errors

 The error INVALID_OPERATION is generated by Pro gramStringARB if the
 program string <string> is syntactically incorr ect or violates any
 semantic restriction of the execution environme nt of the specified
 program target <target>. The error INVALID_OPE RATION may also be
 generated by ProgramStringARB if the specified program would exceed
 native resource limits of the implementation.

 The error INVALID_OPERATION is generated by Bin dProgramARB if
 <program> is the name of a program whose target does not match
 <target>.

 The error INVALID_VALUE is generated by command s
 ProgramEnvParameter{fd}ARB, ProgramEnvParameter {fd}vARB, and
 GetProgramEnvParameter{fd}vARB if <index> is gr eater than or equal
 to the value of MAX_PROGRAM_ENV_PARAMETERS_ARB corresponding to the
 program target <target>.

 The error INVALID_VALUE is generated by command s
 ProgramLocalParameter4{fd}ARB, ProgramLocalPara meter4{fd}vARB, and
 GetProgramLocalParameter{fd}vARB if <index> is greater than or equal
 to the value of MAX_PROGRAM_LOCAL_PARAMETERS_AR B corresponding to
 the program target <target>.

 The error INVALID_OPERATION is generated if Beg in, RasterPos, or any
 command that performs an explicit Begin is call ed when fragment
 program mode is enabled and the currently bound fragment program
 object does not contain a valid fragment progra m.

 The error INVALID_OPERATION is generated by any command accessing
 texture coordinate processing state if the text ure unit number
 corresponding to the current value of ACTIVE_TE XTURE is greater than
 or equal to the implementation-dependent consta nt
 MAX_TEXTURE_COORDS_ARB. Such commands include: GetTexGen{if}v;
 TexGen{ifd}, TexGen{ifd}v; Disable, Enable, IsE nabled with argument
 TEXTURE_GEN_{STRQ}; Get with argument CURRENT_T EXTURE_COORDS,
 CURRENT_RASTER_TEXTURE_COORDS, TEXTURE_STACK_DEPTH, TEXTURE_MATRIX,
 TRANSPOSE_TEXTURE_MATRIX; when the current matr ix mode is TEXTURE,
 Frustum, LoadIdentity, LoadMatrix{fd}, LoadTran sposeMatrix{fd},
 MultMatrix{fd}, MultTransposeMatrix{fd}, Ortho, PopMatrix,
 PushMatrix, Rotate{fd}, Scale{fd}, Translate{fd }.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 92

 The error INVALID_OPERATION is generated by any command accessing
 texture image processing state if the texture u nit number
 corresponding to the current value of ACTIVE_TE XTURE is greater than
 or equal to the implementation-dependent consta nt
 MAX_TEXTURE_IMAGE_UNITS_ARB. Such commands inc lude: BindTexture;
 GetCompressedTexImage, GetTexEnv{if}v, GetTexIm age,
 GetTexLevelParameter{if}v, GetTexParameter{if}v ; TexEnv{if},
 TexEnv{if}v, TexParameter{if}, TexParameter{if} v; Disable, Enable,
 IsEnabled with argument TEXTURE_{123}D, TEXTURE _CUBE_MAP; Get with
 argument TEXTURE_BINDING_{123}D, TEXTURE_BINDIN G_CUBE_MAP;
 CompressedTexImage{123}D, CompressedTexSubImage {123}D,
 CopyTexImage{12}D, CopyTexSubImage{123}D, TexIm age{123}D,
 TexSubImage{123}D.

New State

Get Value Type Get Command Initial Value Description Section Attribut e
-------------------------- ------ ------------- ------------- ------------------ ------- -------- ----
FRAGMENT_PROGRAM_ARB B IsEnabled False fragment program 3.8 enable
 enable
- 24+xR4 GetProgramEnv- (0,0,0,0) program environment 3.11.1 -
 ParameterARB parameters
PROGRAM_ERROR_POSITION_ARB Z GetIntegerv -1 last program error 3.11.1 -
 position
PROGRAM_ERROR_STRING_ARB 0+xub GetString "" last program error 3.11.1 -
 string

 Table X.6. New Accessible State Introduced by ARB_fragment_program.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 93

Get Value Type Get Com mand Initial Value Description Sec Attrib
-------------------- ----- ------- ------------ --------------- -------------------- -- -------- ------
PROGRAM_BINDING_ARB Z+ GetProg ramivARB object-specific bound program name 6.1.12 -
PROGRAM_LENGTH_ARB Z+ GetProg ramivARB 0 bound program length 6.1.12 -
PROGRAM_FORMAT_ARB Z1 GetProg ramivARB PROGRAM_FORMAT_ bound program format 6.1.12 -
 ASCII_ARB
PROGRAM_STRING_ARB ubxn GetProg ramStringARB (empty) bound program string 6.1.12 -
PROGRAM_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 total instructions
PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 ALU instructions
PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 texture instructions
PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 texture indirections
PROGRAM_TEMPORARIES_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 temporaries
PROGRAM_PARAMETERS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 parameter bindings
PROGRAM_ATTRIBS_ARB Z+ GetProg ramivARB 0 bound program 6.1.12 -
 attribute bindings
PROGRAM_NATIVE_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 instructions
PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 ALU instructions
PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 texture instructions
PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 texture indirections
PROGRAM_NATIVE_TEMPORARIES_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 temporaries
PROGRAM_NATIVE_PARAMETERS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 parameter bindings
PROGRAM_NATIVE_ATTRIBS_ARB Z+ GetProg ramivARB 0 bound program native 6.1.12 -
 attribute bindings
PROGRAM_UNDER_NATIVE_LIMITS_ARB B GetProg ramivARB 0 bound program under 6.1.12 -
 native resource limi ts
- 24+xR4 GetProg ramLocal- (0,0,0,0) bound program local 3.11.1 -
 Paramet erARB parameter value

Table X.7. Program Object State. Program object q ueries return attributes of
the program object currently bound to the program t arget <target>.

Get Value Type Get Command Initial Value D escription Sec Attribute
--------- ------ ----------- ------------- - ------------------------ -------- ---------
- 16+xR4 - undefined t emporary registers 3.11.3.3 -
- 2xR4 - undefined f ragment result registers 3.11.3.4 -

Table X.8. Fragment Program Per-fragment Execution State. All per-fragment
execution state registers are uninitialized at the beginning of program
execution.

Get Value Type Get Co mmand Initial Value Description Sec Attribute
------------------------------ -------- ------ -------- ------------- ------------------- ---- --- ---------
CURRENT_MATRIX_ARB m*n*xM 4̂ GetFlo atv Identity current matrix 6.1. 2 -
CURRENT_MATRIX_STACK_DEPTH_ARB m*Z+ GetInt egerv 1 current stack depth 6.1. 2 -

Table X.9. Current matrix state where m is the tot al number of matrices
including texture matrices and program matrices and n is the number of
matrices on each particular matrix stack. Note tha t this state is aliased
with existing matrix state.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 94

New Implementation Dependent State

 Minimum
Get Value Type Get Command Value Description Sec . Attrib
--------- ---- ---- ------- ------- ----------- --- - ------
MAX_TEXTURE_COORDS_ARB Z+ GetI ntegerv 2 number of texture 2.7 -
 coordinate sets
MAX_TEXTURE_IMAGE_UNITS_ARB Z+ GetI ntegerv 2 number of texture 2.1 0.2 -
 image units
MAX_PROGRAM_ENV_PARAMETERS_ARB Z+ GetP rogramivARB 24 maximum program 3.1 1.1 -
 env parameters
MAX_PROGRAM_LOCAL_PARAMETERS_ARB Z+ GetP rogramivARB 24 maximum program 3.1 1.1 -
 local parameters
MAX_PROGRAM_MATRICES_ARB Z+ GetI ntegerv 8 (not to maximum number of 3.1 1.7 -
 exceed 32) program matrices
MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB Z+ GetI ntegerv 1 maximum program 3.1 1.7 -
 matrix stack depth
MAX_PROGRAM_INSTRUCTIONS_ARB Z+ GetP rogramivARB 72 maximum program 6.1 .12 -
 total instructions
MAX_PROGRAM_ALU_INSTRUCTIONS_ARB Z+ GetP rogramivARB 48 number of frag. prg. 6.1 .12 -
 ALU instructions
MAX_PROGRAM_TEX_INSTRUCTIONS_ARB Z+ GetP rogramivARB 24 number of frag. prg. 6.1 .12 -
 texture instructions
MAX_PROGRAM_TEX_INDIRECTIONS_ARB Z+ GetP rogramivARB 4 number of frag. prg. 6.1 .12 -
 texture indirections
MAX_PROGRAM_TEMPORARIES_ARB Z+ GetP rogramivARB 16 maximum program 6.1 .12 -
 temporaries
MAX_PROGRAM_PARAMETERS_ARB Z+ GetP rogramivARB 24 maximum program 6.1 .12 -
 parameter bindings
MAX_PROGRAM_ATTRIBS_ARB Z+ GetP rogramivARB 10 maximum program 6.1 .12 -
 attribute bindings
MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 total instructions
MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 ALU instructions
MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 texture instructions
MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 texture indirections
MAX_PROGRAM_NATIVE_TEMPORARIES_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 temporaries
MAX_PROGRAM_NATIVE_PARAMETERS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 parameter bindings
MAX_PROGRAM_NATIVE_ATTRIBS_ARB Z+ GetP rogramivARB - maximum program native 6.1 .12 -
 attribute bindings

Table X.10. New Implementation-Dependent Values In troduced by
ARB_fragment_program. Values queried by GetProgram require a <pname> of
FRAGMENT_PROGRAM_ARB.

Sample Usage

 The following program shows how to perform a si mple modulation
 between the interpolated color and a single tex ture:

 !!ARBfp1.0
 # Simple program to show how to code up the d efault texture environment
 ATTRIB tex = fragment.texcoord; #first s et of texture coordinates
 ATTRIB col = fragment.color.primary; #diffuse interpolated color
 OUTPUT outColor = result.color;
 TEMP tmp;
 TXP tmp, tex, texture, 2D; #sample the texture
 MUL outColor, tmp, col; #perform the modulation
 END

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 95

 The following is an example the simulates a chr ome surface:

 !!ARBfp1.0
 ########################
 # Input Textures:
 #-----------------------
 # Texture 0 contains the default 2D texture u sed for general mapping
 # Texture 2 contains a 1D pointlight falloff map
 # Texture 3 contains a 2D map for calculating specular lighting
 # Texture 4 contains normalizer cube map
 # Input Texture Coordinates:
 #-----------------------
 # TexCoord1 contains the calculated normal
 # TexCoord2 contains the light to vertex vect or
 # TexCoord3 contains the half-vector in tange nt space
 # TexCoord4 contains the light vector in tang ent space
 # TexCoord5 contains the eye vector in tangen t space
 ########################
 TEMP NdotH, lV, L;
 ALIAS diffuse = L;
 PARAM half = { 0.5, 0.5, 0.5, 0.5 };
 ATTRIB norm_tc = fragment.texcoord[1];
 ATTRIB lv_tc = fragment.texcoord[2];
 ATTRIB half_tc = fragment.texcoord[3];
 ATTRIB light_tc = fragment.texcoord[4];
 ATTRIB eye_tc = fragment.texcoord[5];
 OUTPUT oCol = result.color;
 TEX L, light_tc, texture[4], CUBE; # Samp le cube map normalizer
 # Calculate diffuse lighting (N.L)
 SUB L, L, half; # Bias L and then multiply by 2
 ADD L, L, L;
 DP3 diffuse, norm_tc, L; # N.L
 # Calculate specular lighting component { (N. H), |H|^2 }
 DP3 NdotH.x, norm_tc, half_tc;
 DP3 NdotH.y, half_tc, half_tc;
 DP3 lV.x, lv_tc, lv_tc; # lV = (|ligh t to vertex|)^2
 #############
 # Pass 2
 #############
 TEMP base, specular;
 ALIAS atten = lV;
 TEX base, eye_tc, texture[0], 2D; # sample en viroment map using eye vector
 TEX atten, lV, texture[2], 1D; # Sampl e attenuation map
 TEX specular, NdotH, texture[3], 2D; # Sampl e specular NHHH map=(N.H)^256
 # specular = (N.H)^256 * (N.L)
 # this ensures a pixel is only lit if facing the light (since the specular
 # exponent makes negative N.H positive we mus t do this)
 MUL specular, specular, diffuse;
 # specular = specular * environment map
 MUL specular, base, specular;
 # diffuse = diffuse * environment map
 MUL diffuse, base, diffuse;
 # outColor = (specular * environment map) + (diffuse * environment map)
 ADD base, specular, diffuse;
 # Apply point light attenutaion
 MUL oCol, base, atten.r;
 END

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 96

Revision History

 Date: 8/22/2003
 Revision: 26
 - Added list of commands generating errors wh en active texture
 unit selector is out of range.
 - Fixed typo in <stateMatrixItem> rule.
 - Clarified behavior of fragment.position.z w ith respect to depth
 offset.

 Date: 2/26/2003
 Revision: 25
 - Fixed description of KIL instruction to ref lect less than zero
 test, not less than or equal to zero.
 - Clarified the processing of incoming and ou tgoing depths and
 colors to reflect the conversion to floatin g-point on input and
 the conversion to fixed-point on output.

 Date: 1/10/2003
 Revision: 24
 - Fixed bug where "state.matrix.mvp" was spec ified incorrectly.
 It should be P*M0 rather than M0*P.
 - Added issue warning about CMP opcode's orde r of operands.

 Date: 10/22/2002
 Revision: 23
 - Fixed reference to <extSwizComp> rule in 3. 11.5.28. Instead
 reference both <xyzwExtSwizComp> and <rgbaE xtSwizComp> rules.

 Date: 10/02/2002
 Revision: 22
 - Fixed typo in section 3.11.1, where 8 progr am environment and
 8 program local parameters are listed as th e minimums instead
 of 24 of each. Table X.10 had the correct values.
 - Fixed <stateTexEnvItem> to refer to legacy texture units.
 - Fixed typos in issue 29 pseudo-code, added some clarification.

 Date: 9/19/2002
 Revision: 21
 - Added clarifying paragraph for native textu re indirection
 counting, offering examples of possible cas es where texture
 indirections may be increased.
 - Fixed typos in issues 25 and 29.

 Date: 9/16/2002
 Revision: 20
 - Added precision hint program options.
 - Fixed various typos, reworded some parts fo r consistency.
 - Updated issues list.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 97

 Date: 9/13/2002
 Revision: 19
 - Promoted minimum precision of texture coord inates in 2.1.1.
 - Added ARB_fog_* program options.
 - Removed modification to 3.9, put clamps in 3.11.4.4.
 - Made 'texture' a reserved keyword in the gr ammar.
 - Fixed various typos.
 - Updated section 3.11.6.
 - Updated issues list.

 Date: 9/11/2002
 Revision: 18
 - Updated for consistency with ARB_vertex_pro gram revision 36.
 - Depth output moved to 3rd component of resu lt.depth.
 - Fixed various typos, reworded things in man y places.
 - Added NV_fragment_program interactions.
 - Updated issues list.

 Date: 9/09/2002
 Revision: 17
 - Added fogcoord and position attributes.
 - Moved fragment program section to 3.11, aft er fog.
 - Changed MAX_TEXTURE_UNITS/MAX_AUX_TEXTURE_U NITS to
 MAX_TEXTURE_COORDS/MAX_TEXTURE_IMAGE_UNITS.
 - Removed TRC and MOD instructions.
 - Added SIN and COS instructions.
 - Added more clarity to resource consumption wording.
 - Added invariance wording concerning depth-r eplacement.
 - Added rule that a program that fails to loa d must always fail to
 load, regardless of GL state.
 - Updated issues list.

 Date: 8/30/2002
 Revision: 16
 - Improved texture indirection description.
 - Defined result of sample from incomplete te xture as (0,0,0,1).
 - Removed PROGRAMS_LOAD_OVER_NATIVE_LIMITS_AR B per-target query.
 - Allowed ProgramStringARB to fail on non-nat ive programs.
 - Updated issues list.

 Date: 8/28/2002
 Revision: 15
 - Updated for consistency with ARB_vertex_pro gram revision 35.
 - Added PROGRAMS_LOAD_OVER_NATIVE_LIMITS_ARB per-target query.
 - Changed MAX_AUX_TEXTURE_UNITS_ARB enum valu e.
 - Updated issues list.

 Date: 8/22/2002
 Revision: 14
 - Added sine/cosine instruction (SCS).
 - Updated texture sample grammar, replaced te xenables hierarchy.
 - Added EXT_vertex_weighting and ARB_vertex_b lend dependency.
 - Updated issues list.

ARB_fragment_program NVIDIA OpenGL Extension Specifications

 98

 Date: 8/14/2002
 Revision: 13
 - Fixed <paramConstant> grammar rule.
 - Updated issues list.

 Date: 8/06/2002
 Revision: 12
 - Fixed various typos.
 - Updated issues list.
 - Added wording to 3.10.3.6 to reflect that n ative resource
 consumption may increase due to emulated in structions.

 Date: 7/29/2002
 Revision: 11
 - Updated for consistency with ARB_vertex_pro gram revision 34.
 - Added support for matrix binding.
 - Removed precision queries.
 - Updated issues list.

 Date: 7/16/2002
 Revision: 10
 - Updated for consistency with ARB_vertex_pro gram revision 31.
 - Added fog params and depth range bindings t o grammar.
 - Removed stpq writemasks and swizzles from g rammar.
 - Required swizzle components to come from sa me set, xyzw or rgba.

 Date: 7/10/2002
 Revision: 9
 - Made fog params and depth range bindable.
 - Changed texture instruction names to match 3-letter format.
 - Made texture instructions more consistent w ith ALU instructions.
 - Increased minimums for implementation-depen dent values.
 - Re-introduced 4-components swizzles and the SWZ instruction.
 - Updated issues list.

 Date: 7/03/2002
 Revision: 8
 - Fixed typos.
 - Added DST, LIT, SGE, SLT instructions.
 - Changed FRC definition to match ARB_vertex_ program, added MOD
 instruction to expose fmod(arg, 1.0) behavi or.

 Date: 6/25/2002
 Revision: 7
 - Updated for consistency with ARB_vertex_pro gram revision 29.

 Date: 6/19/2002
 Revision: 6
 - Updated for consistency with ARB_vertex_pro gram revision 28.
 - Changed from ATI to ARB prefix/suffix.
 - Started using single integer revision numbe r.
 - Added a few more issues to the list.

 Date: 6/14/2002
 Revision: 1.4
 - Updated for consistency with ARB_vertex_pro gram revision 27.
 - Added a few more issues to the list.

NVIDIA OpenGL Extension Specifications ARB_fragment_program

 99

 Date: 6/05/2002
 Revision: 1.3
 - Updated for consistency with ARB_vertex_pro gram revision 26.
 - Incorporated program object management, rem oving dependency on
 ARB_vertex_program.
 - Added interaction with ARB_shadow.

 Date: 6/03/2002
 Revision: 1.2
 - Updated for consistency with ARB_vertex_pro gram revision 25.
 - Fixed TexInstructions to use <texSrcReg>, i .e. no parameters.
 - Added TRC, POW, DPH instructions, updated F RC and LRP.
 - Added fog color parameter binding.

 Date: 5/23/2002
 Revision: 1.1
 - Updated for consistency with ARB_vertex_pro gram revision 24.
 - Added GetProgramfvATI entrypoint for queryi ng precision values.

 Date: 5/10/2002
 Revision: 1.0
 - First draft for circulation.

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 100

Name

 ARB_fragment_program_shadow

Name Strings

 GL_ARB_fragment_program_shadow

IP Status

 Unknown, but Microsoft claims to own intellectu al property
 related to ARB_fragment_program. This extensio n is
 an extension to ARB_fragment_program.

Status

 Complete. Approved by ARB on December 16, 2003

Version

 Last Modified Date: December 8, 2003
 Revision: 5

Number

 ARB Extension #36

Dependencies

 The extension is written against the OpenGL 1.3 Specification.

 ARB_fragment_program is required.

 ARB_shadow is required.

 EXT_texture_rectange affects the definition of this extension.

Overview

 This extension extends ARB_fragment_program to remove
 the interaction with ARB_shadow.

 This extension defines the program option
 "ARB_fragment_program_shadow".

 If a fragment program specifies the option
 "ARB_fragment_program_shadow"

 SHADOW1D, SHADOW2D, SHADOWRECT

 are added as texture targets. When shadow map comparisons are
 desired, specify the SHADOW1D, SHADOW2D, or SHA DOWRECT texture
 targets in texture instructions.

 Programs must assure that the comparison mode f or each depth
 texture (TEXTURE_COMPARE_MODE) and/or the inter nal texture
 format (DEPTH_COMPONENT) and the targets of the texture lookup

NVIDIA OpenGL Extension Specifications ARB_fragment_program_shadow

 101

 instructions match. Otherwise, if the comparis on mode
 and/or the internal texture format are inconsis tent with the
 texture target, the results of the texture look up are undefined.

Issues

 (1) What should this extension be called?

 RESOLVED: ARB_fragment_program_shadow. Shad ow support
 is the only new feature. The name ARB_fragme nt_program2
 should be used for a far more major revision to
 ARB_fragment_program. ARB_fragment_program1_ 1 is
 less descriptive.

 (2) Should this extension use the header string "!!ARBfp1.1" or
 a program option "ARB_fragment_program_shadow"?

 RESOLVED: Program option "ARB_fragment_progra m_shadow".

 (3) What form should the ARB_fragment_program_s hadow option take?

 a. New sampler instructions.
 SHX result.color.a, fragment.texcoord[1], texture[0], 2D;

 b. New texture modifiers.
 TEX result.color.a, fragment.texcoord[1], texture[0], 2D,SHADOW;

 c. New texture targets.
 TEX result.color.a, fragment.texcoord[1], texture[0], SHADOW2D;

 d. New sampler instructions AND new textur e modifiers.
 SHX result.color.a, fragment.texcoord[1], texture[0], 2D,SHADOW;

 e. New sampler instructions AND new textur e targets.
 SHX result.color.a, fragment.texcoord[1], texture[0], SHADOW2D;

 RESOLVED: Choose the simplest option c, add ne w texture targets.

 All of the above forms are functionally equival ent.

 An earlier draft proposed option a, adding six new shadow
 instructions. The required shadow instructions are
 three variants of shadow instruction (non-proje ctive, projective,
 and biased), and the same instructions with the modifier _SAT.

 Option b adds texture modifiers but requires ad ditional semantic
 restrictions.

 Option c adds texture targets only. It is a su fficient
 and simple change to one grammar rule.

 Option d and e are listed for completeness. Th ey require
 additional instructions and additional semantic restrictions.

 Note that option e is most similar to the resol ution of this issue
 by ARB_fragment_shader and the OpenGL Shading L anguage. The OpenGL
 Shading Language has both built-in texture and shadow functions and

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 102

 sampler types, analogous to texture instruction s and texture targets.
 The resolution here drops the added reduntancy and potential error
 checking in favor of simplicity, but is otherwi se consistent.
 This resolution is also consistent with the pre cident already
 established in ARB_fragment_program, since we h ave a TEX instruction,
 not a TEX1D, TEX2D, TEXCUBE, TEX3D, TEXRECT ins tructions.

 (4) How should ARB_fragment_program_shadow func tion?

 a. Simply remove the interaction with ARB_s hadow so that
 TEXTURE_COMPARE_MODE behaves exactly as specified in the
 OpenGL 1.4 specification.

 b. Add "SHADOW" targets to texture lookup i nstructions.
 TEXTURE_COMPARE_MODE is ignored. For sa mples from a SHADOW
 target TEXTURE_COMPARE_MODE is treated a s COMPARE_R_TO_TEXTURE;
 otherwise, it is treated as NONE.

 c. Like (b), but with undefined results if TEXTURE_COMPARE_MODE
 and/or the internal format of the textur e does not match the
 target.

 d. A hybrid of (a) and (b), where the SHADO W target means to
 use the TEXTURE_COMPARE_MODE state.

 RESOLVED - Option c, undefined behavior when the target and
 mode do not match.

 Program text is not simply loaded, it is comp iled, optimized
 and then loaded. Options a and d would remov e information from
 the optimizer. Which components of the textu re coordinate are
 required for the sample? Specifically, is th e r component of the
 texture coordinate required? Options b and c are both sufficient
 and retain the information required by optimi zers. Option c is
 consistent with the resolution chosen by ARB_ fragment_shader.

 (5) What if additional texture compare modes ar e added by
 future extensions to ARB_SHADOW?

 We do not anticipate future extensions adding a dditional texture
 compare modes. Only the additional mode COMPAR E_T_TO_TEXTURE
 has even marginal utility, and then only for SH ADOW1D targets.
 However, a future extension adding additional t exture compare modes
 is not precluded. The language in this specifi cation is carefully,
 if somewhat awkwardly, written to say the TEXTU RE_COMPARE_MODE either
 "is NONE" or "is not NONE.

 (6) Does EXT_shadow_funcs interact with this ex tension?

 RESOLVED: It doesn't. ARB_shadow supports LEQUAL or GEQUAL
 comparison functions. EXT_shadow_funcs simp ly adds
 the additional functions LESS, GREATER, EQUA L, NOTEQUAL,
 ALWAYS, and NEVER. Whichever function is sp ecified will
 be used for the comparison function.

NVIDIA OpenGL Extension Specifications ARB_fragment_program_shadow

 103

 (7) Does ARB_shadow_ambient interact with this extension?

 RESOLVED: It doesn't. ARB_shadow returns a result
 in the range [0,1]. ARB_shadow_ambient simp ly
 maps this range to [TEXTURE_COMPARE_FAIL_ARB , 1].
 The result will be returned in the specified range.

 (8) How would an existing fragment program be p orted to use the
 program option ARB_fragment_program_shadow?

 RESOLVED: Fairly simply, but with a caveat on undefined behavior.

 !!ARBfp1.0
 # A simple example of shadow map (R <= Dt)
 #
 # SHOULD make sure that the 2D texture bound to texture unit 0:
 # texture format of DEPTH_COMPONENT (for highest quality comparison)
 # TEXTURE_MAG_FILTER is NEAREST
 # TEXTURE_MIN_FILTER is NEAREST or NEARES T_MIPMAP_NEAREST
 # Assumes DEPTH_TEXTURE_MODE is LUMINANCE or INTENSITY
 #
 TEMP Result;
 ALIAS Dt = Result;
 TEX Dt, fragment.texcoord[0], texture[0], 2D ;
 SGE Result, Dt.x, fragment.texcoord[0].z; # R <= Dt

 !!ARBfp1.0
 OPTION ARB_fragment_program_shadow;
 # A simple example of shadow map (R<= Dt)
 #
 # MUST make sure that the 2D texture bound t o texture unit 0:
 # texture format of DEPTH_COMPONENT and a
 # TEXTURE_COMPARE_MODE of COMPARE_R_TO_TE XTURE
 # Otherwise, the Result is undefined.
 #
 # Remember also that to get R <= Dt to set:
 # TEXTURE_COMPARE_FUNC of LEQUAL
 #
 # A single compare equivalent to the above e xample will result if:
 # TEXTURE_MAG_FILTER is NEAREST
 # TEXTURE_MIN_FILTER is NEAREST or NEARES T_MIPMAP_NEAREST
 # Otherwise, percent closer filtering may be applied.
 #
 TEMP Result;
 TEX Result, fragment.texcoord[0], texture[0] , SHADOW2D;

New Procedures and Functions

 None

New Tokens

 None

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 104

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.11.2 Fragment Program Grammar and Semantic
 Restrictions

 Replace <texTarget> grammar rule with

 <texTarget> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"
 | <shadowTarget> (if p rogram option is present)

 <shadowTarget> ::= "SHADOW1D"
 | "SHADOW2D"
 | "SHADOWRECT"

 Add Section 3.11.4.5.3 Fragment Program Shadow Option

 If a fragment program specifies the "ARB_fragme nt_program_shadow"
 program option, the <texTarget> rule is modifie d to add the
 texture targets SHADOW1D, SHADOW2D and SHADOWRE CT (See Section 3.11.2).

 Modify Section 3.11.6 Fragment Program Texture Instruction Set

 (replace 1st through 4th paragraphs with the fo llowing paragraphs)

 The first three texture instructions described below specify
 the mapping of 4-tuple input vectors to 4-tuple output vectors.
 The sampling of the texture works as described in section 3.8, except
 that texture environments and texture functions are not applicable,
 and the texture enables hierarchy is replaced b y explicit references
 to the desired texture target (i.e., 1D, 2D, 3D , cube map, rectangle).
 These texture instructions specify how the 4-tu ple is mapped into
 the coordinates used for sampling. The followi ng function is used
 to describe the texture sampling in the descrip tions below:

 vec4 TextureSample(float s, float t, float r, float lodBias,
 int texImageUnit, enum tex Target);

 Note that not all three texture coordinates, s, t, and r, are
 used by all texture targets. In particular, 1D texture targets only
 use the s component. 2D and RECT (non-power-of -two) texture
 targets only use the s and t components. SHADO W1D texture
 targets only use the s and r components. The d escriptions of the
 texture instructions below supply all three com ponents, as would
 be the case with CUBE, 3D, SHADOW2D, and SHADOW RECT targets.

 If a fragment program samples from a texture ta rget on a texture
 image unit where the bound texture object is no t complete, as
 defined in section 3.8.9, the result will be th e vector
 (R, G, B, A) = (0, 0, 0, 1).

 If a fragment program does not specify the
 "ARB_fragment_program_shadow" program option, a nd if a fragment

NVIDIA OpenGL Extension Specifications ARB_fragment_program_shadow

 105

 program samples from a texture target of 1D, 2D , or RECT, it is as
 if TEXTURE_COMPARE_MODE_ARB is NONE.

 If a fragment program specifies the "ARB_fragme nt_program_shadow"
 program option, the result returned of a sample from a texture target
 on a texture image unit is undefined if:

 the texture target is 1D, 2D, or RECT, and
 the texture object's internal format is DEPTH _COMPONENT_ARB, and
 the TEXTURE_COMPARE_MODE_ARB is not NONE;

 or

 the texture target is SHADOW1D, SHADOW2D, SHA DOWRECT, and
 the texture object's internal format is DEP TH_COMPONENT_ARB, and
 the TEXTURE_COMPARE_MODE_ARB is NONE;

 or

 the texture target is SHADOW1D, SHADOW2D, SHA DOWRECT, and
 the texture object's internal format is not DEPTH_COMPONENT_ARB.

 A fragment program will fail to load if it atte mpts to sample from
 multiple texture targets on the same texture im age unit. For example,
 the following programs would fail to load:

 !!ARBfp1.0
 TEX result.color.rgb, fragment.texcoord[0], t exture[0], 2D;
 TEX result.color.a, fragment.texcoord[1], t exture[0], 3D;
 END

 !!ARBfp1.0
 OPTION ARB_fragment_program_shadow;
 TEX result.color.rgb, fragment.texcoord[0], t exture[0], 2D;
 TEX result.color.a, fragment.texcoord[1], t exture[0], SHADOW2D;
 END

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special
Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and State
Requests)

 None

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None

ARB_fragment_program_shadow NVIDIA OpenGL Extension Specifications

 106

Additions to the AGL/GLX/WGL Specifications

 None

Dependencies on EXT_texture_rectangle

 If EXT_texture_rectangle is not supported:

 Section 3.11.2 should be modified by removing t he line:

 | "SHADOWRECT"

 from the <shadowTarget> grammar rule;

 and Section 3.11.6 should be modified by removi ng the discussion
 of the rectangle shadow texture target.

NVIDIA OpenGL Extension Specifications EXT_blend_func_separate

 107

Name

 EXT_blend_func_separate

Name Strings

 GL_EXT_blend_func_separate

Version

 Date: 04/06/1999 Version 1.3

Number

 173

Dependencies

 None

Overview

 Blending capability is extended by defining a f unction that allows
 independent setting of the RGB and alpha blend factors for blend
 operations that require source and destination blend factors. It
 is not always desired that the blending used fo r RGB is also applied
 to alpha.

New Procedures and Functions

 void BlendFuncSeparateEXT(enum sfactorRGB,
 enum dfactorRGB,
 enum sfactorAlpha,
 enum dfactorAlpha);

New Tokens

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 BLEND_DST_RGB_EXT 0x80C8
 BLEND_SRC_RGB_EXT 0x80C9
 BLEND_DST_ALPHA_EXT 0x80CA
 BLEND_SRC_ALPHA_EXT 0x80CB

Additions to Chapter 2 of the 1.2 GL Specification (OpenGL Operation)

 None

Additions to Chapter 3 of the 1.2 GL Specification (Rasterization)

 None

EXT_blend_func_separate NVIDIA OpenGL Extension Specifications

 108

Additions to Chapter 4 of the 1.2 GL Specification (Per-Fragment Operations
and the Framebuffer)

 The RGB and alpha blend factors are separate. The function
 BlendFuncSeparateEXT allows the specification o f the four factors.
 Table 4.1 and Table 4.2 are modified as follows :

 Value RGB Factors Alpha Factors
 ------------------ -------------------- -------- -------------
 ZERO (0, 0, 0) 0
 ONE (1, 1, 1) 1
 DST_COLOR (Rd/Kr, Gd/Kg, Bd/Kb) Ad/Ka
 ONE_MINUS_DST_COLOR (1-Rd/Kr, 1-Gd/Kg, 1 -Bd/Kb) 1-Ad/Ka
 SRC_ALPHA (As/Ka, As/Ka, As/Ka) As/Ka
 ONE_MINUS_SRC_ALPHA (1-As/Ka, 1-As/Ka, 1 -As/Ka) 1-As/Ka
 DST_ALPHA (Ad/Ka, Ad/Ka, Ad/Ka) Ad/Ka
 ONE_MINUS_DST_ALPHA (1-Ad/Ka, 1-Ad/Ka, 1 -Ad/Ka) 1-Ad/Ka
 CONSTANT_COLOR (Rc, Gc, Bc) Ac
 ONE_MINUS_CONSTANT_COLOR (1-Rc, 1-Gc, 1-Bc) 1-Ac
 CONSTANT_ALPHA (Ac, Ac, Ac) Ac
 ONE_MINUS_CONSTANT_ALPHA (1-Ac, 1-Ac, 1-Ac) 1-Ac
 SRC_ALPHA_SATURATE (f, f, f) 1

 Value RGB Factors Alpha Factors
 ------------------ -------------------- -------- -------------
 ZERO (0, 0, 0) 0
 ONE (1, 1, 1) 1
 SRC_COLOR (Rs/Kr, Gs/Kg, Bs/Kb) As/Ka
 ONE_MINUS_SRC_COLOR (1-Rs/Kr, 1-Gs/Kg, 1 -Bs/Kb) 1-As/Ka
 SRC_ALPHA (As/Ka, As/Ka, As/Ka) As/Ka
 ONE_MINUS_SRC_ALPHA (1-As/Ka, 1-As/Ka, 1 -As/Ka) 1-As/Ka
 DST_ALPHA (Ad/Ka, Ad/Ka, Ad/Ka) Ad/Ka
 ONE_MINUS_DST_ALPHA (1-Ad/Ka, 1-Ad/Ka, 1 -Ad/Ka) 1-Ad/Ka
 CONSTANT_COLOR (Rc, Gc, Bc) Ac
 ONE_MINUS_CONSTANT_COLOR (1-Rc, 1-Gc, 1-Bc) 1-Ac
 CONSTANT_ALPHA (Ac, Ac, Ac) Ac
 ONE_MINUS_CONSTANT_ALPHA (1-Ac, 1-Ac, 1-Ac) 1-Ac
 SRC_ALPHA_SATURATE (f, f, f) 1

 The commands that control blending are

 void BlendFunc(enum src, enum dst)
 void BlendFuncSeparateEXT(enum sfactorRGB, enum dfactorRGB,
 enum sfactorAlpha , enum dfactorAlpha);

 The BlendFunc command sets both source factors (RGB and alpha) and
 destination factors (RGB and alpha) while Blend FuncSeparateEXT sets
 the RGB factors independently from the alpha fa ctors.

Additions to Chapter 5 of the 1.2 GL Specification (Special Functions)

 None

Additions to Chapter 6 of the 1.2 GL Specification (State and State Requests)

 The state required is four integers indicating the source and
 destination blending functions for RGB and alph a. The initial state

NVIDIA OpenGL Extension Specifications EXT_blend_func_separate

 109

 for both source functions is ONE. The initial state for both
 destination functions is ZERO.

Additions to the GLX Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent
 to the server as part of a glXRender request:

 BlendFuncSeparateEXT
 2 20 rendering c ommand length
 2 4134 rendering c ommand opcode
 4 ENUM sfactorRGB
 4 ENUM dfactorRGB
 4 ENUM sfactorAlph a
 4 ENUM dfactorAlph a

Errors

 GL_INVALID_ENUM is generated if either sfactorR GB, dfactorRGB,
 sfactorAlpha, or dfactorAlpha is not an accepte d value.

 GL_INVALID_OPERATION is generated if glBlendFun c is executed between
 the execution of glBegin and the corresponding execution of glEnd.

New State

 The get values BLEND_SRC and BLEND_DST return t he RGB source and
 destination factor, respectively.

 Initi al
 Get Value Get Command Type Value Attribute
 --------- ----------- ---- ----- -- ------------
 BLEND_SRC_RGB_EXT GetFloatv Z ONE color-buffer
 BLEND_DST_RGB_EXT GetFloatv Z ZERO color-buffer
 BLEND_SRC_ALPHA_EXT GetFloatv Z ONE color-buffer
 BLEND_DST_ALPHA_EXT GetFloatv Z ZERO color-buffer

New Implementation Dependent State

 None

EXT_depth_bounds_test NVIDIA OpenGL Extension Specifications

 110

Name

 EXT_depth_bounds_test

Name Strings

 GL_EXT_depth_bounds_test

Notice

 Copyright NVIDIA Corporation, 2002, 2003.

Status

 Implemented in GeForce FX 5900 (NV35) drivers a s of June 2003.

 Also supported by GeForce FX 5700 (NV36) and Ge Force6 (NV4x).

Version

 Last Modified Date: $Date: 2004/05/17 $
 NVIDIA Revision: $Revision: #5 $

Number

 297

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

Overview

 This extension adds a new per-fragment test tha t is, logically,
 after the scissor test and before the alpha tes t. The depth bounds
 test compares the depth value stored at the loc ation given by the
 incoming fragment's (xw,yw) coordinates to a us er-defined minimum
 and maximum depth value. If the stored depth v alue is outside the
 user-defined range (exclusive), the incoming fr agment is discarded.

 Unlike the depth test, the depth bounds test ha s NO dependency on
 the fragment's window-space depth value.

 This functionality is useful in the context of attenuated stenciled
 shadow volume rendering. To motivate the funct ionality's utility
 in this context, we first describe how conventi onal scissor testing
 can be used to optimize shadow volume rendering .

 If an attenuated light source's illumination ca n be bounded to a
 rectangle in XY window-space, the conventional scissor test can be
 used to discard shadow volume fragments that ar e guaranteed to be
 outside the light source's window-space XY rect angle. The stencil
 increments and decrements that would otherwise be generated by these
 scissored fragments are inconsequential because the light source's
 illumination can pre-determined to be fully att enuated outside the
 scissored region. In other words, the scissor test can be used to
 discard shadow volume fragments rendered outsid e the scissor, thereby

NVIDIA OpenGL Extension Specifications EXT_depth_bounds_test

 111

 improving performance, without affecting the ul timate illumination
 of these pixels with respect to the attenuated light source.

 This scissoring optimization can be used both w hen rendering
 the stenciled shadow volumes to update stencil (incrementing and
 decrementing the stencil buffer) AND when addin g the illumination
 contribution of attenuated light source's.

 In a similar fashion, we can compute the attenu ated light source's
 window-space Z bounds (zmin,zmax) of consequent ial illumination.
 Unless a depth value (in the depth buffer) at a pixel is within
 the range [zmin,zmax], the light source's illum ination can be
 pre-determined to be inconsequential for the pi xel. Said another
 way, the pixel being illuminated is either far enough in front of
 or behind the attenuated light source so that t he light source's
 illumination for the pixel is fully attenuated. The depth bounds
 test can perform this test.

Issues

 Where should the depth bounds test take place i n the OpenGL
 fragment processing pipeline?

 RESOLUTION: After scissor test, before alpha test. In practice,
 this is a logical placement of the test. An implementation is
 free to perform the test in a manner that is consistent with the
 specified ordering.

 Importantly, the depth bounds test occurs bef ore any fragment
 operation that has a side-effect such as sten cil and/or depth buffer
 writes (ie, the stencil or depth test). This makes it possible
 to discard incoming fragment's without concer n for preserving such
 side-effects.

 Is the depth bounds test consistent with early depth rejection?

 Yes. If an OpenGL implementation supports so me conservative bounds
 on depth values in subregions of the depth bu ffer (hierarchical
 depth buffers, etc), the depth bounds test ca n reject fragments
 based on these conservative bounds.

 How are the depth bounds specified?

 RESOLUTION: Normalized window-space depth va lues. This means
 the depth values are specified in the range [0.0, 1.0] similar
 to glDepthRange.

 Can the zmin bound be greater than the zmax bou nd?

 RESOLUTION: zmin must be less than or equal to zmax or an
 INVALID_VALUE error is generated.

 Another way to interpret this situation is to have zmin>zmax reject
 all fragments where the corresponding pixel's depth value is between
 zmin and zmax. But this does not seem useful enough to specify.

EXT_depth_bounds_test NVIDIA OpenGL Extension Specifications

 112

 What should the glDepthBoundsEXT routine mimic?

 RESOLUTION: glDepthBoundsEXT should mimic gl DepthRange in parameter
 types and clamping, excepting that zmin must be less than zmax.

 Do the depth bounds have anything to do with th e depth range?

 RESOLUTION: No. These are totally independe nt pieces of state.
 To reinforce the point, having a depth range and depth bounds with
 no overlap is perfectly well-defined (even if a little odd).

 What push/pop attrib bits should affect the dep th bounds test enable?

 RESOLUTION: GL_ENABLE_BIT and GL_DEPTH_BUFFE R_BIT.

 How does depth bounds testing interact with pol ygon offset
 or depth replace operations (say from ARB_fragm ent_program,
 NV_texture_shader, or NV_fragment_program)?

 RESOLUTION: There are NO interactions. The depth bounds test has
 NO dependency on the incoming fragment's dept h value so it doesn't
 matter if there is a polygon offset or depth replace operation.

 Does depth bounds testing affect bitmap/draw/co py pixels operations
 involving depth component pixels?

 RESOLUTION: Yes, depth bounds testing affect s all rasterized
 primitives (just like all other fragment oper ations).

 How does depth bounds test interact with multis ampling?

 RESOLUTION: The depth bounds test is perform ed per-sample when
 multisampling is active, just like the depth test.

 At what precision is the depth bounds test carr ied out?

 RESOLUTION: For the purposes of the test, th e bounds are converted to
 fixed-point as though they were to be written to the depth buffer, and
 the comparison uses those quantized bounds.

 Can you have the depth test disabled and still have the depth bounds
 test enabled?

 RESOLUTION: Yes. The two tests operate inde pendently.

 How does the depth bounds test operate if there is no depth buffer?

 RESOLUTION: It is as if the depth bounds tes t always passes
 (analogous to the depth test).

New Procedures and Functions

 void DepthBoundsEXT(clampd zmin, clampd zmax);

NVIDIA OpenGL Extension Specifications EXT_depth_bounds_test

 113

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_BOUNDS_TEST_EXT 0x8890

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 DEPTH_BOUNDS_EXT 0x8891

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment Operations
and the Framebuffer)

 -- Figure 4.1 Per-fragment operations

 Add a block for the "depth bounds test" after t he scissor and before
 the alpha test.

 -- Section 4.1.X Depth Bounds Test (following Sec tion 4.1.2 Scissor Test)

 "The depth bounds test determines whether the d epth value (Zpixel)
 stored at the location given by the incoming fr agment's (xw,yw)
 location lies within the depth bounds range def ined by two values.
 These values are set with

 void DepthBoundsEXT(clampd zmin, clampd zma x);

 Each of zmin and zmax are clamped to lie within [0,1] (being of
 type clampd). If zmin <= Zpixel <= zmax, then the depth bounds test
 passes. Otherwise, the test fails and the frag ment is discarded.
 The test is enabled or disabled using Enable or Disable using the
 constant DEPTH_BOUNDS_TEST_EXT. When disabled, it is as if the depth
 bounds test always passes. If zmin is greater than zmax, then the
 error INVALID_VALUE is generated. The state re quired consists of
 two floating-point values and a bit indicating whether the test is
 enabled or disabled. In the initial state, zmi n and zmax are set
 to 0.0 and 1.0 respectively; and the depth boun ds test is disabled.

 If there is no depth buffer, it is as if the de pth bounds test always
 passes."

 -- Section 4.10 Additional Multisample Fragment O perations

 Add depth bounds test to the list of operations affected by
 multisampling. Amend the 1st and 2nd sentences in the 2nd paragraph
 to read:

EXT_depth_bounds_test NVIDIA OpenGL Extension Specifications

 114

 "If MULTISAMPLE is enabled, and the value of SA MPLE_BUFFERS is one,
 the depth bounds test, alpha test, depth test, blending, and dithering
 operations are performed for each pixel sample, rather than just once
 for each fragment. Failure of the depth bounds , alpha, stencil, or
 depth test results in termination of the proces sing of the sample,
 rather than discarding of the fragment."

 Amend the 1st sentence in the 3nd paragraph to read:

 "Depth bounds, stencil, depth, blending, and di thering operations
 are performed for a pixel sample only if that s ample's fragment
 coverage bit is a value of 1."

 Amend the 3rd sentence in the 4th paragraph to read:

 "An implementation may choose to identify a cen termost sample, and
 to perform depth bounds, alpha, stencil, and de pth tests on only
 that sample."

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and State
Requests)

 None

Additions to the AGL/GLX/WGL Specifications

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent to the
 server as part of a glXRender request:

 DepthBoundsEXT
 2 12 rendering c ommand length
 2 4229 rendering c ommand opcode
 4 FLOAT32 zmin
 4 FLOAT32 zmax

Errors

 If zmin is greater than zmax, then the error IN VALID_VALUE is
 generated.

NVIDIA OpenGL Extension Specifications EXT_depth_bounds_test

 115

New State

(table 6.15 "Pixel Operation)

Get Value Type Get Command Initial V alue Description Sec Attribute
--------------------- ---- ----------- --------- ---- ------------ ----- -------------------
DEPTH_BOUNDS_TEST_EXT B IsEnabled False Depth bounds 4.1.X depth-buffer/enable
 test enable
DEPTH_BOUNDS_EXT 2xR+ GetFloatv 0,1 Depth bounds 4.1.X depth-buffer
 zmin & zmax

New Implementation Dependent State

 None

Revision History

 NVIDIA exposed a functionally and enumerant ide ntical version of
 this extension under the name NV_depth_bounds_t est. NVIDIA drivers
 after May 2003 support the EXT_depth_bounds_tes t name only.

 Mesa and NVIDIA agreed to make this an EXT exte nsion in April 2003.

 8/27/2003 - GLX protocol specification added.

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 116

Name

 EXT_stencil_two_side

Name Strings

 GL_EXT_stencil_two_side

Notice

 Copyright NVIDIA Corporation, 2001-2002.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: $Date: 2003/01/08 $
 $Id: //sw/main/docs/OpenGL/specs/GL_EXT_stencil _two_side.txt#6 $

Number

 268

Dependencies

 Written based on the OpenGL 1.3 specification.

 NV_packed_depth_stencil affects the definition of this extension.

Overview

 This extension provides two-sided stencil testi ng where the
 stencil-related state (stencil operations, refe rence value, compare
 mask, and write mask) may be different for fron t- and back-facing
 polygons. Two-sided stencil testing may improv e the performance
 of stenciled shadow volume and Constructive Sol id Geometry (CSG)
 rendering algorithms.

Issues

 Is this sufficient for shadow volume stencil up date in a single pass?

 RESOLUTION: Yes.

 An application that wishes to increment the s tencil value for
 rasterized depth-test passing fragments of fr ont-facing polygons and
 decrement the stencil value for rasterized fr agments of depth-test
 passing back-facing polygons in a single pass can use the following
 configuration:

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 117

 glDepthMask(0);
 glColorMask(0,0,0,0);
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth te st fail
 GL_DECR_WRAP_EXT); // depth te st pass
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 glActiveStencilFaceEXT(GL_FRONT);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth te st fail
 GL_INCR_WRAP_EXT); // depth te st pass
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 renderShadowVolumePolygons();

 Notice the use of EXT_stencil_wrap to avoid s aturating decrements
 losing the shadow volume count. An alternati ve, using the
 conventional GL_INCR and GL_DECR operations, is to clear the stencil
 buffer to one half the stencil buffer value r ange, say 128 for an
 8-bit stencil buffer. In the case, a pixel i s "in shadow" if the
 final stencil value is greater than 128 and " out of shadow" if the
 final stencil value is 128. This does still create a potential
 for stencil value overflow if the stencil val ue saturates due
 to an increment or decrement. However satura tion is less likely
 with two-sided stencil testing than the conve ntional two-pass
 approach because front- and back-facing polyg ons are mixed together,
 rather than processing batches of front-facin g then back-facing
 polygons.

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 118

 Contrast the two-sided stencil testing approa ch with the more
 or less equivalent approach using facingness- independent stencil
 testing:

 glDepthMask(0);
 glColorMask(0,0,0,0);
 glEnable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);

 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 // Increment for front faces
 glCullFace(GL_BACK);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth test fail
 GL_INCR); // depth test pass

 renderShadowVolumePolygons();

 // Decrement for back faces
 glCullFace(GL_FRONT);
 glStencilOp(GL_KEEP, // stencil test fail
 GL_KEEP, // depth test fail
 GL_DECR); // depth test pass

 renderShadowVolumePolygons();

 Notice that all the render work implicit
 in renderShadowVolumePolygons is performed tw ice with the
 conventional approach, but only once with the two-sided stencil
 testing approach.

 Should there be just front and back stencil tes t state, or should
 the stencil write mask also have a front and ba ck state?

 RESOLUTION: Both the stencil test and stenci l write mask state
 should have front and back versions.

 The shadow volume application for two-sided s tencil testing does
 not require differing front and back versions of the stencil write
 mask, but we anticipate other applications wh ere front and back
 write masks may be useful.

 For example, it may be useful to draw a conve x polyhedra such that
 (assuming the stencil bufer is cleared to the binary value 1010):

 1) front-facing polygons that pass the depth test set stencil bit 0

 2) front-facing polygons that fail the depth test zero stencil bit 1

 3) back-facing polygons that pass the depth t est set stencil bit 2

 4) back-facing polygons that fail the depth t est zero stencil bit 3

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 119

 This could be accomplished in a single render ing pass using:

 glStencilMask(~0);
 glStencilClear(0xA);
 glClear(GL_STENCIL_BUFFER_BIT);

 glDepthMask(0);
 glColorMask(0,0,0,0);
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilOp(GL_KEEP, // stencil test f ail
 GL_ZERO, // depth test fai l
 GL_REPLACE); // depth test pas s
 glStencilMask(0xC);
 glStencilFunc(GL_ALWAYS, 0x4, ~0);

 glActiveStencilFaceEXT(GL_FRONT);
 glStencilOp(GL_KEEP, // stencil test f ail
 GL_ZERO, // depth test fai l
 GL_REPLACE); // depth test pas s
 glStencilMask(0x3);
 glStencilFunc(GL_ALWAYS, 0x1, ~0);

 renderConvexPolyhedra();

 Is there a performance advantage to using two-s ided stencil testing?

 RESOLUTION: It depends.

 In a fill-rate limited situation, rendering f ront-facing primitives,
 then back-facing primitives in two passes wil l generate the same
 number of rasterized fragments as rendering f ront- and back-facing
 primitives in a single pass.

 However, in other situations that are CPU-lim ited,
 transform-limited, or setup-limited, two-side d stencil testing can
 be faster than the conventional two-pass face culling rendering
 approaches. For example, if a lengthy vertex program is executed
 for every shadow volume vertex, rendering the shadow volume with
 a single two-sided stencil testing pass is ad vantageous.

 Often applications using stencil shadow volum e techniques require
 substantial CPU resources to determine potent ial silhouette
 boundaries to project shadow volumes from. I f the shadow volume
 geometry generated by the CPU is only require d to be sent to the GL
 once per-frame (rather than twice with the co nventional technique),
 that can ease the CPU burden required to impl ement stenciled shadow
 volumes.

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 120

 Should GL_FRONT_AND_BACK be accepted by glActiv eStencilFaceEXT?

 RESOLUTION: No.

 GL_FRONT_AND_BACK is useful when materials ar e being updated for
 two-sided lighting because the front and back material are often
 identical and may change frequently (glMateri al calls are allowed
 within glBegin/glEnd pairs).

 Two-sided stencil has no similiar performance justification.

 It is also likely that forcing implementation s to support this mode
 would increase the amount of overhead require d to set stencil
 state, even for applications that don't use t wo-sided stencil.

 How should the two-sided stencil enable operate ?

 RESOLUTION: It should be modeled after the w ay two-sided lighting
 works. There is a GL_LIGHTING enable and the n an additional
 two-sided lighting mode. Unlike two-sided li ghting which is a
 light model boolean, the two-sided stencil te sting is a standard
 enable named GL_STENCIL_TEST_TWO_SIDE_EXT.

 Here is the pseudo-code for the stencil testi ng enables:

 if (glIsEnabled(GL_STENCIL_TEST)) {
 if (glIsEnabled(GL_STENCIL_TEST_TWO_SIDE_EXT) && primitiveType == polygon) {
 use two-sided stencil testing
 } else {
 use conventional stencil testing
 }
 } else {
 no stencil testing
 }

 How should the two-sided stencil interact with glPolygonMode?

 RESOLUTION: Primitive type is determined by the begin mode
 so GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_QUAD_S TRIP, GL_QUADS,
 GL_TRIANGLE_FAN, and GL_POLYGON generate poly gon primitives. If the
 polygon mode is set such that lines or points are rasterized,
 two-sided stencil testing still operates base d on the original
 polygon facingness if stencil testing and two -sided stencil testing
 are enabled.

 This is consistent with how two-sided lightin g and face culling
 interact with glPolygonMode.

New Procedures and Functions

 void ActiveStencilFaceEXT(enum face);

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 121

New Tokens

 Accepted by the <cap> parameter of Enable, Disa ble, and IsEnabled,
 and by the <pname> parameter of GetBooleanv, Ge tIntegerv,
 GetFloatv, and GetDoublev:

 STENCIL_TEST_TWO_SIDE_EXT 0 x8910

 Accepted by the <face> parameter of ActiveStenc ilFaceEXT:

 FRONT
 BACK

 Accepted by the <pname> parameters of GetBoolea nv, GetIntegerv,
 GetFloatv, and GetDoublev:

 ACTIVE_STENCIL_FACE_EXT 0 x8911

Additions to Chapter 2 of the GL Specification (Ope nGL Operation)

 None

Additions to Chapter 3 of the GL Specification (Ras terization)

 None

Additions to Chapter 4 of the GL Specification (Per -Fragment Operations
and the Framebuffer)

 -- Section 4.1.5 "Stencil test"

 Replace the first paragraph in the section with :

 "The stencil test conditionally discards a frag ment based on the
 outcome of a comparison between the value in th e stencil buffer at
 location (xw,yw) and a reference value.

 The test is enabled or disabled with the Enable and Disable commands,
 using the symbolic constant STENCIL_TEST. When disabled, the stencil
 test and associated modifications are not made, and the fragment is
 always passed.

 Stencil testing may operate in a two-sided mode . Two-sided stencil
 testing is enabled or disabled with the Enable and Disable commands,
 using the symbolic constant STENCIL_TEST_TWO_SI DE_EXT. When stencil
 testing is disabled, the state of two-sided ste ncil testing does
 not affect fragment processing.

 There are two sets of stencil-related state, th e front stencil
 state set and the back stencil state set. When two-sided stencil
 testing is enabled, stencil tests and writes us e the front set of
 stencil state when processing fragments rasteri zed from non-polygon
 primitives (points, lines, bitmaps, image recta ngles) and front-facing
 polygon primitives while the back set of stenci l state is used when
 processing fragments rasterized from back-facin g polygon primitives.
 For the purposes of two-sided stencil testing, a primitive is still
 considered a polygon even if the polygon is to be rasterized as

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 122

 points or lines due to the current polygon mode . Whether a polygon
 is front- or back-facing is determined in the s ame manner used for
 two-sided lighting and face culling (see sectio ns 2.13.1 and 3.5.1).
 When two-sided stencil testing is disabled, the front set of stencil
 state is always used when stencil testing fragm ents.

 The active stencil face determines whether sten cil-related commands
 update the front or back stencil state. The ac tive stencil face is
 set with:

 void ActiveStencilFace(enum face);

 where face is either FRONT or BACK. Stencil co mmands (StencilFunc,
 StencilOp, and StencilMask) that update the ste ncil state update the
 front stencil state if the active stencil face is FRONT and the back
 stencil state if the active stencil face is BAC K. Additionally,
 queries of stencil state return the front or ba ck stencil state
 depending on the current active stencil face.

 The stencil test state is controlled with

 void StencilFunc(enum func, int ref, uint ma sk);
 void StencilOp(enum sfail, enum dpfail, enum dppass);"

 Replace the third and second to the last senten ce in the last
 paragraph in section 4.1.5 with:

 "In the initial state, stencil testing and two- sided stencil testing
 are both disabled, the front and back stencil r eference values are
 both zero, the front and back stencil compariso n functions are ALWAYS,
 and the front and back stencil mask are both al l ones. Initially,
 both the three front and the three back stencil operations are KEEP."

 -- Section 4.2.2 "Fine Control of Buffer Updates"

 Replace the last sentence of the third paragrap h with:

 "The initial state is for both the front and ba ck stencil plane mask
 to be all ones. The clear operation always use s the front stencil
 write mask when clearing the stencil buffer."

 -- Section 4.3.1 "Writing to the Stencil Buffer or to the Depth and
 Stencil Buffers"

 Replace the final sentence in the first paragra ph with:

 "Finally, each stencil index is written to its indicated location
 in the framebuffer, subject to the current fron t stencil mask state
 (set with StencilMask), and if a depth componen t is present, if the
 setting of DepthMask is not FALSE, it is also w ritten to the
 framebuffer; the setting of DepthTest is ignore d."

Additions to Chapter 5 of the GL Specification (Spe cial Functions)

 None

NVIDIA OpenGL Extension Specifications EXT_stencil_two_side

 123

Additions to Chapter 6 of the GL Specification (Sta te and State Requests)

 None

Additions to the GLX, WGL, and AGL Specification

 None

GLX Protocol

 A new GL rendering command is added. The follow ing command is sent to the
 server as part of a glXRender request:

 ActiveStencilFaceEXT
 2 8 rendering c ommand length
 2 4220 rendering c ommand opcode
 4 ENUM face

Errors

 None

New State

(table 6.15, page 205) amend the following entries:

Get Value Type Get Command Initi al Value Description Sec Attribute
------------------------- ---- ----------- ----- -------- ------------------- ----- ------------- -
STENCIL_FUNC 2xZ8 GetIntegerv ALWAY S Stencil function 4.1.4 stencil-buffe r
STENCIL_VALUE_MASK 2xZ+ GetIntegerv 1's Stencil mask 4.1.4 stencil-buffe r
STENCIL_REF 2xZ+ GetIntegerv 0 Stencil reference 4.1.4 stencil-buffe r
 value
STENCIL_FAIL 2xZ6 GetIntegerv KEEP Stencil fail action 4.1.4 stencil-buffe r
STENCIL_PASS_DEPTH_FAIL 2xZ6 GetIntegerv KEEP Stencil depth 4.1.4 stencil-buffe r
 buffer fail action
STENCIL_PASS_DEPTH_PASS 2xZ6 GetIntegerv KEEP Stencil depth 4.1.4 stencil-buffe r
 buffer pass action

[Type field is amended with "2x" prefix.]

(table 6.15, page 205) add the following entries:

Get Value Type Get Command Initi al Value Description Sec Attribute
------------------------- ---- ----------- ----- -------- ----------------- ------ --------------- ------
STENCIL_TEST_TWO_SIDE_EXT B IsEnabled False Two-sided stencil 4.1.4 stencil-buffer/ enable
 test enable
ACTIVE_STENCIL_FACE_EXT Z2 GetIntegerv FRONT Active stencil 4.1.4 stencil-buffer
 face selector

(table 6.16, page 205) ammend the following entry:

Get Value Type Get Command Initi al Value Description Sec Attribute
------------------------- ---- ----------- ----- -------- ----------------- ------ --------------
STENCIL_WRITE_MASK 2xZ+ GetIntegerv 1's Stencil buffer 4.2.2 stencil-buffer
 writemask

[Type field is amended with "2x" prefix.]

EXT_stencil_two_side NVIDIA OpenGL Extension Specifications

 124

Revision History

 None

NVIDIA OpenGL Extension Specifications NV_float_buffer

 125

Name

 NV_float_buffer

Name Strings

 GL_NV_float_buffer
 WGL_NV_float_buffer

Notice

 Copyright NVIDIA Corporation, 2001-2003.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified: $Date: 2003/06/16 $
 NVIDIA Revision: Revision: #16

Number

 281

Dependencies

 Written based on the wording of the OpenGL 1.3 specification and the
 WGL_ARB_pixel_format extension specification.

 The following extensions are required:
 * NV_fragment_program
 * NV_texture_rectangle
 * WGL_ARB_pixel_format
 * WGL_ARB_render_texture
 * WGL_NV_render_texture_rectangle

 EXT_paletted_texture trivially affects the defi nition of this extension.

 SGIX_depth_texture trivially affects the defini tion of this extension.

 NV_texture_shader trivially affects the definit ion of this extension.

 NV_half_float trivially affects the definition of this extension.

Overview

 This extension builds upon NV_fragment_program to provide a framebuffer
 and texture format that allows fragment program s to read and write
 unconstrained floating point data.

 In unextended OpenGL, most computations dealing with color or depth
 buffers are typically constrained to operate on values in the range [0,1].
 Computational results are also typically clampe d to the range [0,1].

NV_float_buffer NVIDIA OpenGL Extension Specifications

 126

 Color, texture, and depth buffers themselves al so hold values mapped to
 the range [0,1].

 The NV_fragment_program extension provides a ge neral computational model
 that supports floating-point numbers constraine d only by the precision of
 the underlying data types. The quantites compu ted by fragment programs do
 not necessarily correspond in number or in rang e to conventional
 attributes such as RGBA colors or depth values. Because of the range and
 precision constraints imposed by conventional f ixed-point color buffers,
 it may be difficult (if not impossible) to use them to implement certain
 multi-pass algorithms.

 To enhance the extended range and precision ava ilable through fragment
 programs, this extension provides floating-poin t RGBA color buffers that
 can be used instead of conventional fixed-point RGBA color buffers. A
 floating-point RGBA color buffer consists of on e to four floating-point
 components stored in the 16- or 32-bit floating -point formats (fp16 or
 fp32) defined in the NV_half_float and NV_fragm ent_program extensions.

 When a floating-point color buffer is used, the results of fragment
 programs, as written to the "x", "y", "z", and "w" components of the
 o[COLR] or o[COLH] output registers, are writte n directly to the color
 buffer without any clamping or modification. C ertain per-fragment
 operations are bypassed when rendering to float ing-point color buffers.

 A floating-point color buffer can also be used as a texture map, either by
 reading back the contents and then using conven tional TexImage calls, or
 by using the buffer directly via the ARB_render _texture extension.

 This extension has many uses. Some possible us es include:

 (1) Multi-pass algorithms with arbitrary in termediate results that
 don't have to be artifically forced int o the range [0,1]. In
 addition, intermediate results can be w ritten without having to
 worry about out-of-range values.

 (2) Deferred shading algorithms where an ex pensive fragment program is
 executed only after depth testing is fu lly complete. Instead, a
 simple program is executed, which store s the parameters necessary
 to produce a final result. After the e ntire scene is rendered, a
 second pass is executed over the entire frame buffer to execute
 the complex fragment program using the results written to the
 floating-point color buffer in the firs t pass. This will save the
 cost of applying complex fragment progr ams to fragments that will
 not appear in the final image.

 (3) Use floating-point texture maps to eval uate functions with
 arbitrary ranges. Arbitrary functions with a finite domain can be
 approximated using a texture map holdin g sample results and
 piecewise linear approximation.

 There are several significant limitations on th e use of floating-point
 color buffers. First, floating-point color buf fers do not support frame
 buffer blending. Second, floating-point textur e maps do not support
 mipmapping or any texture filtering other than NEAREST. Third,
 floating-point texture maps must be 2D, and mus t use the
 NV_texture_rectangle extension.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 127

Issues

 Should the extension create a separate non-RGBA pixel formats or simply
 extend existing RGBA formats?

 RESOLVED: Extend existing RGBA formats. S ince fragment programs
 generally build on RGBA semantics, it's cle aner to avoid creating a
 separate "XYZW" mode. There are several sp ecial semantics that need
 to be added: clear color state is now not clamped, and ReadPixels
 will clamp to [0,1] only if the source data comes from fixed-point
 color buffers.

 Fragment programs can be written that store data completely unrelated
 to color into a floating-point "RGBA" buffe r.

 Can floating-point color buffers be displayed? If so, how?

 RESOLVED: Not in this extension. Floating -point color buffers can be
 used only as pbuffers. Hardware necessary to display floating-point
 color buffers would be expensive and consum e significant memory
 bandwidth.

 Is it possible to encode more than four distinc t values in a
 floating-point color buffer?

 RESOLVED: Yes. The NV_fragment_program ex tension contains pack and
 unpack instructions (PK2H, PK2US, PK4B, PK4 UB, PK4UBG, UP2H, UP2US,
 UP4B, UP4UB, UP4UBG) that allow fragment pr ograms to encode multiple
 values into a single 32-bit component. In particular, it is possible
 to pack two half-precision floats, two norm alized unsigned shorts, or
 four normalized signed or unsigned bytes in to a single 32-bit
 component.

 A program can use a pack instruction to pac k multiple values into a
 single 32-bit component and then write the resulting component to a
 floating-point color buffer with 32-bit com ponents. On a subsequent
 rendering pass, a program can read back the stored data (using texture
 mapping) and use the equivalent unpack inst ruction to restore the
 original values. The only data lost in thi s process comes from the
 loss of precision or clamping in the packin g operation, where the
 original values are converted to data types with lower precision or a
 smaller data range.

 What happens when rendering to an floating-poin t color buffer if fragment
 program mode is disabled? Or when fragment pro gram mode is enabled, but
 no program is loaded?

 RESOLVED: Fragment programs are required t o use floating-point color
 buffers. An INVALID_OPERATION error is gen erated by any GL command
 that generates fragments if FRAGMENT_PROGRA M_NV is disabled. The same
 behavior already exists for conventional fr ame buffers if
 FRAGMENT_PROGRAM_NV is enabled but the boun d fragment program is
 invalid.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 128

 Should alpha test be supported with floating-po int color buffers?

 RESOLVED: No. It is trivial to implement an alpha test in a fragment
 program using the KIL instruction, which re quires no dedicated frame
 buffer logic.

 Should blending be supported with floating-poin t color buffers?

 RESOLVED: Not in this extension. While bl ending would clearly be
 useful, full-precision floating-point blend ers are expensive. In
 addition, a computational model more genera l than traditional blending
 (with its 1-x operations and clamping) is d esirable. The traditional
 OpenGL blending model would not be the most suitable computational
 model for future blend-enabled floating-poi nt color buffers.

 An alternative to conventional blending (op erating at a coarser
 granularity) is to (1) render a pass into t he color buffer, (2) bind
 the color buffer as a texture rectangle usi ng this extension and
 ARB_render_texture, (3) perform texture loo kups in a fragment program
 using the TEX instruction with f[WPOS].xy a s a 2D texture coordinate,
 and (4) perform the necessary blending betw een the passes using the
 same fragment program.

 Should we provide accumulation buffers for pixe l formats with
 floating-point color buffers?

 RESOLVED: No. Accumulation operations con tents can be achieved using
 fragment programs to perform the accumulati on, which requires no
 dedicated frame buffer logic.

 Should fragment program color results be conver ted to match the format of
 the frame buffer, or should an error result? F or example, what if we
 write to o[COLR] but have a 16-bit frame buffer ?

 RESOLVED: Conversions can be performed sim ply in hardware, so no
 error semantics are required. This mechani sm also allows the same
 programs to be shared between contexts with different pixel formats.

 Applications should be aware that if color components contain packed
 data, a data type mismatch may result in a floating-point data
 conversion that corrupts the packed data.

 How should floating-point color buffers interac t with multisampling? For
 normal color buffers, the multiple samples for each pixel are required to
 be filtered down to a single pixel in the color buffer. Similar filtering
 on floating-point color buffers does not necess arily make sense. Should
 there even be a normal color buffer in this cas e?

 RESOLVED: The initial implementation of th is extension does not
 provide floating-point color buffers that s upport multisampling.

 Multisample fragment operations (e.g., SAMP LE_COVERAGE) are explicitly
 not supported by extension. This extension does not modify the
 portion of the spec where multiple samples are resolved to a single
 color value. So if floating-point color bu ffers were provided, the
 multiple samples are filtered down to a sin gle result value, most
 likely by computing a per-component average value.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 129

 Conventional RGBA primitive antialiasing multip lies coverage by the alpha
 component of the fragment's color, with the ass umption that alpha blending
 will be performed. How does antialiasing work with floating-point color
 buffers?

 RESOLVED: It doesn't. The computed covera ge is not accessible to
 fragment programs and is discarded. Note a lso that conventional
 antialiasing requires alpha blending, which does not work for
 floating-point color buffers.

 What are the semantics for ReadPixels when usin g an floating-point color
 buffer?

 RESOLVED: ReadPixels from a floating-point color buffer works like
 any other RGBA read, except that the final results are not clamped to
 the range [0,1]. This ensures that we can save and restore
 floating-point color buffers using ReadPixe ls/DrawPixels.

 What are the semantics for Bitmap when using an floating-point color
 buffer?

 RESOLVED: Bitmap generates fragments using the current raster
 attributes, which are then passed to fragme nt programs like any other
 fragments. Bitmaps will be drawn using the color of the current
 raster position, whose components are clamp ed to [0,1] when the raster
 position is sent.

 What are the semantics for DrawPixels when usin g a floating-point color
 buffer? How about CopyPixels?

 RESOLVED: DrawPixels generates fragments w ith the originally
 specified color values; components are not clamped to [0,1]. For
 fixed-point color buffers, DrawPixels will generate fragments with
 clamped color components.

 CopyPixels is defined in the spec as a Read Pixels followed by a
 DrawPixels, and will operate similarly.

 This mechanism allows applications to write floating-point data
 directly into a floating-point color buffer without any clamping.
 Since DrawPixels and CopyPixels generate fr agments and fragment
 programs are required to render to floating -point color buffers, a
 fragment program is still required to load a floating-point color
 buffer using DrawPixels.

 What are the semantics for Clear when using an floating-point color
 buffer?

 RESOLVED: Clears work as normal, except th at values outside the range
 [0,1] can be written to the color buffer. The core spec is modified
 so that clear color values are not clamped to [0,1]. Instead, for
 fixed-point color buffers, clear colors are clamped to [0,1] at clear
 time.

 For compatibility with conventional OpenGL, queries of
 CLEAR_COLOR_VALUE will clamp components to [0,1]. A separate

NV_float_buffer NVIDIA OpenGL Extension Specifications

 130

 FLOAT_CLEAR_COLOR_VALUE_NV query is added t o query unclamped color
 clear values.

 Why don't floating-point textures support filte ring? What can be done to
 achieve texture filtering?

 RESOLVED: Extended OpenGL texture filterin g (including mipmapping and
 support for anisotropic filters) is very co mputationally expensive.
 Even simple linear filtering for floating-p oint textures with large
 components is expensive.

 Linear filters can be implemented in fragme nt programs by doing
 multiple lookups into the same texture. Si nce fragment programs allow
 the use of arbitrary coordinates into arbit rary texture maps, this
 type of operation can be easily done.

 A 1D linear filter can be implemented using an nx1 texture rectangle
 with the following (untested) fragment prog ram, assuming the 1D
 coordinate is in f[TEX0].x:

 ADDR H2.xy, f[TEX0].x, {0.0, 1.0};
 FRCH H3.x, R1.x; # compute the blend factor
 TEX H0, H2.x, TEX0, RECT; # lookup 1 st sample
 TEX H1, H2.y, TEX0, RECT; # lookup 2 nd sample
 LRPH H0, H3.x, H1, H0; # blend

 A 2D linear filter can be implemented simil arly, assuming the 2D
 coordinate is in f[TEX0].xy:

 ADDH H2, f[TEX0].xyxy, {0.0, 0.0, 1.0, 1.0};
 FRCH H3.xy, H2.xyxy; # base wei ghts
 ADDH H3.zw, 1.0, -H3.xyxy; # 1-base w eights
 MULH H3, H3.xzxz, H3.yyww; # bilinear filter weights
 TEX H1, R2.xyxy, TEX0, RECT; # lookup 1 st sample
 MULH H0, H1, H3.x; # blend
 TEX H1, R2.zyzy, TEX0, RECT; # lookup 2 nd sample
 MADH H0, H1, H3.y, H0; # blend
 TEX H0, R2.xwxw, TEX0, RECT; # lookup 3 rd sample
 MADH H0, H1, H3.z, H0; # blend
 TEX H1, R2.zwzw, TEX0, RECT; # lookup 4 th sample
 MADH H0, H1, H3.w, H0; # blend

 Fragment programs can be used to perform mo re-or-less arbitrary
 filtering using similar methods, and the DD X and DDY instructions can
 be used to refine the shape of the filter.

 Why must the NV_texture_rectangle extension be used in order to use
 floating-point texture maps?

 RESOLVED: On many graphics hardware platfo rms, texture maps are
 stored using a special memory encodings des igned to optimize rendering
 performance. In current hardware, conventi onal texture maps usually
 top out at 32 bits per texel. The logic re quired to encode and decode
 128-bit texels (and frame buffer pixels) op timally is substantially
 more complex.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 131

 What happens if you try to use an floating-poin t texture without a
 fragment program?

 RESOLVED: No error is generated, but that texture is effectively
 disabled. This is similar to the behavior if an application tried to
 use a normal texture having an inconsistent set of mipmaps.

 How does NV_float_buffer interact with the Open GL 1.2 imaging subset?

 RESOLVED: The imaging subset as specified should work properly with
 floating-point color buffers, but is not mo dified by this extension.
 There are imaging operations (e.g., color t ables, histograms) that
 expect the components they operate on to be in the range [0,1], and
 this extension makes no attempt to extend s uch functionality.

 How does NV_float_buffer interact with SGIS_gen erate_mipmap?

 RESOLVED: Since this extension supports on ly texture rectangles
 (which have no mipmaps), this issue is moot .

 In the general case, mipmaps should be gene rated using an appropriate
 downsample filter, where floating-point com ponent values are averaged.
 Components should not be clamped during any such mipmap generation.

 What is the deal with the names of the clear co lor query tokens?

 RESOLVED: The "normal" OpenGL clear color (clamped to [0,1]) is
 queried using the token COLOR_CLEAR_VALUE. This extension provides a
 new query for unclamped values, using the t oken
 FLOAT_CLEAR_COLOR_VALUE_NV. Notice that "C LEAR" and "COLOR" are
 reversed due to a mistake made when the spe c was first written. This
 spec lists the core query token, and origin ally had "CLEAR" and
 "COLOR" reversed there, too.

 Then again, the core specification is incon sistent since the queried
 state is set by calling glClearColor(), wit h "Clear" before "Color".

 What performance issues exist with this functio nality?

 See the "NV3x Implementation Issues" sectio n of the
 specification.

 How should the texture border color (values) be handled for float
 textures?

 RESOLVED: Clamp the texture border color (values) to [0,1]
 when sampling a float texture's border. In core OpenGL 1.0, the
 texture border color components are clamped to the range [01,].
 The NV_texture_shader extension added suppo rt for signed texture
 components. We decided to provide GL_TEXTU RE_BORDER_VALUES as
 a way of specifying a version of the textur e border color whose
 components were not clamped to [0,1] when s et. This was to
 provide a way of specifying negative textur e border components.

 In practice, that has not proven particular ly useful. No real
 applications are known to have specified ne gative texture border
 values components.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 132

 Ideally, the unclamped GL_TEXTURE_BORDER_VA LUES state could
 provide an unclamped (unmassaged) set of fl oating-point color
 components for the texture border color. T his requires an
 additional 96 bits of state per texture uni t to support this,
 and based on the experience with NV_texture _shader's support for
 texture border values outside the [0,1] ran ge, it is simply not
 worth it.

 For compatibility with the NV_texture_shade r extension, we
 provide language saying that floating-point textures clamp
 the components of the TEXTURE_BORDER_VALUES vector [0,1] when
 sampling the border color.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <internalformat> parameter of T exImage2D and
 CopyTexImage2D:

 FLOAT_R_NV 0x8880
 FLOAT_RG_NV 0x8881
 FLOAT_RGB_NV 0x8882
 FLOAT_RGBA_NV 0x8883
 FLOAT_R16_NV 0x8884
 FLOAT_R32_NV 0x8885
 FLOAT_RG16_NV 0x8886
 FLOAT_RG32_NV 0x8887
 FLOAT_RGB16_NV 0x8888
 FLOAT_RGB32_NV 0x8889
 FLOAT_RGBA16_NV 0x888A
 FLOAT_RGBA32_NV 0x888B

 Accepted by the <pname> parameter of GetTexLeve lParameterfv and
 GetTexLevelParameteriv:

 TEXTURE_FLOAT_COMPONENTS_NV 0x888C

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 FLOAT_CLEAR_COLOR_VALUE_NV 0x888D
 FLOAT_RGBA_MODE_NV 0x888E

 Accepted in the <piAttributes> array of wglGetP ixelFormatAttribivARB and
 wglGetPixelFormatAttribfvARB and in the <piAttr ibIList> and
 <pfAttribFList> arrays of wglChoosePixelFormatA RB:

 WGL_FLOAT_COMPONENTS_NV 0x20B0
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV 0x20B1
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV 0x20B2
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV 0x20B3
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV 0x20B4

NVIDIA OpenGL Extension Specifications NV_float_buffer

 133

 Accepted in the <piAttribIList> array of wglCre atePbufferARB and returned
 in the <value> parameter of wglQueryPbufferARB when <iAttribute> is
 WGL_TEXTURE_FORMAT_ARB:

 WGL_TEXTURE_FLOAT_R_NV 0x20B5
 WGL_TEXTURE_FLOAT_RG_NV 0x20B6
 WGL_TEXTURE_FLOAT_RGB_NV 0x20B7
 WGL_TEXTURE_FLOAT_RGBA_NV 0x20B8

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 91)

 (modify first paragraph of "Final Conversion", p. 102) ... For RGBA
 components, the final conversion depends on the format of the color
 buffer. If the components of the color buffer are fixed-point, each
 element is clamped to [0,1] and converted to fi xed-point according to the
 rules given in section 2.13.9 (Final Color Proc essing). If the components
 of the color buffer are floating-point, the ele ments are not modified.

 Modify Section 3.8.1, Texture Image Specificati on (p. 116)

 (modify last paragaph, p. 116) The selected gro ups are processed exactly
 as for DrawPixels stopping just before final co nversion. For textures
 with fixed-point RGBA internal formats, each R, G, B, A component is
 clamped to [0,1].

 (modify first paragraph, p. 117) Components are then selected from the
 resulting pixel groups to obtain a texture with the base internal format
 specified by (or derived from) <internalformat> . Table 3.15 summarizes
 the mapping of pixel group values to texture co mponents, ...

 (add to end of first paragraph, p. 117) Specify ing a value of <format>
 incompatible with <internalformat> produces the error INVALID_OPERATION.
 A pixel format and texture internal format are compatible if the pixel
 format can generate a pixel group of the type l isted in the "Pixel Group
 Type" column of Table 3.15 in the row correspon ding to the base internal
 format.

 (add between first and second paragraphs, p.117) Textures with a base
 internal format of FLOAT_R_NV, FLOAT_RG_NV, FLO AT_RGB_NV, and
 FLOAT_RGBA_NV are known as floating-point textu res. Floating-point
 textures are only supported for the TEXTURE_REC TANGLE_NV target.
 Specifying an floating-point texture with any o ther target will produce an
 INVALID_OPERATION error.

 (modify last paragraph, p. 117) The internal co mponent resolution is the
 number of bits allocated to each component in a texture image. If
 internalformat is specified as a base internal format, the GL stores the
 resulting texture with internal component resol utions of its own choosing.
 If a sized internal format is specified, the me mory allocation per texture
 component is assigned by the GL to match the al locations listed in Table
 3.16 as closely as possible. ...

NV_float_buffer NVIDIA OpenGL Extension Specifications

 134

 (modify Table 3.15, p. 118 -- Respecify this ta ble with all extensions
 relevant to texture formats supported by NVIDIA . For this extension, add
 four base internal formats.)

 Base Internal Pixel Compon ent Internal
 Format Group Type Values Components
 --------------------- ---------- ------ --- ---------------
 ALPHA RGBA A A
 LUMINANCE RGBA R L
 LUMINANCE_ALPHA RGBA R,A L,A
 INTENSITY RGBA R I
 RGB RGBA R,G,B R,G,B
 RGBA RGBA R,G,B, A R,G,B,A
 * COLOR_INDEX CI CI CI
 * DEPTH_COMPONENT DEPTH DEPTH DEPTH
 * HILO_NV HILO HI,LO HI,LO
 * DSDT_NV TEXOFF DS,DT DS,DT
 * DSDT_MAG_NV TEXOFF DS,DT, MAG DS,DT,MAG
 * DSDT_MAG_INTENSITY_NV TEXOFF
 or RGBA DS,DT, MAG,VIB DS,DT,MAG,I
 FLOAT_R_NV RGBA R R (float)
 FLOAT_RG_NV RGBA R,G R,G (float)
 FLOAT_RGB_NV RGBA R,G,B R,G,B (float)
 FLOAT_RGBA_NV RGBA R,G,B, A R,G,B,A (float)

 Table 3.15: Conversion from pixel groups t o internal texture
 components. "Pixel Group Type" defines the type of pixel group
 required for the specified internal format. All internal components
 are stored as unsigned-fixed point numbers, except for DS/DT (signed
 fixed-point numbers) and floating-point R,G ,B,A (signed floating-point
 numbers). See Section 3.8.12 for a descrip tion of texture components
 R, G, B, A, L, and I. See NV_texture_shade r spec (Section 3.8.13) for
 a description of texture components HI, LO, DS, DT, and MAG.

 * - indicates formats found in other extens ion specs: COLOR_INDEX in
 EXT_paletted texture; DEPTH_COMPONENT i n SGIX_depth_texture; and
 HILO_NV, DSDT_NV, DSDT_MAG_NV, DSDT_MAG _INTENSITY_NV in
 NV_texture_shader.

 (modify Table 3.16, p. 119 -- Respecify this ta ble with all extensions
 relevant to sized texture internal formats supp orted by NVIDIA. For this
 extension, add eight sized internal formats.)

NVIDIA OpenGL Extension Specifications NV_float_buffer

 135

 Sized Base
 Int. Format Int. Format Component Name / Type-Size
 ------------------- --------------- ---------------------------
 ALPHA4 ALPHA A/U4
 ALPHA8 ALPHA A/U8
 ALPHA12 ALPHA A/U12
 ALPHA16 ALPHA A/U16
 LUMINANCE4 LUMINANCE L/U4
 LUMINANCE8 LUMINANCE L/U8
 LUMINANCE12 LUMINANCE L/U12
 LUMINANCE16 LUMINANCE L/U16
 LUMINANCE4_ALPHA4 LUMINANCE_ALPHA A/U4 L/U4
 LUMINANCE6_ALPHA2 LUMINANCE_ALPHA A/U2 L/U6
 LUMINANCE8_ALPHA8 LUMINANCE_ALPHA A/U8 L/U8
 LUMINANCE12_ALPHA4 LUMINANCE_ALPHA A/U4 L/U12
 LUMINANCE12_ALPHA12 LUMINANCE_ALPHA A/U12 L/U12
 LUMINANCE16_ALPHA16 LUMINANCE_ALPHA A/U16 L/U16
 INTENSITY4 INTENSITY I/U4
 INTENSITY8 INTENSITY I/U8
 INTENSITY12 INTENSITY I/U12
 INTENSITY16 INTENSITY I/U16
 R3_G3_B2 RGB R/U3 G/U3 B/U2
 RGB4 RGB R/U4 G/U4 B/U4
 RGB5 RGB R/U5 G/U5 B/U5
 RGB8 RGB R/U8 G/U8 B/U8
 RGB10 RGB R/U10 G/U10 B/10
 RGB12 RGB R/U12 G/U12 B/U12
 RGB16 RGB R/U16 G/U16 B/U16
 RGBA2 RGBA R/U2 G/U2 B/U2 A/U2
 RGBA4 RGBA R/U4 G/U4 B/U4 A/U4
 RGB5_A1 RGBA R/U5 G/U5 B/U5 A/U1
 RGBA8 RGBA R/U8 G/U8 B/U8 A/U8
 RGB10_A2 RGBA R/U10 G/U10 B/U10 A/U2
 RGBA12 RGBA R/U12 G/U12 B/U12 A/U12
 RGBA16 RGBA R/U16 G/U16 B/U16 A/U16
 * COLOR_INDEX1_EXT COLOR_INDEX CI/U1
 * COLOR_INDEX2_EXT COLOR_INDEX CI/U2
 * COLOR_INDEX4_EXT COLOR_INDEX CI/U4
 * COLOR_INDEX8_EXT COLOR_INDEX CI/U8
 * COLOR_INDEX16_EXT COLOR_INDEX CI/U16
 * DEPTH_COMPONENT16_SGIX DEPTH_COMPONENT Z/U16
 * DEPTH_COMPONENT24_SGIX DEPTH_COMPONENT Z/U24
 * DEPTH_COMPONENT32_SGIX DEPTH_COMPONENT Z/U32
 * HILO16_NV HILO HI/U16 LO/U16
 * SIGNED_HILO16_NV HILO HI/S16 LO/S16
 * SIGNED_RGBA8_NV RGBA R/S8 G/S8 B/S8 A/S8
 * SIGNED_RGB8_
 UNSIGNED_ALPHA8_NV RGBA R/S8 G/S8 B/S8 A/U8
 * SIGNED_RGB8_NV RGB R/S8 G/S8 B/S8
 * SIGNED_LUMINANCE8_NV LUMINANCE L/S8
 * SIGNED_LUMINANCE8_
 ALPHA8_NV LUMINANCE_ALPHA L/S8 A/S8
 * SIGNED_ALPHA8_NV ALPHA A/S8
 * SIGNED_INTENSITY8_NV INTENSITY I/S8
 * DSDT8_NV DSDT_NV DS/S8 DT/S8
 * DSDT8_MAG8_NV DSDT_MAG_NV DS/S8 DT/S8 MAG/U8
 * DSDT8_MAG8_ DSDT_MAG_
 INTENSITY8_NV INTENSITY_NV DS/S8 DT/S8 MAG/U8 I/U8
 FLOAT_R16_NV FLOAT_R_NV R/F16
 FLOAT_R32_NV FLOAT_R_NV R/F32
 FLOAT_RG16_NV FLOAT_RG_NV R/F16 G/F16
 FLOAT_RG32_NV FLOAT_RG_NV R/F32 G/F32
 FLOAT_RGB16_NV FLOAT_RGB_NV R/F16 G/F16 B/F16
 FLOAT_RGB32_NV FLOAT_RGB_NV R/F32 G/F32 B/F32
 FLOAT_RGBA16_NV FLOAT_RGBA_NV R/F16 G/F16 B/F16 A/F16
 FLOAT_RGBA32_NV FLOAT_RGBA_NV R/F32 G/F32 B/F32 A/F32

 Table 3.16: Sized Internal Formats. Descr ibes the correspondence of
 sized internal formats to base internal for mats, and desired component
 resolutions. Component resolution descript ions are of the form
 "<NAME>/<TYPE><SIZE>", where NAME specifies the component name in
 Table 3.15, TYPE is "U" for unsigned fixed- point, "S" for signed
 fixed-point, and "F" for unsigned floating- point. <SIZE> is the
 number of requested bits per component.

 * - indicates formats found in other extens ion specs: COLOR_INDEX in
 EXT_paletted texture; DEPTH_COMPONENT i n SGIX_depth_texture; and
 HILO_NV, DSDT_NV, DSDT_MAG_NV, DSDT_MAG _INTENSITY_NV in
 NV_texture_shader.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 136

 Modify Section 3.8,7, Minification (p. 141)

 Change the last paragraph (as modified by the N V_texture_shader
 extension) to read (only the last sentence chan ges from the
 NV_texture_shader version):

 "If any of the selected tauijk, tauij, or taui in the above equations
 refer to a border texel with i < -bs, j < bs, k < -bs, i >= ws-bs, j
 >= hs-bs, or k >= ds-bs, then the border values given by the current
 setting of TEXTURE_BORDER_VALUES is used instea d of the unspecified
 value or values. If the texture contains color components, the
 components of the TEXTURE_BORDER_VALUES vector are interpreted as
 an RGBA color to match the texture's internal f ormat in a manner
 consistent with table 3.15. If the texture con tains HILO components,
 the first and second components of the TEXTURE_ BORDER_VALUES vector
 are interpreted as the hi and lo components res pectively. If the
 texture contains texture offset group component s, the first, second,
 third, and fourth components of the TEXTURE_BOR DER_VALUES vector
 are interpreted as ds, dt, mag, and vib compone nts respectively.
 Additionally, the texture border values are cla mped appropriately
 depending on the signedness of each particular component. Unsigned
 components and components of floating-point tex tures are clamped to
 [0,1]; signed components (not including floatin g-point textures)
 are clamped to [-1,1]."

 (Add after the last paragraph in the section) F loating-point textures
 (those with a base internal format of FLOAT_R_N V, FLOAT_RG_NV,
 FLOAT_RGB_NV, or FLOAT_RGBA_NV) do not support texture filters other than
 NEAREST. For such textures, NEAREST filtering is applied regardless of
 the setting of TEXTURE_MIN_FILTER.

 Modify Section 3.8.8, Magnification (p. 141)

 (Add after the last paragraph in the section) F loating-point textures
 (those with a base internal format of FLOAT_R_N V, FLOAT_RG_NV,
 FLOAT_RGB_NV, or FLOAT_RGBA_NV) do not support texture filters other than
 NEAREST. For such textures, NEAREST filtering is applied regardless of
 the setting of TEXTURE_MAG_FILTER.

 Modify Section 3.8.13, Texture Environments and Texture Functions (p. 147)

 (Add paragraph after discussion of all the valu es used in the
 miscellaneous tables in this section.) If the b ase internal format is
 HILO_NV, DSDT_NV, DSDT_MAG_NV, DSDT_MAG_INTENSI TY_NV, FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, or FLOAT_RGBA_NV, th e texture lookup results
 are not supported using conventional OpenGL tex ture functions. In this
 case, the corresponding texture function is NON E (Cv = Cf, Av = Af), and
 it is as though texture mapping were disabled f or that texture unit.

 Modify Section 3.11, Antialiasing Application (p. 155)

 Finally, if antialiasing is enabled for the pri mitive from which a
 rasterized fragment was produced, then the comp uted coverage value may be
 applied to the fragment. In RGBA mode with fix ed-point frame buffers, the
 value is multiplied by the fragment's alpha (A) value to yield a final
 alpha value. In RGBA mode with floating-point frame buffers, the coverage

NVIDIA OpenGL Extension Specifications NV_float_buffer

 137

 value is simply discarded. In color index mode , the value is used to set
 the low order bits of the color index value as described in section 3.2.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Chapter 4 Introduction (p. 156)

 (replace next-to-last paragraph)

 The GL provides three types of color buffers: color index, fixed-point
 RGBA, or floating-point RGBA. Color index buff ers consist of unsigned
 integer color indices. Fixed-point RGBA buffer s consist of R, G, B, and
 optionally, A unsigned integer values. Floatin g-point RGBA buffers
 consist of R, and optionally, G, B, and A float ing-point component values,
 corresponding to the X, Y, Z, and W outputs, re spectively, of a fragment
 program. The number of bitplanes in each of th e color buffers, the depth
 buffer, ...

 Modify Section 4.1.3, Multisample Fragment Oper ations (p. 158)

 This step applies only for fixed-point RGBA col or buffers. Otherwise,
 proceed to the next step. ...

 Modify Section 4.1.4, Alpha Test (p. 159)

 This step applies only for fixed-point RGBA col or buffers. Otherwise,
 proceed to the next step. ...

 Modify Section 4.1.7, Blending (p. 161)

 (modify second paragraph)

 This blending is dependent on the incoming frag ment's alpha value and that
 of the corresponding currently stored pixel. B lending applies only for
 fixed-point RGBA color buffers; otherwise, it i s bypassed. ...

 Modify Section 4.1.8, Dithering (p. 165)

 Dithering selects between two color values or i ndices. Dithering does not
 apply to floating-point RGBA color buffers. ...

 Modify Section 4.1.9, Logical Operation (p. 165)

 Finally, a logical operation is applied between the incoming fragment's
 color or index values and the color or index va lues stored at the
 corresponding location in the frame buffer. Lo gical operations do not
 apply to floating-point color buffers. ...

 Modify Section 4.2.3, Clearing the Buffers (p. 171)

 ...

 void ClearColor(float r, float g, float b, float a);

 sets the clear value for RGBA color buffers. W hen a fixed-point color
 buffer is cleared, the effective clear color is derived by clamping each

NV_float_buffer NVIDIA OpenGL Extension Specifications

 138

 component to [0,1] and converting to fixed-poin t according to the rules in
 section 2.13.9. When a floating-point color bu ffer is cleared, the
 components of the clear value are used directly without being clamped.

 Modify Section 4.2.4, The Accumulation Buffer (p. 172)

 (modify last paragraph) ... If there is no accu mulation buffer, or if
 color buffer is not fixed-point RGBA, Accum gen erates the error
 INVALID_OPERATION.

 Modify Section 4.3.2, Reading Pixels

 (modify "Conversion of RGBA Values", p. 176) Th is step applies only if the
 GL is in RGBA mode, and then only if format is neither STENCIL INDEX nor
 DEPTH COMPONENT. The R, G, B, and A values for m a group of elements. If
 the color buffer has fixed-point format, each e lement is taken to be a
 fixed-point value in [0,1] with m bits, where m is the number of bits in
 the corresponding color component of the select ed buffer (see section
 2.13.9).

 (add to end of "Final Conversion", p. 177) ... For an RGBA color,
 components are clamped depending on the data ty pe of the buffer being
 read. For fixed-point buffers, each component is clamped to [0.1]. For
 floating-point buffers, if <type> is not FLOAT or HALF_FLOAT_NV, each
 component is clamped to [0,1] if <type> is unsi gned or [-1,1] if <type> is
 signed and then converted according to Table 4. 7.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 Modify Section 6.1.4, Texture Queries (p. 200)

 Modify Table 6.1 (add new rows, corresponding t o new internal formats,
 p. 202)

 Base Internal Format R G B A
 -------------------- --- --- --- ---
 FLOAT_R_NV R 0 0 1
 FLOAT_RG_NV R G 0 1
 FLOAT_RGB_NV R G B 1
 FLOAT_RGBA_NV R G B A

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None.

Additions to the WGL Specification

 First, close your eyes and pretend that a WGL s pecification actually
 existed. Maybe if we all concentrate hard enou gh, one will magically
 appear.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 139

 Modify/add to the description of <piAttributes> in
 wglGetPixelFormatAttribivARB and <pfAttributes> in
 wglGetPixelFormatAttribfvARB:

 WGL_FLOAT_COMPONENTS_NV
 True if the R, G, B, and A components of ea ch color buffer are
 represented as (unclamped) floating-point n umbers.

 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV
 True if the pixel format describes a floati ng-point color that can be
 bound to a texture rectangle with internal formats of FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, or FLOAT_RGBA_NV , respectively. Currently
 only pbuffers can be bound as textures so t his attribute will only be
 TRUE if WGL_DRAW_TO_PBUFFER is also TRUE. Additionally,
 floating-point color buffers can not be bou nd to texture targets other
 than TEXTURE_RECTANGLE_NV.

 Add new table entries for pixel format attribut e matching in
 wglChoosePixelFormatARB.

 Attribute Type Ma tch Criteria
 ------------------------- ------- -- ------------
 WGL_FLOAT_COMPONENTS_NV boolean ex act
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_R_NV
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_RG_NV
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_RGB_NV
 WGL_BIND_TO_TEXTURE_ boolean ex act
 RECTANGLE_FLOAT_RGBA_NV

 (In the wglCreatePbufferARB section, modify the attribute list)

 WGL_TEXTURE_FORMAT_ARB

 This attribute indicates the base internal format of the texture that
 will be created when a color buffer of a pb uffer is bound to a texture
 map. It can be set to WGL_TEXTURE_RGB_ARB (indicating an internal
 format of RGB), WGL_TEXTURE_RGBA_ARB (indic ating a base internal
 format of RGBA), WGL_TEXTURE_FLOAT_R_NV (in dicating a base internal
 format of FLOAT_R_NV), WGL_TEXTURE_FLOAT_RG _NV (indicating a base
 internal format of FLOAT_RG_NV), WGL_TEXTUR E_FLOAT_RGB_NV (indicating
 a base internal format of FLOAT_RGB_NV), WG L_TEXTURE_FLOAT_RGBA_NV
 (indicating a base internal format of FLOAT _RGBA_NV), or
 WGL_NO_TEXTURE_ARB. The default value is WG L_NO_TEXTURE_ARB.

 (In the wglCreatePbufferARB section, modify the discussion of what happens
 to the depth/stencil/accum buffers when switchi ng between mipmap levels or
 cube map faces.)

 For pbuffers with a texture format of WGL_TEXTU RE_RGB_ARB,
 WGL_TEXTURE_RGBA_ARB, WGL_TEXTURE_FLOAT_R_NV, WGL_TEXTURE_FLOAT_RG_NV,

NV_float_buffer NVIDIA OpenGL Extension Specifications

 140

 WGL_TEXTURE_FLOAT_RGB_NV, or WGL_TEXTURE_FLOAT_RGBA_NV, there will be a
 separate set of color buffers for each mipmap l evel and cube map face in
 the pbuffer. Otherwise, the WGL implementation is free to share a single
 set of color, auxillary, and accumulation buffe rs between levels or faces.

 (In the wglCreatePbufferARB section, modify the error list)

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_R_ NV,
 WGL_TEXTURE_FLOAT_RG _NV,
 WGL_TEXTURE_FLOAT_RG B_NV, or
 WGL_TEXTURE_FLOAT_RG BA_NV, and
 WGL_TEXTURE_TARGET_A RB is not
 WGL_TEXTURE_RECTANGL E_NV.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_R_ NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_R_NV
 attribute is not set in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_RG _NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_RG_NV
 attribute is not set in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_RG B_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_RGB_NV
 attribute is not set in the pixel format.

 ERROR_INVALID_DATA WGL_TEXTURE_FORMAT_A RB is
 WGL_TEXTURE_FLOAT_RG BA_NV,
 WGL_TEXTURE_TARGET_A RB is
 WGL_TEXTURE_RECTANGL E_NV, and the
 WGL_BIND_TO_TEXTURE_ RECTANGLE_FLOAT_RGBA_NV
 attribute is not set in the pixel format.

 Modify wglBindTexImageARB:

 ...

 The pbuffer attribute WGL_TEXTURE_FORMAT_AR B determines the base
 internal format of the texture. The format- specific component sizes
 are also determined by pbuffer attributes a s shown in the table below.
 The component sizes are dependent on the fo rmat of the texture.

 Component Size Fo rmat
 --------- ------------------------ -- --------------------------
 R WGL_RED_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA

NVIDIA OpenGL Extension Specifications NV_float_buffer

 141

 G WGL_GREEN_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA
 B WGL_BLUE_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA
 A WGL_ALPHA_BITS_ARB RG B, RGBA, FLOAT_R, FLOAT_RG,
 FL OAT_RGB, FLOAT_RGBA

Additions to the AGL/GLX Specification

 None.

Dependencies on EXT_paletted_texture, SGIX_depth_te xture, and NV_texture_shader

 If any of these extensions are not supported, t he rows in Tables 3.15 and
 3.16 corresponding to texture formats defined b y the unsupported extension
 should be removed.

 If NV_texture_shader is not supported, ignore t he amended
 paragraph from the NV_texture_shader specificia ton describing
 TEXTURE_BORDER_VALUES clamping in favor of the original OpenGL
 specification language.

Dependencies on NV_half_float

 If GL_NV_half_float is not supported, all refer ences to HALF_FLOAT_NV
 should be deleted.

GLX Protocol

 None.

Errors

 INVALID_OPERATION is generated by Begin, DrawPi xels, Bitmap, CopyPixels,
 or a command that performs an explicit Begin if the color buffer has a
 floating-point RGBA format and FRAGMENT_PROGRAM _NV is disabled.

 INVALID_OPERATION is generated by TexImage3D, T exImage2D, TexImage1D,
 TexSubImage3D, TexSubImage2D, or TexSubImage1D if the pixel group type
 corresponding to <format> is not compatible wit h the base internal format
 of the texture.

 INVALID_OPERATION is generated by TexImage3D, T exImage1D, or
 CopyTexImage1D if the base internal format corr esponding to
 <internalformat> is FLOAT_R_NV, FLOAT_RG_NV, FL OAT_RGB_NV, or
 FLOAT_RGBA_NV.

 INVALID_OPERATION is generated by TexImage2D or CopyTexImage2D if the base
 internal format corresponding to <internalforma t> is FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, or FLOAT_RGBA_NV and <target> is not
 TEXTURE_RECTANGLE_NV.

 INVALID_OPERATION is generated by Accum if the color buffer has a color
 index or floating-point RGBA format.

NV_float_buffer NVIDIA OpenGL Extension Specifications

 142

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_R_NV, WGL_TEXTURE_FLOAT_RG_NV,
 WGL_TEXTURE_FLOAT_RGB_NV, or WGL_TEXTURE_FLOAT_RGBA_NV, and
 WGL_TEXTURE_TARGET_ARB is not WGL_TEXTURE_RECTA NGLE_NV.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_R_NV, WGL_TEXTURE_TARGET_ARB
 is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_R_NV attrib ute is not set in the pixel
 format.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_RG_NV, WGL_TEXTURE_TARGET_ARB
 is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RG_NV attri bute is not set in the
 pixel format.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_RGB_NV, WGL_TEXTURE_TARGET_ARB
 is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGB_NV attr ibute is not set in the
 pixel format.

 ERROR_INVALID_DATA is generated by wglCreatePbu fferARB if
 WGL_TEXTURE_FORMAT_ARB is WGL_TEXTURE_FLOAT_RGBA_NV,
 WGL_TEXTURE_TARGET_ARB is WGL_TEXTURE_RECTANGLE_NV, and the
 WGL_BIND_TO_TEXTURE_RECTANGLE_FLOAT_RGBA_NV attribute is not set in the
 pixel format.

New State

(Modify Table 6.15, Texture Objects (cont.), p. 223)

 Init.
Get Value Type Get Command Value Description Sec. Attribute
--------------------------- ----- ------------ ----- --------------------- ----- ------------
TEXTURE_FLOAT_COMPONENTS_NV n x B GetTexLevel- 0 True if texture holds 3.8 -
 unclamped floating-
 point values

(Modify Table 6.19, Framebuffer Control, p. 227)

 I nit.
Get Value Type Get Command V alue Description Sec. Attribut e
-------------------------- ---- ----------- - ------ ------------------------ ----- -------- ----
COLOR_CLEAR_VALUE C GetFloatv 0 ,0,0,0 Color buffer clear value 4.2.3 color-bu ffer
 (RGBA mode), each value
 clamped to [0,1].
FLOAT_CLEAR_COLOR_VALUE_NV 4xR GetFloatv 0 ,0,0,0 Color buffer clear value 4.2.3 color-bu ffer
 (RGBA mode), each value
 unclamped.

NVIDIA OpenGL Extension Specifications NV_float_buffer

 143

New Implementation Dependent State

(Modify Table 6.28, Implementation Dependent Values , p. 236)

 Init.
Get Value Type Get Command Value Description Sec. Attribute
------------------ ---- ----------- ----- --------------------- ---- ---------
FLOAT_RGBA_MODE_NV B GetBooleanv - True if color buffers 4 -
 store floating-point
 data

NV3x Implementation Details

 NV3x GPUs (GeForce FX, etc.) support hardware a cceleration for float
 textures with two or more components only when the repeat mode state
 (S and T) is GL_CLAMP_TO_EDGE. If you use eith er the GL_CLAMP or
 GL_CLAMP_TO_BORDER repeat modes with a float te xture with two or
 more components, the software rasterizer is use d.

 However, if you use a single-component float te xture (GL_FLOAT_R_NV,
 etc.), all clamping repeat modes (GL_CLAMP, GL_ CLAMP_TO_EDGE, and
 GL_CLAMP_TO_BORDER) are available with full har dware acceleration.

 The two-, three-, and four-component texture fo rmats all use the
 same amount of texture memory storage (128 bits per texel for the
 GL_FLOAT_x32 formats, and 64 bits per texel for the GL_FLOAT_x16
 formats). Future GPUs will likely store two an d three component
 float textures more efficiently.

 The GL_FLOAT_R32_NV and GL_FLOAT_R16_NV texture formats each use 32
 bits per texel. Future GPUs will likely store GL_FLOAT_R16_NV more
 efficiently.

 NVIDIA treats the unsized internal formats GL_F LOAT_R_NV,
 GL_FLOAT_RGBA_NV, etc. the same as GL_FLOAT_R32 _NV,
 GL_FLOAT_RGBA32_NV, etc.

Revision History

 Rev. Date Author Changes
 ---- -------- -------- ---------------------- ----------------------
 16 06/16/03 pbrown Corrected the usage of WGL_TEXTURE_FLOAT_R_NV and
 related enums in the l ist of enumerants.

 15 01/23/03 mjk Document texture borde r color (values) behavior
 for float textures. S ee issue.

 14 01/20/03 mjk Added NV3x Implementat ion Details section.

NV_fragment_program NVIDIA OpenGL Extension Specifications

144

Name

 NV_fragment_program

Name Strings

 GL_NV_fragment_program

Notice

 Copyright NVIDIA Corporation, 2001-2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: $Date: 2003/05/12 $
 NVIDIA Revision: 70

Number

 282

Dependencies

 Written based on the wording of the OpenGL 1.2. 1 specification and
 requires OpenGL 1.2.1.

 Requires support for the ARB_multitexture exten sion with at least
 two texture units.

 NV_vertex_program affects the definition of thi s extension. The only
 dependency is that both extensions use the same mechanisms for defining
 and binding programs.

 NV_texture_shader trivially affects the definit ion of this extension.

 NV_texture_rectangle trivially affects the defi nition of this extension.

 ARB_texture_cube_map trivially affects the defi nition of this extension.

 EXT_fog_coord trivially affects the definition of this extension.

 NV_depth_clamp affects the definition of this e xtension.

 ARB_depth_texture and SGIX_depth_texture affect the definition of this
 extension.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 145

 NV_float_buffer affects the definition of this extension.

 ARB_vertex_program affects the definition of th is extension.

 ARB_fragment_program affects the definition of this extension.

Overview

 OpenGL mandates a certain set of configurable p er-fragment computations
 defining texture lookup, texture environment, c olor sum, and fog
 operations. Each of these areas provide a usef ul but limited set of fixed
 operations. For example, unextended OpenGL 1.2 .1 provides only four
 texture environment modes, color sum, and three fog modes. Many OpenGL
 extensions have either improved existing functi onality or introduced new
 configurable fragment operations. While these extensions have enabled new
 and interesting rendering effects, the set of e ffects is limited by the
 set of special modes introduced by the extensio n. This lack of
 flexibility is in contrast to the high-level of programmability of
 general-purpose CPUs and other (frequently soft ware-based) shading
 languages. The purpose of this extension is to expose to the OpenGL
 application writer an unprecedented degree of p rogrammability in the
 computation of final fragment colors and depth values.

 This extension provides a mechanism for definin g fragment program
 instruction sequences for application-defined f ragment programs. When in
 fragment program mode, a program is executed ea ch time a fragment is
 produced by rasterization. The inputs for the program are the attributes
 (position, colors, texture coordinates) associa ted with the fragment and a
 set of constant registers. A fragment program can perform mathematical
 computations and texture lookups using arbitrar y texture coordinates. The
 results of a fragment program are new color and depth values for the
 fragment.

 This extension defines a programming model incl uding a 4-component vector
 instruction set, 16- and 32-bit floating-point data types, and a
 relatively large set of temporary registers. T he programming model also
 includes a condition code vector which can be u sed to mask register writes
 at run-time or kill fragments altogether. The syntax, program
 instructions, and general semantics are similar to those in the
 NV_vertex_program and NV_vertex_program2 extens ions, which provide for the
 execution of an arbitrary program each time the GL receives a vertex.

 The fragment program execution environment is d esigned for efficient
 hardware implementation and to support a wide v ariety of programs. By
 design, the entire set of existing fragment pro grams defined by existing
 OpenGL per-fragment computation extensions can be implemented using the
 extension's programming model.

 The fragment program execution environment acce sses textures via
 arbitrarily computed texture coordinates. As s uch, there is no necessary
 correspondence between the texture coordinates and texture maps previously
 lumped into a single "texture unit". This exte nsion separates the notion
 of "texture coordinate sets" and "texture image units" (texture maps and
 associated parameters), allowing implementation s with a different number
 of each. The initial implementation of this ex tension will support 8
 texture coordinate sets and 16 texture image un its.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 146

Issues

 What limitations exist in this extension?

 RESOLVED: Very few. Programs can not exce ed a maximum program length
 (which is no less than 1024 instructions), and can use no more than
 32-64 temporary registers. Programs can no t access more than one
 fragment attribute or program parameter (co nstant) per instruction,
 but can work around this restriction using temporaries. The number of
 textures that can be used by a program is l imited to the number of
 texture image units provided by the impleme ntation (16 in the initial
 implementation of this extension).

 These limits are fairly high. Additionally , there is no limit on the
 total number of texture lookups that can be performed by a program.
 There is no limit on the length of a textur e dependency chain -- one
 can write a program that performs over 1000 consecutive dependent
 texture lookups. There is no restrictions on dependencies between
 texture mapping instructions and arithmetic instructions. Texture
 lookups can be performed using arbitrarily computed texture
 coordinates. Applications can carry out th eir calculations with full
 32-bit single precision, although two lower -precision modes are also
 available.

 How does texture mapping work with fragment pro grams?

 RESOLVED: This extension provides three in structions used to perform
 texture lookups.

 The "TEX" instruction performs a lookup wit h the (s,t,r) values taken
 from an interpolated texture coordinate, an arbitrarily computed
 vector, or even a program constant. The "T XP" instruction performs a
 similar lookup, except that it uses the fou rth component of the source
 vector to performs a perspective divide, us ing (s/q, t/q, r/q). In
 both cases, the GL will automatically compu te partial derivatives used
 for filter and LOD selection.

 The "TXD" instruction operates like "TEX", except that it allows the
 program to explicitly specify two additiona l vectors containing the
 partial derivatives of the texture coordina te with respect to x and y
 window coordinates.

 All three instructions write a filtered tex el value to a temporary or
 output register. Other than the computatio n of texture coordinates
 and partial derivatives, texture lookups no t performed any differently
 in fragment program mode. In particular, a ny applicable LOD biases,
 wrap modes, minification and magnification filters, and anisotropic
 filtering controls are still applied in fra gment program mode.

 The results of the texture lookup are avail able to be used arbitrarily
 by subsequent fragment program instructions . Fragment programs are
 allowed to access any texture map arbitrari ly many times.

 Can fragment programs be used to compute depth values?

 RESOLVED: Yes. A fragment program can pe rform arbitrary
 computations to compute a final value for the fragment, which it

NVIDIA OpenGL Extension Specifications NV_fragment_program

 147

 should write to the "z" component of the o [DEPR] register. The "z"
 value written should be in the range [0,1] , regardless of the size of
 the depth buffer.

 To assist in the computation of the final Z value, a fragment program
 can access the interpolated depth of the f ragment (prior to any
 displacement) by reading the "z" component of the f[WPOS] attribute
 register.

 How should near and far plane clipping work in fragment program mode if
 the current fragment program computes a depth v alue?

 RESOLVED: Geometric clipping to the near a nd far clip plane should be
 disabled. Clipping should be done based on the depth values computed
 per-fragment. The rationale is that per-fr agment depth displacement
 operations may effectively move portions of a primitive initially
 outside the clip volume inside, and vice ve rsa.

 Note that under the NV_depth_clamp extensio n, geometric clipping to
 the near and far clip planes is also disabl ed, and the fragment depth
 values are clamped to the depth range. If depth clamp mode is enabled
 when using a fragment program that computes a depth value, the
 computed depth value will be clamped to the depth range.

 Should fragment programs be allowed to use mult iple precisions for
 operands and operations?

 RESOLVED: Yes. Low-precision operands are generally adequate for
 representing colors. Allowing low-precisio n registers also allows for
 a larger number of temporary registers (at lower precision).
 Low-precision operations also provide the o pportunity for a higher
 level of performance.

 Applications are free to use only high-prec ision operations or mix
 high- and low-precision operations as neces sary.

 What levels of precision are supported in arith metic operations?

 RESOLVED: Arithmetic operations can be per formed at three different
 precisions. 32-bit floating point precisio n (fp32) uses the IEEE
 single-precision standard with a sign bit, 8 exponent bits, and 23
 mantissa bits. 16-bit floating-point preci sion (fp16) uses a similar
 floating-point representation, but with 5 e xponent bits and 10
 mantissa bits. Additionally, many arithmet ic operations can also be
 carried out at 12-bit fixed point precision (fx12), where values in
 the range [-2,+2) are represented as signed values with 10 fraction
 bits.

 How should the precision with which operations are carried out be
 specified? Should we infer the precision from the types of the operands
 or result vectors? Or should it be an attribut e of the instruction?

 RESOLVED: Applications can optionally spec ify the precision of
 individual instructions by adding a suffix of "R", "H", and "X" to
 instruction names to select fp32, fp16, and fx12 precision,
 respectively.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 148

 By default, instructions will be carried ou t using the precision of
 the destination register. Always inferring the precision from the
 operands has a number of issues. First, th ere are a number of
 operations (e.g., TEX/TXP/TXD) where result type has little to no
 correspondance to the type of the operands. In these cases, precision
 suffixes are not supported. Second, one co uld have instructions
 automatically cast operands and compute res ults using the type of the
 highest precision operand or result. This behavior would be
 problematic since all fragment attribute re gisters and program
 parameters are kept at full precision, but full precision may not be
 needed by the operation.

 The choice of precision level allows progra ms to trade off precision
 for potentially higher performance. Giving the program explicit
 control over the precision also allows it t o dictate precision
 explicitly and eliminate any uncertainty ov er type casting.

 For instructions whose specified precision is d ifferent than the precision
 of the operands or the result registers, how ar e the operations performed?
 How are the condition codes updated?

 RESOLVED: Operations are performed with op erands and results at the
 precision specified by the instruction. Af ter the operation is
 complete, the result is converted to the pr ecision of the destination
 register, after which the condition code is generated.

 In an alternate approach, the condition cod e could be generated from
 the result. However, in some cases, the re gister contents would not
 match the condition code. In such cases, i t may not be reliable to
 use the condition code to prevent division by zero or other special
 cases.

 How does this extension interact with the ARB_m ultisample extension? In
 the ARB_multisample extension, each fragment ha s multiple depth values.
 In this extension, a single interpolated depth value may be modified by a
 fragment program.

 RESOLVED: The depth values for the extra s amples are generated by
 computing partials of the computed depth va lue and using these
 partials to derive the depth values for eac h of the extra samples.

 How does this extension interact with polygon o ffset? Both extensions
 modify fragment depth values.

 RESOLVED: As in the base OpenGL spec, the depth offset generated by
 polygon offset is added during polygon rast erization. The depth value
 provided to programs in f[WPOS].z already i ncludes polygon offset, if
 enabled. If the depth value is replaced by a fragment program, the
 polygon offset value will NOT be recomputed and added back after
 program execution.

 This is probably not desirable for fragment programs that modify depth
 values since the partials used to generate the offset may not match
 the partials of the computed depth value. Polygon offset for filled
 polygons can be approximated in a fragment program using the depth
 partials obtained by the DDX and DDY instru ctions. This will not work
 properly for line- and point-mode polygons, since the partials used

NVIDIA OpenGL Extension Specifications NV_fragment_program

 149

 for offset are computed over the polygon, w hile the partials resulting
 from the DDX and DDY instructions are compu ted along the line (or are
 zero for point-mode polygons). In addition , separate treatment of
 points, line segments, and polygons is not possible in a fragment
 program.

 Should depth component replacement be an proper ty of the fragment program
 or a separate enable?

 RESOLVED: It should be a program property. Using the output register
 notation simplifies matters: depth compone nts are replaced if and
 only if the DEPR register is written to. T his alleviates the
 application and driver burden of maintainin g separate state.

 How does this extension affect the handling of q texture coordinates in
 the OpenGL spec?

 RESOLVED: Fragment programs are allowed to access an associated q
 texture coordinate, so this attribute must be produced by
 rasterization. In unextended OpenGL 1.2, t he q coordinate is
 eliminated in the rasterization portions of the spec after dividing
 each of s, t, and r by it. This extension updates the specification
 to pass q coordinates through at least to c onventional texture
 mapping. When fragment program mode are di sabled, q coordinates will
 be eliminated there in an identical manner. This modification has the
 added benefit of simplifying the equations used for attribute
 interpolation.

 How should clip w coordinates be handled by thi s extension?

 RESOLVED: Fragment programs are allowed to access the reciprocal of
 the clip w coordinate, so this attribute mu st be produced by
 rasterization. The OpenGL 1.2 spec doesn't explictly enumerate the
 attributes associated with the fragment, bu t we add treatment of the w
 clip coordinate in the appropriate location s.

 The reciprocal of the clip w coordinate in traditional graphics
 hardware is produced by screen-space linear interpolation of the
 reciprocals of the clip w coordinates of th e vertices. However, this
 spec says the clip w coordinate is produced by perspective-correct
 interpolation of the (non-reciprocated) cli p w vertex coordinates.
 These two formulations turn out to be equiv alent, and the latter is
 more convenient since the core OpenGL spec already contains formulas
 for perspective-correct interpolation of ve rtex attributes.

 What is produced by the TEX/TXP/TXD instruction s if the requested texture
 image is inconsistent?

 RESOLVED: The result vector is specified t o be (0,0,0,0). This
 behavior is consistent with the NV_texture_ shader extension. Note
 that like in NV_texture_shader, these instr uctions ignore the standard
 hierarchy of texture enables and programs c an access textures that are
 not specifically "enabled".

NV_fragment_program NVIDIA OpenGL Extension Specifications

 150

 Should a minimum precision be specified for cer tain fragment attribute
 registers (in particular COL0, COL1) that may n ot be generated with full
 fp32 precision?

 RESOLVED: No. It is expected that the pre cision of COL0/COL1 should
 generally be at least as high as that of th e frame buffer.

 Fragment color components (f[COL0] and f[COL1]) are generally
 low-precision fixed-point values in the range [0,1]. Is it possible to
 pass unclamped or high-precision color componen ts to fragment programs?

 RESOLVED: Yes, although you can't exactly call them "colors".
 High-precision per-vertex color values can be written into any unused
 texture coordinate set, either via a MultiT exCoord call or using a
 vertex program. These "texture coordinates " will be interpolated
 during rasterization, and can be used arbit rarily by a fragment
 program.

 In particular, there is no requirement that per-fragment attributes
 called "texture coordinates" be used for te xture mapping.

 Should this specification guarantee that tempor ary registers are
 initialized to zero?

 RESOLVED: Yes. This will allow for the mo dular construction of
 programs that accumulate results in registe rs. For example,
 per-fragment lighting may use MAD instructi ons to accumulate color
 contributions at each light. Without zero- initialization, the program
 would require an explicit MOV instruction t o load 0 or the use of the
 MUL instruction for the first light.

 Should this specification support Unicode progr am strings?

 RESOLVED: Not necessary.

 Programs defined by NV_vertex_program begin wit h "!!VP1.0". Should
 fragment programs have a similar identifier?

 RESOLVED: Yes, "!!FP1.0", identifying the first revision of this
 fragment program language.

 Should per-fragment attributes have equivalent integer names in the
 program language, as per-vertex attributes do i n NV_vertex_program?

 RESOLVED: No. In NV_vertex_program, "gene ric" vertex attributes
 could be specified directly by an applicati on using only an attribute
 number. Those numbers may have no necessar y correlation with the
 conventional attribute names, although conv entional vertex attributes
 are mapped to attribute numbers. However, conventional attributes are
 the only outputs of vertex programs and of rasterization. Therefore,
 there is no need for a similar input-by-num ber functionality for
 fragment programs.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 151

 Should we provide the ability to issue instruct ions that do not update
 temporary or output registers?

 RESOLVED: Yes. Programs may issue instruc tions whose only purpose is
 to update the condition code register, and requiring such instructions
 to write to a temporary may require the use of an additional temporary
 and/or defeat possible program optimization s. We accomplish this by
 adding two write-only temporary pseudo-regi sters ("RC" and "HC") that
 can be specified as destination registers.

 Do the packing and unpacking instructions in th is extension make any
 sense?

 RESOLVED: Yes. They are useful for packin g and unpacking multiple
 components in a single channel of a floatin g-point frame buffer. For
 example, a 128-bit "RGBA" frame buffer coul d pack 16 8-bit quantities
 or 8 16-bit quantities, all of which could be used in later
 rasterization passes. See the NV_float_buf fer extension for more
 information.

 Should we provide a method for specifying an fp 16 depth component output
 value?

 RESOLVED: No. There is no good reason for supporting half-precision
 Z outputs. Even with 16-bit Z buffers, the 10-bit mantissa of the
 half-precision float is rather limiting. T here would effectively be
 only 11 good bits in the back half of the Z buffer.

 Should RequestResidentProgramsNV (or a new equi valent function) take a
 target? Dealing with working sets of different program types is a bit
 messy. Should we document some limitation if w e get programs of different
 types?

 RESOLVED: In retrospect, it may have been a good idea to attach a
 target to this command, but there isn't a g ood reason to mess with
 something that already works for vertex pro grams. The driver is
 responsible for ensuring consistent results when the program types
 specified are mixed.

 What happens on data type conversions where the original value is not
 exactly representable in the new data type, eit her due to overflow or
 insufficient precision in the destination type?

 RESOLVED: In case of overflow, the origina l value is clamped to the
 +/-INF (fp16 or fp32) or the nearest repres entable value (fx12). In
 case of imprecision, the conversion is eith er to round or truncate to
 the nearest representable value.

 Should this extension support IEEE-style denorm s? For 32-bit IEEE
 floating point, denorms are numbers smaller in absolute value than 2^-126.
 For 16-bit floats used by this extension, denor ms are numbers smaller in
 absolute value than 2^-14.

 RESOLVED: For 32-bit data types, hardware support for denorms was
 considered too expensive relative to the be nefit provided.
 Computational results that would otherwise produce denorms are flushed
 to zero. For 16-bit data types, hardware d enorm support will be

NV_fragment_program NVIDIA OpenGL Extension Specifications

 152

 present. The expense of hardware denorm su pport is lower and the
 potential precision benefit is greater for 16-bit data types.

 OpenGL provides a hierarchy of texture enables. The texture lookup
 operations in NV_texture_shader effectively ove rride the texture enable
 hierarchy and select a specific texture to enab le. What should be done by
 this extension?

 RESOLVED: This extension will build upon N V_texture_shader and reduce
 the driver overhead of validating the textu re enables. Texture
 lookups can be specified by instructions li ke "TEX H0, f[TEX2], TEX2,
 3D", which would indicate to use texture co ordinate set number 2 to do
 a lookup in the texture object bound to the TEXTURE_3D target in
 texture image unit 2.

 Each texture unit can have only one "active " target. Programs are not
 allowed to reference different texture targ ets in the same texture
 image unit. In the example above, any othe r texture instructions
 using texture image unit 2 must specify the 3D texture target.

 What is the interaction with NV_register_combin ers?

 RESOLVED: Register combiners are not avail able when fragment programs
 are enabled.

 Previous version of this specification supp orted the notion of
 combiner programs, where the result of frag ment program execution was
 a set of four "texture lookup" values that fed the register combiners.

 For convenience, should we include pseudo-instr uctions not present in the
 hardware instruction set that are trivially imp lementable? For example,
 absolute value and subtract instructions could fall in this category. An
 "ABS R1,R0" instruction would be equivalent to "MAX R1,R0,-R0", and a "SUB
 R2,R0,R1" would be equivalent to "ADD R2,R0,-R1 "

 RESOLVED: In general, yes. A SUB instruct ion is provided for
 convenience. This extension does not provi de a separate ABS
 instruction because it supports absolute va lue operations of each
 operand.

 Should there be a '+' in the <optionalSign> por tion of the grammar? There
 isn't one in the GL_NV_vertex_program spec.

 RESOLVED: Yes, for orthogonality/readabili ty. A '+' obviously adds
 no functionality. In NV_vertex_program, an <optionalSign> of "-" was
 always a negation operator. However, in fr agment programs, it can
 also be used as a sign for a constant value .

 Can the same fragment attribute register, progr am parameter register, or
 constants be used for multiple operands in the same instruction? If so,
 can it be used with different swizzle patterns?

 RESOLVED: Yes and yes.

 This extension allows different limits for the number of texture
 coordinate sets and the number of texture image units (i.e., texture maps
 and associated data). The state in ActiveTextu reARB affects both

NVIDIA OpenGL Extension Specifications NV_fragment_program

 153

 coordinate sets (TexGen, matrix operations) and image units (TexParameter,
 TexEnv). How should we deal with this?

 RESOLVED: Continue to use ActiveTextureARB and emit an
 INVALID_OPERATION if the active texture ref ers to an unsupported
 coordinate set/image unit. Other options i ncluded creating dummy
 (unusable) state for unsupported coordinate sets/image units and
 continue to use ActiveTextureARB normally, or creating separate state
 and state-setting commands for coordinate s ets and image units.
 Separate state is the cleanest solution, bu t would add more calls and
 potentially cause more programmer confusion . Dummy state would avoid
 additional error checks, but the demands of dummy state could grow if
 the number of texture image units and textu re coordinate sets
 increases.

 The current OpenGL spec is vague as to what state is affected by the
 active texture selector and has no distinat ion between
 coordinate-related and image-related state. The state tables could
 use a good clean-up in this area.

 The LRP instruction is defined so that the resu lt of "LRP R0, R0, R1, R2"
 is R0*R1+(1-R0)*R2. There are conflicting prec edents here. The
 definition here matches the "lrp" instruction i n the DirectX 8.0 pixel
 shader language. However, an equivalent Render Man lerp operation would
 yield a result of (1-R0)*R1+R0*R2. Which order ing should be implemented?

 RESOLVED: NVIDIA hardware implements the f ormer operand ordering, and
 there is no good reason to specify a differ ent ordering. To convert a
 "LRP" using the latter ordering to NV_fragm ent_program, swap the third
 and fourth arguments.

 Should this extension provide tracking of matri ces or any other state,
 similar to that provided in NV_vertex_program?

 RESOLVED: No.

 Should this extension provide global program pa rameters -- values shared
 between multiple fragment programs?

 RESOLVED: No.

 Should this extension provide program parameter s specific to a program?
 If so, how?

 RESOLVED: Yes. These parameters will be c alled "local parameters".
 This extension will provide both named and numbered local parameters.
 Local parameters can be managed by the driv er and eliminate the need
 for applications to manage a global name sp ace.

 Named local parameters work much like stand ard variable names in most
 programming languages. They are created us ing the "DECLARE"
 instruction within the fragment program its elf. For example:

 DECLARE color = {1,0,0,1};

 Named local parameters are used simply by r eferencing the variable
 name. They do not require the array syntax like the global parameters

NV_fragment_program NVIDIA OpenGL Extension Specifications

 154

 in the NV_vertex_program extension. They c an be updated using the
 commands ProgramNamedParameter4[f,fv]NV.

 Numbered local parameters are not declared. They are used by simply
 referencing an element of an array called " p". For example,

 MOV R0, p[12];

 loads the value of numbered local parameter 12 into register R0.
 Numbered local parameters can be updated us ing the commands
 ProgramLocalParameter4[d,dv,f,fv]ARB.

 The numbered local parameter APIs were adde d to this extension late in
 its development, and are provided for compa tibility with the
 ARB_vertex_program extension, and what will likely be supported in
 ARB_fragment_program as well. Providing th is mechanism allows
 programs to use the same mechanisms to set local parameters in both
 extension.

 Why are the APIs for setting named and numbered local parameters
 different?

 RESOLVED: The named parameter API was crea ted prior to
 ARB_vertex_program (and the possible future ARB_fragment_program) and
 uses conventions borrowed from NV_vertex_pr ogram. A slightly
 different API was chosen during the ARB sta ndardization process; see
 the ARB_vertex_program specification for mo re details.

 The named parameter API takes a program ID and a parameter name, and
 sets the parameter for the program with the specified ID. The
 specified program does not need to be bound (via BindProgramNV) in
 order to modify the values of its named par ameters. The numbered
 parameter API takes a program target enum (FRAGMENT_PROGRAM_NV) and a
 parameter number and modifies the correspon ding numbered parameter of
 the currently bound program.

 What should be the initial value of uninitializ ed local parameters?

 RESOLVED: (0,0,0,0). This choice is somew hat arbitrary, but matches
 previous extensions (e.g., NV_vertex_progra m).

 Should this extension support program parameter arrays?

 RESOLVED: No hardware support is present. Note that from the point
 of view of a fragment program, a texture ma p can be used as a 1-, 2-,
 or 3-dimensional array of constants.

 Should this extension provide support constants in fragment programs? If
 so, how?

 RESOLVED: Yes. Scalar or vector constants can be defined inline
 (e.g., "1.0" or "{1,2,3,4}"). In addition, named constants are
 supported using the "DEFINE" instruction, w hich allow programmers to
 change the values of constants used in mult iple instructions simply be
 changing the value assigned to the named co nstant.

 Note that because this extension uses progr am strings, the

NVIDIA OpenGL Extension Specifications NV_fragment_program

 155

 floating-point value of any constants gener ated on the fly must be
 printed to the program string. An alternat e method that avoids the
 need to print constants is to declare a nam ed local program parameter
 and initialize it with the ProgramNamedPara meter4[f,fv]() calls.

 Should named constants be allowed to be redefin ed?

 RESOLVED: No. If you want to redefine the values of constants, you
 can create an equivalent named program para meter by changing the
 "DEFINE" keyword to "DECLARE".

 Should functions used to update or query named local parameters take a
 zero-terminated string (as with most strings in the C programming
 language), or should they require an explicit s tring length? If the
 former, should we create a version of LoadProgr amNV that does not require
 a string length.

 RESOLVED: Stick with explicit string lengt h. Strings that are
 defined as constants can have the length co mputed at compile-time.
 Strings read from files will have the lengt h known in advance.
 Programs to build strings at run-time also likely keep the length
 up-to-date. Passing an explicit length sav es time, since the driver
 doesn't have to do a strlen().

 What is the deal with the alpha of the secondar y color?

 RESOLVED: In unextended OpenGL 1.2, the al pha component of the
 secondary color is forced to 0.0. In the E XT_secondary_color
 extension, the alpha of the per-vertex seco ndary colors is defined to
 be 0.0. NV_vertex_program allows vertex pr ograms to produce a
 per-vertex alpha component, but it is force d to zero for the purposes
 of the color sum. In the NV_register_combi ners extension, the alpha
 component of the secondary color is undefin ed. What a mess.

 In this extension, the alpha of the seconda ry color is well-defined
 and can be used normally. When in vertex p rogram mode

 Why are fragment program instructions involving f[FOGC] or f[TEX0] through
 f[TEX7] automatically carried out at full preci sion?

 RESOLVED: This is an artifact of the metho d that these interpolants
 are generated the NVIDIA graphics hardware. If such instructions
 absolutely must be carried out at lower pre cision, the requirement can
 be met by first loading the interpolants in to a temporary register.

 With a different number of texture coordinate s ets and texture image
 units, how many copies of each kind of texture state are there?

 RESOLVED: The intention is that texture st ate be broken into three
 groups. (1) There are MAX_TEXTURE_COORDS_N V copies of texture
 coordinate set state, which includes curren t texture coordinates,
 TexGen state, and texture matrices. (2) Th ere are
 MAX_TEXTURE_IMAGE_UNITS_NV copies of textur e image unit state, which
 include texture maps, texture parameters, L OD bias parameters. (3)
 There are MAX_TEXTURE_UNITS_ARB copies of l egacy OpenGL texture unit
 state (e.g., texture enables, TexEnv blendi ng state), all of which are
 unused when in fragment program mode.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 156

 It is not necessary that MAX_TEXTURE_UNITS_ ARB be equal to the minimum
 of MAX_TEXTURE_COORDS_NV and MAX_TEXTURE_IM AGE_UNITS --
 implementations may choose not to extend fi xed-function OpenGL texture
 mapping modes beyond a certain point.

 The GLX protocol for LoadProgramNV (and Program NamedParameterNV) may end
 up with programs >64KB. This will overflow the limits of the GLX Render
 protocol, resulting in the need to use RenderLa rge path. This is an issue
 with vertex programs, also.

 RESOLVED: Yes, it is.

 Should textures used by fragment programs be de clared? For example,
 "TEXTURE TEX3, 2D", indicating that the 2D text ure should be used for all
 accesses to texture unit 3. The dimension coul d be dropped from the TEX
 family of instructions, and some of the compile -time error checking could
 be dropped.

 RESOLVED: Maybe it should be, but for bett er or worse, it isn't.

 It is not all that uncommon to have negative q values with projective
 texture mapping, but results are undefined if a ny q values are negative in
 this specification. Why?

 RESOLVED: This restriction carries on a si milar one in the initial
 OpenGL specification. The motivation for t his restriction is that
 when interpolating, it is possible for a fr agment to have an
 interpolated q coordinate at or near 0.0. Since the texture
 coordinates used for projective texture map ping are s/q, t/q, and r/q,
 this will result in a divide-by-zero error or suffer from significant
 numerical instability. Results will be ina ccurate for such fragments.

 Other than the numerical stability issue ab ove, NVIDIA hardware should
 have no problems with negative q coordinate s.

 Should programs that replace depth have their o wn special program type,
 Such as "!!FPD1.0" and "!!FPDC1.0"?

 RESOLVED: No. If a program has an instruc tion that writes to
 o[DEPR], the final fragment depth value is taken from o[DEPR].z.
 Otherwise, the fragment's original depth va lue is used.

 What fx12 value should NaN map to?

 RESOLVED: For the lack of any better choic e, 0.0.

 How are special-case encodings (-INF, +INF, -0. 0, +0.0, NaN) handled for
 arithmetic and comparison operations?

 RESOLVED: The special cases for all floati ng-point operations are
 designed to match the IEEE specification fo r floating-point numbers as
 closely as possible. The results produced by special cases should be
 enumerated in the sections of this spec des cribing the operations.
 There are some cases where the implemented fragment program behavior
 does not match IEEE conventions, and these cases should be noted in
 this specification.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 157

 How can condition codes be used to mask out reg ister writes? How about
 killing fragments? What other things can you d o?

 RESOLVED: The following example computes a component wise |R1-R2|:

 SUBC R0, R1, R2; # "C" suffix means update condition code
 MOV R0 (LT), -R0; # Conditional write mask in parentheses

 The first instruction computes a component- wise difference between R1
 and R2, storing R1-R2 in register R0. The "C" suffix in the
 instruction means to update the condition c ode based on the sign of
 the result vector components. The second i nstruction inverts the sign
 of the components of R0. However the "(LT) " portion says that the
 destination register should be updated only if the corresponding
 condition code component is LT (negative). This means that only those
 components of R0

 To kill a fragment if the red (x) component of a texture lookup
 returns zero:

 TEXC R0, f[TEX0], TEX0, 2D;
 KIL EQ.x;

 To kill based on the green (y) component, u se "EQ.y" instead. To kill
 if any of the four components is zero, use "EQ.xyzw" or just "EQ".

 Fragment programs do not support boolean ex pressions. These can
 generally be achieved using conditional wri te mask.

 To evaluate the expression "(R0.x == 0) && (R1.x == 0)":

 MOVC RC.x, R0.x;
 MOVC RC.x (EQ), R1.x;

 To evaluate the expression "(R0.x == 0) || (R1.x == 0)":

 MOVC RC.x, R0.x;
 MOVC RC.x (NE), R1.x;

 In both cases, the x component of the condi tion code will contain "EQ"
 if and only if the condition is TRUE.

 How can fragment programs be used to implement non-standard texture
 filtering modes?

 RESOLVED: As one example, consider a case where you want to do linear
 filtering in a 2D texture map, but only hor izontally. To achieve
 this, first set the texture filtering mode to NEAREST. For a 16 x n
 texture, you might do something like:

 DEFINE halfTexel = { 0.03125, 0 }; # 1/ 32 (1/2 a texel)
 ADD R0, f[TEX0], -halfTexel; # co ords of left sample
 ADD R1, f[TEX0], +halfTexel; # co ords of right sample
 TEX R0, R0, TEX0, 2D; # lo okup left sample
 TEX R1, R1, TEX0, 2D; # lo okup right sample
 MUL R2.x, R0.x, 16; # sc ale X coords to texels

NV_fragment_program NVIDIA OpenGL Extension Specifications

 158

 FRC R2.x, R2.x; # ge t fraction, filter weight
 LRP R0, R2, R1, R0; # bl end samples based on weight

 There are plenty of other interesting thing s that can be done.

 Should this specification provide more examples ?

 RESOLVED: Yes, it should.

 Is the OpenGL ARB working on a multi-vendor sta ndard for fragment
 programmability? Will there be an ARB_fragment _program extension? If so,
 how will this extension interact with the ARB s tandard?

 RESOLVED: Yes, as of July 2002, there was a multi-vendor working
 group and a draft specification. The ARB e xtension is expected to
 have several features not present in this e xtension, such as state
 tracking and global parameters (called "pro gram environment
 parameters"). It will also likely lack cer tain features found in this
 extension.

 Why does the HEMI mapping apply to the third co mponent of signed HILO
 textures, but not to unsigned HILO textures?

 RESOLVED: This behavior matches the behavi or of NV_texture_shader
 (e.g., the DOT_PRODUCT_NV mode). The HEMI mapping will construct the
 third component of a unit vector whose firs t two components are
 encoded in the HILO texture.

New Procedures and Functions

 void ProgramNamedParameter4fNV(uint id, sizei l en, const ubyte *name,
 float x, float y , float z, float w);
 void ProgramNamedParameter4dNV(uint id, sizei l en, const ubyte *name,
 double x, double y, double z, double w);
 void ProgramNamedParameter4fvNV(uint id, sizei len, const ubyte *name,
 const float v[]);
 void ProgramNamedParameter4dvNV(uint id, sizei len, const ubyte *name,
 const double v[]);
 void GetProgramNamedParameterfvNV(uint id, size i len, const ubyte *name,
 float *params);
 void GetProgramNamedParameterdvNV(uint id, size i len, const ubyte *name,
 double *param s);

 void ProgramLocalParameter4dARB(enum target, ui nt index,
 double x, doubl e y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, u int index,
 const double * params);
 void ProgramLocalParameter4fARB(enum target, ui nt index,
 float x, float y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, u int index,
 const float *p arams);
 void GetProgramLocalParameterdvARB(enum target, uint index,
 double *para ms);
 void GetProgramLocalParameterfvARB(enum target, uint index,
 float *param s);

NVIDIA OpenGL Extension Specifications NV_fragment_program

 159

New Tokens

 Accepted by the <cap> parameter of Disable, Ena ble, and IsEnabled, by the
 <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev,
 and by the <target> parameter of BindProgramNV, LoadProgramNV,
 ProgramLocalParameter4dARB, ProgramLocalParamet er4dvARB,
 ProgramLocalParameter4fARB, ProgramLocalParamet er4fvARB,
 GetProgramLocalParameterdvARB, and GetProgramLo calParameterfvARB:

 FRAGMENT_PROGRAM_NV 0x8870

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv, GetFloatv,
 and GetDoublev:

 MAX_TEXTURE_COORDS_NV 0x8871
 MAX_TEXTURE_IMAGE_UNITS_NV 0x8872
 FRAGMENT_PROGRAM_BINDING_NV 0x8873
 MAX_FRAGMENT_PROGRAM_LOCAL_PARAMETERS_NV 0x8868

 Accepted by the <name> parameter of GetString:

 PROGRAM_ERROR_STRING_NV 0x8874

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 Modify Section 2.11, Clipping (p.39)

 (replace the first paragraph of the section, p. 39) Primitives are clipped
 to the clip volume. In clip coordinates, the v iew volume is defined by

 -w_c <= x_c <= w_c,
 -w_c <= y_c <= w_c, and
 -w_c <= z_c <= w_c.

 Clipping to the near and far clip planes is ign ored if fragment program
 mode (section 3.11) or texture shaders (see NV_ texture_shader
 specification) are enabled, if the current frag ment program or texture
 shader computes per-fragment depth values. In this case, the view volume
 is defined by:

 -w_c <= x_c <= w_c and
 -w_c <= y_c <= w_c.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Chapter 3 introduction (p. 57)

 (p.57, modify 1st paragraph) ... Figure 3.1 dia grams the rasterization
 process. The color value assigned to a fragmen t is initially determined
 by the rasterization operations (Sections 3.3 t hrough 3.7) and modified by
 either the execution of the texturing, color su m, and fog operations as
 defined in Sections 3.8, 3.9, and 3.10, or of a fragment program defined
 in Section 3.11. The final depth value is init ially determined by the
 rasterization operations and may be modified by a fragment program.

 note: Antialiasing Application is renumbered f rom Section 3.11 to Section

NV_fragment_program NVIDIA OpenGL Extension Specifications

 160

 3.12.

 Modify Figure 3.1 (p.58)

 Primitive Assembly
 |
 +-----------+-----------+-----------+ -----------+
 | | | | |
 | | | Pixe l |
 Point Line Polygon Rect angle Bitmap
 Raster- Raster- Raster- Rast er- Raster-
 ization ization ization izat ion ization
 | | | | |
 +-----------+-----------+-----------+ -----------+
 |
 |
 +-----------------+------------ -----+
 | | |
 Conventional Texture Fragment
 Texture Fetch Shaders Programs
 | | |
 | +--------------+ |
 | | |
 TEXTURE_ o o |
 SHADER_NV |
 enable o |
 | |
 +-------------+ |
 | | |
 Conventional Register |
 TexEnv Combiners |
 | | |
 Color Sum | |
 | | |
 Fog | |
 | | |
 | +----------+ |
 | | |
 REGISTER_ o o |
 COMBINERS_ |
 NV enable o |
 | |
 +-----------------+ +--------- -----+
 | |
 FRAGMENT_ o o
 PROGRAM_
 NV enable o
 |
 |
 Coverage
 Application
 |
 v
 to fragment processing

NVIDIA OpenGL Extension Specifications NV_fragment_program

 161

 Modify Section 3.3, Points (p.61)

 All fragments produced in rasterizing a non-ant ialiased point are assigned
 the same associated data, which are those of th e vertex cooresponding to
 the point. (delete reference to divide by q).

 If anitialiasing is enabled, then ... The data associated with each
 fragment are otherwise the data associated with the point being
 rasterized. (delete reference to divide by q)

 Modify Section 3.4.1, Basic Line Segment Raster ization (p.66)

 (Note that t=0 at p_a and t=1 at p_b). The val ue of an associated datum f
 from the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
 index (in color index mode), the s, t, r, or q texture coordinate, or the
 clip w coordinate (the depth value, window z, m ust be found using equation
 3.3, below), is found as

 f = (1-t) * f_a / w_a + t * f_b / w_b (3.2)

 (1-t) / w_a + t / w_b

 where f_a and f_b are the data associated with the starting and ending
 endpoints of the segment, respectively; w_a and w_b are the clip
 w coordinates of the starting and ending endpoi nts of the segments
 respectively. Note that linear interpolation w ould use

 f = (1-t) * f_a + t * f_b. (3.3)

 ... A GL implementation may choose to approxima te equation 3.2 with 3.3,
 but this will normally lead to unacceptable dis tortion effects when
 interpolating texture coordinates or clip w coo rdinates.

 Modify Section 3.5.1, Basic Polygon Rasterizati on (p.71)

 Denote a datum at p_a, p_b, or p_c ... is given by

 f = a * f_a / w_a + b * f_b / w_b + c * f_c / w_c (3.4)
 --- ----
 a / w_a + b / w_b + c / w_c

 where w_a, w_b, and w_c are the clip w coordina tes of p_a, p_b, and p_c,
 respectively. a, b, and c are the barycentric coordinates of the fragment
 for which the data are produced. a, b, and c mu st correspond precisely to
 the exact coordinates ... at the fragment's cen ter.

 Just as with line segment rasterization, equati on 3.4 may be approximated
 by

 f = a * f_a + b * f_b + c * f_c; (3.5)

 this may yield ... for texture coordinates or c lip w coordinates.

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p.100)

 A fragment arising from a group ... are given b y those associated with the
 current raster position. (delete reference to divide by q)

NV_fragment_program NVIDIA OpenGL Extension Specifications

 162

 Modify Section 3.7, Bitmaps (p.111)

 Otherwise, a rectangular array ... The associat ed data for each fragment
 are those associated with the current raster po sition. (delete reference
 to divide by q) Once the fragments have been p roduced ...

 Modify Section 3.8, Texturing (p.112)

 ... an image at the location indicated by a fra gment's texture coordinates
 to modify the fragments primary RGBA color. Te xturing does not affect the
 secondary color.

 Texturing is specified only for RGBA mode; its use in color index mode is
 undefined.

 Except when in fragment program mode (Section 3 .11), the (s,t,r) texture
 coordinates used for texturing are the values s /q, t/q, and r/q,
 respectively, where s, t, r, and q are the text ure coordinates associated
 with the fragment. When in fragment program mo de, the (s,t,r) texture
 coordinates are specified by the program. If q is less than or equal to
 zero, the results of texturing are undefined.

 Add new Section 3.11, Fragment Programs (p.140)

 Fragment program mode is enabled and disabled w ith the Enable and Disable
 commands using the symbolic constant FRAGMENT_P ROGRAM_NV. When fragment
 program mode is enabled, standard and extended texturing, color sum, and
 fog application stages are ignored and a genera l purpose program is
 executed instead.

 A fragment program is a sequence of instruction s that execute on a
 per-fragment basis. In fragment program mode, the currently bound
 fragment program is executed as each fragment i s generated by the
 rasterization operations. Fragment programs ex ecute a finite fixed
 sequence of instructions with no branching or l ooping, and operate
 independently from the processing of other frag ments. Fragment programs
 are used to compute new color values to be asso ciated with each fragment,
 and can optionally compute a new depth value fo r each fragment as well.

 Fragment program mode is not available in color index mode and is
 considered disabled, regardless of the state of FRAGMENT_PROGRAM_NV. When
 fragment program mode is enabled, texture shade rs and register combiners
 (NV_texture_shader and NV_register_combiners ex tension) are disabled,
 regardless of the state of TEXTURE_SHADER_NV an d REGISTER_COMBINERS_NV.

 Section 3.11.1, Fragment Program Registers

 Fragment programs operate on a set of program r egisters. Each program
 register is a 4-component vector, whose compone nts are referred to as "x",
 "y", "z", and "w" respectively. The components of a fragment register are
 always referred to in this manner, regardless o f the meaning of their
 contents.

 The four components of each fragment program re gister have one of two
 different representations: 32-bit floating-poi nt (fp32) or 16-bit
 floating-point (fp16). More details on these r epresentations can be found

NVIDIA OpenGL Extension Specifications NV_fragment_program

 163

 in Section 3.11.4.1.

 There are several different classes of program registers. Attribute
 registers (Table X.1) correspond to the fragmen t's associated data
 produced by rasterization. Temporary registers (Table X.2) hold
 intermediate results generated by the fragment program. Output registers
 (Table X.3) hold the final results of a fragmen t program. The single
 condition code register is used to mask writes to other registers or to
 determine if a fragment should be discarded.

 Section 3.11.1.1, Fragment Program Attribute Re gisters

 The fragment program attribute registers (Table X.1) hold the location of
 the fragment and the data associated with the f ragment produced by
 rasterization.

 Fragment Attribute Component
 Register Name Description Interpretation
 -------------- ------------------------------ ----- --------------
 f[WPOS] Position of the fragment cente r. (x,y,z,1/w)
 f[COL0] Interpolated primary color (r,g,b,a)
 f[COL1] Interpolated secondary color (r,g,b,a)
 f[FOGC] Interpolated fog distance/coor d (z,0,0,0)
 f[TEX0] Texture coordinate (unit 0) (s,t,r,q)
 f[TEX1] Texture coordinate (unit 1) (s,t,r,q)
 f[TEX2] Texture coordinate (unit 2) (s,t,r,q)
 f[TEX3] Texture coordinate (unit 3) (s,t,r,q)
 f[TEX4] Texture coordinate (unit 4) (s,t,r,q)
 f[TEX5] Texture coordinate (unit 5) (s,t,r,q)
 f[TEX6] Texture coordinate (unit 6) (s,t,r,q)
 f[TEX7] Texture coordinate (unit 7) (s,t,r,q)

 Table X.1: Fragment Attribute Registers. The component interpretation
 column describes the mapping of attribute value s to register components.
 For example, the "x" component of f[COL0] holds the red color component,
 and the "x" component of f[TEX0] holds the "s" texture coordinate for
 texture unit 0. The entries "0" and "1" indica te that the attribute
 register components hold the constants 0 and 1, respectively.

 f[WPOS].x and f[WPOS].y hold the (x,y) window c oordinates of the fragment
 center, and relative to the lower left corner o f the window. f[WPOS].z
 holds the associated z window coordinate, norma lly in the range [0,1].
 f[WPOS].w holds the reciprocal of the associate d clip w coordinate.

 f[COL0] and f[COL1] hold the associated RGBA pr imary and secondary colors
 of the fragment, respectively.

 f[FOGC] holds the associated eye distance or fo g coordinate normally used
 for fog computations.

 f[TEX0] through f[TEX7] hold the associated tex ture coordinates for
 texture coordinate sets 0 through 7, respective ly.

 All attribute register components are treated a s 32-bit floats. However,
 the components of primary and secondary colors (f[COL0] and f[COL1]) may
 be generated with reduced precision.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 164

 The contents of the fragment attribute register s may not be modified by a
 fragment program. In addition, each fragment p rogram instruction can use
 at most one unique attribute register.

 Section 3.11.1.2, Fragment Program Temporary Re gisters

 The fragment temporary registers (Table X.2) ho ld intermediate values used
 during the execution of a fragment program. Th ere are 96 temporary
 register names, but not all can be used simulta neously.

 Fragment Temporary
 Register Name Description
 ------------------ --------------------------- --------------------------
 R0-R31 Four 32-bit (fp32) floating point values (s.e8.m23)
 H0-H63 Four 16-bit (fp16) floating point values (s.e5.m10)

 Table X.2: Fragment Temporary Registers.

 In addition to the normal temporary registers, there are two temporary
 pseudo-registers, "RC" and "HC". RC and HC are treated as unnumbered,
 write-only temporary registers. The components of RC have an fp32 data
 type; the components of HC have an fp16 data ty pe. The sole purpose of
 these registers is to permit instructions to mo dify the condition code
 register (section 3.11.1.4) without overwriting the values in any
 temporary register.

 Fragment program instructions can read and writ e temporary registers.
 There is no restriction on the number of tempor ary registers that can be
 accessed by any given instruction.

 All temporary registers are initialized to (0,0 ,0,0) each time a fragment
 program executes.

 Section 3.11.1.3, Fragment Program Output Regis ters

 The fragment program output registers hold the final results of the
 fragment program. The possible final results o f a fragment program are an
 RGBA fragment color, a fragment depth value, an d up to four texture values
 used by the NV_register_combiners extension.

 Output
 Register Name Description
 ------------- ---------------------------- ---------------------------
 o[COLR] Final RGBA fragment color, f p32 format (color programs)
 o[COLH] Final RGBA fragment color, f p16 format (color programs)
 o[TEX0] TEXTURE0 output, fp16 format (combiner programs)
 o[TEX1] TEXTURE1 output, fp16 format (combiner programs)
 o[TEX2] TEXTURE2 output, fp16 format (combiner programs)
 o[TEX3] TEXTURE3 output, fp16 format (combiner programs)
 o[DEPR] Final fragment depth value, fp32 format

 Table X.3: Fragment Program Output Registers.

 o[COLR] and o[COLH] are used by color fragment programs to specify the
 color of a fragment. These two registers are i dentical, except for the
 associated data type of the components. The R, G, B, and A components of
 the fragment color are taken from the x, y, z, and w components

NVIDIA OpenGL Extension Specifications NV_fragment_program

 165

 respectively of the o[COLR] or o[COLH]. A frag ment program will fail to
 load if it writes to both o[COLR] and o[COLH].

 o[TEX0], o[TEX1], o[TEX2], and o[TEX3] are used by combiner fragment
 programs to generate the initial texture regist er values for the register
 combiners. After a combiner fragment program i s executed, register
 combiner operations are performed and can use t hese computed values. The
 R, G, B, and A components of the combiner regis ters are taken from the x,
 y, z, and w components of the corresponding out put registers.

 o[DEPR] can be used to replace the associated d epth value of a fragment.
 The new depth value is taken from the z compone nt of o[DEPR]. If a
 fragment program does not write to o[DEPR], the associated depth value is
 unmodified.

 A fragment program will fail to load if it does not write to at least one
 output register. A color fragment program will fail to load if it writes
 to o[TEX0], o[TEX1], o[TEX2], or o[TEX3]. A co mbiner fragment program
 will fail to load if it writes to o[COLR] or o[COLH], or if it does not
 write to any of o[TEX0], o[TEX1], o[TEX2], or o [TEX3].

 The fragment program output registers may not b e read by a fragment
 program, but may be written to multiple times.

 The values of all fragment program output regis ters are initially
 undefined.

 Section 3.11.1.4, Fragment Program Condition Co de Register

 The condition code register (CC) is a single fo ur-component vector. Each
 component of this register is one of four enume rated values: GT (greater
 than), EQ (equal), LT (less than), or UN (unord ered). The condition code
 register can be used to mask writes to fragment data register components
 or to terminate processing of a fragment altoge ther (via the KIL
 instruction).

 Most fragment program instructions can optional ly update the condition
 code register. When a fragment program instruc tion updates the condition
 code register, a condition code component is se t to LT if the
 corresponding component of the result vector is less than zero, EQ if it
 is equal to zero, GT if it is greater than zero , and UN if it is NaN (not
 a number).

 The condition code register is initialized to a vector of EQ values each
 time a fragment program executes.

 Section 3.11.2, Fragment Program Parameters

 In addition to using the registers defined in S ection 3.11.1, fragment
 programs may also use fragment program paramete rs in their computation.
 Fragment program parameters are constant during the execution of fragment
 programs, but some parameters may be modified o utside the execution of a
 fragment program.

 There are five different types of program param eters: embedded scalar
 constants, embedded vector constants, named con stants, named local
 parameters, and numbered local parameters.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 166

 Embedded scalar constants are written as standa rd floating-point numbers
 with an optional sign designator ("+" or "-") a nd optional scientific
 notation (e.g., "E+06", meaning "times 10^6").

 Embedded vector constants are written as a comm a-separated array of one to
 four scalar constants, surrounded by braces (li ke a C/C++ array
 initializer). Vector constants are always trea ted as 4-component vectors:
 constants with fewer than four components are e xpanded to 4-components by
 filling missing y and z components with 0.0 and missing w components with
 1.0. Thus, the vector constant "{2}" is equiva lent to "{2,0,0,1}",
 "{3,4}" is equivalent to "{3,4,0,1}", and "{5,6 ,7}" is equivalent to
 "{5,6,7,1}".

 Named constants allow fragment program instruct ions to define scalar or
 vector constants that can be referenced by name . Named constants are
 created using the DEFINE instruction:

 DEFINE pi = 3.1415926535;
 DEFINE color = {0.2, 0.5, 0.8, 1.0};

 The DEFINE instruction associates a constant na me with a scalar or vector
 constant value. Subsequent fragment program in structions that use the
 constant name are equivalent to those using the corresponding constant
 value.

 Named local parameters are similar to named vec tor constants, but their
 values can be modified after the program is loa ded. Local parameters are
 created using the DECLARE instruction:

 DECLARE fog_color1;
 DECLARE fog_color2 = {0.3, 0.6, 0.9, 0.1};

 The DECLARE instruction creates a 4-component v ector associated with the
 local parameter name. Subsequent fragment prog ram instructions
 referencing the local parameter name are proces sed as though the current
 value of the local parameter vector were specif ied instead of the
 parameter name. A DECLARE instruction can opti onally specify an initial
 value for the local parameter, which can be eit her a scalar or vector
 constant. Scalar constants are expanded to 4-c omponent vectors by
 replicating the scalar value in each component. The initial value of
 local parameters not initialized by the program is (0,0,0,0).

 A named local parameter for a specific program can be updated using the
 calls ProgramNamedParameter4fNV or ProgramNamed Parameter4fvNV (section
 5.7). Named local parameters are accessible on ly by the program in which
 they are defined. Modifying a local parameter affects the only the
 associated program and does not affect local pa rameters with the same name
 that are found in any other fragment program.

 Numbered local parameters are similar to named local parameters, except
 that they are referred to by number and are not declared in fragment
 programs. Each fragment program object has an array of four-component
 floating-point vectors that can be used by the program. The number of
 vectors is given by the implementation-dependen t constant
 MAX_FRAGMENT_PROGRAM_LOCAL_PARAMETERS_NV, and must be at least 64. A
 numbered local parameter is accessed by a fragm ent program as members of

NVIDIA OpenGL Extension Specifications NV_fragment_program

 167

 an array called "p". For example, the instruct ion

 MOV R0, p[31];

 copies the contents of numbered local parameter 31 into temporary register
 R0.

 Constant and local parameter names can be arbit rary strings consisting of
 letters (upper or lower-case), numbers, undersc ores ("_"), and dollar
 signs ("$"). Keywords defined in the grammar (including instruction
 names) can not be used as constant names, nor c an strings that start with
 numbers, or strings that specify valid temporar y register or texture
 numbers (e.g., "R0"-"R31", "H0"-"H63"", "TEX0"- "TEX15"). A fragment
 program will fail to load if a DEFINE or DECLAR E instruction specifies an
 invalid constant or local parameter name.

 A fragment program will fail to load if an inst ruction contains a named
 parameter not specified in a previous DEFINE or DECLARE instruction. A
 fragment program will also fail to load if a DE FINE or DECLARE instruction
 attempts to re-define a named parameter specifi ed in a previous DEFINE or
 DECLARE instruction.

 The contents of the fragment program parameters may not be modified by a
 fragment program. In addition, each fragment p rogram instruction can
 normally use at most one unique program paramet er. The only exception to
 this rule is if all program parameter reference s specify named or embedded
 constants that taken together contain no more t han four unique scalar
 values. For such instructions, the GL will aut omatically generate an
 equivalent instruction that references a single merged vector constant.
 This merging allows programs to specify instruc tions like the following:

 Instruction Equivalent Instruc tion
 --------------------- ------------------ ---------------------
 MAD R0, R1, 2, -1; MAD R0, R1, {2,-1, 0,0}.x, {2,-1,0,0}.y;
 ADD R0, {1,2,3,4}, 4; ADD R0, {1,2,3,4}. xyzw, {1,2,3,4}.w;

 Before counting the number of unique values, an y named constants are first
 converted to the equivalent embedded constants. When generating a
 combined vector constant, the GL does not perfo rm swizzling, component
 selection, negation, or absolute value operatio ns. The following
 instructions are invalid, as they contain more than four unique scalar
 values.

 Invalid Instructions

 ADD R0, {1,2,3,4}, -4;
 ADD R0, {1,2,3,4}, |-4|;
 ADD R0, {1,2,3,4}, -{-1,-2,-3,-4};
 ADD R0, {1,2,3,4}, {4,5,6,7}.x;

 Section 3.11.3, Fragment Program Specification

 Fragment programs are specified as an array of ubytes. The array is a
 string of ASCII characters encoding the program . The command
 LoadProgramNV loads a fragment program when the target parameter is
 FRAGMENT_PROGRAM_NV. The command BindProgramNV enables a fragment program
 for execution.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 168

 At program load time, the program is parsed int o a set of tokens possibly
 separated by white space. Spaces, tabs, newlin es, carriage returns, and
 comments are considered whitespace. Comments b egin with the character "#"
 and are terminated by a newline, a carriage ret urn, or the end of the
 program array. Fragment programs are case-sens itive -- upper and lower
 case letters are treated differently. The prop er choice of case can be
 inferred from the grammar.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for fragment programs. The set of va lid tokens can be inferred
 from the grammar. The token "" represents an e mpty string and is used to
 indicate optional rules. A program is invalid if it contains any
 undefined tokens or characters.

 <program> ::= <progPrefix> <instru ctionSequence> "END"

 <progPrefix> ::= <colorProgPrefix>
 | <combinerProgPrefix>

 <colorProgPrefix> ::= "!!FP1.0"

 <combinerProgPrefix> ::= "!!FCP1.0"

 <instructionSequence> ::= <instructionSequence > <instructionStatement>
 | <instructionStatemen t>

 <instructionStatement> ::= <instruction> ";"
 | <constantDefinition> ";"
 | <localDeclaration> " ;"

 <instruction> ::= <VECTORop-instructio n>
 | <SCALARop-instructio n>
 | <BINSCop-instruction >
 | <BINop-instruction>
 | <TRIop-instruction>
 | <KILop-instruction>
 | <TEXop-instruction>
 | <TXDop-instruction>

 <VECTORop-instruction> ::= <VECTORop> <maskedDs tReg> ","
 <vectorSrc>

NVIDIA OpenGL Extension Specifications NV_fragment_program

 169

 <VECTORop> ::= "DDX" | "DDX_SAT"
 | "DDXR" | "DDXR_SAT"
 | "DDXH" | "DDXH_SAT"
 | "DDXC" | "DDXC_SAT"
 | "DDXRC" | "DDXRC_SAT "
 | "DDXHC" | "DDXHC_SAT "
 | "DDY" | "DDY_SAT"
 | "DDYR" | "DDYR_SAT"
 | "DDYH" | "DDYH_SAT"
 | "DDYC" | "DDYC_SAT"
 | "DDYRC" | "DDYRC_SAT "
 | "DDYHC" | "DDYHC_SAT "
 | "FLR" | "FLR_SAT"
 | "FLRR" | "FLRR_SAT"
 | "FLRH" | "FLRH_SAT"
 | "FLRX" | "FLRX_SAT"
 | "FLRC" | "FLRC_SAT"
 | "FLRRC" | "FLRRC_SAT "
 | "FLRHC" | "FLRHC_SAT "
 | "FLRXC" | "FLRXC_SAT "
 | "FRC" | "FRC_SAT"
 | "FRCR" | "FRCR_SAT"
 | "FRCH" | "FRCH_SAT"
 | "FRCX" | "FRCX_SAT"
 | "FRCC" | "FRCC_SAT"
 | "FRCRC" | "FRCRC_SAT "
 | "FRCHC" | "FRCHC_SAT "
 | "FRCXC" | "FRCXC_SAT "
 | "LIT" | "LIT_SAT"
 | "LITR" | "LITR_SAT"
 | "LITH" | "LITH_SAT"
 | "LITC" | "LITC_SAT"
 | "LITRC" | "LITRC_SAT "
 | "LITHC" | "LITHC_SAT "
 | "MOV" | "MOV_SAT"
 | "MOVR" | "MOVR_SAT"
 | "MOVH" | "MOVH_SAT"
 | "MOVX" | "MOVX_SAT"
 | "MOVC" | "MOVC_SAT"
 | "MOVRC" | "MOVRC_SAT "
 | "MOVHC" | "MOVHC_SAT "
 | "MOVXC" | "MOVXC_SAT "
 | "PK2H"
 | "PK2US"
 | "PK4B"
 | "PK4UB"

 <SCALARop-instruction> ::= <SCALARop> <maskedDs tReg> ","
 <scalarSrc>

NV_fragment_program NVIDIA OpenGL Extension Specifications

 170

 <SCALARop> ::= "COS" | "COS_SAT "
 | "COSR" | "COSR_SA T"
 | "COSH" | "COSH_SA T"
 | "COSC" | "COSC_SA T"
 | "COSRC" | "COSRC_S AT"
 | "COSHC" | "COSHC_S AT"
 | "EX2" | "EX2_SAT "
 | "EX2R" | "EX2R_SA T"
 | "EX2H" | "EX2H_SA T"
 | "EX2C" | "EX2C_SA T"
 | "EX2RC" | "EX2RC_S AT"
 | "EX2HC" | "EX2HC_S AT"
 | "LG2" | "LG2_SAT "
 | "LG2R" | "LG2R_SA T"
 | "LG2H" | "LG2H_SA T"
 | "LG2C" | "LG2C_SA T"
 | "LG2RC" | "LG2RC_S AT"
 | "LG2HC" | "LG2HC_S AT"
 | "RCP" | "RCP_SAT "
 | "RCPR" | "RCPR_SA T"
 | "RCPH" | "RCPH_SA T"
 | "RCPC" | "RCPC_SA T"
 | "RCPRC" | "RCPRC_S AT"
 | "RCPHC" | "RCPHC_S AT"
 | "RSQ" | "RSQ_SAT "
 | "RSQR" | "RSQR_SA T"
 | "RSQH" | "RSQH_SA T"
 | "RSQC" | "RSQC_SA T"
 | "RSQRC" | "RSQRC_S AT"
 | "RSQHC" | "RSQHC_S AT"
 | "SIN" | "SIN_SAT "
 | "SINR" | "SINR_SA T"
 | "SINH" | "SINH_SA T"
 | "SINC" | "SINC_SA T"
 | "SINRC" | "SINRC_S AT"
 | "SINHC" | "SINHC_S AT"
 | "UP2H" | "UP2H_SA T"
 | "UP2HC" | "UP2HC_S AT"
 | "UP2US" | "UP2US_S AT"
 | "UP2USC" | "UP2USC_ SAT"
 | "UP4B" | "UP4B_SA T"
 | "UP4BC" | "UP4BC_S AT"
 | "UP4UB" | "UP4UB_S AT"
 | "UP4UBC" | "UP4UBC_ SAT"

 <BINSCop-instruction> ::= <BINSCop> <maskedDst Reg> ","
 <scalarSrc> "," <sca larSrc>

 <BINSCop> ::= "POW" | "POW_SAT"
 | "POWR" | "POWR_SAT"
 | "POWH" | "POWH_SAT"
 | "POWC" | "POWC_SAT"
 | "POWRC" | "POWRC_SAT "
 | "POWHC" | "POWHC_SAT "

 <BINop-instruction> ::= <BINop> <maskedDstRe g> ","
 <vectorSrc> "," <vec torSrc>

NVIDIA OpenGL Extension Specifications NV_fragment_program

 171

 <BINop> ::= "ADD" | "ADD_SAT"
 | "ADDR" | "ADDR_SAT"
 | "ADDH" | "ADDH_SAT"
 | "ADDX" | "ADDX_SAT"
 | "ADDC" | "ADDC_SAT"
 | "ADDRC" | "ADDRC_SAT "
 | "ADDHC" | "ADDHC_SAT "
 | "ADDXC" | "ADDXC_SAT "
 | "DP3" | "DP3_SAT"
 | "DP3R" | "DP3R_SAT"
 | "DP3H" | "DP3H_SAT"
 | "DP3X" | "DP3X_SAT"
 | "DP3C" | "DP3C_SAT"
 | "DP3RC" | "DP3RC_SAT "
 | "DP3HC" | "DP3HC_SAT "
 | "DP3XC" | "DP3XC_SAT "
 | "DP4" | "DP4_SAT"
 | "DP4R" | "DP4R_SAT"
 | "DP4H" | "DP4H_SAT"
 | "DP4X" | "DP4X_SAT"
 | "DP4C" | "DP4C_SAT"
 | "DP4RC" | "DP4RC_SAT "
 | "DP4HC" | "DP4HC_SAT "
 | "DP4XC" | "DP4XC_SAT "
 | "DST" | "DST_SAT"
 | "DSTR" | "DSTR_SAT"
 | "DSTH" | "DSTH_SAT"
 | "DSTC" | "DSTC_SAT"
 | "DSTRC" | "DSTRC_SAT "
 | "DSTHC" | "DSTHC_SAT "
 | "MAX" | "MAX_SAT"
 | "MAXR" | "MAXR_SAT"
 | "MAXH" | "MAXH_SAT"
 | "MAXX" | "MAXX_SAT"
 | "MAXC" | "MAXC_SAT"
 | "MAXRC" | "MAXRC_SAT "
 | "MAXHC" | "MAXHC_SAT "
 | "MAXXC" | "MAXXC_SAT "
 | "MIN" | "MIN_SAT"
 | "MINR" | "MINR_SAT"
 | "MINH" | "MINH_SAT"
 | "MINX" | "MINX_SAT"
 | "MINC" | "MINC_SAT"
 | "MINRC" | "MINRC_SAT "
 | "MINHC" | "MINHC_SAT "
 | "MINXC" | "MINXC_SAT "
 | "MUL" | "MUL_SAT"
 | "MULR" | "MULR_SAT"
 | "MULH" | "MULH_SAT"
 | "MULX" | "MULX_SAT"
 | "MULC" | "MULC_SAT"
 | "MULRC" | "MULRC_SAT "
 | "MULHC" | "MULHC_SAT "
 | "MULXC" | "MULXC_SAT "
 | "RFL" | "RFL_SAT"
 | "RFLR" | "RFLR_SAT"

NV_fragment_program NVIDIA OpenGL Extension Specifications

 172

 | "RFLH" | "RFLH_SAT"
 | "RFLC" | "RFLC_SAT"
 | "RFLRC" | "RFLRC_SAT "
 | "RFLHC" | "RFLHC_SAT "
 | "SEQ" | "SEQ_SAT"
 | "SEQR" | "SEQR_SAT"
 | "SEQH" | "SEQH_SAT"
 | "SEQX" | "SEQX_SAT"
 | "SEQC" | "SEQC_SAT"
 | "SEQRC" | "SEQRC_SAT "
 | "SEQHC" | "SEQHC_SAT "
 | "SEQXC" | "SEQXC_SAT "
 | "SFL" | "SFL_SAT"
 | "SFLR" | "SFLR_SAT"
 | "SFLH" | "SFLH_SAT"
 | "SFLX" | "SFLX_SAT"
 | "SFLC" | "SFLC_SAT"
 | "SFLRC" | "SFLRC_SAT "
 | "SFLHC" | "SFLHC_SAT "
 | "SFLXC" | "SFLXC_SAT "
 | "SGE" | "SGE_SAT"
 | "SGER" | "SGER_SAT"
 | "SGEH" | "SGEH_SAT"
 | "SGEX" | "SGEX_SAT"
 | "SGEC" | "SGEC_SAT"
 | "SGERC" | "SGERC_SAT "
 | "SGEHC" | "SGEHC_SAT "
 | "SGEXC" | "SGEXC_SAT "
 | "SGT" | "SGT_SAT"
 | "SGTR" | "SGTR_SAT"
 | "SGTH" | "SGTH_SAT"
 | "SGTX" | "SGTX_SAT"
 | "SGTC" | "SGTC_SAT"
 | "SGTRC" | "SGTRC_SAT "
 | "SGTHC" | "SGTHC_SAT "
 | "SGTXC" | "SGTXC_SAT "
 | "SLE" | "SLE_SAT"
 | "SLER" | "SLER_SAT"
 | "SLEH" | "SLEH_SAT"
 | "SLEX" | "SLEX_SAT"
 | "SLEC" | "SLEC_SAT"
 | "SLERC" | "SLERC_SAT "
 | "SLEHC" | "SLEHC_SAT "
 | "SLEXC" | "SLEXC_SAT "
 | "SLT" | "SLT_SAT"
 | "SLTR" | "SLTR_SAT"
 | "SLTH" | "SLTH_SAT"
 | "SLTX" | "SLTX_SAT"
 | "SLTC" | "SLTC_SAT"
 | "SLTRC" | "SLTRC_SAT "
 | "SLTHC" | "SLTHC_SAT "
 | "SLTXC" | "SLTXC_SAT "
 | "SNE" | "SNE_SAT"
 | "SNER" | "SNER_SAT"
 | "SNEH" | "SNEH_SAT"
 | "SNEX" | "SNEX_SAT"
 | "SNEC" | "SNEC_SAT"

NVIDIA OpenGL Extension Specifications NV_fragment_program

 173

 | "SNERC" | "SNERC_SAT "
 | "SNEHC" | "SNEHC_SAT "
 | "SNEXC" | "SNEXC_SAT "
 | "STR" | "STR_SAT"
 | "STRR" | "STRR_SAT"
 | "STRH" | "STRH_SAT"
 | "STRX" | "STRX_SAT"
 | "STRC" | "STRC_SAT"
 | "STRRC" | "STRRC_SAT "
 | "STRHC" | "STRHC_SAT "
 | "STRXC" | "STRXC_SAT "
 | "SUB" | "SUB_SAT"
 | "SUBR" | "SUBR_SAT"
 | "SUBH" | "SUBH_SAT"
 | "SUBX" | "SUBX_SAT"
 | "SUBC" | "SUBC_SAT"
 | "SUBRC" | "SUBRC_SAT "
 | "SUBHC" | "SUBHC_SAT "
 | "SUBXC" | "SUBXC_SAT "

 <TRIop-instruction> ::= <TRIop> <maskedDstRe g> ","
 <vectorSrc> "," <vec torSrc> ","
 <vectorSrc>

 <TRIop> ::= "MAD" | "MAD_SAT"
 | "MADR" | "MADR_SAT"
 | "MADH" | "MADH_SAT"
 | "MADX" | "MADX_SAT"
 | "MADC" | "MADC_SAT"
 | "MADRC" | "MADRC_SAT "
 | "MADHC" | "MADHC_SAT "
 | "MADXC" | "MADXC_SAT "
 | "LRP" | "LRP_SAT"
 | "LRPR" | "LRPR_SAT"
 | "LRPH" | "LRPH_SAT"
 | "LRPX" | "LRPX_SAT"
 | "LRPC" | "LRPC_SAT"
 | "LRPRC" | "LRPRC_SAT "
 | "LRPHC" | "LRPHC_SAT "
 | "LRPXC" | "LRPXC_SAT "
 | "X2D" | "X2D_SAT"
 | "X2DR" | "X2DR_SAT"
 | "X2DH" | "X2DH_SAT"
 | "X2DC" | "X2DC_SAT"
 | "X2DRC" | "X2DRC_SAT "
 | "X2DHC" | "X2DHC_SAT "

 <KILop-instruction> ::= <KILop> <ccMask>

 <KILop> ::= "KIL"

 <TEXop-instruction> ::= <TEXop> <maskedDstRe g> ","
 <vectorSrc> "," <tex ImageId>

NV_fragment_program NVIDIA OpenGL Extension Specifications

 174

 <TEXop> ::= "TEX" | "TEX_SAT"
 | "TEXC" | "TEXC_SAT"
 | "TXP" | "TXP_SAT"
 | "TXPC" | "TXPC_SAT"

 <TXDop-instruction> ::= <TXDop> <maskedDstRe g> ","
 <vectorSrc> "," <vec torSrc> ","
 <vectorSrc> "," <tex ImageId>

 <TXDop> ::= "TXD" | "TXD_SAT"
 | "TXDC" | "TXDC_SAT"

 <scalarSrc> ::= <absScalarSrc>
 | <baseScalarSrc>

 <absScalarSrc> ::= <negate> "|" <baseSc alarSrc> "|"

 <baseScalarSrc> ::= <signedScalarConstan t>
 | <negate> <namedScala rConstant>
 | <negate> <vectorCons tant> <scalarSuffix>
 | <negate> <namedLocal Parameter> <scalarSuffix>
 | <negate> <numberedLo cal> <scalarSuffix>
 | <negate> <srcRegiste r> <scalarSuffix>

 <vectorSrc> ::= <absVectorSrc>
 | <baseVectorSrc>

 <absVectorSrc> ::= <negate> "|" <baseVe ctorSrc> "|"

 <baseVectorSrc> ::= <signedScalarConstan t>
 | <negate> <namedScala rConstant>
 | <negate> <vectorCons tant> <scalarSuffix>
 | <negate> <vectorCons tant> <swizzleSuffix>
 | <negate> <namedLocal Parameter> <scalarSuffix>
 | <negate> <namedLocal Parameter> <swizzleSuffix>
 | <negate> <numberedLo cal> <scalarSuffix>
 | <negate> <numberedLo cal> <swizzleSuffix>
 | <negate> <srcRegiste r> <scalarSuffix>
 | <negate> <srcRegiste r> <swizzleSuffix>

 <maskedDstReg> ::= <dstRegister> <optio nalWriteMask>
 <optionalCCMask>

 <dstRegister> ::= <fragTempReg>
 | <fragOutputReg>
 | "RC"
 | "HC"

 <optionalCCMask> ::= "(" <ccMask> ")"
 | ""

 <ccMask> ::= <ccMaskRule> <swizzl eSuffix>
 | <ccMaskRule> <scalar Suffix>

 <ccMaskRule> ::= "EQ" | "GE" | "GT" | "LE" | "LT" | "NE" |
 "TR" | "FL"

NVIDIA OpenGL Extension Specifications NV_fragment_program

 175

 <optionalWriteMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <srcRegister> ::= <fragAttribReg>
 | <fragTempReg>

 <fragAttribReg> ::= "f" "[" <fragAttribR egId> "]"

 <fragAttribRegId> ::= "WPOS" | "COL0" | "C OL1" | "FOGC" | "TEX0"
 | "TEX1" | "TEX2" | "T EX3" | "TEX4" | "TEX5"
 | "TEX6" | "TEX7"

 <fragTempReg> ::= <fragF32Reg>
 | <fragF16Reg>

 <fragF32Reg> ::= "R0" | "R1" | "R2" | "R3"
 | "R4" | "R5" | "R6" | "R7"
 | "R8" | "R9" | "R10 " | "R11"
 | "R12" | "R13" | "R14 " | "R15"
 | "R16" | "R17" | "R18 " | "R19"
 | "R20" | "R21" | "R22 " | "R23"
 | "R24" | "R25" | "R26 " | "R27"
 | "R28" | "R29" | "R30 " | "R31"

 <fragF16Reg> ::= "H0" | "H1" | "H2" | "H3"
 | "H4" | "H5" | "H6" | "H7"
 | "H8" | "H9" | "H10 " | "H11"
 | "H12" | "H13" | "H14 " | "H15"
 | "H16" | "H17" | "H18 " | "H19"
 | "H20" | "H21" | "H22 " | "H23"
 | "H24" | "H25" | "H26 " | "H27"
 | "H28" | "H29" | "H30 " | "H31"
 | "H32" | "H33" | "H34 " | "H35"
 | "H36" | "H37" | "H38 " | "H39"
 | "H40" | "H41" | "H42 " | "H43"
 | "H44" | "H45" | "H46 " | "H47"
 | "H48" | "H49" | "H50 " | "H51"
 | "H52" | "H53" | "H54 " | "H55"
 | "H56" | "H57" | "H58 " | "H59"
 | "H60" | "H61" | "H62 " | "H63"

 <fragOutputReg> ::= "o" "[" <fragOutputR egName> "]"

NV_fragment_program NVIDIA OpenGL Extension Specifications

 176

 <fragOutputRegName> ::= "COLR" | "COLH" | "D EPR" | "TEX0" | "TEX1"
 | "TEX2" | "TEX3"

 <numberedLocal> ::= "p" "[" <localNumber > "]"

 <localNumber> ::= <integer> from 0 to
 MAX_FRAGMENT_PROGRAM _LOCAL_PARAMETERS_NV - 1

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component> <com ponent>
 <component> <com ponent>

 <component> ::= "x" | "y" | "z" | "w "

 <texImageId> ::= <texImageUnit> "," < texImageTarget>

 <texImageUnit> ::= "TEX0" | "TEX1" | "TEX2" | "TEX3"
 | "TEX4" | "TEX5" | "TEX6" | "TEX7"
 | "TEX8" | "TEX9" | "TEX10" | "TEX11"
 | "TEX12" | "TEX13" | "TEX14" | "TEX15"

 <texImageTarget> ::= "1D" | "2D" | "3D" | "CUBE" | "RECT"

 <constantDefinition> ::= "DEFINE" <namedVecto rConstant> "="
 <vectorConstant>
 | "DEFINE" <namedScala rConstant> "="
 <scalarConstant>

 <localDeclaration> ::= "DECLARE" <namedLoca lParameter>
 <optionalLocalValue>

 <optionalLocalValue> ::= ""
 | "=" <vectorConstant>
 | "=" <scalarConstant>

 <vectorConstant> ::= {" <vectorConstantLi st> "}"
 | <namedVectorConstant >

 <vectorConstantList> ::= <scalarConstant>
 | <scalarConstant> "," <scalarConstant>
 | <scalarConstant> "," <scalarConstant> ","
 <scalarConstant>
 | <scalarConstant> "," <scalarConstant> ","
 <scalarConstant> "," <scalarConstant>

 <scalarConstant> ::= <signedScalarConstan t>
 | <namedScalarConstant >

 <signedScalarConstant> ::= <optionalSign> <floa tConstant>

 <namedScalarConstant> ::= <identifier> ((na me of a scalar constant
 in a DEFINE instruction))

 <namedVectorConstant> ::= <identifier> ((na me of a vector constant
 in a DEFINE instruction))

NVIDIA OpenGL Extension Specifications NV_fragment_program

 177

 <namedLocalParameter> ::= <identifier> ((na me of a local parameter
 in a DECLARE instruction))

 <negate> ::= "-" | "+" | ""

 <optionalSign> ::= "-" | "+" | ""

 <identifier> ::= see text below

 <floatConstant> ::= see text below

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z", "_", and "$") and digits ("0" through "9);
 the first character must be a letter. The unde rscore ("_") and dollar
 sign ("$") count as a letters. Upper and lower case letters are different
 (names are case-sensitive).

 The <floatConstant> rule matches a floating-poi nt constant consisting
 of an integer part, a decimal point, a fraction part, an "e" or
 "E", and an optionally signed integer exponent. The integer and
 fraction parts both consist of a sequence of on or more digits ("0"
 through "9"). Either the integer part or the f raction parts (not
 both) may be missing; either the decimal point or the "e" (or "E")
 and the exponent (not both) may be missing.

 A fragment program fails to load if it contains more than 1024 executable
 instructions. Executable instructions are thos e matching the
 <instruction> rule in the grammar, and do not i nclude DEFINE or DECLARE
 instructions.

 A fragment program fails to load if its total t emporary and output
 register count exceeds 64. Each fp32 temporary or output register used by
 the program (R0-R31, o[COLR], and o[DEPR]) coun ts as two registers; each
 fp16 temporary or output register used by the p rogram (H0-H63 and o[COLH])
 count as a single register. For combiner progr ams, o[TEX0], o[TEX1],
 o[TEX2], and o[TEX3] are counted as one registe r each, whether or not they
 are used by the program.

 A fragment program fails to load if any instruc tion sources more than one
 unique fragment attribute register. Instructio ns sourcing the same
 attribute register multiple times are acceptabl e.

 A fragment program fails to load if any instruc tion sources more than one
 unique program parameter register. Instruction s sourcing the same program
 parameter multiple times are acceptable.

 A fragment program fails to load if multiple te xture lookup instructions
 reference different targets for the same textur e image unit.

 A color fragment program (indicated by the "!!F P1.0" prefix) fails to load
 if it writes to any of the o[TEX0], o[TEX1], o[TEX2], or o[TEX3] output
 registers, or if it writes to both the o[COLR] and o[COLH] output
 registers.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 178

 A combiner fragment program (indicated by the " !!FCP1.0" prefix) fails to
 load if it fails to write to any of the o[TEX0] , o[TEX1], o[TEX2], or
 o[TEX3] output registers, or if it writes to ei ther the o[COLR] or the
 o[COLH] output register.

 The error INVALID_OPERATION is generated by Loa dProgramNV if a fragment
 program fails to load because it is not syntact ically correct or for one
 of the semantic restrictions listed above.

 The error INVALID_OPERATION is generated by Loa dProgramNV if a program is
 loaded for id when id is currently loaded with a program of a different
 target.

 A successfully loaded fragment program is parse d into a sequence of
 instructions. Each instruction is identified b y its tokenized name. The
 operation of these instructions when executed i s defined in Sections
 3.11.4 and 3.11.5.

 Section 3.11.4, Fragment Program Operation

 There are forty-five fragment program instructi ons. Fragment program
 instructions may have up to eight variants, inc luding a suffix of "R",
 "H", or "X" to specify arithmetic precision (se ction 3.11.4.2), a suffix
 of "C" to allow an update of the condition code register (section
 3.11.4.4), and a suffix of "_SAT" to clamp the result vector components to
 the range [0,1] (section 3.11.4.4). For exampl e, the sixteen forms of the
 "ADD" instruction are "ADD", "ADDR", "ADDH", "A DDX", "ADDC", "ADDRC",
 "ADDHC", "ADDXC", "ADD_SAT", "ADDR_SAT", "ADDH_ SAT", "ADDX_SAT",
 "ADDC_SAT", "ADDRC_SAT", "ADDHC_SAT", and "ADDX C_SAT".

 Some mathematical instructions that support pre cision suffixes, typically
 those that involve complicated floating-point c omputations, do not support
 the "X" precision suffix.

 The fragment program instructions and their res pective input and output
 parameters are summarized in Table X.4.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 179

 Instruction Inputs Output Descrip tion
 ----------------- ------ ------ ------- -------------------------
 ADD[RHX][C][_SAT] v,v v add
 COS[RH][C][_SAT] s ssss cosine
 DDX[RH][C][_SAT] v v derivat ive relative to x
 DDY[RH][C][_SAT] v v derivat ive relative to y
 DP3[RHX][C][_SAT] v,v ssss 3-compo nent dot product
 DP4[RHX][C][_SAT] v,v ssss 4-compo nent dot product
 DST[RH][C][_SAT] v,v v distanc e vector
 EX2[RH][C][_SAT] s ssss exponen tial base 2
 FLR[RHX][C][_SAT] v v floor
 FRC[RHX][C][_SAT] v v fractio n
 KIL none none conditi onally discard fragment
 LG2[RH][C][_SAT] s ssss logarit hm base 2
 LIT[RH][C][_SAT] v v compute light coefficients
 LRP[RHX][C][_SAT] v,v,v v linear interpolation
 MAD[RHX][C][_SAT] v,v,v v multipl y and add
 MAX[RHX][C][_SAT] v,v v maximum
 MIN[RHX][C][_SAT] v,v v minimum
 MOV[RHX][C][_SAT] v v move
 MUL[RHX][C][_SAT] v,v v multipl y
 PK2H v ssss pack tw o 16-bit floats
 PK2US v ssss pack tw o unsigned 16-bit scalars
 PK4B v ssss pack fo ur signed 8-bit scalars
 PK4UB v ssss pack fo ur unsigned 8-bit scalars
 POW[RH][C][_SAT] s,s ssss exponen tiation (x^y)
 RCP[RH][C][_SAT] s ssss recipro cal
 RFL[RH][C][_SAT] v,v v reflect ion vector
 RSQ[RH][C][_SAT] s ssss recipro cal square root
 SEQ[RHX][C][_SAT] v,v v set on equal
 SFL[RHX][C][_SAT] v,v v set on false
 SGE[RHX][C][_SAT] v,v v set on greater than or equal
 SGT[RHX][C][_SAT] v,v v set on greater than
 SIN[RH][C][_SAT] s ssss sine
 SLE[RHX][C][_SAT] v,v v set on less than or equal
 SLT[RHX][C][_SAT] v,v v set on less than
 SNE[RHX][C][_SAT] v,v v set on not equal
 STR[RHX][C][_SAT] v,v v set on true
 SUB[RHX][C][_SAT] v,v v subtrac t
 TEX[C][_SAT] v v texture lookup
 TXD[C][_SAT] v,v,v v texture lookup w/partials
 TXP[C][_SAT] v v project ive texture lookup
 UP2H[C][_SAT] s v unpack two 16-bit floats
 UP2US[C][_SAT] s v unpack two unsigned 16-bit scalars
 UP4B[C][_SAT] s v unpack four signed 8-bit scalars
 UP4UB[C][_SAT] s v unpack four unsigned 8-bit scalars
 X2D[RH][C][_SAT] v,v,v v 2D coor dinate transformation

 Table X.4: Summary of fragment program instruc tions. "[RHX]" indicates
 an optional arithmetic precision suffix. "[C]" indicates an optional
 condition code update suffix. "[_SAT]" indicat es an optional clamp of
 result vector components to [0,1]. "v" indicat es a 4-component vector
 input or output, "s" indicates a scalar input, and "ssss" indicates a
 scalar output replicated across a 4-component v ector.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 180

 Section 3.11.4.1: Fragment Program Storage Pre cision

 Registers in fragment program are stored in two different representations:
 16-bit floating-point (fp16) and 32-bit floatin g-point (fp32). There is
 an additional 12-bit fixed-point representation (fx12) used only as an
 internal representation for instructions with t he "X" precision qualifier.

 In the 32-bit float (fp32) representation, each component is represented
 in floating-point with eight exponent and twent y-three mantissa bits, as
 in the standard IEEE single-precision format. If S represents the sign (0
 or 1), E represents the exponent in the range [0,255], and M represents
 the mantissa in the range [0,2^23-1], then an f p32 float is decoded as:

 (-1)^S * 0.0, if E == 0,
 (-1)^S * 2^(E-127) * (1 + M/2^23), if 0 < E < 255,
 (-1)^S * INF, if E == 255 and M == 0,
 NaN, if E == 255 and M != 0.

 INF (Infinity) is a special representation indi cating numerical overflow.
 NaN (Not a Number) is a special representation indicating the result of
 illegal arithmetic operations, such as division by zero. Note that all
 normal fp32 values, zero, and INF have an assoc iated sign. -0.0 and +0.0
 are considered equivalent for the purposes of c omparisons.

 This representation is identical to the IEEE si ngle-precision
 floating-point standard, except that no special representation is provided
 for denorms -- numbers in the range (-2^-126, + 2^-126). All such numbers
 are flushed to zero.

 In a 16-bit float (fp16) register, each compone nt is represented
 similarly, except with only five exponent and t en mantissa bits. If S
 represents the sign (0 or 1), E represents the exponent in the range
 [0,31], and M represents the mantissa in the ra nge [0,2^10-1], then an
 fp32 float is decoded as:

 (-1)^S * 0.0, if E == 0 and M == 0,
 (-1)^S * 2^-14 * M/2^10 if E == 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E == 31 and M == 0, or
 NaN, if E == 31 and M != 0.

 One important difference is that the fp16 repre sentation, unlike fp32,
 supports denorms to maximize the limited precis ion of the 16-bit floating
 point encodings.

 In the 12-bit fixed-point (fx12) format, number s are represented as signed
 12-bit two's complement integers with 10 fracti on bits. The range of
 representable values is [-2048/1024, +2047/1024].

 Section 3.11.4.2: Fragment Program Operation P recision

 Fragment program instructions frequently perfor m mathematical operations.
 Such operations may be performed at one of thre e different precisions.
 Fragment programs can specify the precision of each instruction by using
 the precision suffix. If an instruction has a suffix of "R", calculations
 are carried out with 32-bit floating point oper ands and results. If an
 instruction has a suffix of "H", calculations a re carried out using 16-bit

NVIDIA OpenGL Extension Specifications NV_fragment_program

 181

 floating point operands and results. If an ins truction has a suffix of
 "X", calculations are carried out using 12-bit fixed point operands and
 results. For example, the instruction "MULR" p erforms a 32-bit
 floating-point multiply, "MULH" performs a 16-b it floating-point multiply,
 and "MULX" performs a 12-bit fixed-point multip ly. If no precision suffix
 is specified, calculations are carried out usin g the precision of the
 temporary register receiving the result.

 Fragment program instructions may source regist ers or constants whose
 precisions differ from the precision specified with the instruction.
 Instructions may also generate intermediate res ults with a different
 precision than that of the destination register . In these cases, the
 values sourced are converted to the precision s pecified by the
 instruction.

 When converting to fx12 format, -INF and any va lues less than -2048/1024
 become -2048/1024. +INF, and any values greate r than +2047/1024 become
 +2047/1024. NaN becomes 0.

 When converting to fp16 format, any values less than or equal to -2^16 are
 converted to -INF. Any values greater than or equal to +2^16 are
 converted to +INF. -INF, +INF, NaN, -0.0, and +0.0 are unchanged. Any
 other values that are not exactly representable in fp16 format are
 converted to one of the two nearest representab le values.

 When converting to fp32 format, any values less than or equal to -2^128
 are converted to -INF. Any values greater than or equal to +2^128 are
 converted to +INF. -INF, +INF, NaN, -0.0, and +0.0 are unchanged. Any
 other values that are not exactly representable in fp32 format are
 converted to one of the two nearest representab le values.

 Fragment program instructions using the fragmen t attribute registers
 f[FOGC] or f[TEX0] through f[TEX7] will be carr ied out at full fp32
 precision, regardless of the precision specifie d by the instruction.

 Section 3.11.4.3: Fragment Program Operands

 Except for KIL, fragment program instructions o perate on either vector or
 scalar operands, indicated in the grammar (see section 3.11.3) by the
 rules <vectorSrc> and <scalarSrc> respectively.

 The basic set of scalar operands is defined by the grammar rule
 <baseScalarSrc>. Scalar operands can be scalar constants (embedded or
 named), or single components of vector constant s, local parameters, or
 registers allowed by the <srcRegister> rule. A vector component is
 selected by the <scalarSuffix> rule, where the characters "x", "y", "z",
 and "w" select the x, y, z, and w components, r espectively, of the vector.

 The basic set of vector operands is defined by the grammar rule
 <baseVectorSrc>. Vector operands can include v ector constants, local
 parameters, or registers allowed by the <srcReg ister> rule.

 Basic vector operands can be swizzled according to the <swizzleSuffix>
 rule. In its most general form, the <swizzleSu ffix> rule matches the
 pattern ".????" where each question mark is one of "x", "y", "z", or "w".
 For such patterns, the x, y, z, and w component s of the operand are taken
 from the vector components named by the first, second, third, and fourth

NV_fragment_program NVIDIA OpenGL Extension Specifications

 182

 character of the pattern, respectively. For ex ample, if the swizzle
 suffix is ".yzzx" and the specified source cont ains {2,8,9,0}, the
 swizzled operand used by the instruction is {8, 9,9,2}. If the
 <swizzleSuffix> rule matches "", it is treated as though it were ".xyzw".

 Operands can optionally be negated according to the <negate> rule in
 <baseScalarSrc> or <baseVectorSrc>. If the <ne gate> matches "-", each
 value is negated.

 The absolute value of operands can be taken if the <vectorSrc> or
 <scalarSrc> rules match <absScalarSrc> or <absV ectorSrc>. In this case,
 the absolute value of each component is taken. In addition, if the
 <negate> rule in <absScalarSrc> or <absVectorSr c> matches "-", the result
 is then negated.

 Instructions requiring vector operands can also use scalar operands in the
 case where the <vectorSrc> rule matches <scalar Src>. In such cases, a
 4-component vector is produced by replicating t he scalar.

 After operands are loaded, they are converted t o a data type corresponding
 to the operation precision specified in the fra gment program instruction.

 The following pseudo-code spells out the operan d generation process.
 "SrcT" and "InstT" refer to the data types of t he specified register or
 constant and the instruction, respectively. "V ecSrcT" and "VecInstT"
 refer to 4-component vectors of the correspondi ng type. "absolute" is
 TRUE if the operand matches the <absScalarSrc> or <absVectorSrc> rules,
 and FALSE otherwise. "negateBase" is TRUE if t he <negate> rule in
 <baseScalarSrc> or <baseVectorSrc> matches "-" and FALSE otherwise.
 "negateAbs" is TRUE if the <negate> rule in <ab sScalarSrc> or
 <absVectorSrc> matches "-" and FALSE otherwise. The ".c***", ".*c**",
 ".**c*", ".***c" modifiers refer to the x, y, z , and w components obtained
 by the swizzle operation. TypeConvert() is ass umed to convert a scalar of
 type SrcT to a scalar of type InstT using the t ype conversion process
 specified above.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 183

 VecInstT VectorLoad(VecSrcT source)
 {
 VecSrcT srcVal;
 VecInstT convertedVal;

 srcVal.x = source.c***;
 srcVal.y = source.*c**;
 srcVal.z = source.**c*;
 srcVal.w = source.***c;
 if (negateBase) {
 srcVal.x = -srcVal.x;
 srcVal.y = -srcVal.y;
 srcVal.z = -srcVal.z;
 srcVal.w = -srcVal.w;
 }
 if (absolute) {
 srcVal.x = abs(srcVal.x);
 srcVal.y = abs(srcVal.y);
 srcVal.z = abs(srcVal.z);
 srcVal.w = abs(srcVal.w);
 }
 if (negateAbs) {
 srcVal.x = -srcVal.x;
 srcVal.y = -srcVal.y;
 srcVal.z = -srcVal.z;
 srcVal.w = -srcVal.w;
 }

 convertedVal.x = TypeConvert(srcVal.x);
 convertedVal.y = TypeConvert(srcVal.y);
 convertedVal.z = TypeConvert(srcVal.z);
 convertedVal.w = TypeConvert(srcVal.w);
 return convertedVal;
 }

 InstT ScalarLoad(VecSrcT source)
 {
 SrcT srcVal;
 InstT convertedVal;

 srcVal = source.c***;
 if (negateBase) {
 srcVal = -srcVal;
 }
 if (absolute) {
 srcVal = abs(srcVal);
 }
 if (negateAbs) {
 srcVal = -srcVal;
 }

 convertedVal = TypeConvert(srcVal);
 return convertedVal;
 }

NV_fragment_program NVIDIA OpenGL Extension Specifications

 184

 Section 3.11.4.4, Fragment Program Destination Register Update

 Each fragment program instruction, except for K IL, writes a 4-component
 result vector to a single temporary or output r egister.

 The four components of the result vector are fi rst optionally clamped to
 the range [0,1]. The components will be clampe d if and only if the result
 clamp suffix "_SAT" is present in the instructi on name. The instruction
 "ADD_SAT" will clamp the results to [0,1]; the otherwise equivalent
 instruction "ADD" will not.

 Since the instruction may be carried out at a d ifferent precision than the
 destination register, the components of the res ults vector are then
 converted to the data type corresponding to des tination register.

 Writes to individual components of the temporar y register are controlled
 by two sets of enables: individual component wr ite masks specified as part
 of the instruction and the optional condition c ode mask.

 The component write mask is specified by the <o ptionalWriteMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "", all
 components are enabled. Otherwise, the optiona l mask names the individual
 components to enable. The characters "x", "y", "z", and "w" match the x,
 y, z, and w components respectively. For examp le, an optional mask of
 ".xzw" indicates that the x, z, and w component s should be enabled for
 writing but the y component should not. The gr ammar requires that the
 destination register mask components must be li sted in "xyzw" order.

 The optional condition code mask is specified b y the <optionalCCMask> rule
 found in the <maskedDstReg> rule. If <optional CCMask> matches "", all
 components are enabled. Otherwise, the conditi on code register is loaded
 and swizzled according to the swizzling specifi ed by <swizzleSuffix>.
 Each component of the swizzled condition code i s tested according to the
 rule given by <ccMaskRule>. <ccMaskRule> may h ave the values "EQ", "NE",
 "LT", "GE", LE", or "GT", which mean to enable writes if the corresponding
 condition code field evaluates to equal, not eq ual, less than, greater
 than or equal, less than or equal, or greater t han, respectively.
 Comparisons involving condition codes of "UN" (unordered) evaluate to true
 for "NE" and false otherwise. For example, if the condition code is
 (GT,LT,EQ,GT) and the condition code mask is "(NE.zyxw)", the swizzle
 operation will load (EQ,LT,GT,GT) and the mask will thus will enable
 writes on the y, z, and w components. In addit ion, "TR" always enables
 writes and "FL" always disables writes, regardl ess of the condition code.

 Each component of the destination register is u pdated with the result of
 the fragment program if and only if the compone nt is enabled for writes by
 both the component write mask and the optional condition code mask.
 Otherwise, the component of the destination reg ister remains unchanged.

 A fragment program instruction can also optiona lly update the condition
 code register. The condition code is updated i f the condition code
 register update suffix "C" is present in the in struction name. The
 instruction "ADDC" will update the condition co de; the otherwise
 equivalent instruction "ADD" will not. If cond ition code updates are
 enabled, each component of the destination regi ster enabled for writes is
 compared to zero. The corresponding component of the condition code is
 set to "LT", "EQ", or "GT", if the written comp onent is less than, equal

NVIDIA OpenGL Extension Specifications NV_fragment_program

 185

 to, or greater than zero, respectively. Condit ion code components are set
 to "UN" if the written component is NaN. Note that values of -0.0 and
 +0.0 both evaluate to "EQ". If a component of the destination register is
 not enabled for writes, the corresponding condi tion code component is
 unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN)
 MOVC R0, R1;
 MOVC R0.xyz, R1.yzwx;
 MOVC R0 (NE), R1.zywx;

 the first instruction writes (-2,0,2,NaN) to R0 and updates the condition
 code to (LT,EQ,GT,UN). The second instruction, writes to the "w"
 component of R0 and the condition code are disa bled, so R0 ends up with
 (0,2,NaN,NaN) and the condition code ends up wi th (EQ,GT,UN,UN). In the
 third instruction, the condition code mask disa bles writes to the x
 component (its condition code field is "EQ"), s o R0 ends up with
 (0,NaN,-2,0) and the condition code ends up wit h (EQ,UN,LT,EQ).

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the exa mple, "ccMaskRule" refers
 to the condition code mask rule given by <ccMas kRule> (or "" if no rule is
 specified), "instrmask" refers to the component write mask given by the
 <optionalWriteMask> rule, "updatecc" is TRUE if condition code updates are
 enabled, and "clamp01" is TRUE if [0,1] result clamping is enabled.
 "destination" and "cc" refer to the register se lected by <dstRegister> and
 the condition code, respectively.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }

 enum GenerateCC(DstT value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NV_fragment_program NVIDIA OpenGL Extension Specifications

 186

 void UpdateDestination(VecDstT destination, V ecInstT result)
 {
 // Load the original destination register and condition code.
 VecDstT resultDst;
 VecDstT merged;
 VecCC mergedCC;

 // Clamp the result vector components to [0,1], if requested.
 if (clamp01) {
 if (result.x < 0) result.x = 0;
 else if (result.x > 1) result.x = 1;
 if (result.y < 0) result.y = 0;
 else if (result.y > 1) result.y = 1;
 if (result.z < 0) result.z = 0;
 else if (result.z > 1) result.z = 1;
 if (result.w < 0) result.w = 0;
 else if (result.w > 1) result.w = 1;
 }

 // Convert the result to the type of the destination register.
 resultDst.x = TypeConvert(result.x);
 resultDst.y = TypeConvert(result.y);
 resultDst.z = TypeConvert(result.z);
 resultDst.w = TypeConvert(result.w);

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and result code.
 destination = merged;
 cc = mergedCC;
 }

 Section 3.11.5, Fragment Program Instruction Se t

 The following sections describe the instruction set available to fragment
 programs.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 187

 Section 3.11.5.1, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following special-case rules apply to addit ion:

 1. "A+B" is always equivalent to "B+A".
 2. NaN + <x> = NaN, for all <x>.
 3. +INF + <x> = +INF, for all <x> except NaN and -INF.
 4. -INF + <x> = -INF, for all <x> except NaN and +INF.
 5. +INF + -INF = NaN.
 6. -0.0 + <x> = <x>, for all <x>.
 7. +0.0 + <x> = <x>, for all <x> except -0.0.

 Section 3.11.5.2, COS: Cosine

 The COS instruction approximates the cosine of the angle specified by the
 scalar operand and replicates the approximation to all four components of
 the result vector. The angle is specified in r adians and does not have to
 be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 The approximation function ApproxCosine is accu rate to at least 22 bits
 with an angle in the range [0,2*PI].

 | ApproxCosine(x) - cos(x) | < 1.0 / 2^22, if 0.0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxCosine(NaN) = NaN.
 2. ApproxCosine(+/-INF) = NaN.
 3. ApproxCosine(+/-0.0) = +1.0.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 188

 Section 3.11.5.3, DDX: Derivative Relative to X

 The DDX instruction computes approximate partia l derivatives of the four
 components of the single operand with respect t o the X window coordinate
 to yield a result vector. The partial derivati ve is evaluated at the
 center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialX(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives.

 For components with partial derivatives that ov erflow (including +/-INF
 inputs), the resulting partials may be encoded as large floating-point
 numbers instead of +/-INF.

 Section 3.11.5.4, DDY: Derivative Relative to Y

 The DDY instruction computes approximate partia l derivatives of the four
 components of the single operand with respect t o the Y window coordinate
 to yield a result vector. The partial derivati ve is evaluated at the
 center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialY(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may not
 yield accurate second derivatives.

 For components with partial derivatives that ov erflow (including +/-INF
 inputs), the resulting partials may be encoded as large floating-point
 numbers instead of +/-INF.

 Section 3.11.5.5, DP3: 3-Component Dot Produc t

 The DP3 instruction computes a three component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z);

NVIDIA OpenGL Extension Specifications NV_fragment_program

 189

 Section 3.11.5.6, DP4: 4-Component Dot Produc t

 The DP4 instruction computes a four component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp2.z) + (tmp0.w * tmp1 .w);

 Section 3.11.5.7, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DOT3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-fragment light attenuation
 calculations: a DOT3 operation involving the d istance vector and an
 attenuation constants vector will yield the att enuation factor.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 190

 Section 3.11.5.8, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates it to all four component s of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | Approx2ToX(x) - 2^x | < 1.0 / 2^22, if 0.0 <= x < 1.0,

 and, in general,

 | Approx2ToX(x) - 2^x | < (1.0 / 2^22) * (2^f loor(x)).

 The following special-case rules apply to expon ential approximation:

 1. Approx2ToX(NaN) = NaN.
 2. Approx2ToX(-INF) = +0.0.
 3. Approx2ToX(+INF) = +INF.
 4. Approx2ToX(+/-0.0) = +1.0.

 Section 3.11.5.9, FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is defined as
 the largest integer less than or equal to the v alue. The floor of 2.3 is
 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 The following special-case rules apply to floor computation:

 1. floor(NaN) = NaN.
 2. floor(<x>) = <x>, for -0.0, +0.0, -INF, an d +INF. In all cases, the
 sign of the result is equal to the sign of the operand.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 191

 Section 3.11.5.10, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.00, 1.00).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = tmp.x - floor(tmp.x);
 result.y = tmp.y - floor(tmp.y);
 result.z = tmp.z - floor(tmp.z);
 result.w = tmp.w - floor(tmp.w);

 The following special-case rules, which can be derived from the rules for
 FLR and ADD apply to fraction computation:

 1. fraction(NaN) = NaN.
 2. fraction(+/-INF) = NaN.
 3. fraction(+/-0.0) = +0.0.

 Section 3.11.5.11, KIL: Conditionally Discard Fragment

 The KIL instruction is unlike any other instruc tion in the instruction
 set. This instruction evaluates components of a swizzled condition code
 using a test expression identical to that used to evaluate condition code
 write masks (Section 3.11.4.4). If any conditi on code component evaluates
 to TRUE, the fragment is discarded. Otherwise, the instruction has no
 effect. The condition code components are spec ified, swizzled, and
 evaluated in the same manner as the condition c ode write mask.

 if (TestCC(rc.c***) || TestCC(rc.*c**) ||
 TestCC(rc.**c*) || TestCC(rc.***c)) {
 // Discard the fragment.
 } else {
 // Do nothing.
 }

 If the fragment is discarded, it is treated as though it were not produced
 by rasterization. In particular, none of the p er-fragment operations
 (such as stencil tests, blends, stencil, depth, or color buffer writes)
 are performed on the fragment.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 192

 Section 3.11.5.12, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxLog2(x) - log_2(x) | < 1.0 / 2^22.

 The following special-case rules apply to logar ithm approximation:

 1. ApproxLog2(NaN) = NaN.
 2. ApproxLog2(+INF) = +INF.
 3. ApproxLog2(+/-0.0) = -INF.
 4. ApproxLog2(x) = NaN, -INF < x < -0.0.
 5. ApproxLog2(-INF) = NaN.

 Section 3.11.5.13, LIT: Compute Light Coeffic ients

 The LIT instruction accelerates per-fragment li ghting by computing
 lighting coefficients for ambient, diffuse, and specular light
 contributions. The "x" component of the operan d is assumed to hold a
 diffuse dot product (n dot VP_pli, as in the ve rtex lighting equations in
 Section 2.13.1). The "y" component of the oper and is assumed to hold a
 specular dot product (n dot h_i). The "w" comp onent of the operand is
 assumed to hold the specular exponent of the ma terial (s_rm).

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

 tmp = VectorLoad(op0);
 if (t.x < 0) t.x = 0;
 if (t.y < 0) t.y = 0;
 result.x = 1.0;
 result.y = t.x;
 result.z = (t.x > 0) ? ApproxPower(t.y, t.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation used to comput e result.z are identical to
 that used in the POW instruction, including err ors and the processing of
 any special cases.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 193

 Section 3.11.5.14, LRP: Linear Interpolation

 The LRP instruction performs a component-wise l inear interpolation to
 yield a result vector. It interpolates between the components of the
 second and third operands, using the first oper and as a weight.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * t mp2.x;
 result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * t mp2.y;
 result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * t mp2.z;
 result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * t mp2.w;

 Section 3.11.5.15, MAD: Multiply and Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 Section 3.11.5.16, MAX: maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = max(tmp0.x, tmp1.x);
 result.y = max(tmp0.y, tmp1.y);
 result.z = max(tmp0.z, tmp1.z);
 result.w = max(tmp0.w, tmp1.w);

 The following special cases apply to the maximu m operation:

 1. max(A,B) is always equivalent to max(B,A).
 2. max(NaN, <x>) == NaN, for all <x>.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 194

 Section 3.11.5.17, MIN: minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = min(tmp0.x, tmp1.x);
 result.y = min(tmp0.y, tmp1.y);
 result.z = min(tmp0.z, tmp1.z);
 result.w = min(tmp0.w, tmp1.w);

 The following special cases apply to the minimu m operation:

 1. min(A,B) is always equivalent to min(B,A).
 2. min(NaN, <x>) == NaN, for all <x>.

 Section 3.11.5.18, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

 Section 3.11.5.19, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following special-case rules apply to multi plication:

 1. "A*B" is always equivalent to "B*A".
 2. NaN * <x> = NaN, for all <x>.
 3. +/-0.0 * +/-INF = NaN.
 4. +/-0.0 * <x> = +/-0.0, for all <x> except -INF, +INF, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 5. +/-INF * <x> = +/-INF, for all <x> except -0.0, +0.0, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 6. +1.0 * <x> = <x>, for all <x>.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 195

 Section 3.11.5.20, PK2H: Pack Two 16-bit Floa ts

 The PK2H instruction converts the "x" and "y" c omponents of the single
 operand into 16-bit floating-point format, pack s the bit representation of
 these two floats into a 32-bit value, and repli cates that value to all
 four components of the result vector. The PK2H instruction can be
 reversed by the UP2H instruction below.

 tmp0 = VectorLoad(op0);
 /* result obtained by combining raw bits of t mp0.x, tmp0.y */
 result.x = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.y = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.z = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.w = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

 Section 3.11.5.21, PK2US: Pack Two Unsigned 1 6-bit Scalars

 The PK2US instruction converts the "x" and "y" components of the single
 operand into a packed pair of 16-bit unsigned s calars. The scalars are
 represented in a bit pattern where all '0' bits corresponds to 0.0 and all
 '1' bits corresponds to 1.0. The bit represent ations of the two converted
 components are packed into a 32-bit value, and that value is replicated to
 all four components of the result vector. The PK2US instruction can be
 reversed by the UP2US instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 us.x = round(65535.0 * tmp0.x); /* us is a u short vector */
 us.y = round(65535.0 * tmp0.y);
 /* result obtained by combining raw bits of u s. */
 result.x = ((us.x) | (us.y << 16));
 result.y = ((us.x) | (us.y << 16));
 result.z = ((us.x) | (us.y << 16));
 result.w = ((us.x) | (us.y << 16));

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 196

 Section 3.11.5.22, PK4B: Pack Four Signed 8-b it Scalars

 The PK4B instruction converts the four componen ts of the single operand
 into 8-bit signed quantities. The signed quant ities are represented in a
 bit pattern where all '0' bits corresponds to - 128/127 and all '1' bits
 corresponds to +127/127. The bit representatio ns of the four converted
 components are packed into a 32-bit value, and that value is replicated to
 all four components of the result vector. The PK4B instruction can be
 reversed by the UP4B instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < -128/127) tmp0.x = -128/127;
 if (tmp0.y < -128/127) tmp0.y = -128/127;
 if (tmp0.z < -128/127) tmp0.z = -128/127;
 if (tmp0.w < -128/127) tmp0.w = -128/127;
 if (tmp0.x > +127/127) tmp0.x = +127/127;
 if (tmp0.y > +127/127) tmp0.y = +127/127;
 if (tmp0.z > +127/127) tmp0.z = +127/127;
 if (tmp0.w > +127/127) tmp0.w = +127/127;
 ub.x = round(127.0 * tmp0.x + 128.0); /* ub is a ubyte vector */
 ub.y = round(127.0 * tmp0.y + 128.0);
 ub.z = round(127.0 * tmp0.z + 128.0);
 ub.w = round(127.0 * tmp0.w + 128.0);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 197

 Section 3.11.5.23, PK4UB: Pack Four Unsigned 8-bit Scalars

 The PK4UB instruction converts the four compone nts of the single operand
 into a packed grouping of 8-bit unsigned scalar s. The scalars are
 represented in a bit pattern where all '0' bits corresponds to 0.0 and all
 '1' bits corresponds to 1.0. The bit represent ations of the four
 converted components are packed into a 32-bit v alue, and that value is
 replicated to all four components of the result vector. The PK4UB
 instruction can be reversed by the UP4UB instru ction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 if (tmp0.z < 0.0) tmp0.z = 0.0;
 if (tmp0.z > 1.0) tmp0.z = 1.0;
 if (tmp0.w < 0.0) tmp0.w = 0.0;
 if (tmp0.w > 1.0) tmp0.w = 1.0;
 ub.x = round(255.0 * tmp0.x); /* ub is a uby te vector */
 ub.y = round(255.0 * tmp0.y);
 ub.z = round(255.0 * tmp0.z);
 ub.w = round(255.0 * tmp0.w);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 The result must be written to a register with 3 2-bit components (an "R"
 register, o[COLR], or o[DEPR]). A fragment pro gram will fail to load if
 any other register type is specified.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 198

 Section 3.11.5.24, POW: Exponentiation

 The POW instruction approximates the value of t he first scalar operand
 raised to the power of the second scalar operan d and replicates it to all
 four components of the result vector.

 tmp0 = ScalarLoad(op0);
 tmp1 = ScalarLoad(op1);
 result.x = ApproxPower(tmp0, tmp1);
 result.y = ApproxPower(tmp0, tmp1);
 result.z = ApproxPower(tmp0, tmp1);
 result.w = ApproxPower(tmp0, tmp1);

 The exponentiation approximation function is de fined in terms of the base
 2 exponentiation and logarithm approximation op erations in the EX2 and LG2
 instructions, including errors and the processi ng of any special cases.
 In particular,

 ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a)).

 The following special-case rules, which can be derived from the rules in
 the LG2, MUL, and EX2 instructions, apply to ex ponentiation:

 1. ApproxPower(<x>, <y>) = NaN, if x < -0.0,
 2. ApproxPower(<x>, <y>) = NaN, if x or y is NaN.
 3. ApproxPower(+/-0.0, +/-0.0) = NaN.
 4. ApproxPower(+INF, +/-0.0) = NaN.
 5. ApproxPower(+1.0, +/-INF) = NaN.
 6. ApproxPower(+/-0.0, <x>) = +0.0, if x > +0 .0.
 7. ApproxPower(+/-0.0, <x>) = +INF, if x < -0 .0.
 8. ApproxPower(+1.0, <x>) = +1.0, if -INF < x < +INF.
 9. ApproxPower(+INF, <x>) = +INF, if x > +0.0 .
 10. ApproxPower(+INF, <x>) = +INF, if x < -0. 0.
 11. ApproxPower(<x>, +/-0.0) = +1.0, if +0.0 < x < +INF.
 12. ApproxPower(<x>, +1.0) ~= <x>, if x >= +0 .0.
 13. ApproxPower(<x>, +INF) = +0.0, if -0.0 <= x < +1.0,
 +INF, if x > +1. 0,
 14. ApproxPower(<x>, -INF) = +INF, if -0.0 <= x < +1.0,
 +0.0, if x > +1. 0,

 Note that 0^0 is defined here as NaN, since App roxLog2(0) = -INF, and
 0*(-INF) = NaN. In many other applications, in cluding the standard C
 pow() function, 0^0 is defined as 1.0. This be havior can be emulated
 using additional instructions in much that same way that the pow()
 function is implemented on many CPUs.

 Note that a logarithm is involved even if the e xponent is an integer.
 This means that any exponentiating with a negat ive base will produce NaN.
 In constrast, it is possible in a "normal" math ematical formulation to
 raise negative numbers to integral powers (e.g. , (-3)^2== 9, and
 (-0.5)^-2==4).

NVIDIA OpenGL Extension Specifications NV_fragment_program

 199

 Section 3.11.5.25, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxReciprocal(x) - (1/x) | < 1.0 / 2^22, if 1.0 <= x < 2.0.

 The following special-case rules apply to recip rocation:

 1. ApproxReciprocal(NaN) = NaN.
 2. ApproxReciprocal(+INF) = +0.0.
 3. ApproxReciprocal(-INF) = -0.0.
 4. ApproxReciprocal(+0.0) = +INF.
 5. ApproxReciprocal(-0.0) = -INF.

 Section 3.11.5.26, RFL: Reflection Vector

 The RFL instruction computes the reflection of the second vector operand
 (the "direction" vector) about the vector speci fied by the first vector
 operand (the "axis" vector). Both operands are treated as 3D vectors (the
 w components are ignored). The result vector i s another 3D vector (the
 "reflected direction" vector). The length of t he result vector, ignoring
 rounding errors, should equal that of the secon d operand.

 axis = VectorLoad(op0);
 direction = VectorLoad(op1);
 tmp.w = (axis.x * axis.x + axis.y * axis.y +
 axis.z * axis.z);
 tmp.x = (axis.x * direction.x + axis.y * dire ction.y +
 axis.z * direction.z);
 tmp.x = 2.0 * tmp.x;
 tmp.x = tmp.x / tmp.w;
 result.x = tmp.x * axis.x - direction.x;
 result.y = tmp.x * axis.y - direction.y;
 result.z = tmp.x * axis.z - direction.z;

 A fragment program will fail to load if the w c omponent of the result is
 enabled in the component write mask (see the <o ptionalWriteMask> rule in
 the grammar).

NV_fragment_program NVIDIA OpenGL Extension Specifications

 200

 Section 3.11.5.27, RSQ: Reciprocal Square Roo t

 The RSQ instruction approximates the reciprocal of the square root of the
 scalar operand and replicates it to all four co mponents of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxRSQRT(x) - (1/x) | < 1.0 / 2^22, if 1 .0 <= x < 4.0.

 The following special-case rules apply to recip rocal square roots:

 1. ApproxRSQRT(NaN) = NaN.
 2. ApproxRSQRT(+INF) = +0.0.
 3. ApproxRSQRT(-INF) = NaN.
 4. ApproxRSQRT(+0.0) = +INF.
 5. ApproxRSQRT(-0.0) = -INF.
 6. ApproxRSQRT(x) = NaN, if -INF < x < -0.0.

 Section 3.11.5.28, SEQ: Set on Equal To

 The SEQ instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SEQ:

 1. (<x> == <y>) and (<y> == <x>) always produ ce the same result.
 1. (NaN == <x>) is FALSE for all <x>, includi ng NaN.
 2. (+INF == +INF) and (-INF == -INF) are TRUE .
 3. (-0.0 == +0.0) and (+0.0 == -0.0) are TRUE .

 Section 3.11.5.29, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to
 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

NVIDIA OpenGL Extension Specifications NV_fragment_program

 201

 Section 3.11.5.30, SGE: Set on Greater Than o r Equal

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than or equal that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SGE:

 1. (NaN >= <x>) and (<x> >= NaN) are FALSE fo r all <x>.
 2. (+INF >= +INF) and (-INF >= -INF) are TRUE .
 3. (-0.0 >= +0.0) and (+0.0 >= -0.0) are TRUE .

 Section 3.11.5.31, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than that of the second, and
 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SGT:

 1. (NaN > <x>) and (<x> > NaN) are FALSE for all <x>.
 2. (-0.0 > +0.0) and (+0.0 > -0.0) are FALSE.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 202

 Section 3.11.5.32, SIN: Sine

 The SIN instruction approximates the sine of th e angle specified by the
 scalar operand and replicates it to all four co mponents of the result
 vector. The angle is specified in radians and does not have to be in the
 range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 The approximation function is accurate to at le ast 22 bits with an angle
 in the range [0,2*PI].

 | ApproxSine(x) - sin(x) | < 1.0 / 2^22, if 0 .0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxSine(NaN) = NaN.
 2. ApproxSine(+/-INF) = NaN.
 3. ApproxSine(+/-0.0) = +/-0.0. The sign of the result is equal to the
 sign of the single operand.

 Section 3.11.5.33, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than or equal to that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SLE:

 1. (NaN <= <x>) and (<x> <= NaN) are FALSE fo r all <x>.
 2. (+INF <= +INF) and (-INF <= -INF) are TRUE .
 3. (-0.0 <= +0.0) and (+0.0 <= -0.0) are TRUE .

NVIDIA OpenGL Extension Specifications NV_fragment_program

 203

 Section 3.11.5.34, SLT: Set on Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than tha t of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SLT:

 1. (NaN < <x>) and (<x> < NaN) are FALSE for all <x>.
 2. (-0.0 < +0.0) and (+0.0 < -0.0) are FALSE.

 Section 3.11.5.35, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is not equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;

 The following special-case rules apply to SNE:

 1. (<x> != <y>) and (<y> != <x>) always produ ce the same result.
 2. (NaN != <x>) is TRUE for all <x>, includin g NaN.
 3. (+INF != +INF) and (-INF != -INF) are FALS E.
 4. (-0.0 != +0.0) and (+0.0 != -0.0) are TRUE .

 Section 3.11.5.36, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

NV_fragment_program NVIDIA OpenGL Extension Specifications

 204

 Section 3.11.5.37, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 The SUB instruction is completely equivalent to an identical ADD
 instruction in which the negate operator on the second operand is
 reversed:

 1. "SUB R0, R1, R2" is equivalent to "ADD R0, R1, -R2".
 2. "SUB R0, R1, -R2" is equivalent to "ADD R0 , R1, R2".
 3. "SUB R0, R1, |R2|" is equivalent to "ADD R 0, R1, -|R2|".
 4. "SUB R0, R1, -|R2|" is equivalent to "ADD R0, R1, |R2|".

 Section 3.11.5.38, TEX: Texture Lookup

 The TEX instruction performs a filtered texture lookup using the texture
 target given by <texImageTarget> belonging to t he texture image unit given
 by <texImageUnit>. <texImageTarget> values of "1D", "2D", "3D", "CUBE",
 and "RECT" correspond to the texture targets TE XTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, and TEXTURE_R ECTANGLE_NV, respectively.

 The (s,t,r) texture coordinates used for the lo okup are the x, y, and z
 components of the single operand.

 The texture lookup is performed as specified in Section 3.8. The LOD
 calculations in Section 3.8.5 are performed usi ng an implementation
 dependent method to derive ds/dx, ds/dy, dt/dx, dt/dy, dr/dx, and dr/dy.
 The mapping of filtered texture components to t he components of the result
 vector is dependent on the base internal format of the texture and is
 specified in Table X.5.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 205

 Result Vector Comp onents
 Base Internal Format X Y Z W
 -------------------- ----- ----- ----- -----
 ALPHA 0.0 0.0 0.0 At
 LUMINANCE Lt Lt Lt 1.0
 LUMINANCE_ALPHA Lt Lt Lt At
 INTENSITY It It It It
 RGB Rt Gt Bt 1.0
 RGBA Rt Gt Bt At
 HILO_NV (signed) HIt LOt HEMI 1.0
 HILO_NV (unsigned) HIt LOt 1.0 1.0
 DSDT_NV DSt DTt 0.0 1.0
 DSDT_MAG_NV DSt DTt MAGt 1.0
 DSDT_MAG_INTENSITY_NV DSt DTt MAGt It
 FLOAT_R_NV Rt 0.0 0.0 1.0
 FLOAT_RG_NV Rt Gt 0.0 1.0
 FLOAT_RGB_NV Rt Gt Bt 1.0
 FLOAT_RGBA_NV Rt Gt Bt At

 Table X.5: Mapping of filtered texel compone nts to result vector
 components for the TEX instruction. 0.0 and 1.0 indicate that the
 corresponding constant value is written to th e result vector.
 DEPTH_COMPONENT textures are treated as ALPHA , LUMINANCE, or INTENSITY,
 as specified in the texture's depth texture m ode.

 For HILO_NV textures with signed components, "HEMI" is defined as
 sqrt(MAX(0, 1-(HIt^2+LOt^2))).

 This instruction specifies a particular texture target, ignoring the
 standard hierarchy of texture enables (TEXTURE_ CUBE_MAP_ARB, TEXTURE_3D,
 TEXTURE_2D, TEXTURE_1D) used to select a textur e target in unextended
 OpenGL. If the specified texture target has a consistent set of images, a
 lookup is performed. Otherwise, the result of the instruction is the
 vector (0,0,0,0).

 Although this instruction allows the selection of any texture target, a
 fragment program can not use more than one text ure target for any given
 texture image unit.

 Section 3.11.5.39, TXD: Texture Lookup with De rivatives

 The TXD instruction performs a filtered texture lookup using the texture
 target given by <texImageTarget> belonging to t he texture image unit given
 by <texImageUnit>. <texImageTarget> values of "1D", "2D", "3D", "CUBE",
 and "RECT" correspond to the texture targets TE XTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, and TEXTURE_R ECTANGLE_NV, respectively.

 The (s,t,r) texture coordinates used for the lo okup are the x, y, and z
 components of the first operand. The partial d erivatives in the X
 direction (ds/dx, dt/dx, dr/dx) are specified b y the x, y, and z
 components of the second operand. The partial derivatives in the Y
 direction (ds/dy, dt/dy, dr/dy) are specified b y the x, y, and z
 components of the third operand.

 The texture lookup is performed as specified in Section 3.8. The LOD
 calculations in Section 3.8.5 are performed usi ng the specified partial
 derivatives. The mapping of filtered texture c omponents to the components

NV_fragment_program NVIDIA OpenGL Extension Specifications

 206

 of the result vector is dependent on the base i nternal format of the
 texture and is specified in Table X.5.

 This instruction specifies a particular texture target, ignoring the
 standard hierarchy of texture enables (TEXTURE_ CUBE_MAP_ARB, TEXTURE_3D,
 TEXTURE_2D, TEXTURE_1D) used to select a textur e target in unextended
 OpenGL. If the specified texture target has a consistent set of images, a
 lookup is performed. Otherwise, the result of the instruction is the
 vector (0,0,0,0).

 Although this instruction allows the selection of any texture target, a
 fragment program can not use more than one text ure target for any given
 texture image unit.

 Section 3.11.5.40, TXP: Projective Texture Loo kup

 The TXP instruction performs a filtered texture lookup using the texture
 target given by <texImageTarget> belonging to t he texture image unit given
 by <texImageUnit>. <texImageTarget> values of "1D", "2D", "3D", "CUBE",
 and "RECT" correspond to the texture targets TE XTURE_1D, TEXTURE_2D,
 TEXTURE_3D, TEXTURE_CUBE_MAP_ARB, and TEXTURE_R ECTANGLE_NV, respectively.

 For cube map textures, the (s,t,r) texture coor dinates used for the lookup
 are given by x, y, and z, respectively. For al l other textures, the
 (s,t,r) texture coordinates used for the lookup are given by x/w, y/w, and
 z/w, respectively, where x, y, z, and w are the corresponding components
 of the operand.

 The texture lookup is performed as specified in Section 3.8. The LOD
 calculations in Section 3.8.5 are performed usi ng an implementation
 dependent method to derive ds/dx, ds/dy, dt/dx, dt/dy, dr/dx, and dr/dy.
 The mapping of filtered texture components to t he components of the result
 vector is dependent on the base internal format of the texture and is
 specified in Table X.5.

 This instruction specifies a particular texture target, ignoring the
 standard hierarchy of texture enables (TEXTURE_ CUBE_MAP_ARB, TEXTURE_3D,
 TEXTURE_2D, TEXTURE_1D) used to select a textur e target in unextended
 OpenGL. If the specified texture target has a consistent set of images, a
 lookup is performed. Otherwise, the result of the instruction is the
 vector (0,0,0,0).

 Although this instruction allows the selection of any texture target, a
 fragment program can not use more than one text ure target for any given
 texture image unit.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 207

 Section 3.11.5.41, UP2H: Unpack Two 16-Bit Fl oats

 The UP2H instruction unpacks two 16-bit floats stored together in a 32-bit
 scalar operand. The first 16-bit float (stored in the 16 least
 significant bits) is written into the "x" and " z" components of the result
 vector; the second is written into the "y" and "w" components of the
 result vector.

 This operation undoes the type conversion and p acking performed by the
 PK2H instruction.

 tmp = ScalarLoad(op0);
 result.x = (fp16) (RawBits(tmp) & 0xFFFF);
 result.y = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);
 result.z = (fp16) (RawBits(tmp) & 0xFFFF);
 result.w = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

 Section 3.11.5.42, UP2US: Unpack Two Unsigned 16-Bit Scalars

 The UP2US instruction unpacks two 16-bit unsign ed values packed together
 in a 32-bit scalar operand. The unsigned quant ities are encoded where a
 bit pattern of all '0' bits corresponds to 0.0 and a pattern of all '1'
 bits corresponds to 1.0. The "x" and "z" compo nents of the result vector
 are obtained from the 16 least significant bits of the operand; the "y"
 and "w" components are obtained from the 16 mos t significant bits.

 This operation undoes the type conversion and p acking performed by the
 PK2US instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.y = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;
 result.z = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.w = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 208

 Section 3.11.5.43, UP4B: Unpack Four Signed 8 -Bit Values

 The UP4B instruction unpacks four 8-bit signed values packed together in a
 32-bit scalar operand. The signed quantities a re encoded where a bit
 pattern of all '0' bits corresponds to -128/127 and a pattern of all '1'
 bits corresponds to +127/127. The "x" componen t of the result vector is
 the converted value corresponding to the 8 leas t significant bits of the
 operand; the "w" component corresponds to the 8 most significant bits.

 This operation undoes the type conversion and p acking performed by the
 PK4B instruction.

 tmp = ScalarLoad(op0);
 result.x = (((RawBits(tmp) >> 0) & 0xFF) - 12 8) / 127.0;
 result.y = (((RawBits(tmp) >> 8) & 0xFF) - 12 8) / 127.0;
 result.z = (((RawBits(tmp) >> 16) & 0xFF) - 1 28) / 127.0;
 result.w = (((RawBits(tmp) >> 24) & 0xFF) - 1 28) / 127.0;

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

 Section 3.11.5.44, UP4UB: Unpack Four Unsigne d 8-Bit Scalars

 The UP4UB instruction unpacks four 8-bit unsign ed values packed together
 in a 32-bit scalar operand. The unsigned quant ities are encoded where a
 bit pattern of all '0' bits corresponds to 0.0 and a pattern of all '1'
 bits corresponds to 1.0. The "x" component of the result vector is
 obtained from the 8 least significant bits of t he operand; the "w"
 component is obtained from the 8 most significa nt bits.

 This operation undoes the type conversion and p acking performed by the
 PK4UB instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFF) / 25 5.0;
 result.y = ((RawBits(tmp) >> 8) & 0xFF) / 25 5.0;
 result.z = ((RawBits(tmp) >> 16) & 0xFF) / 25 5.0;
 result.w = ((RawBits(tmp) >> 24) & 0xFF) / 25 5.0;

 Since the source operand must be a 32-bit scala r, a fragment program will
 fail to load if the operand is not obtained fro m a register with 32-bit
 components or from a program parameter.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 209

 Section 3.11.5.45, X2D: 2D Coordinate Transfo rmation

 The X2D instruction multiplies the 2D offset ve ctor specified by the "x"
 and "y" components of the second vector operand by the 2x2 matrix
 specified by the four components of the third v ector operand, and adds the
 transformed offset vector to the 2D vector spec ified by the "x" and "y"
 components of the first vector operand. The fi rst component of the sum is
 written to the "x" and "z" components of the re sult; the second component
 is written to the "y" and "w" components of the result.

 The X2D instruction can be used to displace tex ture coordinates in the
 same manner as the OFFSET_TEXTURE_2D_NV mode in the GL_NV_texture_shader
 extension.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.y = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;
 result.z = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.w = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;

 Section 3.11.6, Fragment Program Outputs

 Upon completion of fragment program execution, the output registers are
 used to replace the fragment's associated data.

 For color fragment programs, the RGBA color of the fragment is taken from
 the output register (COLR or COLH). The R, G, B, and A color components
 are extracted from the "x", "y", "z", and "w" c omponents, respectively, of
 the output register and are clamped to the rang e [0,1].

 For combiner fragment programs, register combin er operations (as described
 in the NV_register_combiners specification) are then performed, regardless
 of the state of the REGISTER_COMBINERS_NV enabl e. The RGBA texture colors
 corresponding the TEXTURE0_ARB, TEXTURE1_ARB, T EXTURE2_ARB, and
 TEXTURE3_ARB combiner registers are taken from the TEX0, TEX1, TEX2, and
 TEX3 output registers, respectively. Any compo nents of the TEX0, TEX1,
 TEX2, or TEX3 output registers that are not wri tten to by the fragment
 program are undefined. The R, G, B, and A text ure color components are
 extracted from the "x", "y", "z", and "w" outpu t register components,
 respectively, and are clamped to the range [-1, 1].

 If the DEPR output register is written by the f ragment program, the depth
 value of the fragment is taken from the z compo nent of the DEPR output
 register. If depth clamping is enabled, the de pth value is clamped to the
 range [min(n,f), max(n,f)], where n and f are t he near and far depth range
 values. If depth clamping is disabled, the fra gment is discarded if its
 depth value is outside the range [min(n,f), max (n,f)].

NV_fragment_program NVIDIA OpenGL Extension Specifications

 210

 Section 3.11.7, Required Fragment Program State

 The state required for managing fragment progra ms consists of:

 a bit indicating whether or not fragment prog ram mode is enabled;

 an unsigned integer naming the currently boun d fragment program

 and the state that must be maintained to indi cate which integers are
 currently in use as fragment program names.

 Fragment program mode is initially disabled. T he initial state of all 128
 fragment program parameter registers is (0,0,0, 0). The initial currently
 bound fragment program is zero.

 Each fragment program object consists of:

 an enumerant given the program target (FRAGME NT_PROGRAM_NV);

 a boolean indicating whether the program is r esident;

 an array of type ubyte containing the program string;

 an integer representing the length of the pro gram string array;

 one four-component floating-point vector for each named local
 parameter in the program;

 and a set of MAX_FRAGMENT_PROGRAM_LOCAL_PARAM ETERS_NV four-component
 floating-point vectors to hold numbered local parameters, each initially
 set to (0,0,0,0).

 Initially, no program objects exist.

 Additionally, the state required during the exe cution of a fragment
 program consists of: twelve 4-component floati ng-point fragment attribute
 registers, thirty-two 128-bit physical temporar y registers, and a single
 4-component condition code, whose components ha ve one of four values (LT,
 EQ, GT, or UN).

 Each time a fragment program is executed, the f ragment attribute registers
 are initialized with the fragment's location an d associated data, all
 temporary register components are initialized t o zero, and all condition
 code components are initialized to EQ.

 Renumber Section 3.11 to Section 3.12, Antialia sing Application (p.140).
 No changes to the text of the section.

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Framebuffer)

 None

NVIDIA OpenGL Extension Specifications NV_fragment_program

 211

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special Functions)

 Add new section 5.7, Programs (after "Flush and Finish")

 Programs are specified as an array of ubytes us ed to control the operation
 of portions of the GL. The array is a string o f ASCII characters encoding
 the program.

 The command

 LoadProgramNV(enum target, uint id, sizei len , const ubyte *program);

 loads a program. The target parameter specifie s the type of program
 loaded and can be VERTEX_PROGRAM_NV, VERTEX_STA TE_PROGRAM_NV, or
 FRAGMENT_PROGRAM_NV. VERTEX_PROGRAM_NV specifi es a program to be executed
 in vertex program mode as each vertex is specif ied. VERTEX_STATE_PROGRAM
 specifies a program to be run manually to updat e vertex state.
 FRAGMENT_PROGRAM specifies a program to be exec uted in fragment program
 mode as each fragment is rasterized.

 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs i s the set of positive
 integers (zero is reserved). The error INVALID _VALUE is generated by
 LoadProgramNV if a program is loaded with an id of zero. The error
 INVALID_OPERATION is generated by LoadProgramNV or if a program is loaded
 for an id that is currently loaded with a progr am of a different program
 target. program is a pointer to an array of ub ytes that represents the
 program being loaded. The length of the array in ubytes is indicated by
 len.

 At program load time, the program is parsed int o a set of tokens possibly
 separated by white space. Spaces, tabs, newlin es, carriage returns, and
 comments are considered whitespace. Comments b egin with the character "#"
 and are terminated by a newline, a carriage ret urn, or the end of the
 program array. Tokens are processed in a case- sensitive manner: upper
 and lower-case letters are not considered equiv alent.

 Each program target has a corresponding Backus- Naur Form (BNF) grammar
 specifying the syntactically valid sequences fo r programs of the specified
 type. The set of valid tokens can be inferred from the grammar. The
 token "" represents an empty string and is used to indicate optional
 rules. A program is invalid if it contains any undefined tokens or
 characters.

 The error INVALID_OPERATION is generated by Loa dProgramNV if a program
 fails to load because it is not syntactically c orrect or fails to satisfy
 all of the semantic restrictions corresponding to the program target.

 A successfully loaded program is parsed into a sequence of instructions.
 Each instruction is identified by its tokenized name. The operation of
 these instructions is specific to the program t arget and is defined
 elsewhere.

 A successfully loaded program replaces the prog ram previously assigned to
 the name specified by id. If the OUT_OF_MEMORY error is generated by
 LoadProgramNV, no change is made to the previou s contents of the named
 program.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 212

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte offset
 into the program string most recently passed to LoadProgramNV indicating
 the position of the first error, if any, in the program. If the program
 fails to load because of a semantic restriction that cannot be determined
 until the program is fully scanned, the error p osition will be len, the
 length of the program. If the program loads su ccessfully, the value of
 PROGRAM_ERROR_POSITION_NV is assigned the value negative one.

 For targets whose programs are executed automat ically (e.g., vertex and
 fragment programs), there must be a current pro gram. The current vertex
 program is executed automatically in vertex pro gram mode as vertices are
 specified. The current fragment program is exe cuted automatically in
 fragment program mode as fragments are generate d by rasterization.
 Current programs for a program target are updat ed by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV or FRAGM ENT_PROGRAM_NV. The error
 INVALID_OPERATION is generated by BindProgramNV if id names a program that
 has a type different than target (for example, if id names a vertex state
 program as described in section 2.14.4).

 Binding to a nonexistent program id does not ge nerate an error. In
 particular, binding to program id zero does not generate an error.
 However, because program zero cannot be loaded, program zero is always
 nonexistent. If a program id is successfully l oaded with a new vertex
 program and id is also the currently bound vert ex program, the new program
 is considered the currently bound vertex progra m.

 The INVALID_OPERATION error is generated when b oth vertex program mode is
 enabled and Begin is called (or when a command that performs an implicit
 Begin is called) if the current vertex program is nonexistent or not
 valid. A vertex program may not be valid for r easons explained in section
 2.14.5.

 The INVALID_OPERATION error is generated when b oth fragment program mode
 is enabled and Begin, another GL command that p erforms an implicit Begin,
 or any other GL command that generates fragment s is called, if the current
 fragment program is nonexistent or not valid. A fragment program may be
 invalid for reasons explained in Section 3.11.3 .

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *id s);

 ids contains n names of programs to be deleted. After a program is
 deleted, it becomes nonexistent, and its name i s again unused. If a
 program that is currently bound is deleted, it is as though BindProgramNV
 has been executed with the same target as the d eleted program and program
 zero. Unused names in ids are silently ignored , as is the value zero.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 213

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n currently unused program names in ids . These names are marked
 as used, for the purposes of GenProgramsNV only , but they become existent
 programs only when the are first loaded using L oadProgramNV.

 An implementation may choose to establish a wor king set of programs on
 which binding and/or manual execution are perfo rmed with higher
 performance. A program that is currently part of this working set is said
 to be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *reside nces);

 returns TRUE if all of the n programs named in ids are resident, or if the
 implementation does not distinguish a working s et. If at least one of the
 programs named in ids is not resident, then FAL SE is returned, and the
 residence of each program is returned in reside nces. Otherwise the
 contents of residences are not changed. If any of the names in ids are
 nonexistent or zero, FALSE is returned, the err or INVALID_VALUE is
 generated, and the contents of residences are i ndeterminate. The
 residence status of a single named program can also be queried by calling
 GetProgramivNV (Section 6.1.13) with id set to the name of the program and
 pname set to PROGRAM_RESIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is currently
 resident, not whether it could not be made resi dent. An implementation
 may choose to make a program resident only on f irst use, for example. The
 client may guide the GL implementation in deter mining which programs
 should be resident by requesting a set of progr ams to make resident.

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids shoul d be made resident.
 While all the programs are not guaranteed to be come resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher prior ity for residency
 should be given to programs listed earlier in t he ids array.
 RequestResidentProgramsNV silently ignores atte mpts to make resident
 nonexistent program names or zero. ArePrograms ResidentNV can be
 called after RequestResidentProgramsNV to deter mine which programs
 actually became resident.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 214

 The commands

 void ProgramNamedParameter4fNV(uint id, sizei len, const ubyte *name,
 float x, float y, float z, float w);
 void ProgramNamedParameter4dNV(uint id, sizei len, const ubyte *name,
 double x, doub le y, double z, double w);
 void ProgramNamedParameter4fvNV(uint id, size i len, const ubyte *name,
 const float v []);
 void ProgramNamedParameter4dvNV(uint id, size i len, const ubyte *name,
 const double v[]);

 specify a new value for the named program local parameter <name> belonging
 to the fragment program specified by <id>. <na me> is a pointer to an
 array of ubytes holding the parameter name. <l en> specifies the number of
 ubytes in the array given by <name>. The new x , y, z, and w components of
 the named local parameter are given by x, y, z, and w, respectively, for
 ProgramNamedParameter4fNV and ProgramNamedParam eter4dNV, and by v[0],
 v[1], v[2], and v[3], respectively, for Program NamedParameter4fvNV and
 ProgramNamedParameter4dvNV. The error INVALID_ OPERATION is generated if
 <id> specifies a nonexistent program or a progr am whose type does not
 suport named local parameters. The error INVAL ID_VALUE error is generated
 if <name> does not specify the name of a local parameter in the program
 corresponding to <id>. The error INVALID_VALUE is also generated if <len>
 is zero.

 The commands

 void ProgramLocalParameter4fARB(enum target, uint index,
 float x, floa t y, float z, float w);
 void ProgramLocalParameter4fvARB(enum target, uint index,
 const float *params);
 void ProgramLocalParameter4dARB(enum target, uint index,
 double x, dou ble y, double z, double w);
 void ProgramLocalParameter4dvARB(enum target, uint index,
 const double *params);

 update the values of the numbered program local parameter <index>
 belonging to the program object currently bound to <target>. For
 ProgramLocalParameter4fARB and ProgramLocalPara meter4dARB, the four
 components of the parameter are updated with th e values of <x>, <y>, <z>,
 and <w>, respectively. For ProgramLocalParamet er4fvARB and
 ProgramLocalParameter4dvARB, the four component s of the parameter are
 updated with the array of four values pointed t o by <params>. The error
 INVALID_VALUE is generated if <index> is greate r than or equal to the
 number of numbered program local parameters sup ported by <target>.

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 Modify Section 6.1.11, Pointer and String Queri es (p. 206)

 (modify last paragraph, p. 206) ... The possibl e values for <name> are
 VENDOR, RENDERER, VERSION, EXTENSIONS, and PROG RAM_ERROR_STRING_NV.

 (add after last paragraph of section, p. 207) Q ueries of
 PROGRAM_ERROR_STRING_NV return a pointer to an implementation-dependent
 program load error string. If the last call to LoadProgramNV failed to

NVIDIA OpenGL Extension Specifications NV_fragment_program

 215

 load a program, the returned string describes a reason that the program
 failed to load. Otherwise, a pointer to an emp ty string (containing only
 a terminator) is returned.

 Rename and modify Section 6.1.13, Vertex and Fr agment Program Queries
 (from GL_NV_fragment_program). Portions of thi s section pertaining to
 fragment programs are copied verbatim.

 (insert after discussion of GetProgramParameter [fd]vNV)

 The commands

 void GetProgramNamedParameterfvNV(uint id, si zei len,
 const ubyte *name, float *params);
 void GetProgramNamedParameterdvNV(uint id, si zei len,
 const ubyte *name, double *params);

 obtain the current program named local paramete r value for the parameter
 named <name> belonging to the program given by <id>. <name> is a pointer
 to an array of ubytes holding the parameter nam e. <len> specifies the
 number of ubytes in the array given by <name>. The error
 INVALID_OPERATION is generated if <id> specifie s a nonexistent program or
 a program whose type does not suport named loca l parameters. The error
 INVALID_VALUE is generated if <name> does not s pecify the name of a local
 parameter in the program corresponding to <id>. The error INVALID_VALUE
 is also generated if <len> is zero. Each named program local parameter is
 an array of four values.

 The commands

 void GetProgramLocalParameterdvARB(enum targe t, uint index,
 double *pa rams);
 void GetProgramLocalParameterfvARB(enum targe t, uint index,
 float *par ams);

 obtain the current value for the numbered progr am local parameter <index>
 belonging to the program object currently bound to <target>, and places
 the information in the array <params>. The err or INVALID_ENUM is
 generated if <target> specifies a nonexistent p rogram target or a program
 target that does not support numbered program l ocal parameters. The error
 INVALID_VALUE is generated if <index> is greate r than or equal to the
 implementation-dependent number of supported nu mbered program local
 parameters for the program target.

 When the program target type is FRAGMENT_PROGRA M_NV, each numbered program
 local parameter returned is an array of four va lues. ...

 The command

 void GetProgramivNV(uint id, enum pname, int *params);

 obtains program state named by pname for the pr ogram named id in the array
 params. pname must be one of PROGRAM_TARGET_NV , PROGRAM_LENGTH_NV, or
 PROGRAM_RESIDENT_NV. The error INVALID_OPERATI ON is generated if the
 program named id does not exist.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 216

 The command

 void GetProgramStringNV(uint id, enum pname,
 ubyte *program);

 obtains the program string for program id. pna me must be
 PROGRAM_STRING_NV. n ubytes are returned into the array program
 where n is the length of the program in ubytes. GetProgramivNV with
 PROGRAM_LENGTH_NV can be used to query the leng th of a program's
 string. The INVALID_OPERATION error is generat ed if the program
 named id does not exist.

 ...

 The command

 boolean IsProgramNV(uint id);

 returns TRUE if program is the name of a progra m object. If program
 is zero or is a non-zero value that is not the name of a program
 object, or if an error condition occurs, IsProg ramNV returns FALSE.
 A name returned by GenProgramsNV but not yet lo aded with a program
 is not the name of a program object."

Additions to Appendix F of the OpenGL 1.2.1 Specifi cation (ARB Extensions)

 Modify Section F.2.3 (Changes to Section 2.6), p.240

 (modify last paragraph on p.240) ... Multiple s ets of texture coordinates
 may be used to specify how multiple texture ima ges are mapped onto a
 primitive. The number of texture coordinate se ts supported is
 implementation dependent, but must be at least 1. The number of texture
 coordinate sets supported may be queried with t he state
 MAX_TEXTURE_COORDS_NV.

 Modify Section F.2.4 (Changes to Section 2.7), p.241

 (modify the last paragraph on p.241, carrying o ver to p.243)
 Implementations may support more than one set o f texture coordinates. The
 commands

 void MultiTexCoord{1234}{sifd}ARB(enum text ure, T coords)
 void MultiTexCoord{1234}{sifd}vARB(enum tex ture, T coords)

 take the coordinate set to be modified as the < texture> parameter.
 <texture> is a symbolic constant of the form TE XTUREi_ARB, indicating that
 texture coordinate set i is to be modified. Th e constants obey
 TEXTUREi_ARB = TEXTURE0_ARB + i (i is in the ra nge 0 to k-1, where k is
 the implementation dependent number of texture units defined by
 MAX_TEXTURE_COORDS_NV).

 Modify Section F.2.5 (Changes to Section 2.8), p.243

 (modify first and second paragraphs of section) ... The client may specify
 up to 5 plus the value of MAX_TEXTURE_COORDS_NV arrays; one each to store
 vertex coordinates...

NVIDIA OpenGL Extension Specifications NV_fragment_program

 217

 In implementations which support more than one texture coordinate set, the
 command

 void ClientActiveTextureARB(enum texture)

 is used to select the vertex array client state parameters to be modified
 by the TexCoordPointer command and the array af fected by EnableClientState
 and DisableClientState with the parameter TEXTU RE_COORD_ARRAY. This
 command sets the state variable CLIENT_ACTIVE_T EXTURE_ARB. Each texture
 coordinate set has a client state vector which is selected when this
 command is invoked. This state vector also inc ludes the vertex array
 state. This command also selects the texture c oordinate set state used
 for queries of client state.

 (modify first paragraph on p.244) If the number of supported texture
 coordinate sets (the value of MAX_TEXTURE_COORD S_NV) is k, ...

 Modify Section F.2.6 (Changes to Section 2.10.2), p.244

 (modify first paragraph) For each texture coor dinate set, a 4x4 matrix is
 applied to the corresponding texture coordinate s...

 (replace second and third paragraphs) The comma nd

 void ActiveTextureARB(enum texture);

 specifies the active texture unit selector, ACT IVE_TEXTURE_ARB. Each
 texture unit contains up to two distinct sub-un its: a texture coordinate
 processing unit (consisting of a texture matrix stack and texture
 coordinate generation state) and a texture imag e unit (consisting of all
 the texture state defined in Section 3.8). In implementations with a
 different number of supported texture coordinat e sets and texture image
 units, some texture units may consist of only o ne of the two sub-units.

 The active texture unit selector specifies the texture unit accessed by
 commands involving texture coordinate processin g. Such commands include
 those accessing the current matrix stack (if MA TRIX_MODE is TEXTURE),
 TexGen (Section 2.10.4), Enable/Disable (if any texture coordinate
 generation enum is selected), as well as querie s of the current texture
 coordinates and current raster texture coordina tes. If the texture unit
 number corresponding to the current value of AC TIVE_TEXTURE_ARB is greater
 than or equal to the implementation dependent c onstant
 MAX_TEXTURE_COORD_SETS_NV, the error INVALID_OP ERATION is generated by any
 such command.

 The active texture unit selector also selects t he texture unit accessed by
 commands involving texture image processing (Se ction 3.8). Such commands
 include all variants of TexEnv, TexParameter, a nd TexImage commands,
 BindTexture, Enable/Disable for any texture tar get (e.g., TEXTURE_2D), and
 queries of all such state. If the texture unit number corresponding to
 the current value of ACTIVE_TEXTURE_ARB is grea ter than or equal to the
 implementation dependent constant MAX_TEXTURE_I MAGE_UNITS_NV, the error
 INVALID_OPERATION is generated by any such comm and.

 ActiveTextureARB generates the error INVALID_EN UM if an invalid <texture>
 is specified. <texture> is a symbolic constant of the form TEXTUREi_ARB,
 indicating that texture unit i is to be modifie d. The constants obey

NV_fragment_program NVIDIA OpenGL Extension Specifications

 218

 TEXTUREi_ARB = TEXTURE0_ARB + i (i is in the ra nge 0 to k-1, where k is
 the larger of the MAX_TEXTURE_COORDS_NV and MAX _TEXTURE_IMAGE_UNITS_NV).
 For compatibility with old OpenGL specification s, the implementation
 dependent constant MAX_TEXTURE_UNITS_ARB specif ies the number of
 conventional texture units supported by the imp lementation. Its value
 must be no larger than the minimum of MAX_TEXTU RE_COORDS_NV and
 MAX_TEXTURE_IMAGE_UNITS_NV.

 Modify Section F.2.12 (Changes to Section 3.8.1 0), p.249

 (modify next-to-last paragraph) Texturing is en abled and disabled
 individually for each texture unit. If texturi ng is disabled for one of
 the units, then the fragment resulting from the previous unit is passed
 unaltered to the following unit. Individual te xture units beyond those
 specified by MAX_TEXTURE_UNITS_ARB may be incom plete and are always
 treated as disabled.

 Modify Section F.2.15 (Changes to Section 6.1.2), p.251

 (add to end of paragraph) Queries of texture st ate variables corresponding
 to texture coordinate processing unit (namely, TexGen state and enables,
 and matrices) will produce an INVALID_OPERATION error if the value of
 ACTIVE_TEXTURE_ARB is greater than or equal to MAX_TEXTURE_COORDS_NV. All
 other texture state queries will result in an I NVALID_OPERATION error if
 the value of ACTIVE_TEXTURE_ARB is greater than or equal to
 MAX_TEXTURE_IMAGE_UNITS_NV.

Additions to the AGL/GLX/WGL Specifications

 Program objects are shared between AGL/GLX/WGL rendering contexts if
 and only if the rendering contexts share displa y lists. No change
 is made to the AGL/GLX/WGL API.

Dependencies on GL_NV_vertex_program

 If NV_vertex_program is supported, the descript ion of LoadProgramNV in
 Section 2.14.1.7 (up to the BNF description of vertex programs) is
 deleted, as it is replaced by the contents of S ection 5.7 in this
 specification. The general error descriptions in Section 2.14.1.7 common
 to Section 5.7 (like INVALID_OPERATION if the p rogram fails to compile)
 should also be deleted. Section 2.14.1.8 shoul d also be deleted. Section
 6.1.13 is modified by this specification as des cribed above.

Dependencies on NV_register_combiners

 If NV_register_combiners is not supported, comb iner programs are not
 supported, the TEX0, TEX1, TEX2, and TEX3 outpu t registers are eliminated,
 and all references to both in this extension ar e deleted.

Dependencies on NV_texture_shader

 If NV_texture_shader is not supported, the comm ent about texture shaders
 being disabled in fragment program mode is not applicable.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 219

Dependencies on NV_texture_rectangle

 If NV_texture_rectangle is not supported, the r eferences to "RECT" in the
 <texImageTarget> grammar rule and TEXTURE_RECTA NGLE_NV are not applicable.

Dependencies on ARB_texture_cube_map

 If NV_texture_rectangle is not supported, the r eferences to "CUBE" in the
 <texImageTarget> grammar rule and TEXTURE_CUBE_ MAP_ARB are not applicable.

Dependencies on EXT_fog_coord

 If EXT_fog_coord is not supported, references t o "fog coordinate" in the
 definition of the "FOGC" fragment attribute reg ister should be removed.

Dependencies on NV_depth_clamp

 If NV_depth_clamp is not supported, section 3.1 1.6 is modified to remove
 discussion of the depth clamp enable and instea d indicate that fragments
 with depth values outside [min(n,f), max(n,f)] are always discarded.

Dependencies on ARB_depth_texture and SGIX_depth_te xture

 If ARB_depth_texture is not supported, but SGIX _depth_texture is
 supported, the discussion of Table X.5 is modif ied to indicate that
 DEPTH_COMPONENT textures are treated as LUMINAN CE.

 If neither extension is supported, the discussi on of DEPTH_COMPONENT
 textures in Table X.5 should be removed.

Dependencies on NV_float_buffer

 If NV_float_buffer is not supported, references to FLOAT_R_NV,
 FLOAT_RG_NV, FLOAT_RGB_NV, and FLOAT_RGBA_NV in ternal texture formats in
 Table X.5 should be removed.

Dependencies on ARB_vertex_program

 This extension does not have any explicit depen dencies, but the APIs for
 setting and querying numbered local parameters (ProgramLocalParameter*ARB
 and GetProgramLocalParameter*ARB) were taken di rectly from this extension,

GLX Protocol

 Most of the GLX protocol needed to implement th is extension is described
 in the GL_NV_vertex_program extension specifica tion and will not be
 repeated here.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 220

 The following two rendering commands are potent ially large, and hence can
 be sent in a glXRender or glXRenderLarge reques t.

 ProgramNamedParameter4fvNV
 2 28+len+p rendering c ommand length
 2 4218 rendering c ommand opcode
 4 CARD32 id
 4 CARD32 len
 4 FLOAT32 params[0]
 4 FLOAT32 params[1]
 4 FLOAT32 params[2]
 4 FLOAT32 params[3]
 len LISTofCARD8 name
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 32+len+p rendering c ommand length
 4 4218 rendering c ommand opcode

 ProgramNamedParameter4dvNV
 2 44+len+p rendering c ommand length
 2 4219 rendering c ommand opcode
 4 CARD32 id
 4 CARD32 len
 8 FLOAT64 params[0]
 8 FLOAT64 params[1]
 8 FLOAT64 params[2]
 8 FLOAT64 params[3]
 len LISTofCARD8 name
 p unused, p=p ad(len)

 If the command is encoded in a glxRenderLa rge request, the command
 opcode and command length fields above are expanded to 4 bytes each:

 4 48+len+p rendering c ommand length
 4 4219 rendering c ommand opcode

NVIDIA OpenGL Extension Specifications NV_fragment_program

 221

 The remaining two commands are non-rendering co mmands. These commands are
 sent separately (i.e., not as part of a glXRend er or glXRenderLarge
 request), using the glXVendorPrivateWithReply r equest:

 GetProgramNamedParameter4fvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+(len+p)/4 request len gth
 4 1310 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 len
 len LISTofCARD8 name
 p unused, p=p ad(len)
 =>

 If the command succeeds, 4 floats are sen t in the reply:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 4 reply lengt h
 24 unused
 16 LISTofFLOAT32 params

 Otherwise, an empty reply is sent, indica ting that a GL error
 occured:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 24 unused

NV_fragment_program NVIDIA OpenGL Extension Specifications

 222

 GetProgramNamedParameter4dvNV
 1 CARD8 opcode (X a ssigned)
 1 17 GLX opcode (glXVendorPrivateWithReply)
 2 4+(len+p)/4 request len gth
 4 1311 vendor spec ific opcode
 4 GLX_CONTEXT_TAG context tag
 4 INT32 len
 len LISTofCARD8 name
 p unused, p=p ad(len)
 =>

 If the command succeeds, 4 doubles are se nt in the reply:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 8 reply lengt h
 24 unused
 32 LISTofFLOAT64 params

 Otherwise, an empty reply is sent, indica ting that a GL error
 occured:

 1 1 reply
 1 unused
 2 CARD16 sequence nu mber
 4 0 reply lengt h
 24 unused

Errors

 INVALID_OPERATION is generated by Begin, DrawPi xels, Bitmap, CopyPixels,
 or a command that performs an explicit Begin if FRAGMENT_PROGRAM_NV is
 enabled and the currently bound fragment progra m does not exist.

 INVALID_OPERATION is generated by ProgramNamedP arameter4fNV,
 ProgramNamedParameter4dNV, ProgramNamedParamete r4fvNV,
 ProgramNamedParameter4dvNV, GetProgramNamedPara meterfvNV, or
 GetProgramNamedParameterdvNV if <id> specifies a nonexistent program or a
 program whose type does not suport local parame ters.

 INVALID_VALUE is generated by ProgramNamedParam eter4fNV,
 ProgramNamedParameter4dNV, ProgramNamedParamete r4fvNV,
 ProgramNamedParameter4dvNV, GetProgramNamedPara meterfvNV, or
 GetProgramNamedParameterdvNV if <len> is zero.

 INVALID_VALUE is generated by ProgramNamedParam eter4fNV,
 ProgramNamedParameter4dNV, ProgramNamedParamete r4fvNV,
 ProgramNamedParameter4dvNV, GetProgramNamedPara meterfvNV, or
 GetProgramNamedParameterdvNV if <name> does not specify the name of a
 local parameter in the program corresponding to <id>.

 INVALID_OPERATION is generated by any command a ccessing texture coordinate
 processing state if the texture unit number cor responding to the current
 value of ACTIVE_TEXTURE_ARB is greater than or equal to the implementation
 dependent constant MAX_TEXTURE_COORD_SETS_NV.

NVIDIA OpenGL Extension Specifications NV_fragment_program

 223

 INVALID_OPERATION is generated by any command a ccessing texture image
 processing state if the texture unit number cor responding to the current
 value of ACTIVE_TEXTURE_ARB is greater than or equal to the implementation
 dependent constant MAX_TEXTURE_IMAGE_UNITS_NV.

 (The following are error descriptions copied fr om GL_NV_vertex_program
 that apply to this extension as well. These m odifications do not affect
 the behavior of that extension.)

 INVALID_VALUE is generated by LoadProgramNV if id is zero.

 INVALID_OPERATION is generated by LoadProgramNV if the program
 corresponding to id is currently loaded but has a program type different
 from that given by target.

 INVALID_OPERATION is generated by LoadProgramNV if the program specified
 is syntactically incorrect for the program type specified by target. The
 value of PROGRAM_ERROR_POSITION_NV is still upd ated when this error is
 generated.

 INVALID_OPERATION is generated by LoadProgramNV if the problem specified
 fails to conform to any of the semantic restric tions imposed on programs
 of the type specified by target. The value of PROGRAM_ERROR_POSITION_NV
 is still updated when this error is generated.

 INVALID_OPERATION is generated by BindProgramNV if target does not match
 the type of the program named by id.

 INVALID_VALUE is generated by AreProgramsReside ntNV if any of the queried
 programs are zero or do not exist.

 INVALID_OPERATION is generated by GetProgramivN V or GetProgramStringNV if
 the program named id does not exist.

New State

Get Value Type Get Comman d Initial Value Description S ection Attribute
--------------------------------- ---- ---------- ------------- ------------- ------------------ - ------- ------------
FRAGMENT_PROGRAM_NV B IsEnabled FALSE fragment program 3 .11 enable
 mode enable
FRAGMENT_PROGRAM_BINDING_NV Z+ GetInteger v 0 bound fragment 5 .7 -
 program

Table X.6. New State Introduced by NV_fragment_pro gram.

NV_fragment_program NVIDIA OpenGL Extension Specifications

 224

Get Value Type Get Command Initial Value Description Section A ttribute
------------------------- ------ ---------------- -- ------------- ------------------ -------- - --------
PROGRAM_ERROR_POSITION_NV Z GetIntegerv -1 program error 5.7 -
 position
PROGRAM_TARGET_NV Z2 GetProgramivNV 0 program target 6.1.13 -
PROGRAM_LENGTH_NV Z+ GetProgramivNV 0 program length 6.1.13 -
PROGRAM_RESIDENT_NV Z2 GetProgramivNV False program residency 6.1.13 -
PROGRAM_STRING_NV ubxn GetProgramString NV "" program string 6.1.13 -
- nxR4 GetProgramNamed- (0,0,0,0) named program local 5.7 -
 ParameterNV parameter value
- 64+xR4 GetProgramLocal- (0,0,0,0) numbered program 5.7 -
 ParameterARB local parameter

Table X.7. Program Object State common to NV_verte x_program and
NV_fragment_program.

Get Value Type Get Command Initial Value D escription Section Attribute
--------- ------ ----------- ------------- - ---------------------- -------- ---------
- 12xR4 - fragment data f ragment attribute
 r egisters 3.11.1.1 -
- 16xR4 - (0,0,0,0) f p32 temporary registers 3.11.1.2 -
- 32xR4 - (0,0,0,0) f p16 temporary registers 3.11.1.2 -
 (Z_4)4 - (EQ,EQ,EQ,EQ) c ondition code register 3.11.1.4 -
 a ddress register

Table X.8. Fragment Program Per-Fragment Execution State.

New Implementation Dependent State

 Mi nimum
Get Value Type Get Command V alue Description Section Attribute
--------- ---- ----------- -- ----- ----------------- ------- ---------
MAX_TEXTURE_COORDS_NV Z+ GetIntegerv 2 number of texture 2.6 -
 coordinate sets
 supported
MAX_TEXTURE_IMAGE_UNITS_NV Z+ GetIntegerv 2 number of texture 2.10.2 -
 image units
 supported
MAX_FRAGMENT_PROGRAM_ Z+ GetIntegerv 64 number of numbered 3.11.7 -
 LOCAL_PARAMETERS_NV local parameters
 supported

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 225

Name

 NV_fragment_program_option

Name Strings

 GL_NV_fragment_program_option

Status

 Shipping.

Version

 Last Modified: 05/16/2004
 NVIDIA Revision: 2

Number

 Unassigned

Dependencies

 ARB_fragment_program is required.

 NV_fragment_program is required.

Overview

 This extension provides additional fragment pro gram functionality
 to extend the standard ARB_fragment_program lan guage and execution
 environment. ARB programs wishing to use this added functionality
 need only add:

 OPTION NV_fragment_program;

 to the beginning of their fragment programs.

 The functionality provided by this extension, w hich is roughly
 equivalent to that provided by the NV_fragment_ program extension,
 includes:

 * increased control over precision in arithme tic computations and
 storage,

 * data-dependent conditional writemasks,

 * an absolute value operator on scalar and sw izzled operand loads,

 * instructions to compute partial derivatives , and perform texture
 lookups using specified partial derivatives ,

 * fully orthogonal "set on" instructions,

 * instructions to compute reflection vector a nd perform a 2D
 coordinate transform, and

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 226

 * instructions to pack and unpack multiple qu antities into a single
 component.

Issues

 Why is this a separate extension, rather than j ust an additional
 feature of NV_fragment_program?

 RESOLVED: The NV_fragment_program specificat ion was complete
 (with a published implementation) prior to th e completion of
 ARB_fragment_program. Future NVIDIA fragment program extensions
 should contain extensions to the ARB_fragment _program execution
 environment as a standard feature.

 Should a similar option be provided to expose A RB_fragment_program
 features not found in NV_fragment_program (e.g. , state bindings,
 certain "macro" instructions) under the NV_frag ment_program
 interface?

 RESOLVED: No. Why not just write an ARB pro gram?

 The ARB_fragment_program spec has a minor gramm ar bug that requires
 that inline scalar constants used as scalar ope rands include a
 component selector. In other words, you have t o say "11.0.x" to
 use the constant "11.0". What should we do her e?

 RESOLVED: The NV_fragment_program_option gra mmar will correct
 this problem, which should be fixed in future revisions to the
 ARB language.

New Procedures and Functions

 None.

New Tokens

 None.

Additions to Chapter 2 of the OpenGL 1.2.1 Specific ation (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specific ation (Rasterization)

 Modify Section 3.11.2 of ARB_fragment_program (Fragment Program
 Grammar and Restrictions):

 (mostly add to existing grammar rules, modify a few existing grammar
 rules -- changes marked with "***")

 <optionName> ::= "NV_fragment_progra m"

 <TexInstruction> ::= <TXDop_instruction>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 227

 <VECTORop> ::= "DDX"
 | "DDY"
 | "PK2H"
 | "PK2US"
 | "PK4B"
 | "PK4UB"

 <SCALARop> ::= "UP2H"
 | "UP2US"
 | "UP4B"
 | "UP4UB"

 <BINop> ::= "RFL"
 | "SEQ"
 | "SFL"
 | "SGT"
 | "SLE"
 | "SNE"
 | "STR"

 <TRIop> ::= "X2D"

 <TXDop_instruction> ::= <TXDop> <instResult > "," <instOperandV> ","
 <instOperandV> "," <instOperandV> ","
 <texTarget>

 <TXDop> ::= "TXD"

 <killCond> ::= <ccTest>

 <instOperandV> ::= <instOperandAbsV>

 <instOperandAbsV> ::= <optSign> "|" <inst OperandBaseV> "|"

 <instOperandS> ::= <instOperandAbsS>

 <instOperandAbsS> ::= <optSign> "|" <inst OperandBaseS> "|"

 <instResult> ::= <instResultCC>

 <instResultCC> ::= <instResultBase> <c cMask>

 <TEMP_statement> ::= <varSize> "TEMP" <v arNameList>

 <OUTPUT_statement> ::= <varSize> "OUTPUT" <establishName> "="
 <resultUseD>

 <varSize> ::= "SHORT"
 | "LONG"

 <paramUseV> ::= <constantScalar>
 (*** instead of < constantScalar>
 <swizzleSuff ix>)

 <paramUseS> ::= <constantScalar>
 (*** instead of < constantScalar>
 <scalarSuffi x>)

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 228

 <ccMask> ::= "(" <ccTest> ")"

 <ccTest> ::= <ccMaskRule> <swizz leSuffix>

 <ccMaskRule> ::= "EQ"
 | "GE"
 | "GT"
 | "LE"
 | "LT"
 | "NE"
 | "TR"
 | "FL"

 (modify language describing reserved keywords) The following strings
 are reserved keywords and may not be used as id entifiers:

 ALIAS, ATTRIB, END, OPTION, OUTPUT, PARAM, TEMP, fragment,
 program, result, state, and texture.

 Additionally, all the instruction names (and va riants) listed in
 Table X.5 are reserved.

 Modify Section 3.11.3.3, Fragment Program Tempo raries

 (replace second paragraph) Fragment program tem porary variables
 can be declared explicitly using the <TEMP_stat ement> grammar
 rule. Each such statement can declare one or m ore temporaries.
 Temporary declaration can optionally specify a variable size,
 using the <varSize> grammar rule. Variables de clared as "SHORT"
 will represented with at least 16 bits per comp onent (5 bits of
 exponent, 10 bits of mantissa). Variables decl ared as "LONG" will be
 represented with at least 32 bits per component (8 bits of exponent,
 23 bits of mantissa). Fragment program tempora ry variables can not
 be declared implicitly.

 Modify Section 3.11.3.4, Fragment Program Resul ts

 (replace second paragraph) Fragment program res ult variables
 can be declared explicitly using the <OUTPUT_st atement> grammar
 rule, or implicitly using the <resultBinding> g rammar rule in an
 executable instruction. Explicit result variab le declaration can
 optionally specify a variable size, using the < varSize> grammar rule.
 Variables declared as "SHORT" will represented with at least 16
 bits per component (5 bits of exponent, 10 bits of mantissa).
 Variables declared as "LONG" will be represente d with at least
 32 bits per component (8 bits of exponent, 23 b its of mantissa).
 Each fragment program result variable is bound to a fragment attribute
 used in subsequent back-end processing. The se t of fragment program
 result variable bindings is given in Table X.3.

 (add to the end of a section) A fragment progra m will fail to load if
 contains instructions writing to variables boun d to the same result,
 but declared with different sizes.

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 229

 Add New Section 3.11.3.X, Condition Code Regist er (insert after
 Section 3.11.3.4, Fragment Program Results)

 The fragment program condition code register is a single
 four-component vector. Each component of this register is one of four
 enumerated values: GT (greater than), EQ (equal), LT (less than),
 or UN (unordered). The condition code register can be used to mask
 writes to registers and to evaluate conditional branches.

 Most fragment program instructions can optional ly update the condition
 code register. When a fragment program instruc tion updates the
 condition code register, a condition code compo nent is set to LT if
 the corresponding component of the result is le ss than zero, EQ if it
 is equal to zero, GT if it is greater than zero , and UN if it is NaN
 (not a number).

 The condition code register is initialized to a vector of EQ values
 each time a fragment program executes.

 Modify Section 3.11.4, Fragment Program Executi on Environment

 (modify instruction table) There are fifty-two fragment program
 instructions. Fragment program instructions ma y have up to sixteen
 variants, including a suffix of "R", "H", or "X " to specify arithmetic
 precision (section 3.11.4.X), a suffix of "C" t o allow an update
 of the condition code register (section 3.11.3. X), and a suffix of
 "_SAT" to clamp the result vector components to the range [0,1]
 (section 3.11.4.3). For example, the sixteen f orms of the "ADD"
 instruction are "ADD", "ADDR", "ADDH", "ADDX", "ADDC", "ADDRC",
 "ADDHC", "ADDXC", "ADD_SAT", "ADDR_SAT", "ADDH_ SAT", "ADDX_SAT",
 "ADDC_SAT", "ADDRC_SAT", "ADDHC_SAT", and "ADDX C_SAT".The instructions
 and their respective input and output parameter s are summarized in
 Table X.5.

 Modifiers
 Instr. R H X C S Inputs Output Descript ion
 ------- - - - - - ------ ------ -------- ------------------------
 ABS X X X X X v v absolute value
 ADD X X X X X v,v v add
 CMP - - - - X v,v,v v compare
 COS X X - X X s ssss cosine w ith reduction to [-PI,PI]
 DDX X X - X X v v partial derivative relative to X
 DDY X X - X X v v partial derivative relative to Y
 DP3 X X X X X v,v ssss 3-compon ent dot product
 DP4 X X X X X v,v ssss 4-compon ent dot product
 DPH X X X X X v,v ssss homogene ous dot product
 DST X X - X X v,v v distance vector
 EX2 X X - X X s ssss exponent ial base 2
 FLR X X X X X v v floor
 FRC X X X X X v v fraction
 KIL - - - - - v or c v kill fra gment
 LG2 X X - X X s ssss logarith m base 2
 LIT X X - X X v v compute light coefficients
 LRP X X X X X v,v,v v linear i nterpolation
 MAD X X X X X v,v,v v multiply and add
 MAX X X X X X v,v v maximum
 MIN X X X X X v,v v minimum

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 230

 Modifiers
 Instr. R H X C S Inputs Output Descript ion
 ------- - - - - - ------ ------ -------- ------------------------
 MOV X X X X X v v move
 MUL X X X X X v,v v multiply
 PK2H - - - - - v ssss pack two 16-bit floats
 PK2US - - - - - v ssss pack two unsigned 16-bit scalars
 PK4B - - - - - v ssss pack fou r signed 8-bit scalars
 PK4UB - - - - - v ssss pack fou r unsigned 8-bit scalars
 POW X X - X X s,s ssss exponent iate
 RCP X X - X X s ssss reciproc al
 RFL X X - X X v v reflecti on vector
 RSQ X X - X X s ssss reciproc al square root
 SCS - - - - X s ss-- sine/cos ine without reduction
 SEQ X X X X X v,v v set on e qual
 SFL X X X X X v,v v set on f alse
 SGE X X X X X v,v v set on g reater than or equal
 SGT X X X X X v,v v set on g reater than
 SIN X X - X X s ssss sine wit h reduction to [-PI,PI]
 SLE X X X X X v,v v set on l ess than or equal
 SLT X X X X X v,v v set on l ess than
 SNE X X X X X v,v v set on n ot equal
 STR X X X X X v,v v set on t rue
 SUB X X X X X v,v v subtract
 SWZ - - - - X v v extended swizzle
 TEX - - - X X v v texture sample
 TXB - - - X X v v texture sample with bias
 TXD - - - X X v,v,v v texture sample w/partials
 TXP - - - X X v v texture sample with projection
 UP2H - - - X X s v unpack t wo 16-bit floats
 UP2US - - - X X s v unpack t wo unsigned 16-bit scalars
 UP4B - - - X X s v unpack f our signed 8-bit scalars
 UP4UB - - - X X s v unpack f our unsigned 8-bit scalars
 X2D X X - X X v,v,v v 2D coord inate transformation
 XPD - - - - X v,v v cross pr oduct

 Table X.5: Summary of fragment program instr uctions. The columns
 "R", "H", "X", "C", and "S" indicate whether the "R", "H", or "X"
 precision modifiers, the C condition code upd ate modifier, and the
 "_SAT" saturation modifier, respectively, are supported for the
 opcode. In the input/output columns, "v" ind icates a floating-point
 vector input or output, "s" indicates a float ing-point scalar
 input, "ssss" indicates a scalar output repli cated across a
 4-component result vector, "ss--" indicates t wo scalar outputs in
 the first two components, and "c" indicates a condition code test.
 Instructions describe as "texture sample" als o specify a texture
 image unit identifier and a texture target.

 Modify Section 3.11.4.1, Fragment Program Opera nds

 (add prior to the discussion of negation) A com ponent-wise absolute
 value operation can optionally performed on the operand if the operand
 is surrounded with two "|" characters. For exa mple, "|src|" indicates
 that a component-wise absolute value operation should be performed on
 the variable named "src". In terms of the gram mar, this operation
 is performed if the <instOperandV> or <instOper andS> grammar rules
 match <instOperandAbsV> or <instOperandAbsS>, r espectively.

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 231

 (modify operand load pseudo-code) The following pseudo-code spells
 out the operand generation process. In the exa mple, "float" is a
 floating-point scalar type, while "floatVec" is a four-component
 vector. "source" refers to the register used f or the operand,
 matching the <srcReg> rule. "abs" is TRUE if a n absolute value
 operation should be performed on the operand (< instOperandAbsV> or
 <instOperandAbsS> rules) "negate" is TRUE if th e <optionalSign> rule
 in <scalarSrcReg> or <swizzleSrcReg> matches "- " and FALSE otherwise.
 The ".c***", ".*c**", ".**c*", ".***c" modifier s refer to the x,
 y, z, and w components obtained by the swizzle operation; the ".c"
 modifier refers to the single component selecte d for a scalar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (abs) {
 operand.x = abs(operand.x);
 operand.y = abs(operand.y);
 operand.z = abs(operand.z);
 operand.w = abs(operand.w);
 }
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (abs) {
 operand = abs(operand);
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

 Add New Section 3.11.4.X, Fragment Program Oper ation Precision
 (insert after Section 3.11.4,2, Fragment Progra m Parameter Arrays)

 Fragment program implementations may be able to perform instructions
 with different levels of arithmetic precision. The "R", "H", and
 "X" opcode precision modifiers (Section 3.11.4) specify the minimum

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 232

 precision used to perform arithmetic operations . Instructions with
 an "R" precision modifiers will be carried out at no less than
 IEEE single-precision floating-point (8 bits of exponent, 23 bits
 of mantissa). Instructions with an "H" precisi on modifier will
 be carried out at no less than 16-bit floating- point precision (5
 bits of exponent, 10 bits of mantissa). Instru ctions with an "X"
 precision modifier will be carried out at no le ss than signed 12-bit
 fixed-point precision (two's complement with 10 fraction bits).

 If the result of a computation overflows the ra nge of numbers
 supported by the instruction precision, the res ult will be +/-INF
 (infinity) for "R" and "H" precision, or -2048/ 1024 or +2047/1024 for
 "X" precision.

 If no precision modifier is specified, the inst ruction will be carried
 out with at least as much precision as the dest ination variable.

 Rewrite Section 3.11.4.3, Fragment Program Des tination Register
 Update

 Most fragment program instructions write a 4-co mponent result vector
 to a single temporary or fragment result regist er. Writes to
 individual components of the destination regist er are controlled
 by individual component write masks specified a s part of the
 instruction.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "",
 all components are enabled. Otherwise, the opt ional mask names
 the individual components to enable. The chara cters "x", "y",
 "z", and "w" match the x, y, z, and w component s, respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be enabled for writing but the y component
 should not. The grammar requires that the dest ination register mask
 components must be listed in "xyzw" order.

 The condition code write mask is specified by t he <ccMask> rule found
 in the <instResultCC> rule. The condition code register is loaded and
 swizzled according to the swizzle codes specifi ed by <swizzleSuffix>.
 Each component of the swizzled condition code i s tested according to
 the rule given by <ccMaskRule>. <ccMaskRule> m ay have the values
 "EQ", "NE", "LT", "GE", LE", or "GT", which mea n to enable writes
 if the corresponding condition code field evalu ates to equal,
 not equal, less than, greater than or equal, le ss than or equal,
 or greater than, respectively. Comparisons inv olving condition
 codes of "UN" (unordered) evaluate to true for "NE" and false
 otherwise. For example, if the condition code is (GT,LT,EQ,GT)
 and the condition code mask is "(NE.zyxw)", the swizzle operation
 will load (EQ,LT,GT,GT) and the mask will thus will enable writes on
 the y, z, and w components. In addition, "TR" always enables writes
 and "FL" always disables writes, regardless of the condition code.
 If the condition code mask is empty, it is trea ted as "(TR)".

 Each component of the destination register is u pdated with the result
 of the fragment program instruction if and only if the component is
 enabled for writes by both the component write mask and the condition

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 233

 code write mask. Otherwise, the component of t he destination register
 remains unchanged.

 A fragment program instruction can also optiona lly update the
 condition code register. The condition code is updated if
 the condition code register update suffix "C" i s present in the
 instruction. The instruction "ADDC" will updat e the condition code;
 the otherwise equivalent instruction "ADD" will not. If condition
 code updates are enabled, each component of the destination register
 enabled for writes is compared to zero. The co rresponding component
 of the condition code is set to "LT", "EQ", or "GT", if the written
 component is less than, equal to, or greater th an zero, respectively.
 Condition code components are set to "UN" if th e written component is
 NaN (not a number). Values of -0.0 and +0.0 bo th evaluate to "EQ".
 If a component of the destination register is n ot enabled for writes,
 the corresponding condition code component is a lso unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the
 condition code to (LT,EQ,GT,UN). The second in struction, only the
 "x", "y", and "z" components of R0 and the cond ition code are updated,
 so R0 ends up with (0,2,NaN,NaN) and the condit ion code ends up with
 (EQ,GT,UN,UN). In the third instruction, the c ondition code mask
 disables writes to the x component (its conditi on code field is "EQ"),
 so R0 ends up with (0,0,NaN,-2) and the conditi on code ends up with
 (EQ,EQ,UN,LT).

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask"
 refers to the component write mask given by the <optWriteMask>
 rule. "ccMaskRule" refers to the condition cod e mask rule given
 by <ccMask> and "updatecc" is TRUE if and only if condition code
 updates are enabled. "result", "destination", and "cc" refer to
 the result vector, the register selected by <ds tRegister> and the
 condition code, respectively. Condition codes do not exist in the
 VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 234

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 Add to Section 3.11.4.5 of ARB_fragment_program (Fragment Program
 Options):

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 235

 Section 3.11.4.5.3, NV_fragment_program Option

 If a fragment program specifies the "NV_fragmen t_program" option,
 the grammar will be extended to support the fea tures found in the
 NV_fragment_program extension not present in th e ARB_fragment_program
 extension, including:

 * the availability of the following instructi ons:

 - DDX (partial derivative relative to X),
 - DDY (partial derivative relative to Y),
 - PK2H (pack as two half floats),
 - PK2US (pack as two unsigned shorts),
 - PK4B (pack as four signed bytes),
 - PK4UB (pack as four unsigned bytes),
 - RFL (reflection vector),
 - SEQ (set on equal to),
 - SFL (set on false),
 - SGT (set on greater than),
 - SLE (set on less than or equal to),
 - SNE (set on not equal to),
 - STR (set on true),
 - TXD (texture lookup with computed parti al derivatives),
 - UP2H (unpack two half floats),
 - UP2US (unpack two unsigned shorts),
 - UP4B (unpack four signed bytes),
 - UP4UB (unpack four unsigned bytes), and
 - X2D (2D coordinate transformation),

 * opcode precision suffixes "R", "H", and "X" , to specify
 the precision of arithmetic operations ("R" specifies 32-bit
 floating-point computations, "H" specifies 16-bit floating-point
 computations, and "X" specifies 12-bit sign ed fixed-point
 computations with 10 fraction bits),

 * the availability of the "SHORT" and "LONG" variable precision
 keywords to control the size of a variable' s components,

 * a four-component condition code register to hold the sign of
 result vector components (useful for compar isons),

 * a condition code update opcode suffix "C", where the results of
 the instruction are used to update the cond ition code register,

 * a condition code write mask operator, where the condition code
 register is swizzled and tested, and the te st results are used
 to mask register writes,

 * an absolute value operator on scalar and sw izzled source inputs

 The added functionality is identical to that pr ovided by the
 NV_fragment_program extension specification.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 236

 Modify Section 3.11.5, Fragment Program ALU In struction Set

 Section 3.11.5.30, DDX: Derivative Relative t o X

 The DDX instruction computes approximate partia l derivatives of the
 four components of the single operand with resp ect to the X window
 coordinate to yield a result vector. The parti al derivatives are
 evaluated at the center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialX(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may
 not yield accurate second derivatives.

 Section 3.11.5.31, DDY: Derivative Relative t o Y

 The DDY instruction computes approximate partia l derivatives of the
 four components of the single operand with resp ect to the Y window
 coordinate to yield a result vector. The parti al derivatives are
 evaluated at the center of the pixel.

 f = VectorLoad(op0);
 result = ComputePartialY(f);

 Note that the partial derivates obtained by thi s instruction are
 approximate, and derivative-of-derivate instruc tion sequences may
 not yield accurate second derivatives.

 Section 3.11.5.32, PK2H: Pack Two 16-bit Floa ts

 The PK2H instruction converts the "x" and "y" c omponents of
 the single operand into 16-bit floating-point f ormat, packs the
 bit representation of these two floats into a 3 2-bit value, and
 replicates that value to all four components of the result vector.
 The PK2H instruction can be reversed by the UP2 H instruction below.

 tmp0 = VectorLoad(op0);
 /* result obtained by combining raw bits of t mp0.x, tmp0.y */
 result.x = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.y = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.z = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);
 result.w = RawBits(tmp0.x) | (RawBits(tmp0.y) << 16);

 A fragment program will fail to load if it cont ains a PK2H instruction
 that writes its results to a variable declared as "SHORT".

 Section 3.11.5.33, PK2US: Pack Two Unsigned 1 6-bit Scalars

 The PK2US instruction converts the "x" and "y" components of the
 single operand into a packed pair of 16-bit uns igned scalars.
 The scalars are represented in a bit pattern wh ere all '0' bits
 corresponds to 0.0 and all '1' bits corresponds to 1.0. The bit
 representations of the two converted components are packed into a
 32-bit value, and that value is replicated to a ll four components

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 237

 of the result vector. The PK2US instruction ca n be reversed by the
 UP2US instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 us.x = round(65535.0 * tmp0.x); /* us is a u short vector */
 us.y = round(65535.0 * tmp0.y);
 /* result obtained by combining raw bits of u s. */
 result.x = ((us.x) | (us.y << 16));
 result.y = ((us.x) | (us.y << 16));
 result.z = ((us.x) | (us.y << 16));
 result.w = ((us.x) | (us.y << 16));

 A fragment program will fail to load if it cont ains a PK2S instruction
 that writes its results to a variable declared as "SHORT".

 Section 3.11.5.34, PK4B: Pack Four Signed 8-b it Scalars

 The PK4B instruction converts the four componen ts of the single
 operand into 8-bit signed quantities. The sign ed quantities
 are represented in a bit pattern where all '0' bits corresponds
 to -128/127 and all '1' bits corresponds to +12 7/127. The bit
 representations of the four converted component s are packed into a
 32-bit value, and that value is replicated to a ll four components
 of the result vector. The PK4B instruction can be reversed by the
 UP4B instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < -128/127) tmp0.x = -128/127;
 if (tmp0.y < -128/127) tmp0.y = -128/127;
 if (tmp0.z < -128/127) tmp0.z = -128/127;
 if (tmp0.w < -128/127) tmp0.w = -128/127;
 if (tmp0.x > +127/127) tmp0.x = +127/127;
 if (tmp0.y > +127/127) tmp0.y = +127/127;
 if (tmp0.z > +127/127) tmp0.z = +127/127;
 if (tmp0.w > +127/127) tmp0.w = +127/127;
 ub.x = round(127.0 * tmp0.x + 128.0); /* ub is a ubyte vector */
 ub.y = round(127.0 * tmp0.y + 128.0);
 ub.z = round(127.0 * tmp0.z + 128.0);
 ub.w = round(127.0 * tmp0.w + 128.0);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 A fragment program will fail to load if it cont ains a PK4B instruction
 that writes its results to a variable declared as "SHORT".

 Section 3.11.5.35, PK4UB: Pack Four Unsigned 8-bit Scalars

 The PK4UB instruction converts the four compone nts of the single
 operand into a packed grouping of 8-bit unsigne d scalars. The scalars
 are represented in a bit pattern where all '0' bits corresponds to

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 238

 0.0 and all '1' bits corresponds to 1.0. The b it representations
 of the four converted components are packed int o a 32-bit value, and
 that value is replicated to all four components of the result vector.
 The PK4UB instruction can be reversed by the UP 4UB instruction below.

 tmp0 = VectorLoad(op0);
 if (tmp0.x < 0.0) tmp0.x = 0.0;
 if (tmp0.x > 1.0) tmp0.x = 1.0;
 if (tmp0.y < 0.0) tmp0.y = 0.0;
 if (tmp0.y > 1.0) tmp0.y = 1.0;
 if (tmp0.z < 0.0) tmp0.z = 0.0;
 if (tmp0.z > 1.0) tmp0.z = 1.0;
 if (tmp0.w < 0.0) tmp0.w = 0.0;
 if (tmp0.w > 1.0) tmp0.w = 1.0;
 ub.x = round(255.0 * tmp0.x); /* ub is a uby te vector */
 ub.y = round(255.0 * tmp0.y);
 ub.z = round(255.0 * tmp0.z);
 ub.w = round(255.0 * tmp0.w);
 /* result obtained by combining raw bits of u b. */
 result.x = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.y = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.z = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));
 result.w = ((ub.x) | (ub.y << 8) | (ub.z << 1 6) | (ub.w << 24));

 A fragment program will fail to load if it cont ains a PK4UB
 instruction that writes its results to a variab le declared as
 "SHORT".

 Section 3.11.5.36, RFL: Reflection Vector

 The RFL instruction computes the reflection of the second vector
 operand (the "direction" vector) about the vect or specified by the
 first vector operand (the "axis" vector). Both operands are treated
 as 3D vectors (the w components are ignored). The result vector is
 another 3D vector (the "reflected direction" ve ctor). The length
 of the result vector, ignoring rounding errors, should equal that
 of the second operand.

 axis = VectorLoad(op0);
 direction = VectorLoad(op1);
 tmp.w = (axis.x * axis.x + axis.y * axis.y +
 axis.z * axis.z);
 tmp.x = (axis.x * direction.x + axis.y * dire ction.y +
 axis.z * direction.z);
 tmp.x = 2.0 * tmp.x;
 tmp.x = tmp.x / tmp.w;
 result.x = tmp.x * axis.x - direction.x;
 result.y = tmp.x * axis.y - direction.y;
 result.z = tmp.x * axis.z - direction.z;

 A fragment program will fail to load if the w c omponent of the result
 is enabled in the component write mask.

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 239

 Section 3.11.5.37, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is equal to that of
 the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;

 Section 3.11.5.38, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

 Section 3.11.5.39, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operands i s greater than that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;

 Section 3.11.5.40, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is less than or equal
 to that of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 240

 Section 3.11.5.41, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is not equal to that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;

 Section 3.11.5.42, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

 Section 3.11.5.43, UP2H: Unpack Two 16-Bit Fl oats

 The UP2H instruction unpacks two 16-bit floats stored together in
 a 32-bit scalar operand. The first 16-bit floa t (stored in the 16
 least significant bits) is written into the "x" and "z" components
 of the result vector; the second is written int o the "y" and "w"
 components of the result vector.

 This operation undoes the type conversion and p acking performed by
 the PK2H instruction.

 tmp = ScalarLoad(op0);
 result.x = (fp16) (RawBits(tmp) & 0xFFFF);
 result.y = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);
 result.z = (fp16) (RawBits(tmp) & 0xFFFF);
 result.w = (fp16) ((RawBits(tmp) >> 16) & 0xF FFF);

 A fragment program will fail to load if it cont ains a UP2H instruction
 whose operand is a variable declared as "SHORT" .

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 241

 Section 3.11.5.44, UP2US: Unpack Two Unsigned 16-Bit Scalars

 The UP2US instruction unpacks two 16-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and
 a pattern of all '1' bits corresponds to 1.0. The "x" and "z"
 components of the result vector are obtained fr om the 16 least
 significant bits of the operand; the "y" and "w " components are
 obtained from the 16 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK2US instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.y = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;
 result.z = ((RawBits(tmp) >> 0) & 0xFFFF) / 65535.0;
 result.w = ((RawBits(tmp) >> 16) & 0xFFFF) / 65535.0;

 A fragment program will fail to load if it cont ains a UP2S instruction
 whose operand is a variable declared as "SHORT" .

 Section 3.11.5.45, UP4B: Unpack Four Signed 8 -Bit Values

 The UP4B instruction unpacks four 8-bit signed values packed together
 in a 32-bit scalar operand. The signed quantit ies are encoded where
 a bit pattern of all '0' bits corresponds to -1 28/127 and a pattern
 of all '1' bits corresponds to +127/127. The " x" component of the
 result vector is the converted value correspond ing to the 8 least
 significant bits of the operand; the "w" compon ent corresponds to
 the 8 most significant bits.

 This operation undoes the type conversion and p acking performed by
 the PK4B instruction.

 tmp = ScalarLoad(op0);
 result.x = (((RawBits(tmp) >> 0) & 0xFF) - 12 8) / 127.0;
 result.y = (((RawBits(tmp) >> 8) & 0xFF) - 12 8) / 127.0;
 result.z = (((RawBits(tmp) >> 16) & 0xFF) - 1 28) / 127.0;
 result.w = (((RawBits(tmp) >> 24) & 0xFF) - 1 28) / 127.0;

 A fragment program will fail to load if it cont ains a UP4B instruction
 whose operand is a variable declared as "SHORT" .

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 242

 Section 3.11.5.46, UP4UB: Unpack Four Unsigne d 8-Bit Scalars

 The UP4UB instruction unpacks four 8-bit unsign ed values packed
 together in a 32-bit scalar operand. The unsig ned quantities are
 encoded where a bit pattern of all '0' bits cor responds to 0.0 and a
 pattern of all '1' bits corresponds to 1.0. Th e "x" component of the
 result vector is obtained from the 8 least sign ificant bits of the
 operand; the "w" component is obtained from the 8 most significant
 bits.

 This operation undoes the type conversion and p acking performed by
 the PK4UB instruction.

 tmp = ScalarLoad(op0);
 result.x = ((RawBits(tmp) >> 0) & 0xFF) / 25 5.0;
 result.y = ((RawBits(tmp) >> 8) & 0xFF) / 25 5.0;
 result.z = ((RawBits(tmp) >> 16) & 0xFF) / 25 5.0;
 result.w = ((RawBits(tmp) >> 24) & 0xFF) / 25 5.0;

 A fragment program will fail to load if it cont ains a UP4UB
 instruction whose operand is a variable declare d as "SHORT".

 Section 3.11.5.47, X2D: 2D Coordinate Transfo rmation

 The X2D instruction multiplies the 2D offset ve ctor specified by the
 "x" and "y" components of the second vector ope rand by the 2x2 matrix
 specified by the four components of the third v ector operand, and adds
 the transformed offset vector to the 2D vector specified by the "x"
 and "y" components of the first vector operand. The first component
 of the sum is written to the "x" and "z" compon ents of the result;
 the second component is written to the "y" and "w" components of
 the result.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.y = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;
 result.z = tmp0.x + tmp1.x * tmp2.x + tmp1.y * tmp2.y;
 result.w = tmp0.y + tmp1.x * tmp2.z + tmp1.y * tmp2.w;

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 243

 Modify Section, 3.11.6.4 KIL: Kill fragment

 Rather than mapping a coordinate set to a color , this function
 prevents a fragment from receiving any future p rocessing. If any
 component of its source vector is negative, the processing of this
 fragment will be discontinued and no further ou tputs to this fragment
 will occur. Subsequent stages of the GL pipeli ne will be skipped
 for this fragment.

 A KIL instruction may be specified using either a vector operand
 or a condition code test. If a vector operand is specified, the
 following is performed:

 tmp = VectorLoad(op0);
 if ((tmp.x < 0) || (tmp.y < 0) ||
 (tmp.z < 0) || (tmp.w < 0))
 {
 exit;
 }

 If a condition code is specified, the following is performed:

 if (TestCC(rc.c***) || TestCC(rc.*c**) ||
 TestCC(rc.**c*) || TestCC(rc.***c))
 {
 exit;
 }

 Add Section 3.11.6.5, TXD: Texture Lookup with Derivatives

 The TXD instruction takes the first three compo nents of its first
 vector operand and maps them to s, t, and r. T hese coordinates are
 used to sample from the specified texture targe t on the specified
 texture image unit in a manner consistent with its parameters.

 The level of detail is computed as specified in section 3.8.
 In this calculation, ds/dx, dt/dx, and dr/dx ar e given by the x,
 y, and z components, respectively, of the secon d vector operand.
 ds/dy, dt/dy, and dr/dy are given by the x, y, and z components of
 the third vector operand.

 The resulting sample is mapped to RGBA as descr ibed in table 3.21
 and written to the result vector.

 tmp = VectorLoad(op0);
 result = TextureSample(tmp.x, tmp.y, tmp.z, 0 .0, op1, op2);

Additions to Chapter 4 of the OpenGL 1.2.1 Specific ation (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.2.1 Specific ation (Special
Functions)

 None.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 244

Additions to Chapter 6 of the OpenGL 1.2.1 Specific ation (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.2.1 Specifi cation (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_fragment_program

 This specification is based on a modified versi on of the grammar
 published in the ARB_fragment_program specifica tion. This modified
 grammar (see below) includes a few structural c hanges to better
 accommodate new functionality from this and oth er extensions,
 but should be functionally equivalent to the AR B_fragment_program
 grammar.

 <program> ::= <optionSequence> <s tatementSequence> "END"

 <optionSequence> ::= <optionSequence> <o ption>
 | /* empty */

 <option> ::= "OPTION" <optionNam e> ";"

 <optionName> ::= "ARB_fog_exp"
 | "ARB_fog_exp2"
 | "ARB_fog_linear"
 | "ARB_precision_hint _fastest"
 | "ARB_precision_hint _nicest"

 <statementSequence> ::= <statement> <statem entSequence>
 | /* empty */

 <statement> ::= <instruction> ";"
 | <namingStatement> " ;"

 <instruction> ::= <ALUInstruction>
 | <TexInstruction>

 <ALUInstruction> ::= <VECTORop_instructi on>
 | <SCALARop_instructi on>
 | <BINSCop_instructio n>
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZop_instruction>

 <TexInstruction> ::= <TEXop_instruction>
 | <KILop_instruction>

 <VECTORop_instruction> ::= <VECTORop> <instRes ult> "," <instOperandV>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 245

 <VECTORop> ::= "ABS"
 | "FLR"
 | "FRC"
 | "LIT"
 | "MOV"

 <SCALARop_instruction> ::= <SCALARop> <instRes ult> "," <instOperandS>

 <SCALARop> ::= "COS"
 | "EX2"
 | "LG2"
 | "RCP"
 | "RSQ"
 | "SCS"
 | "SIN"

 <BINSCop_instruction> ::= <BINSCop> <instResu lt> "," <instOperandS> ","
 <instOperandS>

 <BINSCop> ::= "POW"

 <BINop_instruction> ::= <BINop> <instResult > "," <instOperandV> ","
 <instOperandV>

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | "SUB"
 | "XPD"

 <TRIop_instruction> ::= <TRIop> <instResult > "," <instOperandV> ","
 <instOperandV> "," <instOperandV>

 <TRIop> ::= "CMP"
 | "MAD"
 | "LRP"

 <SWZop_instruction> ::= <SWZop> <instResult > "," <instOperandVNS> ","
 <extendedSwizzle>

 <SWZop> ::= "SWZ"

 <TEXop_instruction> ::= <TEXop> <instResult > "," <instOperandV> ","
 <texTarget>

 <TEXop> ::= "TEX"
 | "TXP"
 | "TXB"

 <KILop_instruction> ::= <KILop> <killCond>

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 246

 <KILop> ::= "KIL"

 <texTarget> ::= <texImageUnit> "," <texTargetType>

 <texImageUnit> ::= "texture" <optTexIm ageUnitNum>

 <optTexImageUnitNum> ::= /* empty */
 | "[" <texImageUnitNu m> "]"

 <texImageUnitNum> ::= <integer>
 /*[0,MAX_TEXTURE_IM AGE_UNITS_ARB-1]*/

 <texTargetType> ::= "1D"
 | "2D"
 | "3D"
 | "CUBE"
 | "RECT"

 <killCond> ::= <instOperandV>

 <instOperandV> ::= <instOperandBaseV>

 <instOperandBaseV> ::= <optSign> <attribUs eV>
 | <optSign> <tempUseV >
 | <optSign> <paramUse V>

 <instOperandS> ::= <instOperandBaseS>

 <instOperandBaseS> ::= <optSign> <attribUs eS>
 | <optSign> <tempUseS >
 | <optSign> <paramUse S>

 <instOperandVNS> ::= <attribUseVNS>
 | <tempUseVNS>
 | <paramUseVNS>

 <instResult> ::= <instResultBase>

 <instResultBase> ::= <tempUseW>
 | <resultUseW>

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establish Name> "=" <attribUseD>

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt >

 <PARAM_singleStmt> ::= "PARAM" <establishN ame> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishN ame> "[" <optArraySize> "]"
 <paramMultipleInit>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 247

 <optArraySize> ::= /* empty */
 | <integer> /* [1,MAX _PROGRAM_PARAMETERS_ARB]*/

 <paramSingleInit> ::= "=" <paramUseDB>

 <paramMultipleInit> ::= "=" "{" <paramMultI nitList> "}"

 <paramMultInitList> ::= <paramUseDM>
 | <paramUseDM> "," <p aramMultInitList>

 <TEMP_statement> ::= "TEMP" <varNameList >

 <OUTPUT_statement> ::= "OUTPUT" <establish Name> "=" <resultUseD>

 <ALIAS_statement> ::= "ALIAS" <establishN ame> "=" <establishedName>

 <establishedName> ::= <tempVarName>
 | <addrVarName>
 | <attribVarName>
 | <paramArrayVarName>
 | <paramSingleVarName >
 | <resultVarName>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

 <establishName> ::= <identifier>

 <attribUseV> ::= <attribBasic> <swiz zleSuffix>
 | <attribVarName> <sw izzleSuffix>
 | <attribColor> <swiz zleSuffix>
 | <attribColor> "." < colorType> <swizzleSuffix>

 <attribUseS> ::= <attribBasic> <scal arSuffix>
 | <attribVarName> <sc alarSuffix>
 | <attribColor> <scal arSuffix>
 | <attribColor> "." < colorType> <scalarSuffix>

 <attribUseVNS> ::= <attribBasic>
 | <attribVarName>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribUseD> ::= <attribBasic>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribBasic> ::= "fragment" "." <att ribFragBasic>

 <attribFragBasic> ::= "texcoord" <optTexC oordNum>
 | "fogcoord"
 | "position"

 <attribColor> ::= "fragment" "." "col or"

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 248

 <paramUseV> ::= <paramSingleVarName > <swizzleSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <swizzleSuffix>
 | <stateSingleItem> < swizzleSuffix>
 | <programSingleItem> <swizzleSuffix>
 | <constantVector> <s wizzleSuffix>
 | <constantScalar> <s wizzleSuffix>

 <paramUseS> ::= <paramSingleVarName > <scalarSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <scalarSuffix>
 | <stateSingleItem> < scalarSuffix>
 | <programSingleItem> <scalarSuffix>
 | <constantVector> <s calarSuffix>
 | <constantScalar> <s calarSuffix>

 <paramUseVNS> ::= <paramSingleVarName >
 | <paramArrayVarName> "[" <arrayMem> "]"
 | <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <constantScalar>

 <paramUseDB> ::= <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <signedConstantScal ar>

 <paramUseDM> ::= <stateMultipleItem>
 | <programMultipleIte m>
 | <constantVector>
 | <signedConstantScal ar>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateM atrixRows>

 <stateSingleItem> ::= "state" "." <stateM aterialItem>
 | "state" "." <stateL ightItem>
 | "state" "." <stateL ightModelItem>
 | "state" "." <stateL ightProdItem>
 | "state" "." <stateF ogItem>
 | "state" "." <stateM atrixRow>
 | "state" "." <stateT exEnvItem>
 | "state" "." <stateD epthItem>

 <stateMaterialItem> ::= "material" "." <sta teMatProperty>
 | "material" "." <fac eType> "."
 <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" "[" <stateL ightNumber> "]" "."
 <stateLightProperty >

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 249

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSp otProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" <state LModProperty>

 <stateLModProperty> ::= "." "ambient"
 | "." "scenecolor"
 | "." <faceType> "." "scenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <st ateLightNumber> "]" "."
 <stateLProdProperty >
 | "lightprod" "[" <st ateLightNumber> "]" "."
 <faceType> "." <sta teLProdProperty>

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> /* [0,MAX _LIGHTS-1] */

 <stateFogItem> ::= "fog" "." <stateFog Property>

 <stateFogProperty> ::= "color"
 | "params"

 <stateMatrixRows> ::= <stateMatrixItem>
 | <stateMatrixItem> " ." <stateMatModifier>
 | <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> ".." <stateMatrixRowNum>
 "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> ".."
 <stateMatrixRowNum> "]"

 <stateMatrixRow> ::= <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> "]"

 <stateMatrixItem> ::= "matrix" "." <state MatrixName>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 250

 <stateMatrixName> ::= "modelview" <stateO ptModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCo ordNum>
 | "palette" "[" <stat ePaletteMatNum> "]"
 | "program" "[" <stat eProgramMatNum> "]"

 <stateMatrixRowNum> ::= <integer> /* [0,3] */

 <stateOptModMatNum> ::= /* empty */
 | "[" <stateModMatNum > "]"

 <stateModMatNum> ::= <integer> /*[0,MAX_ VERTEX_UNITS_ARB-1]*/

 <statePaletteMatNum> ::= <integer> /*[0,MAX_ PALETTE_MATRICES_ARB-1]*/

 <stateProgramMatNum> ::= <integer> /*[0,MAX_ PROGRAM_MATRICES_ARB-1]*/

 <stateTexEnvItem> ::= "texenv" <optLegacy TexUnitNum> "."
 <stateTexEnvPropert y>

 <stateTexEnvProperty> ::= "color"

 <stateDepthItem> ::= "depth" "." <stateD epthProperty>

 <stateDepthProperty> ::= "range"

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env" "[" <progEnvParamNums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> " .." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env" "[" <progEnvParamNum> "]"

 <progLocalParams> ::= "program" "." "loca l" "[" <progLocalParamNums>
 "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "loca l" "[" <progLocalParamNum>
 "]"

 <progEnvParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_EN V_PARAMETERS_ARB-1]*/

 <progLocalParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_LO CAL_PARAMETERS_ARB-1]*/

 <constantVector> ::= "{" <constantVector List> "}"

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 251

 <constantVectorList> ::= <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>

 <signedConstantScalar> ::= <optSign> <constant Scalar>

 <constantScalar> ::= <floatConstant>

 <floatConstant> ::= <float>

 <tempUseV> ::= <tempVarName> <swiz zleSuffix>

 <tempUseS> ::= <tempVarName> <scal arSuffix>

 <tempUseVNS> ::= <tempVarName>

 <tempUseW> ::= <tempVarName> <optW riteMask>

 <resultUseW> ::= <resultBasic> <optW riteMask>
 | <resultVarName> <op tWriteMask>

 <resultUseD> ::= <resultBasic>

 <resultBasic> ::= "result" "." <resul tFragBasic>

 <resultFragBasic> ::= "color" <resultOptC olorNum>
 | "depth"

 <resultOptColorNum> ::= /* empty */

 <arrayMem> ::= <arrayMemAbs>

 <arrayMemAbs> ::= <integer>

 <optWriteMask> ::= /* empty */
 | <xyzwMask>
 | <rgbaMask>

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 252

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"
 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <rgbaMask> ::= "." "r"
 | "." "g"
 | "." "rg"
 | "." "b"
 | "." "rb"
 | "." "gb"
 | "." "rgb"
 | "." "a"
 | "." "ra"
 | "." "ga"
 | "." "rga"
 | "." "ba"
 | "." "rba"
 | "." "gba"
 | "." "rgba"

 <swizzleSuffix> ::= /* empty */
 | "." <component>
 | "." <xyzwComponent> <xyzwComponent>
 <xyzwComponent> <xy zwComponent>
 | "." <rgbaComponent> <rgbaComponent>
 <rgbaComponent> <rg baComponent>

 <extendedSwizzle> ::= <extSwizComp> "," < extSwizComp> ","
 <extSwizComp> "," < extSwizComp>

 <extSwizComp> ::= <optSign> <xyzwExtS wizSel>
 | <optSign> <rgbaExtS wizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <rgbaExtSwizSel> ::= <rgbaComponent>

 <scalarSuffix> ::= "." <component>

 <component> ::= <xyzwComponent>
 | <rgbaComponent>

NVIDIA OpenGL Extension Specifications NV_fragment_program_option

 253

 <xyzwComponent> ::= "x"
 | "y"
 | "z"
 | "w"

 <rgbaComponent> ::= "r"
 | "g"
 | "b"
 | "a"

 <optSign> ::= /* empty */
 | "-"
 | "+"

 <faceType> ::= "front"
 | "back"

 <colorType> ::= "primary"
 | "secondary"

 <optTexCoordNum> ::= /* empty */
 | "[" <texCoordNum> "]"

 <texCoordNum> ::= <integer> /*[0,MAX_ TEXTURE_COORDS_ARB-1]*/

 <optLegacyTexUnitNum> ::= /* empty */
 | "[" <legacyTexUnitN um> "]"

 <legacyTexUnitNum> ::= <integer> /*[0,MAX_ TEXTURE_UNITS-1]*/

 The <integer>, <float>, and <identifier> gramma r rules match
 integer constants, floating point constants, an d identifier names
 as described in the ARB_vertex_program specific ation. The <float>
 grammar rule here is identical to the <floatCon stant> grammar rule
 in ARB_vertex_program.

 The grammar rules <tempVarName>, <addrVarName>, <attribVarName>,
 <paramArrayVarName>, <paramSingleVarName>, <res ultVarName> refer
 to the names of temporary, address register, at tribute, program
 parameter array, program parameter, and result variables declared
 in the program text.

GLX Protocol

 None.

Errors

 None.

New State

 None.

NV_fragment_program_option NVIDIA OpenGL Extension Specifications

 254

Revision History

 Rev. Date Author Changes
 ---- -------- ------- ---------------------- ----------------------
 2 05/16/04 pbrown Documented terminals i n modified fragment
 program grammar.

 1 -------- pbrown Internal pre-release r evisions.

NVIDIA OpenGL Extension Specifications NV_half_float

 255

Name

 NV_half_float

Name Strings

 GL_NV_half_float

Notice

 Copyright NVIDIA Corporation, 2001-2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: 02/25/2004
 NVIDIA Revision: 9

Number

 283

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

 OpenGL 1.1 is required.

 NV_float_buffer affects the definition of this extension.

 EXT_fog_coord affects the definition of this ex tension.

 EXT_secondary_color affects the definition of t his extension.

 EXT_vertex_weighting affects the definition of this extension.

 NV_vertex_program affects the definition of thi s extension.

Overview

 This extension introduces a new storage format and data type for
 half-precision (16-bit) floating-point quantiti es. The floating-point
 format is very similar to the IEEE single-preci sion floating-point
 standard, except that it has only 5 exponent bi ts and 10 mantissa bits.
 Half-precision floats are smaller than full pre cision floats and provide a
 larger dynamic range than similarly-sized norma lized scalar data types.

 This extension allows applications to use half- precision floating point
 data when specifying vertices or pixel data. I t adds new commands to

NV_half_float NVIDIA OpenGL Extension Specifications

 256

 specify vertex attributes using the new data ty pe, and extends the
 existing vertex array and image specification c ommands to accept the new
 data type.

 This storage format is also used to represent 1 6-bit components in the
 floating-point frame buffers, as defined in the NV_float_buffer extension.

Issues

 What should the new data type be called? "half "? "hfloat"? In addition,
 what should the immediate mode function suffix be? "h"? "hf"?

 RESOLVED: half and "h". This convention b uilds on the convention of
 using the type "double" to describe double- precision floating-point
 numbers. Here, "half" will refer to half-p recision floating-point
 numbers.

 Even though the 16-bit float data type is a first-class data type, it
 is still more problematic than the other ty pes in the sense that no
 native programming languages support the da ta type. "hfloat/hf" would
 have reflected a second-class status better than "half/h".

 Both names are not without conflicting prec edents. The name "half" is
 used to connote 16-bit scalar values on som e 32-bit CPU architectures
 (e.g., PowerPC). The name "hfloat" has bee n used to describe 128-bit
 floating-point data on VAX systems.

 Should we provide immediate-mode entry points f or half-precision
 floating-point data types?

 RESOLVED: Yes, for orthogonality. Also us eful as a fallback for the
 "general" case for ArrayElement.

 Should we support half-precision floating-point color index data?

 RESOLVED: No.

 Should half-precision data be accepted by all c ommands that accept pixel
 data or only a subset?

 RESOLVED: All functions. Note that some t extures or frame buffers
 may store the half-precision floating-point data natively.

 Since half float data would be accepted in some cases, it will be
 necessary for drivers to provide some data conversion code. This code
 can be reused to handle the less common com mands.

NVIDIA OpenGL Extension Specifications NV_half_float

 257

New Procedures and Functions

 void Vertex2hNV(half x, half y);
 void Vertex2hvNV(const half *v);
 void Vertex3hNV(half x, half y, half z);
 void Vertex3hvNV(const half *v);
 void Vertex4hNV(half x, half y, half z, half w) ;
 void Vertex4hvNV(const half *v);
 void Normal3hNV(half nx, half ny, half nz);
 void Normal3hvNV(const half *v);
 void Color3hNV(half red, half green, half blue) ;
 void Color3hvNV(const half *v);
 void Color4hNV(half red, half green, half blue, half alpha);
 void Color4hvNV(const half *v);
 void TexCoord1hNV(half s);
 void TexCoord1hvNV(const half *v);
 void TexCoord2hNV(half s, half t);
 void TexCoord2hvNV(const half *v);
 void TexCoord3hNV(half s, half t, half r);
 void TexCoord3hvNV(const half *v);
 void TexCoord4hNV(half s, half t, half r, half q);
 void TexCoord4hvNV(const half *v);
 void MultiTexCoord1hNV(enum target, half s);
 void MultiTexCoord1hvNV(enum target, const half *v);
 void MultiTexCoord2hNV(enum target, half s, hal f t);
 void MultiTexCoord2hvNV(enum target, const half *v);
 void MultiTexCoord3hNV(enum target, half s, hal f t, half r);
 void MultiTexCoord3hvNV(enum target, const half *v);
 void MultiTexCoord4hNV(enum target, half s, hal f t, half r, half q);
 void MultiTexCoord4hvNV(enum target, const half *v);
 void FogCoordhNV(half fog);
 void FogCoordhvNV(const half *fog);
 void SecondaryColor3hNV(half red, half green, h alf blue);
 void SecondaryColor3hvNV(const half *v);
 void VertexWeighthNV(half weight);
 void VertexWeighthvNV(const half *weight);
 void VertexAttrib1hNV(uint index, half x);
 void VertexAttrib1hvNV(uint index, const half * v);
 void VertexAttrib2hNV(uint index, half x, half y);
 void VertexAttrib2hvNV(uint index, const half * v);
 void VertexAttrib3hNV(uint index, half x, half y, half z);
 void VertexAttrib3hvNV(uint index, const half * v);
 void VertexAttrib4hNV(uint index, half x, half y, half z, half w);
 void VertexAttrib4hvNV(uint index, const half * v);
 void VertexAttribs1hvNV(uint index, sizei n, co nst half *v);
 void VertexAttribs2hvNV(uint index, sizei n, co nst half *v);
 void VertexAttribs3hvNV(uint index, sizei n, co nst half *v);
 void VertexAttribs4hvNV(uint index, sizei n, co nst half *v);

NV_half_float NVIDIA OpenGL Extension Specifications

 258

New Tokens

 Accepted by the <type> argument of VertexPointe r, NormalPointer,
 ColorPointer, TexCoordPointer, FogCoordPointerE XT,
 SecondaryColorPointerEXT, VertexWeightPointerEX T, VertexAttribPointerNV,
 DrawPixels, ReadPixels, TexImage1D, TexImage2D, TexImage3D, TexSubImage1D,
 TexSubImage2D, TexSubImage3D, and GetTexImage:

 HALF_FLOAT_NV 0x140B

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Modify Section 2.3, GL Command Syntax (p. 7)

 (Modify the last paragraph, p. 7. In the text below, "e*" represents the
 epsilon character used to indicate no characte r.)

 These examples show the ANSI C declarations for these commands. In
 general, a command declaration has the form

 rtype Name{e*1234}{e* b s i h f d ub us ui} {e*v}
 ([args ,] T arg1, ... , T argN [, args]) ;

 (Modify Table 2.1, p. 8 -- add new row)

 Letter Corresponding GL Type
 ------ ---------------------
 h half

 (add after last paragraph, p. 8) The half data type is a floating-point
 data type encoded in an unsigned scalar data ty pe. If the unsigned scalar
 holding a half has a value of N, the correspond ing floating point number
 is

 (-1)^S * 0.0, if E = = 0 and M == 0,
 (-1)^S * 2^-14 * (M / 2^10), if E = = 0 and M != 0,
 (-1)^S * 2^(E-15) * (1 + M/2^10), if 0 < E < 31,
 (-1)^S * INF, if E = = 31 and M == 0, or
 NaN, if E = = 31 and M != 0,

 where

 S = floor((N mod 65536) / 32768),
 E = floor((N mod 32768) / 1024), and
 M = N mod 1024.

 INF (Infinity) is a special representation indi cating numerical overflow.
 NaN (Not a Number) is a special representation indicating the result of
 illegal arithmetic operations, such as computin g the square root or
 logarithm of a negative number. Note that all normal values, zero, and
 INF have an associated sign. -0.0 and +0.0 are considered equivalent for
 the purposes of comparisons. Note also that ha lf is not a native type in
 most CPUs, so some special processing may be re quired to generate or
 interpret half data.

NVIDIA OpenGL Extension Specifications NV_half_float

 259

 (Modify Table 2.2, p. 9 -- add new row)

 Minimum
 GL Type Bit Width Description
 ------- --------- ------------------- ----------------
 half 16 half-precision floa ting-point value
 encoded in an unsig ned scalar

 Modify Section 2.7, Vertex Specification, p. 19

 (Modify the descriptions of the immediate mode functions in this section,
 including those introduced by extensions.)

 void Vertex[234][sihfd](T coords);
 void Vertex[234][sihfd]v(T coords);
 ...
 void TexCoord[1234][sihfd](T coords);
 void TexCoord[1234][sihfd]v(T coords);
 ...
 void MultiTexCoord[1234][sihfd](enum textur e, T coords);
 void MultiTexCoord[1234][sihfd]v(enum textu re, T coords);
 ...
 void Normal3[bsihfd][T coords);
 void Normal3[bsihfd]v(T coords);
 ...
 void Color[34][bsihfd ubusui](T components);
 void Color[34][bsihfd ubusui]v(T component s);
 ...
 void FogCoord[fd]EXT(T fog);
 void FogCoordhNV(T fog);
 void FogCoord[fd]vEXT(T fog);
 void FogCoordhvNV(T fog);
 ...
 void SecondaryColor3[bsihfd ubusui](T comp onents);
 void SecondaryColor3hNV(T components);
 void SecondaryColor3[bsihfd ubusui]v(T com ponents);
 void SecondaryColor3hvNV(T components);
 ...
 void VertexWeightfEXT(T weight);
 void VertexWeighthNV(T weight);
 void VertexWeightfvEXT(T weight);
 void VertexWeighthvNV(T weight);
 ...
 void VertexAttrib[1234][shfd]NV(uint index, T components);
 void VertexAttrib4ubNV(uint index, T compon ents);
 void VertexAttrib[1234][shfd]vNV(uint index , T components);
 void VertexAttrib4ubvNV(uint index, T compo nents);
 void VertexAttribs[1234][shfd]vNV(uint inde x, sizei n, T components);
 void VertexAttribs4ubvNV(uint index, sizei n, T components);

 Modify Section 2.8, Vertex Arrays, p. 21

 (Modify 1st paragraph on p. 22) ... For <type>, the values BYTE, SHORT,
 INT, FLOAT, HALF_FLOAT_NV, and DOUBLE indicate types byte, short, int,
 float, half, and double, respectively. ...

NV_half_float NVIDIA OpenGL Extension Specifications

 260

 (Modify Table 2.4, p. 23)

 Command Sizes Types
 ------------------ ------- ------ ---------------------------
 VertexPointer 2,3,4 short, int, float, half, double
 NormalPointer 3 byte, short, int, float, half,
 double
 ColorPointer 3,4 byte, ubyte, short, ushort, int,
 uint, float, half, double
 IndexPointer 1 ubyte, short, int, float, double
 TexCoordPointer 1,2,3,4 short, int, float, half, double
 EdgeFlagPointer 1 boolea n
 FogCoordPointerEXT 1 float, half, double
 SecondaryColorPointerEXT 3 byte, ubyte, short, ushort, int,
 uint, float, half, double
 VertexWeightPointerEXT 1 float, half

 Table 2.4: Vertex array sizes (values per v ertex) and data types.

 Modify Section 2.13, Colors and Coloring, p.44

 (Modify Table 2.6, p. 45) Add new row to the t able:

 GL Type Conversion
 ------- ----------
 half c

 Modify NV_vertex_program_spec, Section 2.14.3, Vertex Arrays for Vertex
 Attributes.

 (modify paragraph describing VertexAttribPointe r) ... type specifies the
 data type of the values stored in the array. t ype must be one of SHORT,
 FLOAT, HALF_FLOAT_NV, DOUBLE, or UNSIGNED_BYTE and these values correspond
 to the array types short, int, float, half, dou ble, and ubyte
 respectively. ...

 (add to end of paragraph describing mapping of vertex arrays to
 immediate-mode functions) ... For each vertex a ttribute, the corresponding
 command is VertexAttrib[size][type]v, where siz e is one of [1,2,3,4], and
 type is one of [s,f,h,d,ub], corresponding to t he array types short, int,
 float, half, double, and ubyte respectively.

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 Modify Section 3.6.4, Rasterization of Pixel Re ctangles (p. 91)

 (Modify Table 3.5, p. 94 -- add new row)

 type Parameter Corresponding Spec ial
 Token Name GL Data Type Interpr etation
 -------------- ------------- ------- -------
 HALF_FLOAT_NV half No

NVIDIA OpenGL Extension Specifications NV_half_float

 261

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 Modify Section 4.3.2, Reading Pixels (p. 173)

 (modify Final Conversion, p. 177) For an index, if the type is not FLOAT
 or HALF_FLOAT_NV, final conversion consists of masking the index with the
 value given in Table 4.6; if the type is FLOAT or HALF_FLOAT_NV, then the
 integer index is converted to a GL float or hal f data value. For an RGBA
 color, components are clamped depending on the data type of the buffer
 being read. For fixed-point buffers, each comp onent is clamped to [0.1].
 For floating-point buffers, if <type> is not FL OAT or HALF_FLOAT_NV, each
 component is clamped to [0,1] if <type> is unsi gned or [-1,1] if <type> is
 signed and then converted according to Table 4. 7.

 (Modify Table 4.7, p. 178 -- add new row)

 type Parameter GL Data Type Component Conversion Formula
 -------------- ------------ --------- -------------------
 HALF_FLOAT_NV half c = f

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol (Modification to the GLX 1.3 Protocol Encoding Specification)

 Add to Section 1.4 (p.2), Common Types

 FLOAT16 A 16-bit floating-point value i n the format specified
 in the NV_half_float extension specification.

 Modify Section 2.3.3 (p. 79), GL Rendering Comm ands

 The following rendering commands are sent to the server as part of a
 glXRender request:

 Vertex2hvNV
 2 8 rendering c ommand length
 2 4240 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

NV_half_float NVIDIA OpenGL Extension Specifications

 262

 Vertex3hvNV
 2 12 rendering c ommand length
 2 4241 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 Vertex4hvNV
 2 12 rendering c ommand length
 2 4242 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 Normal3hvNV
 2 12 rendering c ommand length
 2 4243 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 Color3hvNV
 2 12 rendering c ommand length
 2 4244 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 Color4hvNV
 2 12 rendering c ommand length
 2 4245 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 TexCoord1hvNV
 2 8 rendering c ommand length
 2 4246 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 unused

 TexCoord2hvNV
 2 8 rendering c ommand length
 2 4247 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

NVIDIA OpenGL Extension Specifications NV_half_float

 263

 TexCoord3hvNV
 2 12 rendering c ommand length
 2 4248 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 TexCoord4hvNV
 2 12 rendering c ommand length
 2 4249 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 MultiTexCoord1hvNV
 2 12 rendering c ommand length
 2 4250 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 unused

 MultiTexCoord2hvNV
 2 12 rendering c ommand length
 2 4251 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

 MultiTexCoord3hvNV
 2 16 rendering c ommand length
 2 4252 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 MultiTexCoord4hvNV
 2 16 rendering c ommand length
 2 4253 rendering c ommand opcode
 4 ENUM target
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 FogCoordhvNV
 2 8 rendering c ommand length
 2 4254 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 unused

NV_half_float NVIDIA OpenGL Extension Specifications

 264

 SecondaryColor3hvNV
 2 12 rendering c ommand length
 2 4255 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 VertexWeighthvNV
 2 8 rendering c ommand length
 2 4256 rendering c ommand opcode
 2 FLOAT16 v[0]
 2 unused

 VertexAttrib1hvNV
 2 12 rendering c ommand length
 2 4257 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 unused

 VertexAttrib2hvNV
 2 12 rendering c ommand length
 2 4258 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]

 VertexAttrib3hvNV
 2 16 rendering c ommand length
 2 4259 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 unused

 VertexAttrib4hvNV
 2 16 rendering c ommand length
 2 4260 rendering c ommand opcode
 4 CARD32 index
 2 FLOAT16 v[0]
 2 FLOAT16 v[1]
 2 FLOAT16 v[2]
 2 FLOAT16 v[3]

 VertexAttribs1hvNV
 2 12+2*n+p rendering c ommand length
 2 4261 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 2*n LISTofFLOAT16 v
 p unused, p=p ad(2*n)

NVIDIA OpenGL Extension Specifications NV_half_float

 265

 VertexAttribs2hvNV
 2 12+4*n rendering c ommand length
 2 4262 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 4*n LISTofFLOAT16 v

 VertexAttribs3hvNV
 2 12+6*n+p rendering c ommand length
 2 4263 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 6*n LISTofFLOAT16 v
 p unused, p=p ad(6*n)

 VertexAttribs4hvNV
 2 12+8*n rendering c ommand length
 2 4264 rendering c ommand opcode
 4 CARD32 index
 4 CARD32 n
 8*n LISTofFLOAT16 v

 Modify Section 2.3.4, GL Rendering Commands Tha t May Be Large (p. 127)

 (Modify the ARRAY_INFO portion of the DrawArra ys encoding (p.129) to
 reflect the new data type supported by vertex arrays.)

 ARRAY_INFO

 4 enum data ty pe
 0x1400 i=1 BYTE
 0x1401 i=1 UNSIGNE D_BYTE
 0x1402 i=2 SHORT
 ...
 0x140B i=2 HALF_FL OAT_NV
 4 INT32 j
 4 ENUM array t ype
 ...

 Modify Appendix A, Pixel Data (p. 148)

 (Modify Table A.1, p. 149 -- add new row for HALF_FLOAT_NV data)

 type Encoding Protocol Typ e nbytes
 ------------- -------- ------------ - ------
 HALF_FLOAT_NV 0x140B CARD16 2

Dependencies on NV_float_buffer

 If NV_float_buffer is not supported, the fixed and floating-point color
 buffer language in ReadPixels "Final Conversion " should be removed.

NV_half_float NVIDIA OpenGL Extension Specifications

 266

Dependencies on EXT_fog_coord, EXT_secondary_color, and EXT_vertex_weighting

 If EXT_fog_coord, EXT_secondary_color, or EXT_v ertex_weighting are not
 supported, references to FogCoordPointerEXT, Se condaryColorPointerEXT, and
 VertexWeightEXT, respectively, should be remove d.

Dependencies on NV_vertex_program

 If NV_vertex_program is not supported, referenc es to VertexAttribPointerNV
 should be removed, as should references to Vert exAttrib*h[v] commands.

Errors

 None.

New State

 None.

New Implementation Dependent State

 Rev. Date Author Changes
 ---- -------- -------- ---------------------- ----------------------
 9 02/25/04 pbrown Fixed incorrect langua ge using division by zero
 as an example of somet hing producing a NaN.

NVIDIA OpenGL Extension Specifications NV_primitive_restart

 267

Name

 NV_primitive_restart

Name Strings

 GL_NV_primitive_restart

Notice

 Copyright NVIDIA Corporation, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 NVIDIA Date: August 29, 2002 (version 0.1)

Number

 285

Dependencies

 Written based on the wording of the OpenGL 1.3 specification.

Overview

 This extension allows applications to easily an d inexpensively
 restart a primitive in its middle. A "primitiv e restart" is simply
 the same as an End command, followed by another Begin command with
 the same mode as the original. The typical exp ected use of this
 feature is to draw a mesh with many triangle st rips, though primitive
 restarts are legal for all primitive types, eve n for points (where
 they are not useful).

 Although the EXT_multi_draw_arrays extension di d reduce the overhead
 of such drawing techniques, they still remain m ore expensive than one
 would like.

 This extension provides an extremely lightweigh t primitive restart,
 which is accomplished by allowing the applicati on to choose a special
 index number that signals that a primitive rest art should occur,
 rather than a vertex being provoked. This inde x can be an arbitrary
 32-bit integer for maximum application convenie nce.

 In addition, for full orthogonality, a special OpenGL command is
 provided to restart primitives when in immediat e mode. This command
 is not likely to increase performance in any si gnificant fashion, but

NV_primitive_restart NVIDIA OpenGL Extension Specifications

 268

 providing it greatly simplifies the specificati on and implementation
 of display list compilation and indirect render ing.

Issues

 * What should the default primitive restart i ndex be?

 RESOLVED: Zero. It's tough to pick another number that is
 meaningful for all three element data types . In practice, apps
 are likely to set it to 0xFFFF or 0xFFFFFFF F.

 * Are primitives other than triangle strips s upported?

 RESOLVED: Yes. One example of how this can be useful is for
 rendering a heightfield. The "standard" wa y to render a
 heightfield uses a number of triangle strip s, one for each row of
 the grid. Another method, which can produc e higher-quality
 meshes, is to render a number of 8-triangle triangle fans. This
 has the effect of alternating the direction of tessellation, as
 shown in the diagram below. Primitive rest arts enhance the
 performance of both techniques.

 ------------------------- ---------- ---------------
 | /| /| /| /| /| /| /| /| |\ | /|\ | /|\ | /|\ | /|
 |/ |/ |/ |/ |/ |/ |/ |/ | | \|/ | \| / | \|/ | \|/ |
 ------------------------- ---*-----* -----*-----*---
 | /| /| /| /| /| /| /| /| | /|\ | /| \ | /|\ | /|\ |
 |/ |/ |/ |/ |/ |/ |/ |/ | |/ | \|/ | \|/ | \|/ | \|
 ------------------------- ---------- ---------------

 Two strips Four fans (c enters marked '*')

 * How is this feature turned on and off?

 RESOLVED: Via a glEnable/DisableClientState setting. It is not
 possible to select a restart index that is guaranteed to be
 unused.

 * Is the immediate mode PrimitiveRestartNV ne eded?

 RESOLVED: Yes. It is difficult to make ind irect rendering to
 work without it, and it is near impossible to make display lists
 work without it. It is a very clean way to resolve these issues.

 * How is indirect rendering handled?

 RESOLVED: Because of PrimitiveRestartNV, it works very easily.
 PrimitiveRestartNV has a wire protocol and therefore it can
 easily be inserted as needed. The server t racks the current
 Begin mode, relieving the client of this bu rden.

 Note that in practice, we expect that this feature is essentially
 useless for indirect rendering.

 * How does this extension interact with NV_el ement_array and
 NV_vertex_array_range?

NVIDIA OpenGL Extension Specifications NV_primitive_restart

 269

 RESOLVED: It doesn't, not even for performa nce. It should be
 fast on hardware that supports the feature with or without the
 use of element arrays, with or without vert ex array range.

 * Does this extension affect ArrayElement and DrawArrays, or just
 DrawElements?

 RESOLVED: All of them. It applies to Array Element and to the
 rest as a consequence. It is likely not us eful with any other
 than DrawElements, but nevertheless not pro hibited.

 * In the case of ArrayElement, what happens i f the restart index is
 used outside Begin/End?

 RESOLVED: Since this is defined as being eq uivalent to a call to
 PrimitiveRestartNV, and PrimitiveRestartNV is an
 INVALID_OPERATION when not inside Begin/End , this is just an
 error.

 * For DrawRangeElements/LockArrays purposes, must the restart index
 lie within the start/end range?

 RESOLVED: No, this would to some extent def eat the point if the
 restart index was, e.g., 0xFFFFFFFF. I don 't believe any spec
 language is required here, since hitting th is index does not
 cause a vertex to be dereferenced.

 * Should this state push/pop?

 RESOLVED: Yes, as vertex array client state .

New Procedures and Functions

 void PrimitiveRestartNV(void);
 void PrimitiveRestartIndexNV(uint index);

New Tokens

 Accepted by the <array> parameter of EnableClie ntState and
 DisableClientState, by the <cap> parameter of I sEnabled, and by
 the <pname> parameter of GetBooleanv, GetIntege rv, GetFloatv, and
 GetDoublev:

 PRIMITIVE_RESTART_NV 0x8558

 Accepted by the <pname> parameter of GetBoolean v, GetIntegerv,
 GetFloatv, and GetDoublev:

 PRIMITIVE_RESTART_INDEX_NV 0x8559

NV_primitive_restart NVIDIA OpenGL Extension Specifications

 270

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Add a section 2.6.X "Primitive Restarts", immed iately after section
 2.6.2 "Polygon Edges" (page 19):

 "2.6.X Primitive Restarts

 An OpenGL primitive may be restarted with the c ommand

 void PrimitiveRestartNV(void)

 Between the execution of a Begin and its corres ponding End, this
 command is equivalent to a call to End, followe d by a call to Begin
 where the mode argument is the same mode as tha t used by the previous
 Begin. Outside the execution of a Begin and it s corresponding End,
 this command generates the error INVALID_OPERAT ION."

 Add PrimitiveRestartNV to the list of commands that are allowed
 between Begin and End in section 2.6.3 "GL Comm ands within Begin/End"
 (page 19).

 Add to section 2.8 "Vertex Arrays", after the d escription of
 ArrayElement (page 24):

 "Primitive restarting is enabled or disabled by calling
 EnableClientState or DisableClientState with pa rameter
 PRIMITIVE_RESTART_NV. The command

 void PrimitiveRestartIndexNV(uint index)

 specifies the index of a vertex array element t hat is treated
 specially when primitive restarting is enabled. When ArrayElement is
 called between an execution of Begin and the co rresponding execution
 of End, if i is equal to PRIMITIVE_RESTART_INDE X_NV, then no vertex
 data is derefererenced, and no current vertex s tate is modified.
 Instead, it is as if PrimitiveRestartNV had bee n called."

 Replace the last paragraph of section 2.8 "Vert ex Arrays" (page 28)
 with the following:

 "If the number of supported texture units (the value of
 MAX_TEXTURE_UNITS) is k, then the client state required to implement
 vertex arrays consists of 7+k boolean values, 5 +k memory pointers,
 5+k integer stride values, 4+k symbolic constan ts representing array
 types, 3+k integers representing values per ele ment, and an unsigned
 integer representing the restart index. In the initial state, the
 boolean values are each disabled, the memory po inters are each null,
 the strides are each zero, the array types are each FLOAT, the
 integers representing values per element are ea ch four, and the
 restart index is zero."

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None.

NVIDIA OpenGL Extension Specifications NV_primitive_restart

 271

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 Add to the end of Section 5.4 "Display Lists":

 "PrimitiveRestartIndexNV is not compiled into d isplay lists, but is
 executed immediately."

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

GLX Protocol

 One new GL command is added.

 The following rendering command is sent to the server as part of a
 glXRender request:

 PrimitiveRestartNV
 2 4 rendering c ommand length
 2 ???? rendering c ommand opcode

Errors

 The error INVALID_OPERATION is generated if Pri mitiveRestartNV is
 called outside the execution of Begin and the c orresponding execution
 of End.

 The error INVALID_OPERATION is generated if Pri mitiveRestartIndexNV
 is called between the execution of Begin and th e corresponding
 execution of End.

New State

 Initial
 Get Value Get Command Type Value Sec Attrib
 --------- ----------- ---- ------- ---- ------------
 PRIMITIVE_RESTART_NV IsEnabled B FALSE 2.8 vertex-array
 PRIMITIVE_RESTART_INDEX_NV GetIntegerv Z+ 0 2.8 vertex-array

NV_texture_expand_normal NVIDIA OpenGL Extension Specifications

 272

Name

 NV_texture_expand_normal

Name Strings

 GL_NV_texture_expand_normal

Notice

 Copyright NVIDIA Corporation, 2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented, November 2002

Version

 Last Modified: $Date: 2002/11/15 $
 NVIDIA Revision: 3

Number

 Unassigned

Dependencies

 OpenGL 1.1 is required.

Overview

 This extension provides a remapping mode where unsigned texture
 components (in the range [0,1]) can be treated as though they
 contained signed data (in the range [-1,+1]). This allows
 applications to easily encode signed data into unsigned texture
 formats.

 The functionality of this extension is nearly i dentical to the
 EXPAND_NORMAL_NV remapping mode provided in the NV_register_combiners
 extension, although it applies even if register combiners are used.

Issues

 (1) When is the remapping applied?

 RESOLVED: It would be possible to remap afte r loading each texel,
 remap after all filtering is done, or somethi ng in between.
 Ignoring implementation-dependent rounding er rors, it really
 doesn't matter.

 The spec language says that the remapping is applied after filtering
 texel values within each level. For LINEAR_M IPMAP_LINEAR, this
 means that the remapping is "done" twice. Th is approach was chosen

NVIDIA OpenGL Extension Specifications NV_texture_expand_normal

 273

 solely to simplify the spec language, and doe s not necessarily
 reflect NVIDIA's implementation.

 (2) Should the remapping mode apply to textures with signed
 components?

 RESOLVED: No -- the EXPAND_NORMAL_NV mapping is ignored for
 such textures.

 (3) NV_texture_shader provides several internal formats with a mix
 of signed and unsigned components. For example , the base formats
 DSDT_MAG_NV, and DSDT_MAG_INTENSITY_NV have thi s property, and
 there is a variant of RGBA where the RGB compon ents are signed,
 but the A component is unsigned. What should h appen in this case?

 RESOLVED: The unsigned components are remapp ed; the signed
 components are unmodified.

 (4) What should be said about signed fixed-poin t precision and range
 of actual implementations?

 RESOLVED: The fundamental problem is that it is not possible
 to derive a linear mapping taking unsigned va lues that exactly
 represents -1.0, 0.0, and +1.0.

 The mapping chosen for current NVIDIA impleme ntations does not
 exactly represent +1.0. For an n-bit fixed-p oint component,
 0 maps to -1.0, 2^(n-1) maps to 0.0, and 2^n- 1 (maximum value)
 maps to 1.0 - 1/(2^(n-1)). This same convers ion is applied to
 stored textures using the signed texture type s in NV_texture_shader.

 This specification is written using the conve ntional OpenGL mapping
 where -1.0 and +1.0 can be represented exactl y, but 0.0 can not.
 The specification is simpler and avoids preci sion-dependent language
 describing the mapping. We expect some leewa y in how the remapping
 is applied.

 This issue is discussed in more detail in the issues section
 of the NV_texture_shader specification (the q uestion is phrased
 identically).

 (5) Are texture border color components remappe d?

 RESOLVED: Yes -- if the border values are us ed for filtering,
 border color components are remapped identica lly to normal texel
 components.

New Procedures and Functions

 None.

NV_texture_expand_normal NVIDIA OpenGL Extension Specifications

 274

New Tokens

 Accepted by the <pname> parameters of TexParame teri,
 TexParameteriv, TexParameterf, TexParameterfv, GetTexParameteri,
 and GetTexParameteriv:

 TEXTURE_UNSIGNED_REMAP_MODE_NV 0x888F

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 None.

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 Modify Section 3.8.4, Texture Parameters, p.135

 (modify Table 3.19, p. 137)

 Name Type Legal Values
 ----------------- ---- ---------------- ------
 TEXTURE_UNSIGNED_ enum EXPAND_NORMAL_NV , NONE
 REMAP_MODE_NV

 Modify Section 3.8.8, Texture Minification, p. 140

 (add after the last paragraph before the "Mipma pping" subsection,
 p. 144)

 After the texture filter is applied, the filter ed texture values are
 optionally rescaled, converting unsigned textur e components encoded
 in the range [0,1] to signed values in the rang e [-1,+1]. If the
 texture parameter TEXTURE_UNSIGNED_REMAP_MODE_N V is EXPAND_NORMAL_NV,
 the filtered values for each unsigned component of the texture is
 transformed by

 tau = 2 * tau - 1.

 For components

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and
State Requests)

 None.

NVIDIA OpenGL Extension Specifications NV_texture_expand_normal

 275

Additions to Appendix A of the OpenGL 1.4 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 None.

Errors

 None.

New State

(add to table 6.15, p. 230)
 Initial
Get Value Type Get Command Value Description Sec. Attribute
------------------------------ ---- ------------- ---- ------- ------------------ ----- ---------
TEXTURE_UNSIGNED_REMAP_MODE_NV nxZ2 GetTexParameteriv NONE unsigned component 3.8.8 texture
 remapping

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 276

Name

 NV_vertex_program2

Name Strings

 GL_NV_vertex_program2

Notice

 Copyright NVIDIA Corporation, 2000-2002.

IP Status

 NVIDIA Proprietary.

Status

 Implemented in CineFX (NV30) Emulation driver, August 2002.
 Shipping in Release 40 NVIDIA driver for CineFX hardware, January 2003.

Version

 Last Modified Date: $Date: 2003/05/12 $
 NVIDIA Revision: Revision: #30

Number

 287

Dependencies

 Written based on the wording of the OpenGL 1.3 Specification and requires
 OpenGL 1.3.

 Written based on the wording of the NV_vertex_p rogram extension
 specification, version 1.0.

 NV_vertex_program is required.

Overview

 This extension further enhances the concept of vertex programmability
 introduced by the NV_vertex_program extension, and extended by
 NV_vertex_program1_1. These extensions create a separate vertex program
 mode where the configurable vertex transformati on operations in unextended
 OpenGL are replaced by a user-defined program.

 This extension introduces the VP2 execution env ironment, which extends the
 VP1 execution environment introduced in NV_vert ex_program. The VP2
 environment provides several language features not present in previous
 vertex programming execution environments:

 * Branch instructions allow a program to jump to another instruction
 specified in the program.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 277

 * Branching support allows for up to four lev els of subroutine
 calls/returns.

 * A four-component condition code register al lows an application to
 compute a component-wise write mask at run time and apply that mask to
 register writes.

 * Conditional branches are supported, where t he condition code register
 is used to determine if a branch should be taken.

 * Programmable user clipping is supported sup port (via the CLP0-CLP5
 clip distance registers). Primitives are c lipped to the area where
 the interpolated clip distances are greater than or equal to zero.

 * Instructions can perform a component-wise a bsolute value operation on
 any operand load.

 The VP2 execution environment provides a number of new instructions, and
 extends the semantics of several instructions a lready defined in
 NV_vertex_program.

 * ARR: Operates like ARL, except that float- to-int conversion is done
 by rounding. Equivalent results could be a chieved (less efficiently)
 in NV_vertex program using an ADD/ARL seque nce and a program parameter
 holding the value 0.5.

 * BRA, CAL, RET: Branch, subroutine call, an d subroutine return
 instructions.

 * COS, SIN: Adds support for high-precision sine and cosine
 computations.

 * FLR, FRC: Adds support for computing the f loor and fractional portion
 of floating-point vector components. Equiv alent results could be
 achieved (less efficiently) in NV_vertex_pr ogram using the EXP
 instruction to compute the fractional porti on of one component at a
 time.

 * EX2, LG2: Adds support for high-precision exponentiation and
 logarithm computations.

 * ARA: Adds pairs of components of an addres s register; useful for
 looping and other operations.

 * SEQ, SFL, SGT, SLE, SNE, STR: Add six new "set on" instructions,
 similar to the SLT and SGE instructions def ined in NV_vertex_program.
 Equivalent results could be achieved (less efficiently) in
 NV_vertex_program with multiple SLT, SGE, a nd arithmetic instructions.

 * SSG: Adds a new "set sign" operation, whic h produces a vector holding
 negative one for negative components, zero for components with a value
 of zero, and positive one for positive comp onents. Equivalent results
 could be achieved (less efficiently) in NV_ vertex_program with
 multiple SLT, SGE, and arithmetic instructi ons.

 * The ARL instruction is extended to operate on four components instead
 of a single component.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 278

 * All instructions that produce integer or fl oating-point result vectors
 have variants that update the condition cod e register based on the
 result vector.

 This extension also raises some of the resource limitations in the
 NV_vertex_program extension.

 * 256 program parameter registers (versus 96 in NV_vertex_program).

 * 16 temporary registers (versus 12 in NV_ver tex_program).

 * Two four-component integer address register s (versus one
 single-component register in NV_vertex_prog ram).

 * 256 total vertex program instructions (vers us 128 in
 NV_vertex_program).

 * Including loops, programs can execute up to 64K instructions.

Issues

 This extension builds upon the NV_vertex_progra m extension. Should this
 specification contain selected edits to the NV_ vertex_program
 specification or should the specs be unified?

 RESOLVED: Since NV_vertex_program and NV_ver tex_program2 programs share
 many features, the main section of this speci fication is unified and
 describes both types of programs. Other sect ions containing
 NV_vertex_program features that are unchanged by this extension will not
 be edited.

 How can a program use condition codes to avoid extra computations?

 Consider the example of evaluating the OpenGL lighting model for a
 given light. If the diffuse dot product is n egative (roughly 1/2 the
 time for random geometry), the only contribut ion to the light is
 ambient. In this case, condition codes and b ranching can skip over a
 number of unneeded instructions.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 279

 # R0 holds accumulated light color
 # R2 holds normal
 # R3 holds computed light vector
 # R4 holds computed half vector
 # c[0] holds ambient light/material produ ct
 # c[1] holds diffuse light/material produ ct
 # c[2].xyz holds specular light/material product
 # c[2].w holds specular exponent
 DP3C R1.x, R2, R3; # diffuse d ot product
 ADD R0, R0, c[0]; # accumulat e ambient
 BRA pointsAway (LT.x) # skip rest if diffuse dot < 0
 MOV R1.w, c[2].w;
 DP3 R1.y, R2, R4; # specular dot product
 LIT R1, R1; # compute e xpontiated specular
 MAD R4, c[1], R0.y; # accumulat e diffuse
 MAD R4, c[2], R0.z; # accumulat e specular
 pointsAway:
 ... # continue execution

 How can a program use subroutines and branch ta bles?

 With subroutines, a program can encapsulate a small piece of
 functionality into a subroutine and call it m ultiple times, as in CPU
 code. Applications will need to identify the registers used to pass
 data to and from the subroutine.

 Subroutines could be used for applications li ke evaluating lighting
 equations for a single light. With condition al branching and
 subroutines, a variable number of lights (whi ch could even vary
 per-vertex) can be easily supported.

 accumulate:
 # R0 holds the accumulated result
 # R1 holds the value to add
 ADD R0, R1;
 RET;

 # Compute floor(A)*B by repeated addition using a subroutine. Yes,
 # this is a stupid example.
 #
 # c[0] holds (A,B,0,1).
 # R0 holds the accumulated result
 # R1 holds B, the value to accumulate.
 # R2 holds the number of iterations remai ning.
 MOV R0, c[0].z; # start wit h zero
 MOV R1, c[0].y;
 FLRC R2.x, c[0].x;
 BRA done (LE.x);
 top:
 CAL accumulate;
 ADDC R2.x, R2.x, -c[0].w; # decrement count
 BRA top (GT.x);
 done:
 ...

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 280

 How can conventional OpenGL clip planes be supp orted in vertex programs?

 The clip distance in the OpenGL specification can be evaluated with a
 simple DP4 instruction that writes to one of the six clip distance
 registers. Primitives will automatically be clipped to the half-space
 where o[CLPx] >= 0, which matches the definit ion in the spec.

 # R0 holds eye coordinates
 # c[0] holds eye-space clip plane coeffic ients
 DP4 o[CLP0].x, R0, c[0];

 Note that the clip plane or clip distance vol ume corresponding to the
 o[CLPn] register used must be enabled, or no clipping will be performed.

 The clip distance registers allow for clip di stance volumes to be
 computed more-or-less arbitrarily. To approx imate clipping to a sphere
 of radius <n>, the following code can be used .

 # R0 holds eye coordinates
 # c[0].xyz holds sphere center
 # c[0].w holds the square of the sphere r adius
 SUB R1.xyz, R0, c[0]; # distan ce vector
 DP3 R1.w, R1, R1; # comput e distance squared
 SUB o[CLP0].x, c[0].w, R1.w; # comput e r^2 - d^2

 Since the clip distance is interpolated linea rly over a primitive, the
 clip distance evaluated at a point will repre sent a piecewise-linear
 approximation of the true distance. The appr oximation will become
 increasingly more accurate as the primitive i s tesselated more finely.

 How can looping be achieved in vertex programs?

 Simple loops can be achieved using a general purpose floating-point
 register component as a counter. The followi ng code calls a function
 named "function" <n> times, where <n> is spec ified in a program
 parameter register component.

 # c[0].x holds the number of iterations t o execute.
 # c[1].x holds the constant 1.0.
 MOVC R15.x, c[0].x;
 startLoop:
 CAL function (GT.x); # if (c ounter > 0) function();
 SUBC R15.x, R15.x, c[1].x; # count er = counter - 1;
 BRA startLoop (GT.x); # if (c ounter > 0) goto start;
 endLoop:
 ...

 More complex loops (where a separate index ma y be needed for indexed
 addressing into the program parameter array) can be achieved using the
 ARA instruction, which will add the x/z and y /w components of an address
 register.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 281

 # c[0].x holds the number of iterations t o execute
 # c[0].y holds the initial index value
 # c[0].z holds the constant -1.0 (used fo r the iteration count)
 # c[0].w holds the index step value
 ARLC A1, c[0];
 startLoop:
 CAL function (GT.x); # if (c ounter > 0) function();
 # Note: A1.y can be used for
 # index ing in function().
 ARAC A1.xy, A1; # count er = counter - 1;
 # index += loopStep;
 BRA startLoop (GT.x); # if (c ounter > 0) goto start;
 endLoop:
 ...

 Should this specification add support for verte x state programs beyond the
 VP1 execution environment?

 No. Vertex state programs are a little-used feature of
 NV_vertex_program and don't perform particula rly well. They are still
 supported for compatibility with the original NV_vertex_program spec,
 but they will not be extended to support new features.

 How are NaN's be handled in the "set on" instru ctions (SEQ, SGE, SGT, SLE,
 SLT, SNE)? What about MIN, MAX? SSG? When do ing condition code tests?

 Any of these instructions involving a NaN ope rand will produce a NaN
 result. This behavior differs from the NV_fr agment_program extension.
 There, SEQ, SGE, SGT, SLE, and SLT will produ ce 0.0 if either operand is
 a NaN, and SNE will produce 1.0 if either ope rand is a NaN.

 For condition code updates, NaN values will r esult in "UN" condition
 codes. All conditionals using a "UN" conditi on code, except "TR" and
 "NE" will evaluate to false. This behavior i s identical to the
 functionality in NV_fragment_program.

 How can the various features of this extension be used to provide skinning
 functionality similar to that in ARB_vertex_ble nd and ARB_matrix_palette?
 And how can that functionality be extended?

 Assume an implementation that allows applicat ion of up to 8 matrices at
 once. Further assume that v[12].xyzw and v[1 3].xyzw hold the set of 8
 weights, and v[14].xyzw and v[15].xyzw hold t he set of 8 matrix indices.
 Furthermore, assume that the palette of matri ces are stored/tracked at
 c[0], c[4], c[8], and so on. As an additiona l optimization, an
 application can specify that fewer than 8 mat rices should be applied by
 storing a negative palette index immediately after the last index is
 applied.

 Skinning support in this example can be provi ded by the following code:

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 282

 ARLC A0, v[14]; # load 4 palette indices at once
 DP4 R1.x, c[A0.x+0], v[0]; # 1st mat rix transform
 DP4 R1.y, c[A0.x+1], v[0];
 DP4 R1.z, c[A0.x+2], v[0];
 DP4 R1.w, c[A0.x+3], v[0];
 MUL R0, R1, v[12].x; # accumul ate weighted sum in R0
 BRA end (LT.y); # stop on a negative matrix index
 DP4 R1.x, c[A0.y+0], v[0]; # 2nd mat rix transform
 DP4 R1.y, c[A0.y+1], v[0];
 DP4 R1.z, c[A0.y+2], v[0];
 DP4 R1.w, c[A0.y+3], v[0];
 MAD R0, R1, v[12].y, R0; # accumul ate weighted sum in R0
 BRA end (LT.z); # stop on a negative matrix index

 ... # 3rd and 4th matrix transform

 ARLC A0, v[15]; # load ne xt four palette indices
 BRA end (LT.x);
 DP4 R1.x, c[A0.x+0], v[0]; # 5th mat rix transform
 DP4 R1.y, c[A0.x+1], v[0];
 DP4 R1.z, c[A0.x+2], v[0];
 DP4 R1.w, c[A0.x+3], v[0];
 MAD R0, R1, v[13].x, R0; # accumul ate weighted sum in R0
 BRA end (LT.y); # stop on a negative matrix index

 ... # 6th, 7t h, and 8th matrix transform

 end:
 ... # any add itional instructions

 The amount of code used by this example could further be reduced using a
 subroutine performing four transformations at a time:

 ARLC A0, v[14]; # load first four indice s
 CAL skin4; # do first four transfor mations
 BRA end (LT); # end if any of the firs t 4 indices was < 0
 ARLC A0, v[15]; # load second four indic es
 CAL skin4; # do second four transfo rmations
 end:
 ... # any additional instruc tions

 Why does the RCC instruction exist?

 RESOLVED: To perform numeric operations that will avoid overflow and
 underflow issues.

 Should the specification provide more examples?

 RESOLVED: It would be nice.

New Procedures and Functions

 None.

New Tokens

 None.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 283

Additions to Chapter 2 of the OpenGL 1.3 Specificat ion (OpenGL Operation)

 Modify Section 2.11, Clipping (p. 39)

 (modify last paragraph, p. 39) When the GL is n ot in vertex program mode

 (section 2.14), this view volume may be further restricted by as many as n
 client-defined clip planes to generate the clip volume. ...

 (add before next-to-last paragraph, p. 40) When the GL is in vertex
 program mode, the view volume may be restricted to the individual clip
 distance volumes derived from the per-vertex cl ip distances (o[CLP0] -
 o[CLP5]). Clip distance volumes are applied if and only if per-vertex
 clip distances are not supported in the vertex program execution
 environment. A point P belonging to the primit ive under consideration is
 in the clip distance volume numbered n if and o nly if

 c_n(P) >= 0,

 where c_n(P) is the interpolated value of the c lip distance CLPn at the
 point P. For point primitives, c_n(P) is simpl y the clip distance for the
 vertex in question. For line and triangle prim itives, per-vertex clip
 distances are interpolated using a weighted mea n, with weights derived
 according to the algorithms described in sectio ns 3.4 and 3.5.

 (modify next-to-last paragraph, p.40) Client-de fined clip planes or clip
 distance volumes are enabled with the generic E nable command and disabled
 with the Disable command. The value of the argu ment to either command is
 CLIP PLANEi where i is an integer between 0 and n; specifying a value of i
 enables or disables the plane equation with ind ex i. The constants obey
 CLIP PLANEi = CLIP PLANE0 + i.

 Add Section 2.14, Vertex Programs (p. 57). This section supersedes the
 similar section added in the NV_vertex_program extension and extended in
 the NV_vertex_program1_1 extension.

 The conventional GL vertex transformation model described in sections 2.10
 through 2.13 is a configurable, but essentially hard-wired, sequence of
 per-vertex computations based on a canonical se t of per-vertex parameters
 and vertex transformation related state such as transformation matrices,
 lighting parameters, and texture coordinate gen eration parameters.

 The general success and utility of the conventi onal GL vertex
 transformation model reflects its basic corresp ondence to the typical
 vertex transformation requirements of 3D applic ations.

 However when the conventional GL vertex transfo rmation model is not
 sufficient, the vertex program mode provides a substantially more flexible
 model for vertex transformation. The vertex pr ogram mode permits
 applications to define their own vertex program s.

 Section 2.14.1, Vertex Program Execution Enviro nment

 The vertex program execution environment is an operational model that
 defines how a program is executed. The executi on environment includes a
 set of instructions, a set of registers, and se mantic rules defining how

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 284

 operations are performed. There are three vert ex program execution
 environments, VP1, VP1.1, and VP2. The environ ment names are taken from
 the mandatory program prefix strings found at t he beginning of all vertex
 programs. The VP1.1 execution environment is a minor addition to the VP1
 execution environment, so references to the VP1 execution environment
 below apply to both VP1 and VP1.1 execution env ironments except where
 otherwise noted.

 The vertex program instruction set consists pri marily of floating-point
 4-component vector operations operating on per- vertex attributes and
 program parameters. Vertex programs execute on a per-vertex basis and
 operate on each vertex completely independently from the processing of
 other vertices. Vertex programs execute withou t data hazards so results
 computed in one operation can be used immediate ly afterwards. Vertex
 programs produce a set of vertex result vectors that becomes the set of
 transformed vertex parameters used by primitive assembly.

 In the VP1 environment, vertex programs execute a finite fixed sequence of
 instructions with no branching or looping. In the VP2 environment, vertex
 programs support conditional and unconditional branches and four levels of
 subroutine calls.

 The vertex program register set consists of six types of registers
 described in the following sections.

 Section 2.14.1.1, Vertex Attribute Registers

 The Vertex Attribute Registers are sixteen 4-co mponent vector
 floating-point registers containing the current vertex's per-vertex
 attributes. These registers are numbered 0 thr ough 15. These registers
 are private to each vertex program invocation a nd are initialized at each
 vertex program invocation by the current vertex attribute state specified
 with VertexAttribNV commands. These registers are read-only during vertex
 program execution. The VertexAttribNV commands used to update the vertex
 attribute registers can be issued both outside and inside of Begin/End
 pairs. Vertex program execution is provoked by updating vertex attribute
 zero. Updating vertex attribute zero outside o f a Begin/End pair is
 ignored without generating any error (identical to the Vertex command
 operation).

 The commands

 void VertexAttrib{1234}{sfd}NV(uint index, T coords);
 void VertexAttrib{1234}{sfd}vNV(uint index, T coords);
 void VertexAttrib4ubNV(uint index, T coords);
 void VertexAttrib4ubvNV(uint index, T coords) ;

 specify the particular current vertex attribute indicated by index.
 The coordinates for each vertex attribute are n amed x, y, z, and w.
 The VertexAttrib1NV family of commands sets the x coordinate to the
 provided single argument while setting y and z to 0 and w to 1.
 Similarly, VertexAttrib2NV sets x and y to the specified values,
 z to 0 and w to 1; VertexAttrib3NV sets x, y, a nd z, with w set
 to 1, and VertexAttrib4NV sets all four coordin ates. The error
 INVALID_VALUE is generated if index is greater than 15.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 285

 No conversions are applied to the vertex attrib utes specified as
 type short, float, or double. However, vertex attributes specified
 as type ubyte are converted as described by Tab le 2.6.

 The commands

 void VertexAttribs{1234}{sfd}vNV(uint index, sizei n, T coords[]);
 void VertexAttribs4ubvNV(uint index, sizei n, GLubyte coords[]);

 specify a contiguous set of n vertex attributes . The effect of

 VertexAttribs{1234}{sfd}vNV(index, n, coords)

 is the same (assuming no errors) as the command sequence

 #define NUM k /* where k is 1, 2, 3, or 4 co mponents */
 int i;
 for (i=n-1; i>=0; i--) {
 VertexAttrib{NUM}{sfd}vNV(i+index, &coords[i*NUM]);
 }

 VertexAttribs4ubvNV behaves similarly.

 The VertexAttribNV calls equivalent to VertexAt tribsNV are issued in
 reverse order so that vertex program execution is provoked when index
 is zero only after all the other vertex attribu tes have first been
 specified.

 The set and operation of vertex attribute regis ters are identical for both
 VP1 and VP2 execution environment.

 Section 2.14.1.2, Program Parameter Registers

 The Program Parameter Registers are a set of 4- component floating-point
 vector registers containing the vertex program parameters. In the VP1
 execution environment, there are 96 registers, numbered 0 through 95. In
 the VP2 execution environment, there are 256 re gisters, numbered 0 through
 255. This relatively large set of registers is intended to hold
 parameters such as matrices, lighting parameter s, and constants required
 by vertex programs. Vertex program parameter r egisters can be updated in
 one of two ways: by the ProgramParameterNV com mands outside of a
 Begin/End pair or by a vertex state program exe cuted outside of a
 Begin/End pair (vertex state programs are discu ssed in section 2.14.3).

 The commands

 void ProgramParameter4fNV(enum target, uint i ndex,
 float x, float y, f loat z, float w)
 void ProgramParameter4dNV(enum target, uint i ndex,
 double x, double y, double z, double w)

 specify the particular program parameter indica ted by index.
 The coordinates values x, y, z, and w are assig ned to the respective
 components of the particular program parameter. target must be
 VERTEX_PROGRAM_NV.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 286

 The commands

 void ProgramParameter4dvNV(enum target, uint index, double *params);
 void ProgramParameter4fvNV(enum target, uint index, float *params);

 operate identically to ProgramParameter4fNV and ProgramParameter4dNV
 respectively except that the program parameters are passed as an
 array of four components.

 The error INVALID_VALUE is generated if the spe cified index is greater
 than or equal to the number of program paramete rs in the execution
 environment (96 for VP1, 256 for VP2).

 The commands

 void ProgramParameters4dvNV(enum target, uint index,
 uint num, double *params);
 void ProgramParameters4fvNV(enum target, uint index,
 uint num, float * params);

 specify a contiguous set of num program paramet ers. The effect is
 the same (assuming no errors) as

 for (i=index; i<index+num; i++) {
 ProgramParameter4{fd}vNV(target, i, ¶ms [i*4]);
 }

 The error INVALID_VALUE is generated if sum of <index> and <num> is
 greater than the number of program parameters i n the execution environment
 (96 for VP1, 256 for VP2).

 The program parameter registers are shared to a ll vertex program
 invocations within a rendering context. Progra mParameterNV command
 updates and vertex state program executions are serialized with respect to
 vertex program invocations and other vertex sta te program executions.

 Writes to the program parameter registers durin g vertex state program
 execution can be maskable on a per-component ba sis.

 The initial value of all 96 (VP1) or 256 (VP2) program parameter registers
 is (0,0,0,0).

 Section 2.14.1.3, Address Registers

 The Address Registers are 4-component vector re gisters with signed 10-bit
 integer components. In the VP1 execution envir onment, there is only a
 single address register (A0) and only the x com ponent of the register is
 accessible. In the VP2 execution environment, there are two address
 registers (A0 and A1), of which all four compon ents are accessible. The
 address registers are private to each vertex pr ogram invocation and are
 initialized to (0,0,0,0) at every vertex progra m invocation. These
 registers can be written during vertex program execution (but not read)
 and their values can be used for as a relative offset for reading vertex
 program parameter registers. Only the vertex p rogram parameter registers
 can be read using relative addressing (writes u sing relative addressing
 are not supported).

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 287

 See the discussion of relative addressing of pr ogram parameters in section
 2.14.2.1 and the discussion of the ARL instruct ion in section 2.14.3.4.

 Section 2.14.1.4, Temporary Registers

 The Temporary Registers are 4-component floatin g-point vector registers
 used to hold temporary results during vertex pr ogram execution. In the
 VP1 execution environment, there are 12 tempora ry registers, numbered 0
 through 11. In the VP2 execution environment, there are 16 temporary
 registers, numbered 0 through 15. These regist ers are private to each
 vertex program invocation and initialized to (0 ,0,0,0) at every vertex
 program invocation. These registers can be rea d and written during vertex
 program execution. Writes to these registers c an be maskable on a
 per-component basis.

 In the VP2 execution environment, there is one additional temporary
 pseudo-register, "CC". CC is treated as unnumb ered, write-only temporary
 register, whose sole purpose is to allow instru ctions to modify the
 condition code register (section 2.14.1.6) with out overwriting the
 contents of any temporary register.

 Section 2.14.1.5, Vertex Result Registers

 The Vertex Result Registers are 4-component flo ating-point vector
 registers used to write the results of a vertex program. There are 15
 result registers in the VP1 execution environme nt, and 21 in the VP2
 execution environment. Each register value is initialized to (0,0,0,1) at
 the invocation of each vertex program. Writes to the vertex result
 registers can be maskable on a per-component ba sis. These registers are
 named in Table X.1 and further discussed below.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 288

 Vertex Result Component
 Register Name Description Interpretation
 -------------- ------------------------------- -- --------------
 HPOS Homogeneous clip space positio n (x,y,z,w)
 COL0 Primary color (front-facing) (r,g,b,a)
 COL1 Secondary color (front-facing) (r,g,b,a)
 BFC0 Back-facing primary color (r,g,b,a)
 BFC1 Back-facing secondary color (r,g,b,a)
 FOGC Fog coordinate (f,*,*,*)
 PSIZ Point size (p,*,*,*)
 TEX0 Texture coordinate set 0 (s,t,r,q)
 TEX1 Texture coordinate set 1 (s,t,r,q)
 TEX2 Texture coordinate set 2 (s,t,r,q)
 TEX3 Texture coordinate set 3 (s,t,r,q)
 TEX4 Texture coordinate set 4 (s,t,r,q)
 TEX5 Texture coordinate set 5 (s,t,r,q)
 TEX6 Texture coordinate set 6 (s,t,r,q)
 TEX7 Texture coordinate set 7 (s,t,r,q)
 CLP0(*) Clip distance 0 (d,*,*,*)
 CLP1(*) Clip distance 1 (d,*,*,*)
 CLP2(*) Clip distance 2 (d,*,*,*)
 CLP3(*) Clip distance 3 (d,*,*,*)
 CLP4(*) Clip distance 4 (d,*,*,*)
 CLP5(*) Clip distance 5 (d,*,*,*)

 Table X.1: Vertex Result Registers. (*) Regis ters CLP0 through CLP5, are
 available only in the VP2 execution environment .

 HPOS is the transformed vertex's homogeneous cl ip space position. The
 vertex's homogeneous clip space position is con verted to normalized device
 coordinates and transformed to window coordinat es as described at the end
 of section 2.10 and in section 2.11. Further p rocessing (subsequent to
 vertex program termination) is responsible for clipping primitives
 assembled from vertex program-generated vertice s as described in section
 2.10 but all client-defined clip planes are tre ated as if they are
 disabled when vertex program mode is enabled.

 Four distinct color results can be generated fo r each vertex. COL0 is the
 transformed vertex's front-facing primary color . COL1 is the transformed
 vertex's front-facing secondary color. BFC0 is the transformed vertex's
 back-facing primary color. BFC1 is the transfo rmed vertex's back-facing
 secondary color.

 Primitive coloring may operate in two-sided col or mode. This behavior is
 enabled and disabled by calling Enable or Disab le with the symbolic value
 VERTEX_PROGRAM_TWO_SIDE_NV. The selection betw een the back-facing colors
 and the front-facing colors depends on the prim itive of which the vertex
 is a part. If the primitive is a point or a li ne segment, the
 front-facing colors are always selected. If th e primitive is a polygon
 and two-sided color mode is disabled, the front -facing colors are
 selected. If it is a polygon and two-sided col or mode is enabled, then
 the selection is based on the sign of the (clip ped or unclipped) polygon's
 signed area computed in window coordinates. Th is facingness determination
 is identical to the two-sided lighting facingne ss determination described
 in section 2.13.1.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 289

 The selected primary and secondary colors for e ach primitive are clamped
 to the range [0,1] and then interpolated across the assembled primitive
 during rasterization with at least 8-bit accura cy for each color
 component.

 FOGC is the transformed vertex's fog coordinate . The register's first
 floating-point component is interpolated across the assembled primitive
 during rasterization and used as the fog distan ce to compute per-fragment
 the fog factor when fog is enabled. However, i f both fog and vertex
 program mode are enabled, but the FOGC vertex r esult register is not
 written, the fog factor is overridden to 1.0. The register's other three
 components are ignored.

 Point size determination may operate in program -specified point size mode.
 This behavior is enabled and disabled by callin g Enable or Disable with
 the symbolic value VERTEX_PROGRAM_POINT_SIZE_NV . If the vertex is for a
 point primitive and the mode is enabled and the PSIZ vertex result is
 written, the point primitive's size is determin ed by the clamped x
 component of the PSIZ register. Otherwise (bec ause vertex program mode is
 disabled, program-specified point size mode is disabled, or because the
 vertex program did not write PSIZ), the point p rimitive's size is
 determined by the point size state (the state s pecified using the
 PointSize command).

 The PSIZ register's x component is clamped to t he range zero through
 either the hi value of ALIASED_POINT_SIZE_RANGE if point smoothing is
 disabled or the hi value of the SMOOTH_POINT_SI ZE_RANGE if point smoothing
 is enabled. The register's other three compone nts are ignored.

 If the vertex is not for a point primitive, the value of the PSIZ vertex
 result register is ignored.

 TEX0 through TEX7 are the transformed vertex's texture coordinate sets for
 texture units 0 through 7. These floating-poin t coordinates are
 interpolated across the assembled primitive dur ing rasterization and used
 for accessing textures. If the number of textu re units supported is less
 than eight, the values of vertex result registe rs that do not correspond
 to existent texture units are ignored.

 CLP0 through CLP5, available only in the VP2 ex ecution environment, are
 the transformed vertex's clip distances. These floating-point coordinates
 are used by post-vertex program clipping proces s (see section 2.11).

 Section 2.14.1.6, The Condition Code Register

 The VP2 execution environment provides a single four-component vector
 called the condition code register. Each compo nent of this register is
 one of four enumerated values: GT (greater tha n), EQ (equal), LT (less
 than), or UN (unordered). The condition code r egister can be used to mask
 writes to registers and to evaluate conditional branches.

 Most vertex program instructions can optionally update the condition code
 register. When a vertex program instruction up dates the condition code
 register, a condition code component is set to LT if the corresponding
 component of the result is less than zero, EQ i f it is equal to zero, GT
 if it is greater than zero, and UN if it is NaN (not a number).

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 290

 The condition code register is initialized to a vector of EQ values each
 time a vertex program executes.

 There is no condition code register available i n the VP1 execution
 environment.

 Section 2.14.1.7, Semantic Meaning for Vertex Attributes and Program
 Parameters

 One important distinction between the conventio nal GL vertex
 transformation mode and the vertex program mode is that per-vertex
 parameters and other state parameters in vertex program mode do not have
 dedicated semantic interpretations the way that they do with the
 conventional GL vertex transformation mode.

 For example, in the conventional GL vertex tran sformation mode, the Normal
 command specifies a per-vertex normal. The sem antic that the Normal
 command supplies a normal for lighting is estab lished because that is how
 the per-vertex attribute supplied by the Normal command is used by the
 conventional GL vertex transformation mode. Si milarly, other state
 parameters such as a light source position have semantic interpretations
 based on how the conventional GL vertex transfo rmation model uses each
 particular parameter.

 In contrast, vertex attributes and program para meters for vertex programs
 have no pre-defined semantic meanings. The mea ning of a vertex attribute
 or program parameter in vertex program mode is defined by how the vertex
 attribute or program parameter is used by the c urrent vertex program to
 compute and write values to the Vertex Result R egisters. This is the
 reason that per-vertex attributes and program p arameters for vertex
 programs are numbered instead of named.

 For convenience however, the existing per-verte x parameters for the
 conventional GL vertex transformation mode (ver tices, normals,
 colors, fog coordinates, vertex weights, and te xture coordinates) are
 aliased to numbered vertex attributes. This al iasing is specified in
 Table X.2. The table includes how the various conventional components
 map to the 4-component vertex attribute compone nts.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 291

Vertex
Attribute Conventional Conventional
Register Per-vertex Conventional Component
Number Parameter Per-vertex Parameter C ommand Mapping
--------- --------------- ---------------------- ------------- ------------
 0 vertex position Vertex x,y,z,w
 1 vertex weights VertexWeightEXT w,0,0,1
 2 normal Normal x,y,z,1
 3 primary color Color r,g,b,a
 4 secondary color SecondaryColorEXT r,g,b,1
 5 fog coordinate FogCoordEXT fc,0,0,1
 6 - - -
 7 - - -
 8 texture coord 0 MultiTexCoord(GL_TEXTU RE0_ARB, ...) s,t,r,q
 9 texture coord 1 MultiTexCoord(GL_TEXTU RE1_ARB, ...) s,t,r,q
 10 texture coord 2 MultiTexCoord(GL_TEXTU RE2_ARB, ...) s,t,r,q
 11 texture coord 3 MultiTexCoord(GL_TEXTU RE3_ARB, ...) s,t,r,q
 12 texture coord 4 MultiTexCoord(GL_TEXTU RE4_ARB, ...) s,t,r,q
 13 texture coord 5 MultiTexCoord(GL_TEXTU RE5_ARB, ...) s,t,r,q
 14 texture coord 6 MultiTexCoord(GL_TEXTU RE6_ARB, ...) s,t,r,q
 15 texture coord 7 MultiTexCoord(GL_TEXTU RE7_ARB, ...) s,t,r,q

Table X.2: Aliasing of vertex attributes with conv entional per-vertex
parameters.

 Only vertex attribute zero is treated specially because it is
 the attribute that provokes the execution of th e vertex program;
 this is the attribute that aliases to the Verte x command's vertex
 coordinates.

 The result of a vertex program is the set of po st-transformation
 vertex parameters written to the Vertex Result Registers.
 All vertex programs must write a homogeneous cl ip space position, but
 the other Vertex Result Registers can be option ally written.

 Clipping and culling are not the responsibility of vertex programs because
 these operations assume the assembly of multipl e vertices into a
 primitive. View frustum clipping is performed subsequent to vertex
 program execution. Clip planes are not support ed in the VP1 execution
 environment. Clip planes are supported indirec tly via the clip distance
 (o[CLPx]) registers in the VP2 execution enviro nment.

 Section 2.14.1.8, Vertex Program Specification

 Vertex programs are specified as an array of ub ytes. The array is a
 string of ASCII characters encoding the program .

 The command

 LoadProgramNV(enum target, uint id, sizei len ,
 const ubyte *program);

 loads a vertex program when the target paramete r is VERTEX_PROGRAM_NV.
 Multiple programs can be loaded with different names. id names the
 program to load. The name space for programs i s the positive integers
 (zero is reserved). The error INVALID_VALUE oc curs if a program is loaded
 with an id of zero. The error INVALID_OPERATIO N is generated if a program

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 292

 is loaded for an id that is currently loaded wi th a program of a different
 program target. Managing the program name spac e and binding to vertex
 programs is discussed later in section 2.14.1.8 .

 program is a pointer to an array of ubytes that represents the program
 being loaded. The length of the array is indic ated by len.

 A second program target type known as vertex st ate programs is discussed
 in 2.14.4.

 At program load time, the program is parsed int o a set of tokens possibly
 separated by white space. Spaces, tabs, newlin es, carriage returns, and
 comments are considered whitespace. Comments b egin with the character "#"
 and are terminated by a newline, a carriage ret urn, or the end of the
 program array.

 The Backus-Naur Form (BNF) grammar below specif ies the syntactically valid
 sequences for several types of vertex programs. The set of valid tokens
 can be inferred from the grammar. The token "" represents an empty string
 and is used to indicate optional rules. A prog ram is invalid if it
 contains any undefined tokens or characters.

 The grammar provides for three different vertex program types,
 corresponding to the three vertex program execu tion environments. VP1,
 VP1.1, and VP2 programs match the grammar rules <vp1-program>,
 <vp11-program>, and <vp2-program>, respectively . Some grammar rules
 correspond to features or instruction forms ava ilable only in certain
 execution environments. Rules beginning with t he prefix "vp1-" are
 available only to VP1 and VP1.1 programs. Rule s beginning with the
 prefixes "vp11-" and "vp2-" are available only to VP1.1 and VP2 programs,
 respectively.

 <program> ::= <vp1-program>
 | <vp11-program>
 | <vp2-program>

 <vp1-program> ::= "!!VP1.0" <programBo dy> "END"

 <vp11-program> ::= "!!VP1.1" <programBo dy> "END"

 <vp2-program> ::= "!!VP2.0" <programBo dy> "END"

 <programBody> ::= <optionSequence> <pr ogramText>

 <optionSequence> ::= <option> <optionSequ ence>
 | ""

 <option> ::= "OPTION" <vp11-optio n> ";"
 | "OPTION" <vp2-option > ";"

 <vp11-option> ::= "NV_position_invaria nt"

 <vp2-option> ::= "NV_position_invaria nt"

 <programText> ::= <programTextItem> <p rogramText>
 | ""

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 293

 <programTextItem> ::= <instruction> ";"
 | <vp2-instructionLabe l>

 <instruction> ::= <ARL-instruction>
 | <VECTORop-instructio n>
 | <SCALARop-instructio n>
 | <BINop-instruction>
 | <TRIop-instruction>
 | <vp2-BRA-instruction >
 | <vp2-RET-instruction >
 | <vp2-ARA-instruction >

 <ARL-instruction> ::= <vp1-ARL-instruction >
 | <vp2-ARL-instruction >

 <vp1-ARL-instruction> ::= "ARL" <maskedAddrReg > "," <scalarSrc>

 <vp2-ARL-instruction> ::= <vp2-ARLop> <maskedA ddrReg> "," <vectorSrc>

 <vp2-ARLop> ::= "ARL" | "ARLC"
 | "ARR" | "ARRC"

 <VECTORop-instruction> ::= <VECTORop> <maskedDs tReg> "," <vectorSrc>

 <VECTORop> ::= "LIT"
 | "MOV"
 | <vp11-VECTORop>
 | <vp2-VECTORop>

 <vp11-VECTORop> ::= "ABS"

 <vp2-VECTORop> ::= "ABSC"
 | "FLR" | "FLRC"
 | "FRC" | "FRCC"
 | "LITC"
 | "MOVC"
 | "SSG" | "SSGC"

 <SCALARop-instruction> ::= <SCALARop> <maskedDs tReg> "," <scalarSrc>

 <SCALARop> ::= "EXP"
 | "LOG"
 | "RCP"
 | "RSQ"
 | <vp2-SCALARop>

 <vp2-SCALARop> ::= "COS" | "COSC"
 | "EX2" | "EX2C"
 | "LG2" | "LG2C"
 | "EXPC"
 | "LOGC"
 | "RCPC"
 | "RSQC"

 <BINop-instruction> ::= <BINop> <maskedDstRe g> "," <vectorSrc> ","
 <vectorSrc>

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 294

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | <vp11-BINop>
 | <vp2-BINop>

 <vp11-BINop> ::= "DPH"

 <vp2-BINop> ::= "ADDC"
 | "DP3C"
 | "DP4C"
 | "DPHC"
 | "DSTC"
 | "MAXC"
 | "MINC"
 | "MULC"
 | "SEQ" | "SEQC"
 | "SFL" | "SFLC"
 | "SGEC"
 | "SGT" | "SGTC"
 | "SLTC"
 | "SLE" | "SLEC"
 | "SNE" | "SNEC"
 | "STR" | "STRC"

 <TRIop-instruction> ::= <TRIop> <maskedDstRe g> "," <vectorSrc> ","
 <vectorSrc> "," <vec torSrc>

 <TRIop> ::= "MAD"
 | <vp2-TRIop>

 <vp2-TRIop> ::= "MADC"

 <vp2-BRA-instruction> ::= <vp2-BRANCHop> <vp2- branchLabel>
 <vp2-branchConditi on>

 <vp2-BRANCHop> ::= "BRA"
 | "CAL"

 <vp2-RET-instruction> ::= "RET" <vp2-branchCon dition>

 <vp2-ARA-instruction> ::= <vp2-ARAop> <maskedA ddrReg> "," <addrRegister>

 <vp2-ARAop> ::= "ARA" | "ARAC"

 <scalarSrc> ::= <baseScalarSrc>
 | <vp2-absScalarSrc>

 <vp2-absScalarSrc> ::= <optionalSign> "|" < baseScalarSrc> "|"

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 295

 <baseScalarSrc> ::= <optionalSign> <srcR egister> <scalarSuffix>

 <vectorSrc> ::= <baseVectorSrc>
 | <vp2-absVectorSrc>

 <vp2-absVectorSrc> ::= <optionalSign> "|" < baseVectorSrc> "|"

 <baseVectorSrc> ::= <optionalSign> <srcR egister> <swizzleSuffix>

 <srcRegister> ::= <vtxAttribRegister>
 | <progParamRegister>
 | <tempRegister>

 <maskedDstReg> ::= <dstRegister> <optio nalWriteMask>
 <optionalCCMask>

 <dstRegister> ::= <vtxResultRegister>
 | <tempRegister>
 | <vp2-nullRegister>

 <vp2-nullRegister> ::= "CC"

 <vp2-branchCondition> ::= <optionalCCMask>

 <vtxAttribRegister> ::= "v" "[" vtxAttribReg Num "]"

 <vtxAttribRegNum> ::= decimal integer from 0 to 15 inclusive
 | "OPOS"
 | "WGHT"
 | "NRML"
 | "COL0"
 | "COL1"
 | "FOGC"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"

 <progParamRegister> ::= <absProgParamReg>
 | <relProgParamReg>

 <absProgParamReg> ::= "c" "[" <progParamRe gNum> "]"

 <progParamRegNum> ::= <vp1-progParamRegNum >
 | <vp2-progParamRegNum >

 <vp1-progParamRegNum> ::= decimal integer from 0 to 95 inclusive

 <vp2-progParamRegNum> ::= decimal integer from 0 to 255 inclusive

 <relProgParamReg> ::= "c" "[" <scalarAddr> <relProgParamOffset> "]"

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 296

 <relProgParamOffset> ::= ""
 | "+" <progParamPosOff set>
 | "-" <progParamNegOff set>

 <progParamPosOffset> ::= <vp1-progParamPosOff >
 | <vp2-progParamPosOff >

 <vp1-progParamPosOff> ::= decimal integer from 0 to 63 inclusive

 <vp2-progParamPosOff> ::= decimal integer from 0 to 255 inclusive

 <progParamNegOffset> ::= <vp1-progParamNegOff >
 | <vp2-progParamNegOff >

 <vp1-progParamNegOff> ::= decimal integer from 0 to 64 inclusive

 <vp2-progParamNegOff> ::= decimal integer from 0 to 256 inclusive

 <tempRegister> ::= "R0" | "R1" | "R2" | "R3"
 | "R4" | "R5" | "R6" | "R7"
 | "R8" | "R9" | "R10 " | "R11"

 <vp2-tempRegister> ::= "R12" | "R13" | "R14 " | "R15"

 <vtxResultRegister> ::= "o" "[" <vtxResultRe gName> "]"

 <vtxResultRegName> ::= "HPOS"
 | "COL0"
 | "COL1"
 | "BFC0"
 | "BFC1"
 | "FOGC"
 | "PSIZ"
 | "TEX0"
 | "TEX1"
 | "TEX2"
 | "TEX3"
 | "TEX4"
 | "TEX5"
 | "TEX6"
 | "TEX7"
 | <vp2-resultRegName>

 <vp2-resultRegName> ::= "CLP0"
 | "CLP1"
 | "CLP2"
 | "CLP3"
 | "CLP4"
 | "CLP5"

 <scalarAddr> ::= <addrRegister> "." < addrRegisterComp>

 <maskedAddrReg> ::= <addrRegister> <addr WriteMask>

 <addrRegister> ::= "A0"
 | <vp2-addrRegister>

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 297

 <vp2-addrRegister> ::= "A1"

 <addrRegisterComp> ::= "x"
 | <vp2-addrRegisterCom p>

 <vp2-addrRegisterComp> ::= "y"
 | "z"
 | "w"

 <addrWriteMask> ::= "." "x"
 | <vp2-addrWriteMask>

 <vp2-addrWriteMask> ::= ""
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

 <optionalSign> ::= ""
 | "-"
 | <vp2-optionalSign>

 <vp2-optionalSign> ::= "+"

 <vp2-instructionLabel> ::= <vp2-branchLabel> ": "

 <vp2-branchLabel> ::= <identifier>

 <optionalWriteMask> ::= ""
 | "." "x"
 | "." "y"
 | "." "x" "y"
 | "." "z"
 | "." "x" "z"
 | "." "y" "z"
 | "." "x" "y" "z"
 | "." "w"
 | "." "x" "w"
 | "." "y" "w"
 | "." "x" "y" "w"
 | "." "z" "w"
 | "." "x" "z" "w"
 | "." "y" "z" "w"
 | "." "x" "y" "z" "w"

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 298

 <optionalCCMask> ::= ""
 | <vp2-ccMask>

 <vp2-ccMask> ::= "(" <vp2-ccMaskRule> <swizzleSuffix> ")"

 <vp2-ccMaskRule> ::= "EQ" | "GE" | "GT" | "LE" | "LT" | "NE"
 | "TR" | "FL"

 <scalarSuffix> ::= "." <component>

 <swizzleSuffix> ::= ""
 | "." <component>
 | "." <component> <com ponent>
 <component> <com ponent>

 <component> ::= "x"
 | "y"
 | "z"
 | "w"

 The <identifier> rule matches a sequence of one or more letters ("A"
 through "Z", "a" through "z", and "_") and digi ts ("0" through "9); the
 first character must be a letter. The undersco re ("_") counts as a
 letter. Upper and lower case letters are diffe rent (names are
 case-sensitive).

 The <vertexAttribRegNum> rule matches both regi ster numbers 0 through 15
 and a set of mnemonics that abbreviate the alia sing of conventional
 per-vertex parameters to vertex attribute regis ter numbers. Table X.3
 shows the mapping from mnemonic to vertex attri bute register number and
 what the mnemonic abbreviates.

 Vertex Attribute
 Mnemonic Register Number Meaning
 -------- ---------------- ------------ --------
 "OPOS" 0 object posit ion
 "WGHT" 1 vertex weigh t
 "NRML" 2 normal
 "COL0" 3 primary colo r
 "COL1" 4 secondary co lor
 "FOGC" 5 fog coordina te
 "TEX0" 8 texture coor dinate 0
 "TEX1" 9 texture coor dinate 1
 "TEX2" 10 texture coor dinate 2
 "TEX3" 11 texture coor dinate 3
 "TEX4" 12 texture coor dinate 4
 "TEX5" 13 texture coor dinate 5
 "TEX6" 14 texture coor dinate 6
 "TEX7" 15 texture coor dinate 7

 Table X.3: The mapping between vertex attr ibute register numbers,
 mnemonics, and meanings.

 A vertex program fails to load if it does not w rite at least one component
 of the HPOS register.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 299

 A vertex program fails to load in the VP1 execu tion environment if it
 contains more than 128 instructions. A vertex program fails to load in
 the VP2 execution environment if it contains mo re than 256 instructions.
 Each block of text matching the <instruction> r ule counts as an
 instruction.

 A vertex program fails to load if any instructi on sources more than one
 unique program parameter register. An instruct ion can match the
 <progParamRegister> rule more than once only if all such matches are
 identical.

 A vertex program fails to load if any instructi on sources more than one
 unique vertex attribute register. An instructi on can match the
 <vtxAttribRegister> rule more than once only if all such matches refer to
 the same register.

 The error INVALID_OPERATION is generated if a v ertex program fails to load
 because it is not syntactically correct or for one of the semantic
 restrictions listed above.

 The error INVALID_OPERATION is generated if a p rogram is loaded for id
 when id is currently loaded with a program of a different target.

 A successfully loaded vertex program is parsed into a sequence of
 instructions. Each instruction is identified b y its tokenized name. The
 operation of these instructions when executed i s defined in section
 2.14.1.10.

 A successfully loaded program replaces the prog ram previously assigned to
 the name specified by id. If the OUT_OF_MEMORY error is generated by
 LoadProgramNV, no change is made to the previou s contents of the named
 program.

 Querying the value of PROGRAM_ERROR_POSITION_NV returns a ubyte offset
 into the last loaded program string indicating where the first error in
 the program. If the program fails to load beca use of a semantic
 restriction that cannot be determined until the program is fully scanned,
 the error position will be len, the length of t he program. If the program
 loads successfully, the value of PROGRAM_ERROR_ POSITION_NV is assigned the
 value negative one.

 Section 2.14.1.9, Vertex Program Binding and P rogram Management

 The current vertex program is invoked whenever vertex attribute zero is
 updated (whether by a VertexAttributeNV or Vert ex command). The current
 vertex program is updated by

 BindProgramNV(enum target, uint id);

 where target must be VERTEX_PROGRAM_NV. This b inds the vertex program
 named by id as the current vertex program. The error INVALID_OPERATION
 is generated if id names a program that is not a vertex program
 (for example, if id names a vertex state progra m as described in
 section 2.14.4).

 Binding to a nonexistent program id does not ge nerate an error.
 In particular, binding to program id zero does not generate an error.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 300

 However, because program zero cannot be loaded, program zero is
 always nonexistent. If a program id is success fully loaded with a
 new vertex program and id is also the currently bound vertex program,
 the new program is considered the currently bou nd vertex program.

 The INVALID_OPERATION error is generated when b oth vertex program
 mode is enabled and Begin is called (or when a command that performs
 an implicit Begin is called) if the current ver tex program is
 nonexistent or not valid. A vertex program may not be valid for
 reasons explained in section 2.14.5.

 Programs are deleted by calling

 void DeleteProgramsNV(sizei n, const uint *id s);

 ids contains n names of programs to be deleted. After a program
 is deleted, it becomes nonexistent, and its nam e is again unused.
 If a program that is currently bound is deleted , it is as though
 BindProgramNV has been executed with the same t arget as the deleted
 program and program zero. Unused names in ids are silently ignored,
 as is the value zero.

 The command

 void GenProgramsNV(sizei n, uint *ids);

 returns n previously unused program names in id s. These names
 are marked as used, for the purposes of GenProg ramsNV only,
 but they become existent programs only when the are first loaded
 using LoadProgramNV. The error INVALID_VALUE i s generated if n
 is negative.

 An implementation may choose to establish a wor king set of programs on
 which binding and ExecuteProgramNV operations (execute programs are
 explained in section 2.14.4) are performed with higher performance.
 A program that is currently part of this workin g set is said to
 be resident.

 The command

 boolean AreProgramsResidentNV(sizei n, const uint *ids,
 boolean *reside nces);

 returns TRUE if all of the n programs named in ids are resident,
 or if the implementation does not distinguish a working set. If at
 least one of the programs named in ids is not r esident, then FALSE is
 returned, and the residence of each program is returned in residences.
 Otherwise the contents of residences are not ch anged. If any of
 the names in ids are nonexistent or zero, FALSE is returned, the
 error INVALID_VALUE is generated, and the conte nts of residences
 are indeterminate. The residence status of a s ingle named program
 can also be queried by calling GetProgramivNV w ith id set to the
 name of the program and pname set to PROGRAM_RE SIDENT_NV.

 AreProgramsResidentNV indicates only whether a program is
 currently resident, not whether it could not be made resident.
 An implementation may choose to make a program resident only on

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 301

 first use, for example. The client may guide t he GL implementation
 in determining which programs should be residen t by requesting a
 set of programs to make resident.

 The command

 void RequestResidentProgramsNV(sizei n, const uint *ids);

 requests that the n programs named in ids shoul d be made resident.
 While all the programs are not guaranteed to be come resident,
 the implementation should make a best effort to make as many of
 the programs resident as possible. As a result of making the
 requested programs resident, program names not among the requested
 programs may become non-resident. Higher prior ity for residency
 should be given to programs listed earlier in t he ids array.
 RequestResidentProgramsNV silently ignores atte mpts to make resident
 nonexistent program names or zero. ArePrograms ResidentNV can be
 called after RequestResidentProgramsNV to deter mine which programs
 actually became resident.

 Section 2.14.2, Vertex Program Operation

 In the VP1 execution environment, there are twe nty-one vertex program
 instructions. Four instructions (ABS, DPH, RCC , and SUB) are available
 only in the VP1.1 execution environment. The i nstructions and their
 respective input and output parameters are summ arized in Table X.4.

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS(*) v v absolute valu e
 ADD v,v v add
 ARL v as address regis ter load
 DP3 v,v ssss 3-component d ot product
 DP4 v,v ssss 4-component d ot product
 DPH(*) v,v ssss homogeneous d ot product
 DST v,v v distance vect or
 EXP s v exponential b ase 2 (approximate)
 LIT v v compute light coefficients
 LOG s v logarithm bas e 2 (approximate)
 MAD v,v,v v multiply and add
 MAX v,v v maximum
 MIN v,v v minimum
 MOV v v move
 MUL v,v v multiply
 RCC(*) s ssss reciprocal (c lamped)
 RCP s ssss reciprocal
 RSQ s ssss reciprocal sq uare root
 SGE v,v v set on greate r than or equal
 SLT v,v v set on less t han
 SUB(*) v,v v subtract

 Table X.4: Summary of vertex program instructi ons in the VP1 execution
 environment. "v" indicates a floating-point ve ctor input or output, "s"
 indicates a floating-point scalar input, "ssss" indicates a scalar output
 replicated across a 4-component vector, "as" in dicates a single component
 of an address register.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 302

 In the VP2 execution environment, are thirty-ni ne vertex program
 instructions. Vertex program instructions may have an optional suffix of
 "C" to allow an update of the condition code re gister (section 2.14.1.6).
 For example, there are two instructions to perf orm vector addition, "ADD"
 and "ADDC". The vertex program instructions av ailable in the VP2
 execution environment and their respective inpu t and output parameters are
 summarized in Table X.5.
 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS[C] v v absolute valu e
 ADD[C] v,v v add
 ARA[C] av av address regis ter add
 ARL[C] v av address regis ter load
 ARR[C] v av address regis ter load (with round)
 BRA as none branch
 CAL as none subroutine ca ll
 COS[C] s ssss cosine
 DP3[C] v,v ssss 3-component d ot product
 DP4[C] v,v ssss 4-component d ot product
 DPH[C] v,v ssss homogeneous d ot product
 DST[C] v,v v distance vect or
 EX2[C] s ssss exponential b ase 2
 EXP[C] s v exponential b ase 2 (approximate)
 FLR[C] v v floor
 FRC[C] v v fraction
 LG2[C] s ssss logarithm bas e 2
 LIT[C] v v compute light coefficients
 LOG[C] s v logarithm bas e 2 (approximate)
 MAD[C] v,v,v v multiply and add
 MAX[C] v,v v maximum
 MIN[C] v,v v minimum
 MOV[C] v v move
 MUL[C] v,v v multiply
 RCC[C] s ssss reciprocal (c lamped)
 RCP[C] s ssss reciprocal
 RET none none subroutine ca ll return
 RSQ[C] s ssss reciprocal sq uare root
 SEQ[C] v,v v set on equal
 SFL[C] v,v v set on false
 SGE[C] v,v v set on greate r than or equal
 SGT[C] v,v v set on greate r than
 SIN[C] s ssss sine
 SLE[C] v,v v set on less t han or equal
 SLT[C] v,v v set on less t han
 SNE[C] v,v v set on not eq ual
 SSG[C] v v set sign
 STR[C] v,v v set on true
 SUB[C] v,v v subtract

 Table X.5: Summary of vertex program instructi ons in the VP2 execution
 environment. "v" indicates a floating-point ve ctor input or output, "s"
 indicates a floating-point scalar input, "ssss" indicates a scalar output
 replicated across a 4-component vector, "av" in dicates a full address
 register, "as" indicates a single component of an address register.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 303

 Section 2.14.2.1, Vertex Program Operands

 Most vertex program instructions operate on flo ating-point vectors,
 floating-point scalars, or integer scalars as, indicated in the grammar
 (see section 2.14.1.8) by the rules <vectorSrc> , <scalarSrc>, and
 <scalarAddr>, respectively.

 The basic set of floating-point scalar operands is defined by the grammar
 rule <baseScalarSrc>. Scalar operands are sing le components of vertex
 attribute, program parameter, or temporary regi sters, as allowed by the
 <srcRegister> rule. A vector component is sele cted by the <scalarSuffix>
 rule, where the characters "x", "y", "z", and " w" select the x, y, z, and
 w components, respectively, of the vector.

 The basic set of floating-point vector operands is defined by the grammar
 rule <baseVectorSrc>. Vector operands can be o btained from vertex
 attribute, program parameter, or temporary regi sters as allowed by the
 <srcRegister> rule.

 Basic vector operands can be swizzled according to the <swizzleSuffix>
 rule. In its most general form, the <swizzleSu ffix> rule matches the
 pattern ".????" where each question mark is rep laced with one of "x", "y",
 "z", or "w". For such patterns, the x, y, z, a nd w components of the
 operand are taken from the vector components na med by the first, second,
 third, and fourth character of the pattern, res pectively. For example, if
 the swizzle suffix is ".yzzx" and the specified source contains {2,8,9,0},
 the swizzled operand used by the instruction is {8,9,9,2}.

 If the <swizzleSuffix> rule matches "", it is t reated as though it were
 ".xyzw". If the <swizzleSuffix> rule matches (ignoring whitespace) ".x",
 ".y", ".z", or ".w", these are treated the same as ".xxxx", ".yyyy",
 ".zzzz", and ".wwww" respectively.

 Floating-point scalar or vector operands can op tionally be negated
 according to the <negate> rules in <baseScalarS rc> and <baseVectorSrc>.
 If the <negate> matches "-", each operand or op erand component is negated.

 In the VP2 execution environment, a component-w ise absolute value
 operation is performed on an operand if the <sc alarSrc> or <vectorSrc>
 rules match <vp2-absScalarSrc> or <vp2-absVecto rSrc>. In this case, the
 absolute value of each component of the operand is taken. In addition, if
 the <negate> rule in <vp2-absScalarSrc> or <vp2 -absVectorSrc> matches "-",
 each component is subsequently negated.

 Integer scalar operands are single components o f one of the address
 register vectors, as identified by the <addrReg ister> rule. A vector
 component is selected by the <scalarSuffix> rul e in the same manner as
 floating-point scalar operands. Negation and a bsolute value operations
 are not available for integer scalar operands.

 The following pseudo-code spells out the operan d generation process. In
 the pseudo-code, "float" and "int" are floating -point and integer scalar
 types, while "floatVec" and "intVec" are four-c omponent vectors. "source"
 is the register used for the operand, matching the <srcRegister> or
 <addrRegister> rules. "absolute" is TRUE if th e operand matches the
 <vp2-absScalarSrc> or <vp2-absVectorSrc> rules, and FALSE otherwise.
 "negateBase" is TRUE if the <negate> rule in <b aseScalarSrc> or

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 304

 <baseVectorSrc> matches "-" and FALSE otherwise . "negateAbs" is TRUE if
 the <negate> rule in <vp2-absScalarSrc> or <vp2 -absVectorSrc> matches "-"
 and FALSE otherwise. The ".c***", ".*c**", ".* *c*", ".***c" modifiers
 refer to the x, y, z, and w components obtained by the swizzle operation.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;
 if (negateBase) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }
 if (absolute) {
 operand.x = abs(operand.x);
 operand.y = abs(operand.y);
 operand.z = abs(operand.z);
 operand.w = abs(operand.w);
 }
 if (negateAbs) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c***;
 if (negateBase) {
 operand = -operand;
 }
 if (absolute) {
 operand = abs(operand);
 }
 if (negateAbs) {
 operand = -operand;
 }

 return operand;
 }

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 305

 intVec AddrVectorLoad(intVec addrReg)
 {
 intVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;

 return operand;
 }

 int AddrScalarLoad(intVec addrReg)
 {
 return source.c***;
 }

 If an operand is obtained from a program parame ter register, by matching
 the <progParamRegister> rule, the register numb er can be obtained by
 absolute or relative addressing.

 When absolute addressing is used, by matching t he <absProgParamReg> rule,
 the program parameter register number is the nu mber matching the
 <progParamRegNum>.

 When relative addressing is used, by matching t he <relProgParamReg> rule,
 the program parameter register number is comput ed during program
 execution. An index is computed by adding the integer scalar operand
 specified by the <scalarAddr> rule to the posit ive or negative offset
 specified by the <progParamOffset> rule. If <p rogParamOffset> matches "",
 an offset of zero is used.

 The following pseudo-code spells out the proces s of loading a program
 parameter. "addrReg" refers to the address reg ister used for relative
 addressing, "absolute" is TRUE if the operand u ses absolute addressing and
 FALSE otherwise. "paramNumber" is the program parameter number for
 absolute addressing; "paramOffset" is the progr am parameter offset for
 relative addressing. "paramRegiser" is an arra y holding the complete set
 of program parameter registers.

 floatVec ProgramParameterLoad(intVec addrReg)
 {
 int index;

 if (absolute) {
 index = paramNumber;
 } else {
 index = AddrScalarLoad(addrReg) + paramOf fset
 }

 return paramRegister[index];
 }

 Section 2.14.2.2, Vertex Program Destination R egister Update

 Most vertex program instructions write a 4-comp onent result vector to a
 single temporary, vertex result, or address reg ister. Writes to

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 306

 individual components of the destination regist er are controlled by
 individual component write masks specified as p art of the instruction. In
 the VP2 execution environment, writes are addit ionally controlled by the a
 condition code write mask, which is computed at run time.

 The component write mask is specified by the <o ptionalWriteMask> rule
 found in the <maskedDstReg> or <maskedAddrReg> rule. If the optional mask
 is "", all components are enabled. Otherwise, the optional mask names the
 individual components to enable. The character s "x", "y", "z", and "w"
 match the x, y, z, and w components respectivel y. For example, an
 optional mask of ".xzw" indicates that the x, z , and w components should
 be enabled for writing but the y component shou ld not. The grammar
 requires that the destination register mask com ponents must be listed in
 "xyzw" order.

 In the VP2 execution environment, the condition code write mask is
 specified by the <optionalCCMask> rule found in the <maskedDstReg> and
 <maskedAddrReg> rules. If the condition code m ask matches "", all
 components are enabled. Otherwise, the conditi on code register is loaded
 and swizzled according to the swizzle codes spe cified by <swizzleSuffix>.
 Each component of the swizzled condition code i s tested according to the
 rule given by <ccMaskRule>. <ccMaskRule> may h ave the values "EQ", "NE",
 "LT", "GE", LE", or "GT", which mean to enable writes if the corresponding
 condition code field evaluates to equal, not eq ual, less than, greater
 than or equal, less than or equal, or greater t han, respectively.
 Comparisons involving condition codes of "UN" (unordered) evaluate to true
 for "NE" and false otherwise. For example, if the condition code is
 (GT,LT,EQ,GT) and the condition code mask is "(NE.zyxw)", the swizzle
 operation will load (EQ,LT,GT,GT) and the mask will thus will enable
 writes on the y, z, and w components. In addit ion, "TR" always enables
 writes and "FL" always disables writes, regardl ess of the condition code.

 Each component of the destination register is u pdated with the result of
 the vertex program instruction if and only if t he component is enabled for
 writes by the component write mask, and the opt ional condition code mask
 (if applicable). Otherwise, the component of t he destination register
 remains unchanged.

 In the VP2 execution environment, a vertex prog ram instruction can also
 optionally update the condition code register. The condition code is
 updated if the condition code register update s uffix "C" is present in the
 instruction. The instruction "ADDC" will updat e the condition code; the
 otherwise equivalent instruction "ADD" will not . If condition code
 updates are enabled, each component of the dest ination register enabled
 for writes is compared to zero. The correspond ing component of the
 condition code is set to "LT", "EQ", or "GT", i f the written component is
 less than, equal to, or greater than zero, resp ectively. Condition code
 components are set to "UN" if the written compo nent is NaN. Values of
 -0.0 and +0.0 both evaluate to "EQ". If a comp onent of the destination
 register is not enabled for writes, the corresp onding condition code
 component is also unchanged.

 In the following example code,

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 307

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the condition
 code to (LT,EQ,GT,UN). The second instruction, only the "x", "y", and "z"
 components of R0 and the condition code are upd ated, so R0 ends up with
 (0,2,NaN,NaN) and the condition code ends up wi th (EQ,GT,UN,UN). In the
 third instruction, the condition code mask disa bles writes to the x
 component (its condition code field is "EQ"), s o R0 ends up with
 (0,0,NaN,-2) and the condition code ends up wit h (EQ,EQ,UN,LT).
 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask" refers
 to the component write mask given by the <optio nalWriteMask> rule. In the
 VP1 execution environment, "ccMaskRule" is alwa ys "" and "updatecc" is
 always FALSE. In the VP2 execution environment , "ccMaskRule" refers to
 the condition code mask rule given by <vp2-opti onalCCMask> and "updatecc"
 is TRUE if and only if condition code updates a re enabled. "result",
 "destination", and "cc" refer to the result vec tor, the register selected
 by <dstRegister> and the condition code, respec tively. Condition codes do
 not exist in the VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");
 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 308

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 Section 2.14.2.3, Vertex Program Execution

 In the VP1 execution environment, vertex progra ms consist of a sequence of
 instructions without no support for branching. Vertex programs begin by
 executing the first instruction in the program, and execute instructions
 in the order specified in the program until the last instruction is
 reached.

 VP2 vertex programs can contain one or more ins truction labels, matching
 the grammar rule <vp2-instructionLabel>. An in struction label can be
 referred to explicitly in branch (BRA) or subro utine call (CAL)
 instructions. Instruction labels can be define d or used at any point in
 the body of a program, and can be used in instr uctions before being
 defined in the program string.

 VP2 vertex program branching instructions can b e conditional. The branch
 condition is specified by the <vp2-conditionMas k> and may depend on the
 contents of the condition code register. Branc h conditions are evaluated
 by evaluating a condition code write mask in ex actly the same manner as
 done for register writes (section 2.14.2.2). I f any of the four
 components of the condition code write mask are enabled, the branch is
 taken and execution continues with the instruct ion following the label
 specified in the instruction. Otherwise, the i nstruction is ignored and
 vertex program execution continues with the nex t instruction. In the
 following example code,

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 309

 MOVC CC, c[0]; # c[0]=(-2, 0, 2, Na N), CC gets (LT,EQ,GT,UN)
 BRA label1 (LT.xyzw);
 MOV R0,R1; # not executed
 label1:
 BRA label2 (LT.wyzw);
 MOV R0,R2; # executed
 label2:

 the first BRA instruction loads a condition cod e of (LT,EQ,GT,UN) while
 the second BRA instruction loads a condition co de of (UN,EQ,GT,UN). The
 first branch will be taken because the "x" comp onent evaluates to LT; the
 second branch will not be taken because no comp onent evaluates to LT.

 VP2 vertex programs can specify subroutine call s. When a subroutine call
 (CAL) instruction is executed, a reference to t he instruction immediately
 following the CAL instruction is pushed onto th e call stack. When a
 subroutine return (RET) instruction is executed , an instruction reference
 is popped off the call stack and program execut ion continues with the
 popped instruction. A vertex program will term inate if a CAL instruction
 is executed with four entries already in the ca ll stack or if a RET
 instruction is executed with an empty call stac k.

 If a VP2 vertex program has an instruction labe l "main", program execution
 begins with the instruction immediately followi ng the instruction label.
 Otherwise, program execution begins with the fi rst instruction of the
 program. Instructions will be executed sequent ially in the order
 specified in the program, although branch instr uctions will affect the
 instruction execution order, as described above . A vertex program will
 terminate after executing a RET instruction wit h an empty call stack. A
 vertex program will also terminate after execut ing the last instruction in
 the program, unless that instruction was a take n branch.

 A vertex program will fail to load if an instru ction refers to a label
 that is not defined in the program string.

 A vertex program will terminate abnormally if a subroutine call
 instruction produces a call stack overflow. Ad ditionally, a vertex
 program will terminate abnormally after executi ng 65536 instructions to
 prevent hangs caused by infinite loops in the p rogram.

 When a vertex program terminates, normally or a bnormally, it will emit a
 vertex whose attributes are taken from the fina l values of the vertex
 result registers (section 2.14.1.5).

 Section 2.14.3, Vertex Program Instruction Set

 The following sections describe the set of supp orted vertex program
 instructions. Instructions available only in t he VP1.1 or VP2 execution
 environment will be noted in the instruction de scription.

 Each section will contain pseudocode describing the instruction.
 Instructions will have up to three operands, re ferred to as "op0", "op1",
 and "op2". The operands are loaded using the m echanisms specified in
 section 2.14.2.1. Most instructions will gener ate a result vector called
 "result". The result vector is then written to the destination register
 specified in the instruction using the mechanis ms specified in section
 2.14.2.2.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 310

 Operands and results are represented as 32-bit single-precision
 floating-point numbers according to the IEEE 75 4 floating-point
 specification. IEEE denorm encodings, used to represent numbers smaller
 than 2^-126, are not supported. All such numbe rs are flushed to zero.
 There are three special encodings referred to i n this section: +INF means
 "positive infinity", -INF means "negative infin ity", and NaN refers to
 "not a number".

 Arithmetic operations are typically carried out in single precision
 according to the rules specified in the IEEE 75 4 specification. Any
 exceptions and special cases will be noted in t he instruction description.

 Section 2.14.3.1, ABS: Absolute Value

 The ABS instruction performs a component-wise a bsolute value operation on
 the single operand to yield a result vector.

 tmp = VectorLoad(op0);
 result.x = abs(tmp.x);
 result.y = abs(tmp.y);
 result.z = abs(tmp.z);
 result.w = abs(tmp.w);

 The following special-case rules apply to absol ute value operation:

 1. abs(NaN) = NaN.
 2. abs(-INF) = abs(+INF) = +INF.
 3. abs(-0.0) = abs(+0.0) = +0.0.

 The ABS instruction is available only in the VP 1.1 and VP2 execution
 environments.

 In the VP1.0 execution environment, the same fu nctionality can be achieved
 with "MAX result, src, -src".

 In the VP2 execution environment, the ABS instr uction is effectively
 obsolete, since instructions can take the absol ute value of each operand
 at no cost.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 311

 Section 2.14.3.2, ADD: Add

 The ADD instruction performs a component-wise a dd of the two operands to
 yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x + tmp1.x;
 result.y = tmp0.y + tmp1.y;
 result.z = tmp0.z + tmp1.z;
 result.w = tmp0.w + tmp1.w;

 The following special-case rules apply to addit ion:

 1. "A+B" is always equivalent to "B+A".
 2. NaN + <x> = NaN, for all <x>.
 3. +INF + <x> = +INF, for all <x> except NaN and -INF.
 4. -INF + <x> = -INF, for all <x> except NaN and +INF.
 5. +INF + -INF = NaN.
 6. -0.0 + <x> = <x>, for all <x>.
 7. +0.0 + <x> = <x>, for all <x> except -0.0.

 Section 2.14.3.3, ARA: Address Register Add

 The ARA instruction adds two pairs of component s of a vector address
 register operand to produce an integer result v ector. The "x" and "z"
 components of the result vector contain the sum of the "x" and "z"
 components of the operand; the "y" and "w" comp onents of the result vector
 contain the sum of the "y" and "w" components o f the operand. Each
 component of the result vector is clamped to [- 512, +511], the range of
 representable address register components.

 itmp = AddrVectorLoad(op0);
 iresult.x = itmp.x + itmp.z;
 iresult.y = itmp.y + itmp.w;
 iresult.z = itmp.x + itmp.z;
 iresult.w = itmp.y + itmp.w;
 if (iresult.x < -512) iresult.x = -512;
 if (iresult.x > 511) iresult.x = 511;
 if (iresult.y < -512) iresult.y = -512;
 if (iresult.y > 511) iresult.y = 511;
 if (iresult.z < -512) iresult.z = -512;
 if (iresult.z > 511) iresult.z = 511;
 if (iresult.w < -512) iresult.w = -512;
 if (iresult.w > 511) iresult.w = 511;

 Component swizzling is not supported when the o perand is loaded.

 The ARA instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 312

 Section 2.14.3.4, ARL: Address Register Load

 In the VP1 execution environment, the ARL instr uction loads a single
 scalar operand and performs a floor operation t o generate an integer
 scalar to be written to the address register.

 tmp = ScalarLoad(op0);
 iresult.x = floor(tmp);

 In the VP2 execution environment, the ARL instr uction loads a single
 vector operand and performs a component-wise fl oor operation to generate
 an integer result vector. Each component of th e result vector is clamped
 to [-512, +511], the range of representable add ress register components.
 The ARL instruction applies all masking operati ons to address register
 writes as are described in section 2.14.2.2.

 tmp = VectorLoad(op0);
 iresult.x = floor(tmp.x);
 iresult.y = floor(tmp.y);
 iresult.z = floor(tmp.z);
 iresult.w = floor(tmp.w);
 if (iresult.x < -512) iresult.x = -512;
 if (iresult.x > 511) iresult.x = 511;
 if (iresult.y < -512) iresult.y = -512;
 if (iresult.y > 511) iresult.y = 511;
 if (iresult.z < -512) iresult.z = -512;
 if (iresult.z > 511) iresult.z = 511;
 if (iresult.w < -512) iresult.w = -512;
 if (iresult.w > 511) iresult.w = 511;

 The following special-case rules apply to floor computation:

 1. floor(NaN) = NaN.
 2. floor(<x>) = <x>, for -0.0, +0.0, -INF, an d +INF. In all cases, the
 sign of the result is equal to the sign of the operand.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 313

 Section 2.14.3.5, ARR: Address Register Load (with round)

 The ARR instruction loads a single vector opera nd and performs a
 component-wise round operation to generate an i nteger result vector. Each
 component of the result vector is clamped to [- 512, +511], the range of
 representable address register components. The ARR instruction applies
 all masking operations to address register writ es as described in section
 2.14.2.2.

 tmp = VectorLoad(op0);
 iresult.x = round(tmp.x);
 iresult.y = round(tmp.y);
 iresult.z = round(tmp.z);
 iresult.w = round(tmp.w);
 if (iresult.x < -512) iresult.x = -512;
 if (iresult.x > 511) iresult.x = 511;
 if (iresult.y < -512) iresult.y = -512;
 if (iresult.y > 511) iresult.y = 511;
 if (iresult.z < -512) iresult.z = -512;
 if (iresult.z > 511) iresult.z = 511;
 if (iresult.w < -512) iresult.w = -512;
 if (iresult.w > 511) iresult.w = 511;

 The rounding function, round(x), returns the ne arest integer to <x>. If
 the fractional portion of <x> is 0.5, round(x) selects the nearest even
 integer.

 The ARR instruction is available only in the VP 2 execution environment.

 Section 2.14.3.6, BRA: Branch

 The BRA instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. The following
 pseudocode describes the operation of the instr uction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the instruction
 matching the <vp2-branchLabel> grammar rule.

 The BRA instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 314

 Section 2.14.3.7, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. It also pushes a
 reference to the instruction immediately follow ing the CAL instruction
 onto the call stack, where execution will conti nue after executing the
 matching RET instruction. The following pseudo code describes the
 operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth >= 4) {
 // terminate vertex program
 } else {
 callStack[callStackDepth] = nextInstructi on;
 callStackDepth++;
 }
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the instruction
 matching the <vp2-branchLabel> grammar rule, <c allStackDepth> is the
 current depth of the call stack, <callStack> is an array holding the call
 stack, and <nextInstruction> is a reference to the instruction immediately
 following the present one in the program string .

 The CAL instruction is available only in the VP 2 execution environment.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 315

 Section 2.14.3.8, COS: Cosine

 The COS instruction approximates the cosine of the angle specified by the
 scalar operand and replicates the approximation to all four components of
 the result vector. The angle is specified in r adians and does not have to
 be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 The approximation function ApproxCosine is accu rate to at least 22 bits
 with an angle in the range [0,2*PI].

 | ApproxCosine(x) - cos(x) | < 1.0 / 2^22, if 0.0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxCosine(NaN) = NaN.
 2. ApproxCosine(+/-INF) = NaN.
 3. ApproxCosine(+/-0.0) = +1.0.

 The COS instruction is available only in the VP 2 execution environment.

 Section 2.14.3.9, DP3: 3-component Dot Produc t

 The DP3 instruction computes a three component dot product of the two
 operands (using the x, y, and z components) and replicates the dot product
 to all four components of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z);

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 316

 Section 2.14.3.10, DP4: 4-component Dot Produ ct

 The DP4 instruction computes a four component d ot product of the two
 operands and replicates the dot product to all four components of the
 result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + (tmp0.w * tmp1 .w);

 Section 2.14.3.11, DPH: Homogeneous Dot Produ ct

 The DPH instruction computes a four-component d ot product of the two
 operands, except that the W component of the fi rst operand is assumed to
 be 1.0. The instruction replicates the dot pro duct to all four components
 of the result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1):
 result.x = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.y = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.z = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;
 result.w = (tmp0.x * tmp1.x) + (tmp0.y * tmp1 .y) +
 (tmp0.z * tmp1.z) + tmp1.w;

 The DPH instruction is available only in the VP 1.1 and VP2 execution
 environments.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 317

 Section 2.14.3.12, DST: Distance Vector

 The DST instruction computes a distance vector from two specially-
 formatted operands. The first operand should b e of the form [NA, d^2,
 d^2, NA] and the second operand should be of th e form [NA, 1/d, NA, 1/d],
 where NA values are not relevant to the calcula tion and d is a vector
 length. If both vectors satisfy these conditio ns, the result vector will
 be of the form [1.0, d, d^2, 1/d].

 The exact behavior is specified in the followin g pseudo-code:

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = 1.0;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z;
 result.w = tmp1.w;

 Given an arbitrary vector, d^2 can be obtained using the DP3 instruction
 (using the same vector for both operands) and 1 /d can be obtained from d^2
 using the RSQ instruction.

 This distance vector is useful for per-vertex l ight attenuation
 calculations: a DP3 operation using the distan ce vector and an
 attenuation constants vector as operands will y ield the attenuation
 factor.

 Section 2.14.3.13, EX2: Exponential Base 2

 The EX2 instruction approximates 2 raised to th e power of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = Approx2ToX(tmp);
 result.y = Approx2ToX(tmp);
 result.z = Approx2ToX(tmp);
 result.w = Approx2ToX(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | Approx2ToX(x) - 2^x | < 1.0 / 2^22, if 0.0 <= x < 1.0,

 and, in general,

 | Approx2ToX(x) - 2^x | < (1.0 / 2^22) * (2^f loor(x)).

 The following special-case rules apply to expon ential approximation:

 1. Approx2ToX(NaN) = NaN.
 2. Approx2ToX(-INF) = +0.0.
 3. Approx2ToX(+INF) = +INF.
 4. Approx2ToX(+/-0.0) = +1.0.

 The EX2 instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 318

 Section 2.14.3.14, EXP: Exponential Base 2 (a pproximate)

 The EXP instruction computes a rough approximat ion of 2 raised to the
 power of the scalar operand. The approximation is returned in the "z"
 component of the result vector. A vertex progr am can also use the "x" and
 "y" components of the result vector to generate a more accurate
 approximation by evaluating

 result.x * f(result.y),

 where f(x) is a user-defined function that appr oximates 2^x over the
 domain [0.0, 1.0). The "w" component of the re sult vector is always 1.0.

 The exact behavior is specified in the followin g pseudo-code:

 tmp = ScalarLoad(op0);
 result.x = 2^floor(tmp);
 result.y = tmp - floor(tmp);
 result.z = RoughApprox2ToX(tmp);
 result.w = 1.0;

 The approximation function is accurate to at le ast 11 bits:

 | RoughApprox2ToX(x) - 2^x | < 1.0 / 2^11, if 0.0 <= x < 1.0,

 and, in general,

 | RoughApprox2ToX(x) - 2^x | < (1.0 / 2^11) * (2^floor(x)).

 The following special cases apply to the EXP in struction:

 1. RoughApprox2ToX(NaN) = NaN.
 2. RoughApprox2ToX(-INF) = +0.0.
 3. RoughApprox2ToX(+INF) = +INF.
 4. RoughApprox2ToX(+/-0.0) = +1.0.

 The EXP instruction is present for compatibilit y with the original
 NV_vertex_program instruction set; it is recomm ended that applications
 using NV_vertex_program2 use the EX2 instructio n instead.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 319

 Section 2.14.3.15, FLR: Floor

 The FLR instruction performs a component-wise f loor operation on the
 operand to generate a result vector. The floor of a value is defined as
 the largest integer less than or equal to the v alue. The floor of 2.3 is
 2.0; the floor of -3.6 is -4.0.

 tmp = VectorLoad(op0);
 result.x = floor(tmp.x);
 result.y = floor(tmp.y);
 result.z = floor(tmp.z);
 result.w = floor(tmp.w);

 The following special-case rules apply to floor computation:

 1. floor(NaN) = NaN.
 2. floor(<x>) = <x>, for -0.0, +0.0, -INF, an d +INF. In all cases, the
 sign of the result is equal to the sign of the operand.

 The FLR instruction is available only in the VP 2 execution environment.

 Section 2.14.3.16, FRC: Fraction

 The FRC instruction extracts the fractional por tion of each component of
 the operand to generate a result vector. The f ractional portion of a
 component is defined as the result after subtra cting off the floor of the
 component (see FLR), and is always in the range [0.00, 1.00).

 For negative values, the fractional portion is NOT the number written to
 the right of the decimal point -- the fractiona l portion of -1.7 is not
 0.7 -- it is 0.3. 0.3 is produced by subtracti ng the floor of -1.7 (-2.0)
 from -1.7.

 tmp = VectorLoad(op0);
 result.x = tmp.x - floor(tmp.x);
 result.y = tmp.y - floor(tmp.y);
 result.z = tmp.z - floor(tmp.z);
 result.w = tmp.w - floor(tmp.w);

 The following special-case rules, which can be derived from the rules for
 FLR and ADD apply to fraction computation:

 1. fraction(NaN) = NaN.
 2. fraction(+/-INF) = NaN.
 3. fraction(+/-0.0) = +0.0.

 The FRC instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 320

 Section 2.14.3.17, LG2: Logarithm Base 2

 The LG2 instruction approximates the base 2 log arithm of the scalar
 operand and replicates it to all four component s of the result vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxLog2(tmp);
 result.y = ApproxLog2(tmp);
 result.z = ApproxLog2(tmp);
 result.w = ApproxLog2(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxLog2(x) - log_2(x) | < 1.0 / 2^22.

 The following special-case rules apply to logar ithm approximation:

 1. ApproxLog2(NaN) = NaN.
 2. ApproxLog2(+INF) = +INF.
 3. ApproxLog2(+/-0.0) = -INF.
 4. ApproxLog2(x) = NaN, -INF < x < -0.0.
 5. ApproxLog2(-INF) = NaN.

 The LG2 instruction is available only in the VP 2 execution environment.

 Section 2.14.3.18, LIT: Compute Light Coeffic ients

 The LIT instruction accelerates per-vertex ligh ting by computing lighting
 coefficients for ambient, diffuse, and specular light contributions. The
 "x" component of the operand is assumed to hold a diffuse dot product (n
 dot VP_pli, as in the vertex lighting equations in Section 2.13.1). The
 "y" component of the operand is assumed to hold a specular dot product (n
 dot h_i). The "w" component of the operand is assumed to hold the
 specular exponent of the material (s_rm), and i s clamped to the range
 (-128, +128) exclusive.

 The "x" component of the result vector receives the value that should be
 multiplied by the ambient light/material produc t (always 1.0). The "y"
 component of the result vector receives the val ue that should be
 multiplied by the diffuse light/material produc t (n dot VP_pli). The "z"
 component of the result vector receives the val ue that should be
 multiplied by the specular light/material produ ct (f_i * (n dot h_i) ^
 s_rm). The "w" component of the result is the constant 1.0.

 Negative diffuse and specular dot products are clamped to 0.0, as is done
 in the standard per-vertex lighting operations. In addition, if the
 diffuse dot product is zero or negative, the sp ecular coefficient is
 forced to zero.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 321

 tmp = VectorLoad(op0);
 if (t.x < 0) t.x = 0;
 if (t.y < 0) t.y = 0;
 if (t.w < -(128.0-epsilon)) t.w = -(128.0-eps ilon);
 else if (t.w > 128-epsilon) t.w = 128-epsilon ;
 result.x = 1.0;
 result.y = t.x;
 result.z = (t.x > 0) ? RoughApproxPower(t.y, t.w) : 0.0;
 result.w = 1.0;

 The exponentiation approximation function is de fined in terms of the base
 2 exponentiation and logarithm approximation op erations in the EXP and LOG
 instructions, including errors and the processi ng of any special cases.
 In particular,

 RoughApproxPower(a,b) = RoughApproxExp2(b * R oughApproxLog2(a)).

 The following special-case rules, which can be derived from the rules in
 the LOG, MUL, and EXP instructions, apply to ex ponentiation:

 1. RoughApproxPower(NaN, <x>) = NaN,
 2. RoughApproxPower(<x>, <y>) = NaN, if x <= -0.0,
 3. RoughApproxPower(+/-0.0, <x>) = +0.0, if x > +0.0, or
 +INF, if x < -0.0,
 4. RoughApproxPower(+1.0, <x>) = +1.0, if x i s not NaN,
 5. RoughApproxPower(+INF, <x>) = +INF, if x > +0.0, or
 +0.0, if x < -0.0,
 6. RoughApproxPower(<x>, +/-0.0) = +1.0, if x >= -0.0
 7. RoughApproxPower(<x>, +INF) = +0.0, if -0. 0 <= x < +1.0,
 +INF, if x > +1.0,
 8. RoughApproxPower(<x>, +INF) = +INF, if -0. 0 <= x < +1.0,
 +0.0, if x > +1.0,
 9. RoughApproxPower(<x>, +1.0) = <x>, if x >= +0.0, and
 10. RoughApproxPower(<x>, NaN) = NaN.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 322

 Section 2.14.3.19, LOG: Logarithm Base 2 (App roximate)

 The LOG instruction computes a rough approximat ion of the base 2 logarithm
 of the absolute value of the scalar operand. T he approximation is
 returned in the "z" component of the result vec tor. A vertex program can
 also use the "x" and "y" components of the resu lt vector to generate a
 more accurate approximation by evaluating

 result.x + f(result.y),

 where f(x) is a user-defined function that appr oximates 2^x over the
 domain [1.0, 2.0). The "w" component of the re sult vector is always 1.0.

 The exact behavior is specified in the followin g pseudo-code:

 tmp = fabs(ScalarLoad(op0));
 result.x = floor(log2(tmp));
 result.y = tmp / (2^floor(log2(tmp)));
 result.z = RoughApproxLog2(tmp);
 result.w = 1.0;

 The approximation function is accurate to at le ast 11 bits:

 | RoughApproxLog2(x) - log_2(x) | < 1.0 / 2^1 1.

 The following special-case rules apply to the L OG instruction:

 1. RoughApproxLog2(NaN) = NaN.
 2. RoughApproxLog2(+INF) = +INF.
 3. RoughApproxLog2(+0.0) = -INF.

 The LOG instruction is present for compatibilit y with the original
 NV_vertex_program instruction set; it is recomm ended that applications
 using NV_vertex_program2 use the LG2 instructio n instead.

 Section 2.14.3.20, MAD: Multiply And Add

 The MAD instruction performs a component-wise m ultiply of the first two
 operands, and then does a component-wise add of the product to the third
 operand to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 tmp2 = VectorLoad(op2);
 result.x = tmp0.x * tmp1.x + tmp2.x;
 result.y = tmp0.y * tmp1.y + tmp2.y;
 result.z = tmp0.z * tmp1.z + tmp2.z;
 result.w = tmp0.w * tmp1.w + tmp2.w;

 All special case rules applicable to the ADD an d MUL instructions apply to
 the individual components of the MAD operation as well.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 323

 Section 2.14.3.21, MAX: Maximum

 The MAX instruction computes component-wise max imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = max(tmp0.x, tmp1.x);
 result.y = max(tmp0.y, tmp1.y);
 result.z = max(tmp0.z, tmp1.z);
 result.w = max(tmp0.w, tmp1.w);

 The following special cases apply to the maximu m operation:

 1. max(A,B) is always equivalent to max(B,A).
 2. max(NaN, <x>) == NaN, for all <x>.

 Section 2.14.3.22, MIN: Minimum

 The MIN instruction computes component-wise min imums of the values in the
 two operands to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = min(tmp0.x, tmp1.x);
 result.y = min(tmp0.y, tmp1.y);
 result.z = min(tmp0.z, tmp1.z);
 result.w = min(tmp0.w, tmp1.w);

 The following special cases apply to the minimu m operation:

 1. min(A,B) is always equivalent to min(B,A).
 2. min(NaN, <x>) == NaN, for all <x>.

 Section 2.14.3.23, MOV: Move

 The MOV instruction copies the value of the ope rand to yield a result
 vector.

 result = VectorLoad(op0);

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 324

 Section 2.14.3.24, MUL: Multiply

 The MUL instruction performs a component-wise m ultiply of the two operands
 to yield a result vector.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x * tmp1.x;
 result.y = tmp0.y * tmp1.y;
 result.z = tmp0.z * tmp1.z;
 result.w = tmp0.w * tmp1.w;

 The following special-case rules apply to multi plication:

 1. "A*B" is always equivalent to "B*A".
 2. NaN * <x> = NaN, for all <x>.
 3. +/-0.0 * +/-INF = NaN.
 4. +/-0.0 * <x> = +/-0.0, for all <x> except -INF, +INF, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 5. +/-INF * <x> = +/-INF, for all <x> except -0.0, +0.0, and NaN. The
 sign of the result is positive if the sign s of the two operands match
 and negative otherwise.
 6. +1.0 * <x> = <x>, for all <x>.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 325

 Section 2.14.3.25, RCC: Reciprocal (Clamped)

 The RCC instruction approximates the reciprocal of the scalar operand,
 clamps the result to one of two ranges, and rep licates the clamped result
 to all four components of the result vector.

 If the approximate reciprocal is greater than 0 .0, the result is clamped
 to the range [2^-64, 2^+64]. If the approximat e reciprocal is not greater
 than zero, the result is clamped to the range [-2^+64, -2^-64].

 tmp = ScalarLoad(op0);
 result.x = ClampApproxReciprocal(tmp);
 result.y = ClampApproxReciprocal(tmp);
 result.z = ClampApproxReciprocal(tmp);
 result.w = ClampApproxReciprocal(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ClampApproxReciprocal(x) - (1/x) | < 1.0 / 2^22, if 1.0 <= x < 2.0.

 The following special-case rules apply to recip rocation:

 1. ClampApproxReciprocal(NaN) = NaN.
 2. ClampApproxReciprocal(+INF) = +2^-64.
 3. ClampApproxReciprocal(-INF) = -2^-64.
 4. ClampApproxReciprocal(+0.0) = +2^64.
 5. ClampApproxReciprocal(-0.0) = -2^64.
 6. ClampApproxReciprocal(x) = +2^-64, if -2^6 4 < x < +INF.
 7. ClampApproxReciprocal(x) = -2^-64, if -INF < x < -2^-64.
 8. ClampApproxReciprocal(x) = +2^64, if +0.0 < x < +2^-64.
 9. ClampApproxReciprocal(x) = -2^64, if -2^-6 4 < x < -0.0.

 The RCC instruction is available only in the VP 1.1 and VP2 execution
 environments.

 Section 2.14.3.26, RCP: Reciprocal

 The RCP instruction approximates the reciprocal of the scalar operand and
 replicates it to all four components of the res ult vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxReciprocal(tmp);
 result.y = ApproxReciprocal(tmp);
 result.z = ApproxReciprocal(tmp);
 result.w = ApproxReciprocal(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxReciprocal(x) - (1/x) | < 1.0 / 2^22, if 1.0 <= x < 2.0.

 The following special-case rules apply to recip rocation:

 1. ApproxReciprocal(NaN) = NaN.
 2. ApproxReciprocal(+INF) = +0.0.
 3. ApproxReciprocal(-INF) = -0.0.
 4. ApproxReciprocal(+0.0) = +INF.
 5. ApproxReciprocal(-0.0) = -INF.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 326

 Section 2.14.3.27, RET: Subroutine Call Retur n

 The RET instruction conditionally returns from a subroutine initiated by a
 CAL instruction by popping an instruction refer ence off the top of the
 call stack and transferring control to the refe renced instruction. The
 following pseudocode describes the operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate vertex program
 } else {
 callStackDepth--;
 instruction = callStack[callStackDepth];
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is a
 reference to an instruction previously pushed o nto the call stack.

 The RET instruction is available only in the VP 2 execution environment.

 Section 2.14.3.28, RSQ: Reciprocal Square Roo t

 The RSQ instruction approximates the reciprocal of the square root of the
 scalar operand and replicates it to all four co mponents of the result
 vector.

 tmp = ScalarLoad(op0);
 result.x = ApproxRSQRT(tmp);
 result.y = ApproxRSQRT(tmp);
 result.z = ApproxRSQRT(tmp);
 result.w = ApproxRSQRT(tmp);

 The approximation function is accurate to at le ast 22 bits:

 | ApproxRSQRT(x) - (1/x) | < 1.0 / 2^22, if 1 .0 <= x < 4.0.

 The following special-case rules apply to recip rocal square roots:

 1. ApproxRSQRT(NaN) = NaN.
 2. ApproxRSQRT(+INF) = +0.0.
 3. ApproxRSQRT(-INF) = NaN.
 4. ApproxRSQRT(+0.0) = +INF.
 5. ApproxRSQRT(-0.0) = -INF.
 6. ApproxRSQRT(x) = NaN, if -INF < x < -0.0.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 327

 Section 2.14.3.29, SEQ: Set on Equal

 The SEQ instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SEQ:

 1. (<x> == <y>) and (<y> == <x>) always produ ce the same result.
 1. (NaN == <x>) is FALSE for all <x>, includi ng NaN.
 2. (+INF == +INF) and (-INF == -INF) are TRUE .
 3. (-0.0 == +0.0) and (+0.0 == -0.0) are TRUE .

 The SEQ instruction is available only in the VP 2 execution environment.

 Section 2.14.3.30, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to
 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

 The SFL instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 328

 Section 2.14.3.31, SGE: Set on Greater Than o r Equal

 The SGE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than or equal that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SGE:

 1. (NaN >= <x>) and (<x> >= NaN) are FALSE fo r all <x>.
 2. (+INF >= +INF) and (-INF >= -INF) are TRUE .
 3. (-0.0 >= +0.0) and (+0.0 >= -0.0) are TRUE .

 Section 2.14.3.32, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operands is greater than that of the second, and
 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SGT:

 1. (NaN > <x>) and (<x> > NaN) are FALSE for all <x>.
 2. (-0.0 > +0.0) and (+0.0 > -0.0) are FALSE.

 The SGT instruction is available only in the VP 2 execution environment.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 329

 Section 2.14.3.33, SIN: Sine

 The SIN instruction approximates the sine of th e angle specified by the
 scalar operand and replicates it to all four co mponents of the result
 vector. The angle is specified in radians and does not have to be in the
 range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 The approximation function is accurate to at le ast 22 bits with an angle
 in the range [0,2*PI].

 | ApproxSine(x) - sin(x) | < 1.0 / 2^22, if 0 .0 <= x < 2.0 * PI.

 The error in the approximation will typically i ncrease with the absolute
 value of the angle when the angle falls outside the range [0,2*PI].

 The following special-case rules apply to cosin e approximation:

 1. ApproxSine(NaN) = NaN.
 2. ApproxSine(+/-INF) = NaN.
 3. ApproxSine(+/-0.0) = +/-0.0. The sign of the result is equal to the
 sign of the single operand.

 The SIN instruction is available only in the VP 2 execution environment.

 Section 2.14.3.34, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than or equal to that of the
 second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SLE:

 1. (NaN <= <x>) and (<x> <= NaN) are FALSE fo r all <x>.
 2. (+INF <= +INF) and (-INF <= -INF) are TRUE .
 3. (-0.0 <= +0.0) and (+0.0 <= -0.0) are TRUE .

 The SLE instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 330

 Section 2.14.3.35, SLT: Set on Less Than

 The SLT instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is less than tha t of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SLT:

 1. (NaN < <x>) and (<x> < NaN) are FALSE for all <x>.
 2. (-0.0 < +0.0) and (+0.0 < -0.0) are FALSE.

 Section 2.14.3.36, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the two
 operands. Each component of the result vector is 1.0 if the corresponding
 component of the first operand is not equal to that of the second, and 0.0
 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;
 if (tmp0.x is NaN or tmp1.x is NaN) result.x = NaN;
 if (tmp0.y is NaN or tmp1.y is NaN) result.y = NaN;
 if (tmp0.z is NaN or tmp1.z is NaN) result.z = NaN;
 if (tmp0.w is NaN or tmp1.w is NaN) result.w = NaN;

 The following special-case rules apply to SNE:

 1. (<x> != <y>) and (<y> != <x>) always produ ce the same result.
 2. (NaN != <x>) is TRUE for all <x>, includin g NaN.
 3. (+INF != +INF) and (-INF != -INF) are FALS E.
 4. (-0.0 != +0.0) and (+0.0 != -0.0) are TRUE .

 The SNE instruction is available only in the VP 2 execution environment.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 331

 Section 2.14.3.37, SSG: Set Sign

 The SSG instruction generates a result vector c ontaining the signs of each
 component of the single operand. Each componen t of the result vector is
 1.0 if the corresponding component of the opera nd is greater than zero,
 0.0 if the corresponding component of the opera nd is equal to zero, and
 -1.0 if the corresponding component of the oper and is less than zero.

 tmp = VectorLoad(op0);
 result.x = SetSign(tmp.x);
 result.y = SetSign(tmp.y);
 result.z = SetSign(tmp.z);
 result.w = SetSign(tmp.w);

 The following special-case rules apply to SSG:

 1. SetSign(NaN) = NaN.
 2. SetSign(-0.0) = SetSign(+0.0) = 0.0.
 3. SetSign(-INF) = -1.0.
 4. SetSign(+INF) = +1.0.
 5. SetSign(x) = -1.0, if -INF < x < -0.0.
 6. SetSign(x) = +1.0, if +0.0 < x < +INF.

 The SSG instruction is available only in the VP 2 execution environment.

 Section 2.14.3.38, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

 The STR instruction is available only in the VP 2 execution environment.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 332

 Section 2.14.3.39, SUB: Subtract

 The SUB instruction performs a component-wise s ubtraction of the second
 operand from the first to yield a result vector .

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = tmp0.x - tmp1.x;
 result.y = tmp0.y - tmp1.y;
 result.z = tmp0.z - tmp1.z;
 result.w = tmp0.w - tmp1.w;

 The SUB instruction is completely equivalent to an identical ADD
 instruction in which the negate operator on the second operand is
 reversed:

 1. "SUB R0, R1, R2" is equivalent to "ADD R0, R1, -R2".
 2. "SUB R0, R1, -R2" is equivalent to "ADD R0 , R1, R2".
 3. "SUB R0, R1, |R2|" is equivalent to "ADD R 0, R1, -|R2|".
 4. "SUB R0, R1, -|R2|" is equivalent to "ADD R0, R1, |R2|".

 The SUB instruction is available only in the VP 1.1 and VP2 execution
 environments.

 2.14.4 Vertex Arrays for Vertex Attributes

 Data for vertex attributes in vertex program mo de may be specified
 using vertex array commands. The client may sp ecify and enable any
 of sixteen vertex attribute arrays.

 The vertex attribute arrays are ignored when ve rtex program mode
 is disabled. When vertex program mode is enabl ed, vertex attribute
 arrays are used.

 The command

 void VertexAttribPointerNV(uint index, int si ze, enum type,
 sizei stride, cons t void *pointer);

 describes the locations and organizations of th e sixteen vertex
 attribute arrays. index specifies the particul ar vertex attribute
 to be described. size indicates the number of values per vertex
 that are stored in the array; size must be one of 1, 2, 3, or 4.
 type specifies the data type of the values stor ed in the array.
 type must be one of SHORT, FLOAT, DOUBLE, or UN SIGNED_BYTE and these
 values correspond to the array types short, int , float, double, and
 ubyte respectively. The INVALID_OPERATION erro r is generated if
 type is UNSIGNED_BYTE and size is not 4. The I NVALID_VALUE error
 is generated if index is greater than 15. The INVALID_VALUE error
 is generated if stride is negative.

 The one, two, three, or four values in an array that correspond to a
 single vertex attribute comprise an array eleme nt. The values within
 each array element at stored sequentially in me mory. If the stride
 is specified as zero, then array elements are s tored sequentially
 as well. Otherwise points to the ith and (i+1) st elements of an array
 differ by stride basic machine units (typically unsigned bytes),

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 333

 the pointer to the (i+1)st element being greate r. pointer specifies
 the location in memory of the first value of th e first element of
 the array being specified.

 Vertex attribute arrays are enabled with the En ableClientState command
 and disabled with the DisableClientState comman d. The value of the
 argument to either command is VERTEX_ATTRIB_ARR AYi_NV where i is an
 integer between 0 and 15; specifying a value of i enables or
 disables the vertex attribute array with index i. The constants
 obey VERTEX_ATTRIB_ARRAYi_NV = VERTEX_ATTRIB_AR RAY0_NV + i.

 When vertex program mode is enabled, the ArrayE lement command operates
 as described in this section in contrast to the behavior described
 in section 2.8. Likewise, any vertex array tra nsfer commands that
 are defined in terms of ArrayElement (DrawArray s, DrawElements, and
 DrawRangeElements) assume the operation of Arra yElement described
 in this section when vertex program mode is ena bled.

 When vertex program mode is enabled, the ArrayE lement command
 transfers the ith element of particular enabled vertex arrays as
 described below. For each enabled vertex attri bute array, it is
 as though the corresponding command from sectio n 2.14.1.1 were
 called with a pointer to element i. For each v ertex attribute,
 the corresponding command is VertexAttrib[size] [type]v, where size
 is one of [1,2,3,4], and type is one of [s,f,d, ub], corresponding
 to the array types short, int, float, double, a nd ubyte respectively.

 However, if a given vertex attribute array is d isabled, but its
 corresponding aliased conventional per-vertex p arameter's vertex
 array (as described in section 2.14.1.6) is ena bled, then it is
 as though the corresponding command from sectio n 2.7 or section
 2.6.2 were called with a pointer to element i. In this case, the
 corresponding command is determined as describe d in section 2.8's
 description of ArrayElement.

 If the vertex attribute array 0 is enabled, it is as though
 VertexAttrib[size][type]v(0, ...) is executed l ast, after the
 executions of other corresponding commands. If the vertex attribute
 array 0 is disabled but the vertex array is ena bled, it is as though
 Vertex[size][type]v is executed last, after the executions of other
 corresponding commands.

 2.14.5 Vertex State Programs

 Vertex state programs share the same instructio n set as and a similar
 execution model to vertex programs. While vert ex programs are executed
 implicitly when a vertex transformation is prov oked, vertex state programs
 are executed explicitly, independently of any v ertices. Vertex state
 programs can write program parameter registers, but may not write vertex
 result registers. Vertex state programs have n ot been extended beyond the
 the VP1.0 execution environment, and are offere d solely for compatibility
 with that execution environment.

 The purpose of a vertex state program is to upd ate program parameter
 registers by means of an application-defined pr ogram. Typically, an
 application will load a set of program paramete rs and then execute a
 vertex state program that reads and updates the program parameter

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 334

 registers. For example, a vertex state program might normalize a set of
 unnormalized vectors previously loaded as progr am parameters. The
 expectation is that subsequently executed verte x programs would use the
 normalized program parameters.

 Vertex state programs are loaded with the same LoadProgramNV command (see
 section 2.14.1.8) used to load vertex programs except that the target must
 be VERTEX_STATE_PROGRAM_NV when loading a verte x state program.

 Vertex state programs must conform to a more li mited grammar than the
 grammar for vertex programs. The vertex state program grammar for
 syntactically valid sequences is the same as th e grammar defined in
 section 2.14.1.8 with the following modified ru les:

 <program> ::= <vp1-program>

 <vp1-program> ::= "!!VSP1.0" <programB ody> "END"

 <dstReg> ::= <absProgParamReg>
 | <temporaryReg>

 <vertexAttribReg> ::= "v" "[" "0" "]"

 A vertex state program fails to load if it does not write at least
 one program parameter register.

 A vertex state program fails to load if it cont ains more than 128
 instructions.

 A vertex state program fails to load if any ins truction sources more
 than one unique program parameter register.

 A vertex state program fails to load if any ins truction sources
 more than one unique vertex attribute register (this is necessarily
 true because only vertex attribute 0 is availab le in vertex state
 programs).

 The error INVALID_OPERATION is generated if a v ertex state program
 fails to load because it is not syntactically c orrect or for one
 of the other reasons listed above.

 A successfully loaded vertex state program is p arsed into a sequence
 of instructions. Each instruction is identifie d by its tokenized
 name. The operation of these instructions when executed is defined
 in section 2.14.1.10.

 Executing vertex state programs is legal only o utside a Begin/End
 pair. A vertex state program may not read any vertex attribute
 register other than register zero. A vertex st ate program may not
 write any vertex result register.

 The command

 ExecuteProgramNV(enum target, uint id, const float *params);

 executes the vertex state program named by id. The target must be
 VERTEX_STATE_PROGRAM_NV and the id must be the name of program loaded

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 335

 with a target type of VERTEX_STATE_PROGRAM_NV. params points to
 an array of four floating-point values that are loaded into vertex
 attribute register zero (the only vertex attrib ute readable from a
 vertex state program).

 The INVALID_OPERATION error is generated if the named program is
 nonexistent, is invalid, or the program is not a vertex state
 program. A vertex state program may not be val id for reasons
 explained in section 2.14.5.

 2.14.6, Program Options

 In the VP1.1 and VP2.0 execution environment, v ertex programs may specify
 one or more program options that modify the exe cution environment,
 according to the <option> grammar rule. The se t of options available to
 the program is described below.

 Section 2.14.6.1, Position-Invariant Vertex Pro gram Option

 If <vp11-option> or <vp2-option> matches "NV_po sition_invariant", the
 vertex program is presumed to be position-invar iant. By default, vertex
 programs are not position-invariant. Even if p rograms emulate the
 conventional OpenGL transformation model, they may still not produce the
 exact same transform results, due to rounding e rrors or different
 operation orders. Such programs may not work w ell for multi-pass
 rendering algorithms where the second and subse quent passes use an EQUAL
 depth test.

 Position-invariant vertex programs do not compu te a final vertex position;
 instead, the GL computes vertex coordinates as described in section 2.10.
 This computation should produce exactly the sam e results as the
 conventional OpenGL transformation model, assum ing vertex weighting and
 vertex blending are disabled.

 A vertex program that specifies the position-in variant option will fail to
 load if it writes to the HPOS result register.

 Additionally, in the VP1.1 execution environmen t, position-invariant
 programs can not use relative addressing for pr ogram parameters. Any
 position-invariant VP1.1 program matches the gr ammar rule
 <relProgParamReg>, will fail to load. No such restriction exists for
 VP2.0 programs.

 For position-invariant programs, the limit on t he number of instructions
 allowed in a program is reduced by four: posit ion-invariant VP1.1 and
 VP2.0 programs may have no more than 124 or 252 instructions,
 respectively.

 2.14.7 Tracking Matrices

 As a convenience to applications, standard GL m atrix state can be
 tracked into program parameter vectors. This p ermits vertex programs
 to access matrices specified through GL matrix commands.

 In addition to GL's conventional matrices, seve ral additional matrices
 are available for tracking. These matrices hav e names of the form
 MATRIXi_NV where i is between zero and n-1 wher e n is the value

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 336

 of the MAX_TRACK_MATRICES_NV implementation dep endent constant.
 The MATRIXi_NV constants obey MATRIXi_NV = MATR IX0_NV + i. The value
 of MAX_TRACK_MATRICES_NV must be at least eight . The maximum
 stack depth for tracking matrices is defined by the
 MAX_TRACK_MATRIX_STACK_DEPTH_NV and must be at least 1.

 The command

 TrackMatrixNV(enum target, uint address, enum matrix, enum transform);

 tracks a given transformed version of a particu lar matrix into
 a contiguous sequence of four vertex program pa rameter registers
 beginning at address. target must be VERTEX_PR OGRAM_NV (though
 tracked matrices apply to vertex state programs as well because both
 vertex state programs and vertex programs share d the same program
 parameter registers). matrix must be one of NO NE, MODELVIEW,
 PROJECTION, TEXTURE, TEXTUREi_ARB (where i is b etween 0 and n-1
 where n is the number of texture units supporte d), COLOR (if
 the ARB_imaging subset is supported), MODELVIEW _PROJECTION_NV,
 or MATRIXi_NV. transform must be one of IDENTI TY_NV, INVERSE_NV,
 TRANSPOSE_NV, or INVERSE_TRANSPOSE_NV. The INV ALID_VALUE error is
 generated if address is not a multiple of four.

 The MODELVIEW_PROJECTION_NV matrix represents t he concatenation of
 the current modelview and projection matrices. If M is the current
 modelview matrix and P is the current projectio n matrix, then the
 MODELVIEW_PROJECTION_NV matrix is C and compute d as

 C = P M

 Matrix tracking for the specified program param eter register and the
 next consecutive three registers is disabled wh en NONE is supplied
 for matrix. When tracking is disabled the prev iously tracked program
 parameter registers retain the state of their l ast tracked values.
 Otherwise, the specified transformed version of matrix is tracked into
 the specified program parameter register and th e next three registers.
 Whenever the matrix changes, the transformed ve rsion of the matrix
 is updated in the specified range of program pa rameter registers.
 If TEXTURE is specified for matrix, the texture matrix for the current
 active texture unit is tracked. If TEXTUREi_AR B is specified for
 matrix, the <i>th texture matrix is tracked.

 Matrices are tracked row-wise meaning that the top row of the
 transformed matrix is loaded into the program p arameter address,
 the second from the top row of the transformed matrix is loaded into
 the program parameter address+1, the third from the top row of the
 transformed matrix is loaded into the program p arameter address+2,
 and the bottom row of the transformed matrix is loaded into the
 program parameter address+3. The transformed m atrix may be identical
 to the specified matrix, the inverse of the spe cified matrix, the
 transpose of the specified matrix, or the inver se transpose of the
 specified matrix, depending on the value of tra nsform.

 When matrix tracking is enabled for a particula r program parameter
 register sequence, updates to the program param eter using
 ProgramParameterNV commands, a vertex program, or a vertex state
 program are not possible. The INVALID_OPERATIO N error is generated

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 337

 if a ProgramParameterNV command is used to upda te a program parameter
 register currently tracking a matrix.

 The INVALID_OPERATION error is generated by Exe cuteProgramNV when
 the vertex state program requested for executio n writes to a program
 parameter register that is currently tracking a matrix because the
 program is considered invalid.

 2.14.8 Required Vertex Program State

 The state required for vertex programs consists of:

 a bit indicating whether or not program mode is enabled;

 a bit indicating whether or not two-sided col or mode is enabled;

 a bit indicating whether or not program-speci fied point size mode
 is enabled;

 256 4-component floating-point program parame ter registers;

 16 4-component vertex attribute registers (th ough this state is
 aliased with the current normal, primary colo r, secondary color,
 fog coordinate, weights, and texture coordina te sets);

 24 sets of matrix tracking state for each set of four sequential
 program parameter registers, consisting of a n-valued integer
 indicated the tracked matrix or GL_NONE (wher e n is 5 + the number
 of texture units supported + the number of tr acking matrices
 supported) and a four-valued integer indicati ng the transformation
 of the tracked matrix;

 an unsigned integer naming the currently boun d vertex program

 and the state must be maintained to indicate which integers
 are currently in use as program names.

 Each existent program object consists of a targe t, a boolean indicating
 whether the program is resident, an array of typ e ubyte containing the
 program string, and the length of the program st ring array. Initially,
 no program objects exist.

 Program mode, two-sided color mode, and program- specified point size
 mode are all initially disabled.

 The initial state of all 256 program parameter r egisters is (0,0,0,0).

 The initial state of the 16 vertex attribute reg isters is (0,0,0,1)
 except in cases where a vertex attribute registe r aliases to a
 conventional GL transform mode vertex parameter in which case
 the initial state is the initial state of the re spective aliased
 conventional vertex parameter.

 The initial state of the 24 sets of matrix track ing state is NONE
 for the tracked matrix and IDENTITY_NV for the t ransformation of the
 tracked matrix.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 338

 The initial currently bound program is zero.

 The client state required to implement the 16 ve rtex attribute
 arrays consists of 16 boolean values, 16 memory pointers, 16 integer
 stride values, 16 symbolic constants representin g array types,
 and 16 integers representing values per element. Initially, the
 boolean values are each disabled, the memory poi nters are each null,
 the strides are each zero, the array types are e ach FLOAT, and the
 integers representing values per element are eac h four."

Additions to Chapter 3 of the OpenGL 1.3 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.3 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.3 Specificat ion (Special Functions)

 None.

Additions to Chapter 6 of the OpenGL 1.3 Specificat ion (State and
State Requests)

 None.

Additions to Appendix A of the OpenGL 1.3 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

GLX Protocol

 All relevant protocol is defined in the NV_vert ex_program extension.

Errors

 This list includes the errors specified in the NV_vertex_program
 extension, modified as appropriate.

 The error INVALID_VALUE is generated if VertexA ttribNV is called where
 index is greater than 15.

 The error INVALID_VALUE is generated if any Pro gramParameterNV has an
 index is greater than 255 (was 95 in NV_vertex_ program).

 The error INVALID_VALUE is generated if VertexA ttribPointerNV is called
 where index is greater than 15.

 The error INVALID_VALUE is generated if VertexA ttribPointerNV is called
 where size is not one of 1, 2, 3, or 4.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 339

 The error INVALID_VALUE is generated if VertexA ttribPointerNV is called
 where stride is negative.

 The error INVALID_OPERATION is generated if Ver texAttribPointerNV is
 called where type is UNSIGNED_BYTE and size is not 4.

 The error INVALID_VALUE is generated if LoadPro gramNV is used to load a
 program with an id of zero.

 The error INVALID_OPERATION is generated if Loa dProgramNV is used to load
 an id that is currently loaded with a program o f a different program
 target.

 The error INVALID_OPERATION is generated if the program passed to
 LoadProgramNV fails to load because it is not s yntactically correct based
 on the specified target. The value of PROGRAM_ ERROR_POSITION_NV is still
 updated when this error is generated.

 The error INVALID_OPERATION is generated if Loa dProgramNV has a target of
 VERTEX_PROGRAM_NV and the specified program fai ls to load because it does
 not write the HPOS register at least once. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is generated.

 The error INVALID_OPERATION is generated if Loa dProgramNV has a target of
 VERTEX_STATE_PROGRAM_NV and the specified progr am fails to load because it
 does not write at least one program parameter r egister. The value of
 PROGRAM_ERROR_POSITION_NV is still updated when this error is generated.

 The error INVALID_OPERATION is generated if the vertex program or vertex
 state program passed to LoadProgramNV fails to load because it contains
 more than 128 instructions (VP1 programs) or 25 6 instructions (VP2
 programs). The value of PROGRAM_ERROR_POSITION _NV is still updated when
 this error is generated.

 The error INVALID_OPERATION is generated if a p rogram is loaded with
 LoadProgramNV for id when id is currently loade d with a program of a
 different target.

 The error INVALID_OPERATION is generated if Bin dProgramNV attempts to bind
 to a program name that is not a vertex program (for example, if the
 program is a vertex state program).

 The error INVALID_VALUE is generated if GenProg ramsNV is called where n is
 negative.

 The error INVALID_VALUE is generated if AreProg ramsResidentNV is called
 and any of the queried programs are zero or do not exist.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV executes a
 program that does not exist.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV executes a
 program that is not a vertex state program.

NV_vertex_program2 NVIDIA OpenGL Extension Specifications

 340

 The error INVALID_OPERATION is generated if Beg in, RasterPos, or a command
 that performs an explicit Begin is called when vertex program mode is
 enabled and the currently bound vertex program writes program parameters
 that are currently being tracked.

 The error INVALID_OPERATION is generated if Exe cuteProgramNV is called and
 the vertex state program to execute writes prog ram parameters that are
 currently being tracked.

 The error INVALID_VALUE is generated if TrackMa trixNV has a target of
 VERTEX_PROGRAM_NV and attempts to track an addr ess is not a multiple of
 four.

 The error INVALID_VALUE is generated if GetProg ramParameterNV is called to
 query an index greater than 255 (was 95 in NV_v ertex_program).

 The error INVALID_VALUE is generated if GetVert exAttribNV is called to
 query an <index> greater than 15, or if <index> is zero and <pname> is
 CURRENT_ATTRIB_NV.

 The error INVALID_VALUE is generated if GetVert exAttribPointervNV is
 called to query an index greater than 15.

 The error INVALID_OPERATION is generated if Get ProgramivNV is called and
 the program named id does not exist.

 The error INVALID_OPERATION is generated if Get ProgramStringNV is called
 and the program named <program> does not exist.

 The error INVALID_VALUE is generated if GetTrac kMatrixivNV is called with
 an <address> that is not divisible by four or g reater than or equal to 256
 (was 96 in NV_vertex_program).

 The error INVALID_VALUE is generated if AreProg ramsResidentNV,
 DeleteProgramsNV, GenProgramsNV, or RequestResi dentProgramsNV are called
 where <n> is negative.

 The error INVALID_VALUE is generated if LoadPro gramNV is called where
 <len> is negative.

 The error INVALID_VALUE is generated if Program Parameters4dvNV or
 ProgramParameters4fvNV are called where <count> is negative.

 The error INVALID_VALUE is generated if VertexA ttribs{1,2,3,4}{d,f,s}vNV
 is called where <count> is negative.

 The error INVALID_ENUM is generated if BindProg ramNV,
 GetProgramParameterfvNV, GetProgramParameterdvN V, GetTrackMatrixivNV,
 ProgramParameter4fNV, ProgramParameter4dNV, Pro gramParameter4fvNV,
 ProgramParameter4dvNV, ProgramParameters4fvNV, ProgramParameters4dvNV,
 or TrackMatrixNV are called where <target> is n ot VERTEX_PROGRAM_NV.

 The error INVALID_ENUM is generated if LoadProg ramNV or
 ExecuteProgramNV are called where <target> is n ot either
 VERTEX_PROGRAM_NV or VERTEX_STATE_PROGRAM_NV.

NVIDIA OpenGL Extension Specifications NV_vertex_program2

 341

New State

(Modify Table X.5, New State Introduced by NV_verte x_program from the
 NV_vertex_program specification.)

Get Value Type Get Command Initial Value Description Sec At tribute
--------------------- ------ --------------------- -- ------------- ------------------ -------- -- ----------
PROGRAM_PARAMETER_NV 256xR4 GetProgramParameterNV (0,0,0,0) program parameters 2.14.1.2 -

(Modify Table X.7. Vertex Program Per-vertex Execu tion State. "VP1" and
"VP2" refer to the VP1 and VP2 execution environmen ts, respectively.)

Get Value Type Get Command Initial Value D escription Sec Attribute
--------- ------ ----------- ------------- - ---------------------- -------- ---------
- 12xR4 - (0,0,0,0) V P1 temporary registers 2.14.1.4 -
- 16xR4 - (0,0,0,0) V P2 temporary registers 2.14.1.4 -
- 15xR4 - (0,0,0,1) v ertex result registers 2.14.1.4 -
 Z4 - (0,0,0,0) V P1 address register 2.14.1.3 -
 2xZ4 - (0,0,0,0) V P2 address registers 2.14.1.3 -

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 342

Name

 NV_vertex_program2_option

Name Strings

 GL_NV_vertex_program2_option

Status

 Shipping.

Version

 Last Modified: 05/16/2004
 NVIDIA Revision: 2

Number

 Unassigned

Dependencies

 ARB_vertex_program is required.

Overview

 This extension provides additional vertex progr am functionality
 to extend the standard ARB_vertex_program langu age and execution
 environment. ARB programs wishing to use this added functionality
 need only add:

 OPTION NV_vertex_program2;

 to the beginning of their vertex programs.

 The functionality provided by this extension, w hich is roughly
 equivalent to that provided by the NV_vertex_pr ogram2 extension,
 includes:

 * general purpose dynamic branching,

 * subroutine calls,

 * data-dependent conditional write masks,

 * programmable user clip distances,

 * address registers with four components (ins tead of just one),

 * absolute value operator on scalar and swizz led operand loads,

 * rudimentary address register math,

 * SIN and COS trigonometry instructions, and

 * fully orthogonal "set on" instructions, inc luding a "set sign"

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 343

 instruction.

Issues

 Why is this a separate extension, rather than j ust an additional
 feature of NV_vertex_program2?

 RESOLVED: The NV_vertex_program2 specificati on was completed
 (with a published implementation) prior to th e completion of
 ARB_vertex_program. Future NVIDIA vertex pro gram extensions should
 contain extensions to the ARB_vertex_program execution environment
 as a standard feature.

 NV_vertex_program1_1 contains one feature not f ound in
 ARB_vertex_program: the "RCC" (reciprocal clamp ed) instruction.
 Should a "NV_vertex_program1_1" program option be provided to expose
 this small amount of missing functionality?

 RESOLVED: No. By itself, that functionality is not all that
 interesting.

 Should this extension provide a mechanism to sp ecify an "ARB"
 version of NV_vertex_program state programs (!! VSP1.0)?

 RESOLVED: No.

 Should a similar option be provided to expose A RB_vertex_program
 features not found in NV_vertex_program (e.g., local parameters, state
 bindings, certain "macro" instructions) under t he NV_vertex_program
 interface?

 RESOLVED: No. Why not just write an ARB pro gram in that case?

 The ARB_vertex_program spec has a minor grammar bug that requires
 that inline scalar constants used as scalar ope rands include a
 component selector. In other words, you have t o say "11.0.x" to
 use the constant "11.0". What should we do her e?

 RESOLVED: The NV_vertex_program2_option gram mar will correct
 this problem, which should be fixed in future revisions to the
 ARB language.

New Procedures and Functions

 None.

New Tokens

 Accepted by the <pname> parameter of GetProgram ivARB:

 MAX_PROGRAM_EXEC_INSTRUCTIONS_NV 0x88F4
 MAX_PROGRAM_CALL_DEPTH_NV 0x88F5

Additions to Chapter 2 of the OpenGL 1.4 Specificat ion (OpenGL Operation)

 Modify Section 2.11, Clipping (p. 42)

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 344

 (insert before the second paragraph, p. 43) In vertex program mode,
 conventional user clipping is performed if the vertex program is
 position-invariant (section 2.14.4.5.1). When the vertex program
 is not position-invariant, it can write a singl e floating-point clip
 distance for each supported clip plane. The ha lf-space corresponding
 to clip plane <n> is given by the set of points that satisfy the
 inequality

 c_n(P) >=0,

 where c_n(P) is the value of clip distance <n> at point P. For point
 primitives, c_n(P) is simply the clip distance for the vertex in
 question. For line and triangle primitives, pe r-vertex clip distances
 are interpolated using a weighted mean, with we ights derived according
 to the algorithms described in sections 3.4 and 3.5.

 Modify Section 2.14.2, Vertex Program Grammar a nd Restrictions

 (mostly add to existing grammar rules, modify a few existing grammar
 rules -- changes marked with "***")

 <optionName> ::= "NV_vertex_program2 "

 <statement> ::= <branchLabel> ":"

 <instruction> ::= <FlowInstruction>

 <ALUInstruction> ::= <ARAop_instruction>

 <FlowInstruction> ::= <BRAop_instruction>
 | <FLOWCCop_instructi on>

 <VECTORop> ::= "SSG"

 <SCALARop> ::= "COS"
 | "RCC"
 | "SIN"

 <BINop> ::= "SEQ"
 | "SFL"
 | "SGT"
 | "SLE"
 | "SNE"
 | "STR"

 <ARLop> ::= "ARR"

 <ARLop_src> ::= <instOperandV>
 (*** instead of < instOperandS>)

 <ARAop_instruction> ::= <ARAop> <instResult Addr> ","
 <instOperandAddrVNS >

 <ARAop> ::= "ARA"

 <BRAop_instruction> ::= <BRAop> <branchLabe l> <optBranchCond>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 345

 <BRAop> ::= "BRA"
 | "CAL"

 <FLOWCCop_instruction> ::= <FLOWCCop> <optBran chCond>

 <FLOWCCop> ::= "RET"

 <optBranchCond> ::= /* empty */
 | <ccMask>

 <instOperandV> ::= <instOperandAbsV>

 <instOperandAbsV> ::= <optSign> "|" <inst OperandBaseV> "|"

 <instOperandS> ::= <instOperandAbsS>

 <instOperandAbsS> ::= <optSign> "|" <inst OperandBaseS> "|"

 <instOperandAddrVNS> ::= <addrUseVNS>

 <instResult> ::= <instResultCC>

 <instResultCC> ::= <instResultBase> <c cMask>

 <instResultAddr> ::= <instResultAddrCC>

 <instResultAddrCC> ::= <instResultAddrBase > <ccMask>

 <branchLabel> ::= <identifier>

 <paramUseV> ::= <constantScalar>
 (*** instead of < constantScalar>
 <swizzleSuff ix>)

 <paramUseS> ::= <constantScalar>
 (*** instead of < constantScalar>
 <scalarSuffi x>)

 <resultVtxBasic> ::= "clip" "[" <clipPla neNum> "]"

 <addrUseVNS> ::= <addrVarName>

 <addrUseW> ::= <addrVarName> <optA ddrWriteMask>
 (*** instead of < addrVarName>
 <addrWriteMa sk>)

 <ccMask> ::= "(" <ccTest> ")"

 <ccTest> ::= <ccMaskRule> <swizz leSuffix>

 <ccMaskRule> ::= "EQ"
 | "GE"
 | "GT"
 | "LE"
 | "LT"
 | "NE"

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 346

 | "TR"
 | "FL"

 <optAddrWriteMask> ::= <optWriteMask>
 (*** instead of " ." "x")

 <addrComponent> ::= <xyzwComponent>
 (*** instead of " x")

 (modify description of reserved identifiers)

 ... The following strings are reserved keywords and may not be used
 as identifiers:

 ABS, ADD, ADDRESS, ALIAS, ARA, ARL, ARR, AT TRIB, BRA, CAL, COS,
 DP3, DP4, DPH, DST, END, EX2, EXP, FLR, FRC , LG2, LIT, LOG, MAD,
 MAX, MIN, MOV, MUL, OPTION, OUTPUT, PARAM, POW, RCC, RCP, RET,
 RSQ, SEQ, SFL, SGE, SGT, SIN, SLE, SLT, SNE , SUB, SSG, STR, SWZ,
 TEMP, XPD, program, result, state, and vert ex.

 Add to Section 2.14.3.4, Vertex Program Results

 (add to binding table)

 Binding Components De scription
 ----------------------------- ---------- -- --------------------------
 result.clip[n] (d,*,*,*) cl ip plane distance

 (add a paragraph before the last one) If a resu lt variable binding
 matches "result.clip[n]", updates to the "x" co mponent of the result
 variable set the clip distance for clip plane < n>.

 (modify last paragraph) When in vertex program mode, all attributes
 of a transformed vertex, except for clip distan ces, are undefined
 at each vertex program invocation. Any results , or even individual
 components of results, that are not written to during vertex program
 execution remain undefined. All clip distances are initially zero,
 and remain zero if not written by the vertex pr ogram.

 Modify Section 2.14.3.5, Vertex Program Address Registers

 (modify first paragraph) Vertex program address register variables are
 a set of four-component signed integer vectors. Address registers
 are used as indices when performing relative ad dressing in program
 parameter arrays (section 2.14.4.2).

 (modify third paragraph) Vertex program address register variables are
 undefined at each vertex program invocation. A ddress registers can
 be written by the ARA, ARL, and ARL instruction s (section 2.14.5),
 and will be read by the ARA instruction and whe n a program uses
 relative addressing in program parameter arrays .

 Add New Section 2.14.3.X, Condition Code Regist er (insert after
 Section 2.14.3.5, Vertex Program Address Regist ers)

 The vertex program condition code register is a single four-component
 vector. Each component of this register is one of four enumerated

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 347

 values: GT (greater than), EQ (equal), LT (less than), or UN
 (unordered). The condition code register can b e used to mask writes
 to registers and to evaluate conditional branch es.

 Most vertex program instructions can optionally update the condition
 code register. When a vertex program instructi on updates the
 condition code register, a condition code compo nent is set to LT if
 the corresponding component of the result is le ss than zero, EQ if it
 is equal to zero, GT if it is greater than zero , and UN if it is NaN
 (not a number).

 The condition code register is initialized to a vector of EQ values
 each time a vertex program executes.

 Modify Section 2.14.4, Vertex Program Execution Environment

 (modify 3rd paragraph) Vertex programs execute a sequence of
 instructions, with support for conditional and unconditional branches,
 subroutine calls, and returns. Vertex programs begin by executing
 the instruction following the label "main". If no label "main" is
 defined, execution begins at the first instruct ion in the program.
 Instructions are executed in the order specifie d in the program,
 jumping when specified in branch instructions, until the end of the
 program is reached.

 (modify instruction table) There are forty-two vertex program
 instructions. Vertex program instructions may have an optional
 suffix of "C" to allow an update of the conditi on code register
 (section 2.14.3.X). For example, there are two instructions to
 perform vector addition, "ADD" and "ADDC". The instructions and their
 respective input and output parameters are summ arized in Table X.5.

 Instruction Inputs Output Description
 ----------- ------ ------ ------------- -------------------
 ABS[C] v v absolute valu e
 ADD[C] v,v v add
 ARA[C] a a address regis ter add
 ARL[C] s a address regis ter load
 ARR[C] v a address regis ter load (round)
 BRA c - branch
 CAL c - subroutine ca ll
 COS[C] s ssss cosine
 DP3[C] v,v ssss 3-component d ot product
 DP4[C] v,v ssss 4-component d ot product
 DPH[C] v,v ssss homogeneous d ot product
 DST[C] v,v v distance vect or
 EX2[C] s ssss exponential b ase 2
 EXP[C] s v exponential b ase 2 (approximate)
 FLR[C] v v floor
 FRC[C] v v fraction
 LG2[C] s ssss logarithm bas e 2
 LIT[C] v v compute light coefficients
 LOG[C] s v logarithm bas e 2 (approximate)
 MAD[C] v,v,v v multiply and add
 MAX[C] v,v v maximum
 MIN[C] v,v v minimum
 MOV[C] v v move

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 348

 MUL[C] v,v v multiply
 POW[C] s,s ssss exponentiate
 RCC[C] s ssss reciprocal (c lamped)
 RCP[C] s ssss reciprocal
 RET c - subroutine re turn
 RSQ[C] s ssss reciprocal sq uare root
 SEQ[C] v,v v set on equal
 SFL[C] v,v v set on false
 SGE[C] v,v v set on greate r than or equal
 SGT[C] v,v v set on greate r than
 SIN[C] s ssss sine
 SLE[C] v,v v set on less t han or equal
 SLT[C] v,v v set on less t han
 SNE[C] v,v v set on not eq ual
 SSG[C] v v set sign
 STR[C] v,v v set on true
 SUB[C] v,v v subtract
 SWZ[C] v v extended swiz zle
 XPD[C] v,v v cross product

 Table X.5: Summary of vertex program instruc tions. "[C]" indicates
 that the opcode supports the condition code u pdate modifier. "v"
 indicates a floating-point vector input or ou tput, "s" indicates
 a floating-point scalar input, "ssss" indicat es a scalar output
 replicated across a 4-component result vector , "a" indicates a
 vector address register, and "c" indicates a condition code test.

 Modify Section 2.14.4.1, Vertex Program Operand s

 (add prior to the discussion of negation) A com ponent-wise absolute
 value operation can optionally performed on the operand if the operand
 is surrounded with two "|" characters. For exa mple, "|src|" indicates
 that a component-wise absolute value operation should be performed on
 the variable named "src". In terms of the gram mar, this operation
 is performed if the <instOperandV> or <instOper andS> grammar rules
 match <instOperandAbsV> or <instOperandAbsS>, r espectively.

 (modify operand load pseudo-code) The following pseudo-code spells
 out the operand generation process. In the exa mple, "float" is a
 floating-point scalar type, while "floatVec" is a four-component
 vector. "source" refers to the register used f or the operand,
 matching the <srcReg> rule. "abs" is TRUE if a n absolute value
 operation should be performed on the operand (< instOperandAbsV> or
 <instOperandAbsS> rules) "negate" is TRUE if th e <optionalSign> rule
 in <scalarSrcReg> or <swizzleSrcReg> matches "- " and FALSE otherwise.
 The ".c***", ".*c**", ".**c*", ".***c" modifier s refer to the x,
 y, z, and w components obtained by the swizzle operation; the ".c"
 modifier refers to the single component selecte d for a scalar load.

 floatVec VectorLoad(floatVec source)
 {
 floatVec operand;

 operand.x = source.c***;
 operand.y = source.*c**;
 operand.z = source.**c*;
 operand.w = source.***c;

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 349

 if (abs) {
 operand.x = abs(operand.x);
 operand.y = abs(operand.y);
 operand.z = abs(operand.z);
 operand.w = abs(operand.w);
 }
 if (negate) {
 operand.x = -operand.x;
 operand.y = -operand.y;
 operand.z = -operand.z;
 operand.w = -operand.w;
 }

 return operand;
 }

 float ScalarLoad(floatVec source)
 {
 float operand;

 operand = source.c;
 if (abs) {
 operand = abs(operand);
 if (negate) {
 operand = -operand;
 }

 return operand;
 }

 Rewrite Section 2.14.4.3, Vertex Program Desti nation Register Update

 Most vertex program instructions write a 4-comp onent result vector to
 a single temporary or vertex result register. Writes to individual
 components of the destination register are cont rolled by individual
 component write masks specified as part of the instruction.

 The component write mask is specified by the <o ptionalMask> rule
 found in the <maskedDstReg> rule. If the optio nal mask is "",
 all components are enabled. Otherwise, the opt ional mask names
 the individual components to enable. The chara cters "x", "y",
 "z", and "w" match the x, y, z, and w component s respectively.
 For example, an optional mask of ".xzw" indicat es that the x, z,
 and w components should be enabled for writing but the y component
 should not. The grammar requires that the dest ination register mask
 components must be listed in "xyzw" order.

 The condition code write mask is specified by t he <ccMask> rule found
 in the <instResultCC> and <instResultAddrCC> ru les. The condition
 code register is loaded and swizzled according to the swizzle
 codes specified by <swizzleSuffix>. Each compo nent of the swizzled
 condition code is tested according to the rule given by <ccMaskRule>.
 <ccMaskRule> may have the values "EQ", "NE", "L T", "GE", LE", or "GT",
 which mean to enable writes if the correspondin g condition code field
 evaluates to equal, not equal, less than, great er than or equal, less
 than or equal, or greater than, respectively. Comparisons involving
 condition codes of "UN" (unordered) evaluate to true for "NE" and

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 350

 false otherwise. For example, if the condition code is (GT,LT,EQ,GT)
 and the condition code mask is "(NE.zyxw)", the swizzle operation
 will load (EQ,LT,GT,GT) and the mask will thus will enable writes on
 the y, z, and w components. In addition, "TR" always enables writes
 and "FL" always disables writes, regardless of the condition code.
 If the condition code mask is empty, it is trea ted as "(TR)".

 Each component of the destination register is u pdated with the result
 of the vertex program instruction if and only i f the component is
 enabled for writes by both the component write mask and the condition
 code write mask. Otherwise, the component of t he destination register
 remains unchanged.

 A vertex program instruction can also optionall y update the condition
 code register. The condition code is updated i f the condition
 code register update suffix "C" is present in t he instruction.
 The instruction "ADDC" will update the conditio n code; the otherwise
 equivalent instruction "ADD" will not. If cond ition code updates
 are enabled, each component of the destination register enabled
 for writes is compared to zero. The correspond ing component of
 the condition code is set to "LT", "EQ", or "GT ", if the written
 component is less than, equal to, or greater th an zero, respectively.
 Condition code components are set to "UN" if th e written component is
 NaN (not a number). Values of -0.0 and +0.0 bo th evaluate to "EQ".
 If a component of the destination register is n ot enabled for writes,
 the corresponding condition code component is a lso unchanged.

 In the following example code,

 # R1=(-2, 0, 2, NaN) R0 CC
 MOVC R0, R1; # (-2, 0, 2, NaN) (LT,EQ,GT,UN)
 MOVC R0.xyz, R1.yzwx; # (0, 2, NaN, NaN) (EQ,GT,UN,UN)
 MOVC R0 (NE), R1.zywx; # (0, 0, NaN, -2) (EQ,EQ,UN,LT)

 the first instruction writes (-2,0,2,NaN) to R0 and updates the
 condition code to (LT,EQ,GT,UN). The second in struction, only the
 "x", "y", and "z" components of R0 and the cond ition code are updated,
 so R0 ends up with (0,2,NaN,NaN) and the condit ion code ends up with
 (EQ,GT,UN,UN). In the third instruction, the c ondition code mask
 disables writes to the x component (its conditi on code field is "EQ"),
 so R0 ends up with (0,0,NaN,-2) and the conditi on code ends up with
 (EQ,EQ,UN,LT).

 The following pseudocode illustrates the proces s of writing a result
 vector to the destination register. In the pse udocode, "instrmask"
 refers to the component write mask given by the <optWriteMask>
 rule. "ccMaskRule" refers to the condition cod e mask rule given
 by <ccMask> and "updatecc" is TRUE if and only if condition code
 updates are enabled. "result", "destination", and "cc" refer to
 the result vector, the register selected by <ds tRegister> and the
 condition code, respectively. Condition codes do not exist in the
 VP1 execution environment.

 boolean TestCC(CondCode field) {
 switch (ccMaskRule) {
 case "EQ": return (field == "EQ");
 case "NE": return (field != "EQ");

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 351

 case "LT": return (field == "LT");
 case "GE": return (field == "GT" || fiel d == "EQ");
 case "LE": return (field == "LT" || fiel d == "EQ");
 case "GT": return (field == "GT");
 case "TR": return TRUE;
 case "FL": return FALSE;
 case "": return TRUE;
 }
 }

 enum GenerateCC(float value) {
 if (value == NaN) {
 return UN;
 } else if (value < 0) {
 return LT;
 } else if (value == 0) {
 return EQ;
 } else {
 return GT;
 }
 }

 void UpdateDestination(floatVec destination, floatVec result)
 {
 floatVec merged;
 ccVec mergedCC;

 // Merge the converted result into the de stination register, under
 // control of the compile- and run-time w rite masks.
 merged = destination;
 mergedCC = cc;
 if (instrMask.x && TestCC(cc.c***)) {
 merged.x = result.x;
 if (updatecc) mergedCC.x = GenerateCC (result.x);
 }
 if (instrMask.y && TestCC(cc.*c**)) {
 merged.y = result.y;
 if (updatecc) mergedCC.y = GenerateCC (result.y);
 }
 if (instrMask.z && TestCC(cc.**c*)) {
 merged.z = result.z;
 if (updatecc) mergedCC.z = GenerateCC (result.z);
 }
 if (instrMask.w && TestCC(cc.***c)) {
 merged.w = result.w;
 if (updatecc) mergedCC.w = GenerateCC (result.w);
 }

 // Write out the new destination register and condition code.
 destination = merged;
 cc = mergedCC;
 }

 While this rule describes floating-point result s, the same logic
 applies to the integer results generated by the ARA, ARL, and ARR
 instructions.

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 352

 Add Section 2.14.4.X, Vertex Program Branching (before Section
 2.14.4.4, Vertex Program Result Processing)

 Vertex programs can contain one or more instruc tion labels, matching
 the grammar rule <branchLabel>. An instruction label can be referred
 to explicitly in branch (BRA) or subroutine cal l (CAL) instructions.
 Instruction labels can be defined or used at an y point in the body
 of a program, and can be used in instructions b efore being defined
 in the program string.

 Branching instructions can be conditional. The branch condition
 is specified by the <optBranchCond> grammar rul e and may depend on
 the contents of the condition code register. B ranch conditions are
 evaluated by evaluating a condition code write mask in exactly the
 same manner as done for register writes (sectio n 2.14.2.2). If any
 of the four components of the condition code wr ite mask are enabled,
 the branch is taken and execution continues wit h the instruction
 following the label specified in the instructio n. Otherwise, the
 instruction is ignored and vertex program execu tion continues with
 the next instruction. In the following example code,

 MOVC CC, c[0]; # c[0]=(-2, 0, 2, Na N), CC gets (LT,EQ,GT,UN)
 BRA label1 (LT.xyzw);
 MOV R0,R1; # not executed
 label1:
 BRA label2 (LT.wyzw);
 MOV R0,R2; # executed
 label2:

 the first BRA instruction loads a condition cod e of (LT,EQ,GT,UN)
 while the second BRA instruction loads a condit ion code of
 (UN,EQ,GT,UN). The first branch will be taken because the "x"
 component evaluates to LT; the second branch wi ll not be taken
 because no component evaluates to LT.

 Vertex programs can specify subroutine calls. When a subroutine
 call (CAL) instruction is executed, a reference to the instruction
 immediately following the CAL instruction is pu shed onto the
 call stack. When a subroutine return (RET) ins truction is
 executed, an instruction reference is popped of f the call stack
 and program execution continues with the popped instruction.
 A vertex program will terminate if a CAL instru ction is executed
 with MAX_PROGRAM_CALL_DEPTH_NV entries already in the call stack or
 if a RET instruction is executed with an empty call stack.

 If a vertex program has an instruction label "m ain", program
 execution begins with the instruction immediate ly following the
 instruction label. Otherwise, program executio n begins with the
 first instruction of the program. Instructions will be executed
 sequentially in the order specified in the prog ram, although
 branch instructions will affect the instruction execution order,
 as described above. A vertex program will term inate after executing
 a RET instruction with an empty call stack. A vertex program will
 also terminate after executing the last instruc tion in the program,
 unless that instruction was a taken branch.

 A vertex program will fail to load if an instru ction refers to a

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 353

 label that is not defined in the program string .

 A vertex program will terminate abnormally if a subroutine call
 instruction produces a call stack overflow. Ad ditionally,
 a vertex program will terminate abnormally afte r executing
 MAX_PROGRAM_EXEC_INSTRUCTIONS instructions to p revent hangs caused
 by infinite loops in the program.

 When a vertex program terminates, normally or a bnormally, it will
 emit a vertex whose attributes are taken from t he final values of
 the vertex result registers (section 2.14.1.5).

 Modify Section 2.14.4.4, Vertex Program Result Processing

 (modify 3rd paragraph) Transformed vertices are then assembled into
 primitives and clipped as described in section 2.11. Clip distance
 results are used to control user clip planes.

 Add to Section 2.14.4.5, Vertex Program Options :

 Section 2.14.4.5.2, NV_vertex_program2 Option

 If a vertex program specifies the "NV_vertex_pr ogram2" program option,
 the grammar will be extended to support the fea tures found in the
 NV_vertex_program2 extension not present in the ARB_vertex_program
 extension, including:

 * the availability of the following instructi ons:

 - ARA (address register add, useful for l ooping),
 - ARR (address register load with round),
 - BRA (branch),
 - CAL (subroutine call),
 - COS (cosine),
 - RET (subroutine return),
 - SEQ (set on equal),
 - SFL (set on false),
 - SGT (set on greater than),
 - SIN (sine),
 - SLE (set on less than or equal),
 - SNE (set on not equal),
 - SSG (set sign), and
 - STR (set on true).

 * up to MAX_CALL_DEPTH_NV levels of subroutin e calls/returns,

 * a four-component condition code register to hold the sign of
 result vector components (useful for compar isons),

 * a condition code update opcode suffix "C", where the results of
 the instruction are used to update the cond ition code register,

 * a condition code write mask operator, where the condition code
 register is swizzled and tested, and the te st results are used
 to mask register writes,

 * six clip distance result bindings that can be used to perform

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 354

 more complicated user clipping operations t han those provided
 with the position invariant program option,

 * four-component address registers (instead o f one-component
 registers in ARB_vertex_program), with the "ARL" instruction
 extended to produce a vector result,

 * an absolute value operator on scalar and sw izzled operands.

 The added functionality is identical to that pr ovided by
 NV_vertex_program2 extension specification.

 Modify Section 2.14.5.3, ARL: Address Registe r Load

 The ARL instruction loads a single vector opera nd and performs a
 component-wise floor operation to generate a si gned integer result
 vector.

 tmp = VectorLoad(op0);
 iresult.x = floor(tmp.x);
 iresult.y = floor(tmp.y);
 iresult.z = floor(tmp.z);
 iresult.w = floor(tmp.w);

 The floor operation returns the largest integer less than or equal
 to the operand. For example floor(-1.7) = -2.0 , floor(+1.0) = +1.0,
 and floor(+3.7) = +3.0.

 Note that in the unextended ARB_vertex_program specification, the ARL
 instruction loads a scalar operand and generate s a scalar result.

 Add to Section 2.14.5, Vertex Program Instruct ion Set

 Section 2.14.5.28, ARA: Address Register Add

 The ARA instruction adds two pairs of component s of a vector address
 register operand to produce an integer result v ector. The "x" and "z"
 components of the result vector contain the sum of the "x" and "z"
 components of the operand; the "y" and "w" comp onents of the result
 vector contain the sum of the "y" and "w" compo nents of the operand.

 itmp = AddrVectorLoad(op0);
 iresult.x = itmp.x + itmp.z;
 iresult.y = itmp.y + itmp.w;
 iresult.z = itmp.x + itmp.z;
 iresult.w = itmp.y + itmp.w;

 Component swizzling is not supported when the o perand is loaded.

 Section 2.14.5.29, ARR: Address Register Load (with round)

 The ARR instruction loads a single vector opera nd and performs a
 component-wise round operation to generate a si gned integer result
 vector.

 tmp = VectorLoad(op0);
 iresult.x = floor(tmp.x);

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 355

 iresult.y = floor(tmp.y);
 iresult.z = floor(tmp.z);
 iresult.w = floor(tmp.w);

 The round operation returns the nearest integer to the operand.
 For example round(-1.7) = -2.0, round(+1.0) = + 1.0, and round(+3.7)
 = +4.0.

 Section 2.14.5.30, BRA: Branch

 The BRA instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. The following
 pseudocode describes the operation of the instr uction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the
 instruction according to the <branchLabel> gram mar rule.

 Section 2.14.5.31, CAL: Subroutine Call

 The CAL instruction conditionally transfers con trol to the instruction
 following the label specified in the instructio n. It also pushes a
 reference to the instruction immediately follow ing the CAL instruction
 onto the call stack, where execution will conti nue after executing
 the matching RET instruction. The following ps eudocode describes
 the operation of the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth >= MAX_PROGRAM_CALL_DEPT H_NV) {
 // terminate vertex program
 } else {
 callStack[callStackDepth] = nextInstructi on;
 callStackDepth++;
 }
 // continue execution at instruction follow ing <branchLabel>
 } else {
 // do nothing
 }

 In the pseudocode, <branchLabel> is the label s pecified in the
 instruction matching the <branchLabel> grammar rule, <callStackDepth>
 is the current depth of the call stack, <callSt ack> is an array
 holding the call stack, and <nextInstruction> i s a reference to the
 instruction immediately following the present o ne in the program
 string.

 Section 2.14.5.32, COS: Cosine

 The COS instruction approximates the cosine of the angle specified
 by the scalar operand and replicates the approx imation to all four

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 356

 components of the result vector. The angle is specified in radians
 and does not have to be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxCosine(tmp);
 result.y = ApproxCosine(tmp);
 result.z = ApproxCosine(tmp);
 result.w = ApproxCosine(tmp);

 Section 2.14.5.33, RCC: Reciprocal (Clamped)

 The RCC instruction approximates the reciprocal of the scalar operand,
 clamps the result to one of two ranges, and rep licates the clamped
 result to all four components of the result vec tor.

 If the approximated reciprocal is greater than 0.0, the result is
 clamped to the range [2^-64, 2^+64]. If the ap proximate reciprocal
 is not greater than zero, the result is clamped to the range [-2^+64,
 -2^-64].

 tmp = ScalarLoad(op0);
 result.x = ClampApproxReciprocal(tmp);
 result.y = ClampApproxReciprocal(tmp);
 result.z = ClampApproxReciprocal(tmp);
 result.w = ClampApproxReciprocal(tmp);

 The following rule applies to reciprocation:

 1. ApproxReciprocal(+1.0) = +1.0.

 Section 2.14.5.34, RET: Subroutine Call Retur n

 The RET instruction conditionally returns from a subroutine initiated
 by a CAL instruction by popping an instruction reference off the
 top of the call stack and transferring control to the referenced
 instruction. The following pseudocode describe s the operation of
 the instruction:

 if (TestCC(cc.c***) || TestCC(cc.*c**) ||
 TestCC(cc.**c*) || TestCC(cc.***c)) {
 if (callStackDepth <= 0) {
 // terminate vertex program
 } else {
 callStackDepth--;
 instruction = callStack[callStackDepth];
 }

 // continue execution at <instruction>
 } else {
 // do nothing
 }

 In the pseudocode, <callStackDepth> is the dept h of the call stack,
 <callStack> is an array holding the call stack, and <instruction> is
 a reference to an instruction previously pushed onto the call stack.

 Section 2.14.5.35, SEQ: Set on Equal

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 357

 The SEQ instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is equal to that of
 the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x == tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y == tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z == tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w == tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.36, SFL: Set on False

 The SFL instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 0.0.

 result.x = 0.0;
 result.y = 0.0;
 result.z = 0.0;
 result.w = 0.0;

 Section 2.14.5.37, SGT: Set on Greater Than

 The SGT instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operands i s greater than that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x > tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y > tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z > tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w > tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.38, SIN: Sine

 The SIN instruction approximates the sine of th e angle specified by
 the scalar operand and replicates it to all fou r components of the
 result vector. The angle is specified in radia ns and does not have
 to be in the range [0,2*PI].

 tmp = ScalarLoad(op0);
 result.x = ApproxSine(tmp);
 result.y = ApproxSine(tmp);
 result.z = ApproxSine(tmp);
 result.w = ApproxSine(tmp);

 Section 2.14.5.39, SLE: Set on Less Than or E qual

 The SLE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is less than or equal
 to that of the second, and 0.0 otherwise.

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 358

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x <= tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y <= tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z <= tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w <= tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.40, SNE: Set on Not Equal

 The SNE instruction performs a component-wise c omparison of the
 two operands. Each component of the result vec tor is 1.0 if the
 corresponding component of the first operand is not equal to that
 of the second, and 0.0 otherwise.

 tmp0 = VectorLoad(op0);
 tmp1 = VectorLoad(op1);
 result.x = (tmp0.x != tmp1.x) ? 1.0 : 0.0;
 result.y = (tmp0.y != tmp1.y) ? 1.0 : 0.0;
 result.z = (tmp0.z != tmp1.z) ? 1.0 : 0.0;
 result.w = (tmp0.w != tmp1.w) ? 1.0 : 0.0;

 Section 2.14.5.41, SSG: Set Sign

 The SSG instruction generates a result vector c ontaining the signs of
 each component of the single vector operand. E ach component of the
 result vector is 1.0 if the corresponding compo nent of the operand
 is greater than zero, 0.0 if the corresponding component of the
 operand is equal to zero, and -1.0 if the corre sponding component
 of the operand is less than zero.

 tmp = VectorLoad(op0);
 result.x = SetSign(tmp.x);
 result.y = SetSign(tmp.y);
 result.z = SetSign(tmp.z);
 result.w = SetSign(tmp.w);

 Section 2.14.5.42, STR: Set on True

 The STR instruction is a degenerate case of the other "Set on"
 instructions that sets all components of the re sult vector to 1.0.

 result.x = 1.0;
 result.y = 1.0;
 result.z = 1.0;
 result.w = 1.0;

Additions to Chapter 3 of the OpenGL 1.4 Specificat ion (Rasterization)

 None.

Additions to Chapter 4 of the OpenGL 1.4 Specificat ion (Per-Fragment
Operations and the Frame Buffer)

 None.

Additions to Chapter 5 of the OpenGL 1.4 Specificat ion (Special Functions)

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 359

 None.

Additions to Chapter 6 of the OpenGL 1.4 Specificat ion (State and State
Requests)

 None.

Additions to Appendix A of the OpenGL 1.4 Specifica tion (Invariance)

 None.

Additions to the AGL/GLX/WGL Specifications

 None.

Dependencies on ARB_vertex_program

 This specification is based on a modified versi on of the grammar
 published in the ARB_vertex_program specificati on. This modified
 grammar (see below) includes a few structural c hanges to better
 accommodate new functionality from this and oth er extensions, but
 should be functionally equivalent to the ARB_ve rtex_program grammar.

 <program> ::= <optionSequence> <s tatementSequence> "END"

 <optionSequence> ::= <optionSequence> <o ption>
 | /* empty */

 <option> ::= "OPTION" <optionNam e> ";"

 <optionName> ::= "ARB_position_invar iant"

 <statementSequence> ::= <statement> <statem entSequence>
 | /* empty */

 <statement> ::= <instruction> ";"
 | <namingStatement> " ;"

 <instruction> ::= <ALUInstruction>

 <ALUInstruction> ::= <VECTORop_instructi on>
 | <SCALARop_instructi on>
 | <BINSCop_instructio n>
 | <BINop_instruction>
 | <TRIop_instruction>
 | <SWZop_instruction>
 | <ARLop_instruction>

 <VECTORop_instruction> ::= <VECTORop> <instRes ult> "," <instOperandV>

 <VECTORop> ::= "ABS"
 | "FLR"
 | "FRC"
 | "LIT"
 | "MOV"

 <SCALARop_instruction> ::= <SCALARop> <instRes ult> "," <instOperandS>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 360

 <SCALARop> ::= "EX2"
 | "EXP"
 | "LG2"
 | "LOG"
 | "RCP"
 | "RSQ"

 <BINSCop_instruction> ::= <BINSCop> <instResu lt> "," <instOperandS> ","
 <instOperandS>

 <BINSCop> ::= "POW"

 <BINop_instruction> ::= <BINop> <instResult > "," <instOperandV> ","
 <instOperandV>

 <BINop> ::= "ADD"
 | "DP3"
 | "DP4"
 | "DPH"
 | "DST"
 | "MAX"
 | "MIN"
 | "MUL"
 | "SGE"
 | "SLT"
 | "SUB"
 | "XPD"

 <TRIop_instruction> ::= <TRIop> <instResult > "," <instOperandV> ","
 <instOperandV> "," <instOperandV>

 <TRIop> ::= "MAD"

 <SWZop_instruction> ::= <SWZop> <instResult > "," <instOperandVNS> ","
 <extendedSwizzle>

 <SWZop> ::= "SWZ"

 <ARLop_instruction> ::= <ARLop> <instResult Addr> "," <ARLop_src>

 <ARLop> ::= "ARL"

 <ARLop_src> ::= <instOperandS>

 <instOperandV> ::= <instOperandBaseV>

 <instOperandBaseV> ::= <optSign> <attribUs eV>
 | <optSign> <tempUseV >
 | <optSign> <paramUse V>

 <instOperandS> ::= <instOperandBaseS>

 <instOperandBaseS> ::= <optSign> <attribUs eS>
 | <optSign> <tempUseS >
 | <optSign> <paramUse S>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 361

 <instOperandVNS> ::= <attribUseVNS>
 | <tempUseVNS>
 | <paramUseVNS>

 <instResult> ::= <instResultBase>

 <instResultBase> ::= <tempUseW>
 | <resultUseW>

 <instResultAddr> ::= <instResultAddrBase >

 <instResultAddrBase> ::= <addrUseW>

 <namingStatement> ::= <ATTRIB_statement>
 | <PARAM_statement>
 | <TEMP_statement>
 | <OUTPUT_statement>
 | <ALIAS_statement>
 | <ADDRESS_statement>

 <ATTRIB_statement> ::= "ATTRIB" <establish Name> "=" <attribUseD>

 <PARAM_statement> ::= <PARAM_singleStmt>
 | <PARAM_multipleStmt >

 <PARAM_singleStmt> ::= "PARAM" <establishN ame> <paramSingleInit>

 <PARAM_multipleStmt> ::= "PARAM" <establishN ame> "[" <optArraySize> "]"
 <paramMultipleInit>

 <optArraySize> ::= /* empty */
 | <integer> /* [1,MAX _PROGRAM_PARAMETERS_ARB]*/

 <paramSingleInit> ::= "=" <paramUseDB>

 <paramMultipleInit> ::= "=" "{" <paramMultI nitList> "}"

 <paramMultInitList> ::= <paramUseDM>
 | <paramUseDM> "," <p aramMultInitList>

 <TEMP_statement> ::= "TEMP" <varNameList >

 <OUTPUT_statement> ::= "OUTPUT" <establish Name> "=" <resultUseD>

 <ALIAS_statement> ::= "ALIAS" <establishN ame> "=" <establishedName>

 <establishedName> ::= <tempVarName>
 | <addrVarName>
 | <attribVarName>
 | <paramArrayVarName>
 | <paramSingleVarName >
 | <resultVarName>

 <ADDRESS_statement> ::= "ADDRESS" <varNameL ist>

 <varNameList> ::= <establishName>
 | <establishName> "," <varNameList>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 362

 <establishName> ::= <identifier>

 <attribUseV> ::= <attribBasic> <swiz zleSuffix>
 | <attribVarName> <sw izzleSuffix>
 | <attribColor> <swiz zleSuffix>
 | <attribColor> "." < colorType> <swizzleSuffix>

 <attribUseS> ::= <attribBasic> <scal arSuffix>
 | <attribVarName> <sc alarSuffix>
 | <attribColor> <scal arSuffix>
 | <attribColor> "." < colorType> <scalarSuffix>

 <attribUseVNS> ::= <attribBasic>
 | <attribVarName>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribUseD> ::= <attribBasic>
 | <attribColor>
 | <attribColor> "." < colorType>

 <attribBasic> ::= "vertex" "." <attri bVtxBasic>

 <attribVtxBasic> ::= "position"
 | "weight" <vtxOptWei ghtNum>
 | "normal"
 | "fogcoord"
 | "texcoord" <optTexC oordNum>
 | "matrixindex" "[" < vtxWeightNum> "]"
 | "attrib" "[" <vtxAt tribNum> "]"

 <attribColor> ::= "vertex" "." "color "

 <paramUseV> ::= <paramSingleVarName > <swizzleSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <swizzleSuffix>
 | <stateSingleItem> < swizzleSuffix>
 | <programSingleItem> <swizzleSuffix>
 | <constantVector> <s wizzleSuffix>
 | <constantScalar> <s wizzleSuffix>

 <paramUseS> ::= <paramSingleVarName > <scalarSuffix>
 | <paramArrayVarName> "[" <arrayMem> "]"
 <scalarSuffix>
 | <stateSingleItem> < scalarSuffix>
 | <programSingleItem> <scalarSuffix>
 | <constantVector> <s calarSuffix>
 | <constantScalar> <s calarSuffix>

 <paramUseVNS> ::= <paramSingleVarName >
 | <paramArrayVarName> "[" <arrayMem> "]"
 | <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <constantScalar>

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 363

 <paramUseDB> ::= <stateSingleItem>
 | <programSingleItem>
 | <constantVector>
 | <signedConstantScal ar>

 <paramUseDM> ::= <stateMultipleItem>
 | <programMultipleIte m>
 | <constantVector>
 | <signedConstantScal ar>

 <stateMultipleItem> ::= <stateSingleItem>
 | "state" "." <stateM atrixRows>

 <stateSingleItem> ::= "state" "." <stateM aterialItem>
 | "state" "." <stateL ightItem>
 | "state" "." <stateL ightModelItem>
 | "state" "." <stateL ightProdItem>
 | "state" "." <stateF ogItem>
 | "state" "." <stateM atrixRow>
 | "state" "." <stateT exGenItem>
 | "state" "." <stateC lipPlaneItem>
 | "state" "." <stateP ointItem>

 <stateMaterialItem> ::= "material" "." <sta teMatProperty>
 | "material" "." <fac eType> "."
 <stateMatProperty>

 <stateMatProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "emission"
 | "shininess"

 <stateLightItem> ::= "light" "[" <stateL ightNumber> "]" "."
 <stateLightProperty >

 <stateLightProperty> ::= "ambient"
 | "diffuse"
 | "specular"
 | "position"
 | "attenuation"
 | "spot" "." <stateSp otProperty>
 | "half"

 <stateSpotProperty> ::= "direction"

 <stateLightModelItem> ::= "lightmodel" <state LModProperty>

 <stateLModProperty> ::= "." "ambient"
 | "." "scenecolor"
 | "." <faceType> "." "scenecolor"

 <stateLightProdItem> ::= "lightprod" "[" <st ateLightNumber> "]" "."
 <stateLProdProperty >
 | "lightprod" "[" <st ateLightNumber> "]" "."
 <faceType> "." <sta teLProdProperty>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 364

 <stateLProdProperty> ::= "ambient"
 | "diffuse"
 | "specular"

 <stateLightNumber> ::= <integer> /* [0,MAX _LIGHTS-1] */

 <stateFogItem> ::= "fog" "." <stateFog Property>

 <stateFogProperty> ::= "color"
 | "params"

 <stateMatrixRows> ::= <stateMatrixItem>
 | <stateMatrixItem> " ." <stateMatModifier>
 | <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> ".." <stateMatrixRowNum>
 "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> ".."
 <stateMatrixRowNum> "]"

 <stateMatrixRow> ::= <stateMatrixItem> " ." "row" "["
 <stateMatrixRowNum> "]"
 | <stateMatrixItem> " ." <stateMatModifier> "."
 "row" "[" <stateMat rixRowNum> "]"

 <stateMatrixItem> ::= "matrix" "." <state MatrixName>

 <stateMatModifier> ::= "inverse"
 | "transpose"
 | "invtrans"

 <stateMatrixName> ::= "modelview" <stateO ptModMatNum>
 | "projection"
 | "mvp"
 | "texture" <optTexCo ordNum>
 | "palette" "[" <stat ePaletteMatNum> "]"
 | "program" "[" <stat eProgramMatNum> "]"

 <stateMatrixRowNum> ::= <integer> /* [0,3] */

 <stateOptModMatNum> ::= /* empty */
 | "[" <stateModMatNum > "]"

 <stateModMatNum> ::= <integer> /*[0,MAX_ VERTEX_UNITS_ARB-1]*/

 <statePaletteMatNum> ::= <integer> /*[0,MAX_ PALETTE_MATRICES_ARB-1]*/

 <stateProgramMatNum> ::= <integer> /*[0,MAX_ PROGRAM_MATRICES_ARB-1]*/

 <stateTexGenItem> ::= "texgen" <optTexCoo rdNum> "."
 <stateTexGenType> " ." <stateTexGenCoord>

 <stateTexGenType> ::= "eye"
 | "object"

 <stateTexGenCoord> ::= "s"
 | "t"

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 365

 | "r"
 | "q"

 <stateClipPlaneItem> ::= "clip" "[" <clipPla neNum> "]" "." "plane"

 <statePointItem> ::= "point" "." <stateP ointProperty>

 <statePointProperty> ::= "size"
 | "attenuation"

 <programSingleItem> ::= <progEnvParam>
 | <progLocalParam>

 <programMultipleItem> ::= <progEnvParams>
 | <progLocalParams>

 <progEnvParams> ::= "program" "." "env" "[" <progEnvParamNums> "]"

 <progEnvParamNums> ::= <progEnvParamNum>
 | <progEnvParamNum> " .." <progEnvParamNum>

 <progEnvParam> ::= "program" "." "env" "[" <progEnvParamNum> "]"

 <progLocalParams> ::= "program" "." "loca l" "[" <progLocalParamNums>
 "]"

 <progLocalParamNums> ::= <progLocalParamNum>
 | <progLocalParamNum> ".." <progLocalParamNum>

 <progLocalParam> ::= "program" "." "loca l" "[" <progLocalParamNum>
 "]"

 <progEnvParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_EN V_PARAMETERS_ARB-1]*/

 <progLocalParamNum> ::= <integer>
 /*[0,MAX_PROGRAM_LO CAL_PARAMETERS_ARB-1]*/

 <constantVector> ::= "{" <constantVector List> "}"

 <constantVectorList> ::= <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>
 | <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar> ","
 <signedConstantScal ar>

 <signedConstantScalar> ::= <optSign> <constant Scalar>

 <constantScalar> ::= <floatConstant>

 <floatConstant> ::= <float>

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 366

 <tempUseV> ::= <tempVarName> <swiz zleSuffix>

 <tempUseS> ::= <tempVarName> <scal arSuffix>

 <tempUseVNS> ::= <tempVarName>

 <tempUseW> ::= <tempVarName> <optW riteMask>

 <resultUseW> ::= <resultBasic> <optW riteMask>
 | <resultVarName> <op tWriteMask>
 | <resultVtxColor> <o ptWriteMask>
 | <resultVtxColor> ". " <colorType>
 <optWriteMask>
 | <resultVtxColor> ". " <faceType> <optWriteMask>
 | <resultVtxColor> ". " <faceType> "."
 <colorType> "." <op tWriteMask>

 <resultUseD> ::= <resultBasic>
 | <resultVtxColor>
 | <resultVtxColor> ". " <colorType>
 | <resultVtxColor> ". " <faceType>
 | <resultVtxColor> ". " <faceType> "."
 <colorType>

 <resultBasic> ::= "result" "." <resul tVtxBasic>

 <resultVtxBasic> ::= "position"
 | "fogcoord"
 | "pointsize"
 | "texcoord" <optTexC oordNum>

 <resultVtxColor> ::= "result" "." "color "

 <arrayMem> ::= <arrayMemAbs>
 | <arrayMemRel>

 <arrayMemRel> ::= <addrUseS> <arrayMe mRelOffset>

 <arrayMemAbs> ::= <integer>

 <arrayMemRelOffset> ::= /* empty */
 | "+" <integer>
 | "-" <integer>

 <addrUseS> ::= <addrVarName> <scal arAddrSuffix>

 <addrUseW> ::= <addrVarName> <addr WriteMask>

 <addrWriteMask> ::= "." "x"

 <optWriteMask> ::= /* empty */
 | <xyzwMask>

 <xyzwMask> ::= "." "x"
 | "." "y"
 | "." "xy"
 | "." "z"

NVIDIA OpenGL Extension Specifications NV_vertex_program2_option

 367

 | "." "xz"
 | "." "yz"
 | "." "xyz"
 | "." "w"
 | "." "xw"
 | "." "yw"
 | "." "xyw"
 | "." "zw"
 | "." "xzw"
 | "." "yzw"
 | "." "xyzw"

 <swizzleSuffix> ::= /* empty */
 | "." <component>
 | "." <xyzwComponent> <xyzwComponent>
 <xyzwComponent> <xy zwComponent>

 <extendedSwizzle> ::= <extSwizComp> "," < extSwizComp> ","
 <extSwizComp> "," < extSwizComp>

 <extSwizComp> ::= <optSign> <xyzwExtS wizSel>

 <xyzwExtSwizSel> ::= "0"
 | "1"
 | <xyzwComponent>

 <scalarAddrSuffix> ::= "." <addrComponent>

 <addrComponent> ::= "x"

 <scalarSuffix> ::= "." <component>

 <component> ::= <xyzwComponent>

 <xyzwComponent> ::= "x"
 | "y"
 | "z"
 | "w"

 <optSign> ::= /* empty */
 | "-"
 | "+"

 <faceType> ::= "front"
 | "back"

 <colorType> ::= "primary"
 | "secondary"

 <vtxAttribNum> ::= <integer> /*[0,MAX_ VERTEX_ATTRIBS_ARB-1]*/

 <vtxOptWeightNum> ::= /* empty */
 | "[" <vtxWeightNum> "]"

 <vtxWeightNum> ::= <integer> /*[0,MAX_ VERTEX_UNITS_ARB-1] must be
 divisible by four * /

NV_vertex_program2_option NVIDIA OpenGL Extension Specifications

 368

 <optTexCoordNum> ::= /* empty */
 | "[" <texCoordNum> "]"

 <texCoordNum> ::= <integer> /*[0,MAX_ TEXTURE_COORDS_ARB-1]*/

 <clipPlaneNum> ::= <integer> /*[0,MAX_ CLIP_PLANES-1]*/

 The <integer>, <float>, and <identifier> gramma r rules match
 integer constants, floating point constants, an d identifier names
 as described in the ARB_vertex_program specific ation. The <float>
 grammar rule here is identical to the <floatCon stant> grammar rule
 in ARB_vertex_program.

 The grammar rules <tempVarName>, <addrVarName>, <attribVarName>,
 <paramArrayVarName>, <paramSingleVarName>, <res ultVarName> refer
 to the names of temporary, address register, at tribute, program
 parameter array, program parameter, and result variables declared
 in the program text.

GLX Protocol

 None.

Errors

 None.

New State

 None.

New Implementation Dependent State

 Min
Get Value Type Get Command Value Description Sec Attrib
-------------------------------- ---- ----------- ---- ------ --------------- -------- ------
MAX_PROGRAM_EXEC_INSTRUCTIONS_NV Z+ GetProgrami vARB 65536 maximum program 2.14.4.4 -
 execution inst-
 ruction count
MAX_PROGRAM_CALL_DEPTH_NV Z+ GetProgrami vARB 4 maximum program 2.14.4.4 -
 call stack depth

 (add to Table X.11. New Implementation-Depende nt Values Introduced
 by ARB_vertex_program. Values queried by GetPr ogramivARB require
 a <pname> of VERTEX_PROGRAM_ARB.)

Revision History

 Rev. Date Author Changes
 ---- -------- ------- ---------------------- ----------------------
 2 05/16/04 pbrown Documented terminals i n modified vertex
 program grammar.

 1 -------- pbrown Internal pre-release r evisions.

	Table of NVIDIA OpenGL Extension Support
	ARB_fragment_program
	ARB_fragment_program_shadow
	EXT_blend_func_separate
	EXT_depth_bounds_test
	EXT_stencil_two_side
	NV_float_buffer
	NV_fragment_program
	NV_fragment_program_option
	NV_half_float
	NV_primitive_restart
	NV_texture_expand_normal
	NV_vertex_program2
	NV_vertex_program2_option

