
1



2



3



4



5



6



7



8



We know for certain that the last sample, shaded in the current frame, is valid.

9



We cannot say whether the color of the remaining 3 samples would be the same if 

computed in the current frame due to motion, (dis)occlusion, change in lighting, 

etc..

10



Re-using stale/invalid samples results in quite interesting image artifacts. 

In this case the fairy model is moving from the left to the right side of the screen and 

if we re-use every past sample we will observe a characteristic ghosting artifact.

11



There are many possible strategies to reject samples. 

Most involve checking whether plurality of pre and post shading attributes from past 

frames is consistent with information acquired in the current frame.

In practice it is really hard to come up with a robust strategy that works in the 

general case. For these reasons “old” approaches have seen limited 

success/applicability.

12



More recent temporal supersampling methods are based on the general idea of re-

using resolved color (i.e. the color associated to a “small” image region after 

applying a reconstruction filter), while older methods re-use individual samples. 

What might appear as a small difference is actually extremely important and makes 

possible to build much more robust temporal techniques.

First of all re-using resolved color makes possible to throw away most of the past 

information and to only keep around the last frame. This helps reducing the cost of 

temporal methods.

Since we don’t have access to individual samples anymore the pixel color is computed 

by continuous integration using a moving exponential average (EMA).

Typically we blend 10% of the current frame (1 sample) with 90% of the past frame 

(many samples integrated over a number of frames..).

Note that for very small values of alpha EMA behaves like an arithmetic average.

Also EMA acts as a smoothening filter and tends to damp down rapid changes in time.

13



Neighborhood clipping [MALAN 2012][KARIS 2014] is the main ingredient behind the 

success of recent temporal supersampling methods.

The basic idea is simple: we want to identify if the resolved pixel color from the 

previous frame is consistent with what we know about the current frame. 

If this is the case we blend the current sample color with the previous frame resolved 

pixel color. Conversely, we modify the resolved color from the past frame to make it 

consistent, then we blend it against the current color sample. We’ll see the latter 

option is sort-of-equivalent to restarting the temporal summation from the last color 

sample.

To explain how neighborhood clipping works we start with a practical example. Let’s 

take in consideration a group of 4x4 color samples that can be resolved into a single 

pixel color after applying a 2x2 pixel wide reconstruction filter (e.g. tent filter). If 

we assume the coefficients of our reconstruction filter are positive then we can say 

that the resolved pixel color will lie inside the convex hull defined by the 4x4 

samples (the idea also works with negative weights, but for it is easier to explain by 

assuming all weights are positive).

14



For simplicity we visualize this convex hull as a triangle over a 2D chromaticity space. 

In practice the convex hull is defined by 2D planes embedded in a 3D color space 

(e.g. RGB, YCoCg, etc.). The number of planes is variable, depending on the color 

sample distribution, up to the number of samples.

15



By definition a new color sample computed in the current frame falls inside the 

convex hull.

16



If we re-use the resolved pixel color from the previous frame we have two 

possibilities. If we are lucky this color falls inside the convex hull determined by 

current samples and everything is ok.

In this case we assume the past data is consistent with the present data. In reality 

this is true as long as the information we have about the current data/frame is 

representative of the signal we are sampling.

In practice we can tolerate moderate amount of aliasing and this assumption still 

works fairly well. We will discuss later what happens when this assumption is invalid 

and how to fix it.

17



If the previous frame pixel color falls outside the convex hull we cannot re-use it as 

it’s not consistent with current frame data. 

18



While we could throw away the stale data from the previous frame we prefer to 

condition it to make it more consistent with the current frame data.

We do so by connecting with a segment the old pixel color with the new sample 

color. A new color value is generated by intersecting/clipping this segment against 

the convex hull.

19



As we can see the new color value lies on the surface of the convex hull and we are 

now free to continuously integrate it with the current pixel color.

20



Building a per-pixel convex hull and intersecting it against a segment is too 

expensive. A common alternative is to compute an AABB that encloses all the local 

current color samples and to clip the color segment against it.

21



Unfortunately this can still lead to quite poor results. In this case the intersection 

generates a new color value that is far away from the convex hull, and therefore it is 

not consistent with the current frame data, causing ghosting artifacts.

22



To address these cases we propose a new method called Variance Clipping (VC).

We first compute the first two raw moments of the local color sample distribution 

from the present frame. They will be used to build an improved AABB.

23



From the raw moments we compute the mean value mu and the standard deviation

sigma.

We then build an AABB centered around mu. The dimensions of the AABB are 

determined by sigma, up to a scaling factor gamma.

Larger gammas produced more temporally stable results at the cost of increased 

ghosting.

When gamma is too small we lose the ability of integrating data over time. 

24



We typically use gamma = 1 for good results. 

By building the AABB using a statistical method we can better eliminate outliers in 

the sample distribution.

To make sure our AABB is not significantly larger than the old AABB computed using 

min/max operations we can clamp it against the old AABB.

25



26



27



The old AABB is replaced by the new computed using the first two raw moments of 

the color distribution

28



The sample generated by clipping the segment against the new AABB is now more 

consistent with the present frame data.

29



30



31



32



33



34



35



36



37



When

38



Temporal supersampling can transform spatial aliasing into temporal aliasing artifacts 

such as flickering.

This happens mostly when our original assumption on having a representative set of 

samples from the current frames breaks down due to excessive aliasing.

In other words, simply jittering the viewport might cause some extremely thin 

geometrical or lighting features to fall between samples, entirely erasing its color 

contribution from the current color distribution. When this happens variance can 

shrink significantly, causing every past color contribution to be clipped against the 

current sample color.

This event resets the exponentially averaged pixel color, which is great to eliminate 

ghosting. If these events are repeated (for instance due to jittering the viewport) 

they will cause flickering, even when nothing is moving on the screen.

39



Since VC-induced flickering is a byproduct of excessive spatial aliasing, we can take 

care of it by using other anti-aliasing methods. From taking more samples to modern 

pre-filtering techniques.

40



Integrating color over a small region than potentially include different elements 

moving a different velocity require special care. In this case if we use the (zero) 

motion vector from the center of the pixel we might completely miss moving 

features.

41



In this case the foreground samples don’t cover the center of the 3x3 region. 

Nonetheless we pick the longest motion vector and we apply at the center of our 

filter in order to track the fastest moving feature and accurately integrate over time.

42



43



For best image quality with MSAA, CSAA or SSAA just apply TAA before the resolve 

pass.

It is possible to make TAA performance independent upon the number of samples per 

pixel by applying it post-resolve.

To use this method one has to first properly resolve the motion vector by outputting 

the longest one (color is resolved as usual). 

44



We can apply TAA on a per-layer basis for best quality with multi-layer images.

45



Similarly to the many samples per-pixel case we can also apply TAA to multi-layer 

images after resolving the layers into a single image. In this case we need to resolve 

out the motion vector that generates the largest variation in transmittance. This 

motion vector is associated to the layer the impacts the image the most (on a per-

pixel basis).

46



We can also use TAA to reduce noise by stochastically integrating a function over 

time.

47



48



49



50



When we apply TAA with a 3x3 Variance Clipping window the noise is somewhat 

reduced, although the final result is still quite unsatisfactory. This is due to the fact 

that the stochastic alpha test is removing 75% of the present data (since in this 

example alpha is set to 25%), drastically reducing the amount of information 

available to Variance Clipping.

51



If we modify VC to work on larger window, let say 7x7 samples, then we are able to 

better reconstruct the original color distribution from the present frame. This is due 

to the fact that a larger VC window increases the likelihood of reconstructing the 

local sample distribution. Unfortunately it also increases the amount of ghosting we 

can see under motion.

52



A remarkable property of Variance Clipping is that we can apply over large windows 

in an efficient manner by pre-filtering the first two color moments with a blur pass or 

some other filter. This is very similar to what developers do to pre-filter variance or 

exponential shadow maps.

53



54



55



56


