
Welcome to our talk about High-performance, Low-Overhead Rendering with OpenGL and

Vulkan.

Lars and I are with NVIDIAs developer technology teams. He’s been focusing on mobile

side things and I’ve been focusing on the desktop side of things.

But these days that difference seems to be blurry

1

Applications typically fall somewhere on a spectrum between CPU and GPU limit

<CLICK>

We are NOT going to talk about cases where the application itself is CPU limited.

<CLICK>

We are also NOT going to talk about scenarios where the GPU is the liming factor

<CLICK>

However today we are going to investigate cases where the CPU cost of the driver is the

limiting factor

2

Traditional APIs emerged in a single threaded world

One thread on one core traverses scene to collect objects to render

Issues many calls into driver to both change draw state actually render triangles

Saturating that core, thus not feeding the GPU

At the same time other threads are idle

3

Most applications have a variant of this rendering loop where they iterate over

Sorting of the loops depends on natural frequencies in the scene description

4

The most frequent hot loop state changes are buffer, texture and shader bindings.

Their total CPU cost can in practice cause overall low visual complexity since it’s too

expensive to change

5

GPU technologies like tessellation are great for some forms of complexity

GPU instancing also helpful

6

But compelling content is dense and heterogeneous as this example of a recently

released game illustrates

Diverse materials

Lots of independently animated characters with varied geometry

Developers need APIs that can handle complex rendering at a high rates!

Source: http://international.download.nvidia.com/geforce-

com/international/images/assassins-creed-unity/assassins-creed-unity-screenshot-

007.jpg

7

API calls made through a context bound to a thread

Expensive to change context of a thread

Tricky to share resources efficiently between contexts & threads

Not threading friendly

8

So all those idle cores do work and join the effort

9

So all those idle cores do work and join the effort

10

Examples of implicit operations

compiling shaders, downloading textures, downsampling

synchronization, validation & error checking

Unpredictable when and if those happen!

Symptoms such as large stalls on first draw call with a given…

shader, blend mode, vertex data layout, framebuffer attachment formats…

Ask any IHV and you’ll likely get a different answer!

Developers want the ability schedule the expensive work explicitly on their schedule!

11

Not a single, monolithic set

multiple extensions used for different aspects

12

More varied geometry per drawcall via “MultiDrawIndirect”

allows different shapes per individual drawcall

<click>

More varied materials per draw call via “bindless” resources

different textures, different material parameters

13

glDrawArrays/Elements

Often called once per batch of geometry

application side loop across all batchs

glMultiDrawArrays/Elements

 roll loop across batches into a combine batches into single API call to reduce CPU cost

OpenGL 4.3 introduces glMultiDrawArrays/ElementsIndirect

Source arguments from a buffer

Transparent memory layout!

14

computation of draw call arguments on GPU

Interesting topic on it’s own

More relevant for today’s talk

On CPU multi-threading!

15

Worker threads traverse scene

collect data for draw batches

Either use inter-thread communication to “stitch” together

Or use persistently mapped buffers

Main thread

executes draw calls and state changes

As a result you have fewer draw calls that render more triangles on the GPU

16

Cannot change vertex & index buffer bindings “inline”

Fetch data from different parts of a (large) index buffer (IB) or vertex buffer (VB)

Cannot change

shaders

texture bindings

framebuffer object (FBO)

uniform buffer object (UBO)

Essentially all batches with different geometry get rendered with the same material but

can have different geometry

17

… we could also encode the following in the “indirect” buffer?

resource bindings

state changes

Various drawcall types

Then we could …

compute more GPU “work” in the worker threads!

GL_NV_command_list does exactly that

essentially Multi Draw Indirect on steroids

explores modern API concepts in OpenGL

18

Tokenized Rendering

Some state changes and all draw commands are encoded into binary data stream

Binary stream layout transparent to GPU and CPU!

State Objects

Whole OpenGL States (program, blending...) captured as an object

Allows pre-validation of state combinations, later reuse of objects is very fast

Execution either “interpreted” or “baked” via command list object to allow further

optimization

Referencing Resources via “Bindless” GPU addresses

19

•Work from native GPU pointers/handles

•conceptually similar to descriptors in Vulkan

•A lot less CPU work (memory hopping, validation...)

•Less locking when using threaded shared contexts

•Bindless Buffers

•Vertex & Global memory since Tesla Generation (2008+)

•Bindless Textures

•Since Kepler (2012+)

•Bindless Constants (UBO)

•Bindless plays a central role for Command-List

20

a simple example how you could use bindless uniform buffers to update the

transformation matrix of some objects to render

<CLICK>first, update the buffer content with the matrices

<CLICK>then make the buffer resident to the GPU in order guarantee that it has a valid

GPU address

<CLICK>then retrieve the 64 bit GPU address and store it in a variable

<CLICK>enable bindless uniforms

<CLICK>loop over the objects

<CLICK>bind the buffer address instead of the buffer itself

<CLICK> this is what traditional API calls would look like

21

lets see how we can use bindless resource bindings in our token buffer which contains

various structs tightly packed in memory

<CLICK>For example there is a token to change a uniform buffer binding

<CLICK>but here are also tokens for vertex data and uniform data

highlighted in yellow are changes to buffer bindings

<CLICK>last but not least, there are tokes for drawcalls similar to those in Multi Draw

Indirect

D3D12 ExecuteIndirect quite similar to this

22

single API call to encapsulates majority of state +

primitive type

immutable for more control over validation cost

Resource bindings are not captured

bindless used instead

textures passed via UBO since there is no token

for this

23

•single threaded case straightforward

get pointer, fill token buffer, emit to context to execute work

•<CLICK>Multi threaded case

•GL thread with context, for example 2 worker threads without a GL context

•<CLICK> Pass token buffer pointers to worker threads

•<CLICK>worker threads generate token stream

•<CLICK>emit on GL thread to context to execute work

•<CLICK> Handle state object captures in GL thread since they require a GL context

which is one of the limitations

24

generally speaking command-List does NOT pretend to solve general OpenGL multi-

threading

but allows partial multi threading possible, e.g the threaded token buffer generation

but state validation still single threaded since the state capture

State Object Capture must be handled in OpenGL context

but worker threads actually “know” the associated state for specific render workload

possible but tricky to have worker threads exchange data with GL thread who then does

the state capture

25

26

27

Good afternoon – I’m Lars Bishop, and like Mathias, I’m a developer technologies

engineer at NVIDIA. I tend to focus on our SHIELD platforms. I’m here to provide a bit of

an overview of Vulkan and how it fits into this continuum. Given the tech press coverage

and internet discussions leading up to GDC, we likely don’t need to say much more by

way of introduction than the fact that Vulkan is a new, open, cross-platform 3D API that

was launched by the Khronos Group in February. NVIDIA has been very active in the

development of Vulkan, and we have drivers available today on Windows, Linux Desktop,

Android and Linux for Tegra.

28

So let’s start with some philosophies around Vulkan, and you’ll see some themes that

we’ve already discussed. Vulkan was designed to take most of these themes further.

First, empower, rather than insulate the app developer. Ensure that the app can do as

much as is reasonable from multiple threads. The driver should not try to synchronize

everything internally. And then, reduce repeated work in the driver via explicit reuse of

rendering work in the app. Don’t make the driver try to find the reuse internally.

29

Okay – so here is Vulkan in terms of the objects and major relations. Got it? Good!

Okay, in closing. <click> just kidding; let’s introduce these objects a few at a time and

build things up.

30

First, we have `the device object <click>. It’s mainly a provider of resources.

31

Since we often have more than one Vulkan-compatible GPU in a system, Vulkan has the

concept of a physical device. We can query the available physical devices for their core

properties and capabilities so we can choose between them. We use the chosen device

to provide us with resources such as device memory-based objects. Also, the device

provides us with a queue object that is our main interface with the GPU, along with

synchronization objects for that queue.

32

Next, a much more complex object, the pipeline <click>. Pipelines represent an overall

rendering pipeline and most of its configuration.

33

Pipelines are designed to be precompiled at setup time and include enough information

in them that expensive operations like validation or shader recompilation should not be

needed at render time. However, it also means that a lot of layouts and states cannot

be changed within that pipeline. If you need to render with a different set of those

states, you’ll need another pipeline object. Note that these are similar in many ways to

the N V command list state objects, only pipelines in vulkan are always created explicitly

and directly, not collected from an implicit state capture.

34

Of course, we don’t bake everything into a pipeline; pipelines are reusable, and the next

sets of objects we will cover can be bound dynamically to a pipeline. First, <click>

buffers.

35

Buffers hold data similar to VBOs, UBOs and SSBOs that we are used to from GL; they are

highly heterogeneous in Vulkan. But in Vulkan we have to pay careful attention to the

type of memory in which a buffer is created. We have device local memory, and we

have memory that is mappable and optionally cached by the CPU side. We’ll talk more

about where we get this memory in a bit. But in Vulkan, memory type is a functional

property, not just a hint to the driver.

36

Images <click> are another familiar type of memory block

37

Images represent all manner of structured pixel-like arrays. And as with many other

objects in Vulkan, the app specifies details of how it intends to use that object; some

creation parameters control how the pixels are laid out in device memory. For example,

tiled versus linear images are specified explicitly, and selection of a non-tiled layout for

a texture can cause serious performance degradation. Note that images are not

interpreted directly – this is the job of Image Views, which can be used to re-interpret

the same image object in different manners.

38

Of course, memory has to come from somewhere, and in Vulkan, it comes from <click>

Heaps in a device.

39

Memory in Vulkan is allocated from a SPECIFIC heap in a device. <click><click> Some

heaps can generate multiple kinds of allocations, some only one, and this changes based

on your platform. <click>Note that allocating memory from a heap in Vulkan is NOT a

one to one mapping with Vulkan objects. <click> An allocation can and should contain

<click> multiple objects; it’s a basic Vulkan design philosophy

40

Descriptor sets <click> are how Vulkan allows an app to reuse a pipeline object by

dynamically binding resources like vertex buffers, UBOs and images to that same

pipeline.

41

Once again, Vulkan is designed to declare as much information as possible up front, so

that there are no stalls at render time. In line with this, descriptor sets are allocated

with fixed LAYOUTS, defined by the app. <click>Descriptor Set Layouts allow the app to

declare the <click>number and type of each kind of resource that is referenced by a

descriptor set OF that type, as well as how they are BOUND to indices within a shader.

<click x4>Note that a pipeline can use multiple descriptor sets of different layouts.

<click>So designing descriptor set layouts carefully for your app and engine is important.

<click>And of course, for each layout, you’ll likely have many instances of different

descriptor sets. <click x5> Finally, note that while changing a buffer object BOUND into

a descriptor set requires an UPDATE to the descriptor set object, changing the memory

OFFSET of the binding within that buffer can be done very cheaply. More on that later.

42

So far, we’ve discussed DATA having to do with rendering. What about ACTIONS? Real

work. Well, that’s what <click> Command Buffers are for.

43

So in vulkan, there are no functions to render IMMEDIATELY or directly to the device. All

rendering, compute work and even most data transfer is via command buffers the apps

build EXPLICITLY. Command buffers can be single-use OR cached by the app and

resubmitted many times. And of course, Vulkan has FLAGS that let the app signal that

intent for each buffer from the beginning. However, note that in order for the driver to

be able to OPTIMIZE the buffers and avoid recompilation, basically NO rendering state is

inherited across command buffers. So they EACH need to stand on their own. They need

to BIND pipelines, BIND the desired descriptor sets and RENDER, all within that buffer.

44

So we’re creating all of these resources, binding them, and making these big command

buffers. So, you may be wondering “do I actually get to talk to the GPU at some point?”

<click> That’s what the queue is for.

45

A queue object is the ONLY way to submit work to the GPU. They are EXPLICIT objects,

so there’s no hidden queue or synchronization going on INTERNAL to the driver, nor is

there a CONTEXT to be bound to each thread. Queues are simple objects. The APIs are

very simple. You SUBMIT work, and, if you need to, WAIT for idle. But where possible,

you even avoid the latter. Semaphores allow you to internally sync operations WITHIN

the queue with NO app intervention, and FENCES and EVENTS allow the app to know

when batches of GPU work are complete. All of this put together also makes queue-

based command buffers very thread friendly. And as mentioned, queues take not only

graphics work, but also compute and memory transfer operations.

46

Now that we’ve introduced the various players and made allusions to how they fit

together, let’s reiterate and discuss some of these core vulkan philosophies that we

mentioned up top.

47

A knowledgeable app developer is a powerful creature. And many rendering APIs can

only see into the mind of that developer through narrow slits of API functions. Vulkan

seeks to remedy this; The FACT that MOST applications use a reasonably-sized, FIXED set

of rendering pipeline structures is made explicit in Vulkan. Also, applications have a lot

more CONTROL over and RESPONSIBILITY for things like object lifespan, thread

synchronization, and CPU/GPU parallelism.

48

For example, managing resources. Vulkan makes it possible to create multiple buffer

objects within a single memory allocation. The classic method often seen in GL code is

that allocations <click>, buffer objects <click> and buffer object uses are <click> one to

one allocations. This is clearly not optimal for memory allocation. <click>And it is NOT

how things should be done in Vulkan. The next step up is <click> to use a single

allocation from a Vulkan heap and create <click x3> multiple buffer objects from that.

<click> Not great, but much better. <click>Vulkan makes it possible <click> to place

index storage <click>, vertex storage <click> and even uniforms <click> into a single

buffer object. <click>This is good, as it helps with both memory allocation and

frequency of resource re-bindings.

49

Vulkan makes this sub-allocation of buffer objects easier by having offsets in itsbinding

APIs. An app does not just bind a BUFFER; they bind a buffer AND an offset. In fact,

that OFFSET can even be changed dynamically per draw call. So a buffer can be updated

into the descriptor set, and then the lighter weight call that just binds the descriptor set

and changes the offset can be used at higher frequency. So while changing the actual

buffer object bound in a descriptor set requires updating the ENTIRE descriptor

set<click>, specifying a new offset into that buffer <click>for a given binding <click>can

be done cheaply when binding the <click>descriptor set.

50

As for the sub-allocator system, well, that’s YOU. And this makes sense. One of the best

ways to group allocations is object lifespan and usage. And the app should know best

which objects share lifespans and binding patterns; <click>objects that live the entire

app life, <click>objects that are used only in a given game level, and <click>dynamic

objects that pop up and down per frame. So Vulkan lets apps do this sub-allocation of

heap and buffer subsections themselves.

51

Threading is a topic that has always been complex in OpenGL, and Vulkan’s design is a

reaction to this and to the rise of multi-threaded games and 3D apps. The Vulkan spec is

very detailed with respect to concurrency behavior of every function, and in general,

that responsibility falls to the app. The API provides numerous sync primitives to make

this work well. So lets discuss some of the common threaded rendering methods

52

The most common ways that apps thread their rendering behavior are <click>ONE,

threading the updates of resources like vertices and uniforms and then <click>TWO, the

“big ticket” case; actually generating rendering work efficiently from multiple threads.

This latter case is where Vulkan shines.

53

Vulkan has several methods of updating data from multiple threads. The first <click>is to

use mapped buffers; depending on whether the memory was allocated as coherent or

not, the app may need to flush the modified ranges explicitly. This form of threaded

update is common for vertex buffers and UBOs. <click>There’s also the ability to fill

staging buffers in a thread and then submit them to the queue for asynchronous D M A.

This method is common for operations that require formatting or tiling conversion, like

textures.

54

It is up to the app to ensure that buffers are updated “safely”. So – what’s a safe buffer

update? Well, multiple frames will generally be in flight at once. So an app will need to

keep multiple buffer copies and access them round-robin. Vulkan Events can be used to

tell when a draw call that uses a given buffer has completed in the GPU. By placing a set

event call in the command buffer after the draw call, the app can wait on that event

before recycling that copy of the buffer. In the best case, you’ll have enough copies of

the buffer so that you never ACTUALLY wait on the events. But that will be dependent

on the target system performance.

55

The next type of threading is even more tempting for advanced applications. Using

several threads to generate command buffers that render independent parts of the

scene. This can be a big win with complex scenes. The diagram here lays out the case.

In Vulkan, the app can do their <click>update work AND <click>generate command

buffers in simultaneous threads, without having to synchronize between them. At the

end, the threads can either <click>pass the command buffer handles back to the main

thread for queue submission, or can submit via per-thread queues; note that queue

submissions are not free, so the performance is likely better passing the handles and

submitting them together from the main thread. All of which leads to a ton of rendering

<click>generated by busy threads to keep the <click>GPU busy with big batches of real

work<click>.

56

Once again, we need to think about queue safety. Luckily, Vulkan makes this case even

more pre-fabricated. The app can create its command buffers <click x3> and then

submits a group of them to the queue <click> The Vulkan submit to queue function takes

an optional fence as a parameter. The app can continue creating and submitting buffers

in parallel <click x6>. That fence will be signaled <click> when the command buffers

represented in that submit are complete and can be reused. The app just needs to wait

on that fence before rewriting the command buffer.<click>

57

To see this in action, visit the NVIDIA booth on the expo floor and you can see several

examples of threaded rendering with vulkan in action. Specifically, our Fish demo – it is

a cross-platform, cross-API demo that shows threading of data updates in OpenGL ES and

Vulkan and command buffer generation with Vulkan.

58

As mentioned, we need a round-robin of command buffers per thread and can only reuse

them when they are not in-flight. However, there’s another threading-related item to

consider. Command Pool objects are parent objects used to create and manage their

child command buffers. Command buffer operations cause work to happen in the

command buffer’s parent command pool, such as memory allocation. And any work in a

command pool must be synchronized across threads. So the app likely wants to have a

Command Pool per thread and associate all of its command buffers with that pool, so

that there is no need to synchronize. Each thread can do command buffer operations at

will.

59

Note that command pools can be reset in bulk, which is a fast and clean way to reset all

of the pool’s command buffers and reclaim the memory. So if you have multiple

command buffers per frame, per thread, then it may even make sense to have a

command pool per thread-frame pair. That way, when all of the command buffers for a

given thread/frame pair are no longer in flight, you can reset the entire command pool

en masse. This can be fast and help avoid fragmentation at the same time.

60

Descriptor pools are analogous to the command pools, but for descriptor sets. Since

dynamically created objects may require new descriptor sets to be created from within a

thread, it is important to consider a descriptor pool for a given thread. Also, like

command pools, descriptor pools can be reset en masse. So creating descriptor pools

based on lifespan (say, a per-game level pool) can allow for trivial, fast and clean

deletion of lots of descriptor sets when no longer needed.

61

The final vulkan philosophy we mentioned was reduce by reuse. And most of those topics

we’ve already covered as we went along. Pipeline objects are not only in and of

themselves trivially reusable without having to re-generate a set of states over and over

again, there are even additional optimizations possible. For example, Vulkan supports

explicit pipeline cache objects<click>. If one is created and then passed in when

creating pipeline objects<click x 7>, the cache can accumulate driver-specific

information about a set of pipelines. This opaque data can be retrieved by the

application <click>and saved<click>. On subsequent runs of the app <click x2>, the data

can be loaded and passed to Vulkan<click>, and the driver may be able to greatly limit

the cost of creating that same pipelines objects <click x7>.

62

This eyechart covers some of the tradeoffs of the various API sets. Nothing shocking

after the discussions here. AZDO, command list and Vulkan each provide improved

single-threaded performance options. Real re-use of created draw work is the domain of

command lists and vulkan. And for multi-threading, vulkan is likely to be best. But of

course, there’s tradeoffs in developer workload.

63

In terms of Vulkan, if you are CPU bound on graphics work, <click>looking to maximize a

known, tight platform resource budget, or <click>very focused on a lack of hitching,

Vulkan is a strong consideration.

64

However, if you need a wide range of platform support immediately, Vulkan is still new.

<click>If you are heavily GPU bound, Vulkan is unlikely to help (note that we’re talking

about ACTUALLY GPU bound – use your tools to make sure it isn’t just being driver-

bound, where Vulkan could help). <click>If your app is bound on non-rendering CPU work,

well, put your optimization time elsewhere… <click>And if you really want the most

from Vulkan, being a threaded app or easily threadable helps. <click>Finally, there are

other development concerns, like your use of rendering middleware, and <click>where

you are in the development process.

65

There is so much more information available for developers on Vulkan. Here, we present

a set of Vulkan resources from NVIDIA developer technologies that are targeted at all

levels of developer experience. In closing, we hope we’ve shown that numerous options

exist for app developers looking to get the most from their 3D games and applications on

today’s rendering APIs. But there are tradeoffs to consider and decisions to be taken

carefully when deciding between OpenGL, extended openGL, and Vulkan.

66

Thanks for joining Mathias and myself today; please visit our booth in the south hall and

see Vulkan in action on NVIDIA platforms. We’ll close out with some time for questions.

67

