
Good Afternoon. My name is Lars Bishop, and I’m an engineer in NVIDIA’s Developer

Technologies team. I focus on our Android application developers and on 3D

rendering, especially on mobile platforms like NVIDIA’s SHIELD.

1

The basis of this session is my team’s own experiences working with two groups of

people; first, our direct support interactions with Android TV and Android Mobile

game and app developers. Many of these topics originally came in as developer

questions. These formed the depth of the session. On the other hand, the session is

also based on many discussions with and bug reports filed by our own NVIDIA software

QA team, who test hundreds upon hundreds of game titles and apps on NVIDIA’s

various mobile platforms. These interactions formed the breadth of this talk;

frequent issues we see in a wide range of titles. We’re going to cover a mix of the

basics and some more advanced Android feature topics. We’ve found getting the

basics right from the start is the best way to have time for the advanced bits.

2

First, we want to discuss a few of the new features that Android Marshmallow brings

to both mobile and Android TV developers. Along with that, there are some behavior

changes that have caught quite a few developers off-guard; we’ll discuss them as

well.

3

Android M’s new features cover a wide range. One of the most important to Android

TV developers will be core support for 4K display. While a lot of the 4K talk is around

streaming media apps, it is even easier for games to take advantage of this. Also, M

adds adoptable storage, a feature that makes SD cards and USB drives even more

useful on Android, both mobile and TV. Low-latency audio improves the impact of

game sounds.

4

The first thing many folks do when they consider supporting Android M is to target

M’s API level, 23 in order to gain access to the Java APIs for the new features. But

this is a double-edged sword. Android works hard to avoid breaking or changing

existing app behavior when an older-API app is installed on a new OS. But all bets

are off if the app builds against the new OS’s API level. That rebuilding is a form of

implicit “contract”; the developer gets access to the new APIs in their app, but they

also agree to any documented behavior changes in the new platform. This caused

issues in a number of games we tested. In a few cases, the developer seemed to

have upgraded to the new API level as a matter of course when the SDK shipped, but

did not actually test on Android M devices. As more and more devices shipped with

M, the hidden issues that were lurking in their apps came out. The rule here is

simple; if you build on an API level, test on devices of that API level. If you also

export that your app will run on older OSes, then test on those and make sure your

use of any newer APIs is conditional.

5

Android M adds a new Java API for supported display modes. Using these APIs, an

application can determine if 4K resolutions are supported on the platform, grab the

ID of a 4K mode and use it. Note that this only affects Surface Views, not core

Android UI views. But Surface Views are the basis upon which all 3D rendering is

done on Android, so games are covered here. There’s only two problems, really.

One is a practical and likely temporary one. Some devices that can support 4K and

are attached to 4K displays do not yet export the 4K modes via this API. So if 4K

support is not indicated by these APIs, it may still be available to a game… The other

issue is NativeActivity.

6

NativeActivity apps do not have direct access to the window parameters before

creation, so the Java APIs for 4K aren’t applicable. Luckily, there is another method

for native apps. The app can test the sys display-size property; if the display lists a

4K resolution, then there are native APIs that will let you create a 4K rendering

surface. If the 4K mode is available, the app can simply use the set buffers geometry

call they already use in their native activity setup code to set the desired resolution.

And they will be able to render and display to 4K. Do not set the buffer size to 4K if

the property indicates that the display is still 1080 P. If you do that, you’ll pay the

price of rendering to 4K, but the scaler will just filter it to 1080 P and you will have

wasted the perf. Note that this does require user intervention on their device right

now. The user must enable 4K display on their device via the Android display HDMI

settings panel. In fact, the app _could_ even redirect the user to that resolution

control panel page directly with an intent; the package is listed on this slide.

7

If you build against API 23 for Android M, you implicitly sign on to a BIG change;

permissions. Unlike the older system where users were shown a laundry list of every

permission your app requested in a play store dialog, most of which they didn’t

understand anyway, API 23 actually requires some permissions to be explicitly

requested of and accepted by the user at run time! If you don’t do this, the APIs

related to the permission will fail. This runtime request requirement is now true of

all permissions that Android has declared as “dangerous”. As an example, Read Write

external storage is now considered dangerous. That sounds pretty extreme, since

historically a huge number of games listed this permission. But there’s more here in

the details.

8

As of API level 19 (which seems so far ago now…) Android stopped requiring the read

write external storage permission for most app. Apps that only accessed paths

returned by the get external directories functions no longer needed those

permissions. Those directories were considered “safe”. Only apps accessing non-

app-specific directories in external storage had to request the permissions. Well, API

23 took this a step further; apps needing this wide-ranging access to external storage

were now declaring a dangerous permission and have to make the request directly to

the user via the request UI APIs. However, in practice, exceedingly few games need

external storage beyond the per-app directories. So apps using those can simply stop

requiring the external storage permission at all

9

Related to this permissions change is the fact that Android M now makes it possible to

“adopt” external storage like SD cards and USB drives. The benefit of this is that the

expandable storage can be used for a wider range of application data than before.

For users, the complication is that Android encrypts the storage device as a part of

the adoption process. For developers, the main complication is that storage paths

change. So apps that cached fixed paths to resources found that under Android M,

they could no longer find their data, and they often simply crashed. Basically, the fix

here is to store and load application resource data and cache data from the paths

exported via Context and Application Info and to do so on each access, and not cache

expected paths for later use.

10

M was designed to improve user identity security, too. The biggest change that many

games will see is that if their rolled their own D R M via bluetooth or Wifi MAC

address, the functions returning those MAC addresses will return the same ID for all

devices on M. In other words, those functions will be useless for identifying a device.

In addition, apps that used the property “settings secure android I D” as a unique I D

have another issue on their hands – Google specifically disallows using that I D to

identify a user or device for targeted ads. They require that apps use the Google

Play Advertising I D, because the user can choose regenerate that I D and wipe their

advertising identity at any time. Using any other I D for targeted ads will get your

app pulled from the play store.

11

Historically, Android had a bad reputation with respect to audio latency. In the early

days, this was, frankly, deserved. However, as of Android L, and especially on

Android M with NVIDIA Tegra-based systems, this latency has fallen dramatically. The

fast paths used to be quite narrow, and using the wrong audio format, sampling rate,

et cetera would quickly have you back on the road to high lag. However, with M,

those fast paths are wider. The details are beyond what we have time for here, but

Google has an excellent set of resources and samples that detail these new paths.

The documentation there is focused on pro-audio developers, such as those writing

guitar effect emulators and the like, but the output latency sections are absolutely

appropriate for game developers. There is a feature tag for low-latency audio, but

games should not require it. It is designed to be used with apps that are unusable

when audio latency is not perfect. Games can usually handle either case; the sound

is just more effective when it is low latency.

12

Next, lets cover a little bit on developing Android TV apps focusing on the core User

TV experience.

13

There are several high-level keys we’ve found in common for great Android TV

games. First, make the UI feel native to Android TV; don’t do the minimum and have

it feel like a quickie port from a touch-based mobile game. This includes support for

gamepad(s), remote control, and good visual feedback for the UI.

Also, ensure that basic Android functionalities are solid, including the manifest

properties, application lifecycle, and permission handling. You want to create

better-than-expected audiovisual experiences – this will be on a big TV. Finally,

think of your game as an Android TV app, not a game port. So what do we mean by

each of these?

14

First, user interfaces. Touch is a direct, immediate UI; Android TV is, by its nature

much closer to console gaming. What’s different? Well, for one, you need your UI to

be based on very simple inputs; left, right, up, down, select and back. Your UI will

be viewed from a large distance, and it will be seen “publicly” in the sense that a TV

is more public than a personal screen. You need to make sure that UI focus

indication is extremely clear at all times. Also, voice input is far more common and

expected if it can cut down on complex interactions. Finally, you need to be sure to

actually test on Android TV, not just an Android device with a controller and maybe

TV out. Why?

15

Well, for one thing, using an HDMI-compatible 24 inch monitor on your desk does not

accurately represent what most Android TV users will see. You should do as much

testing as possible on a consumer TV, from a couch distance, and if possible in less

than perfect lighting conditions. Use the UI for an extended period of time and note

where interactions get annoying. And remember that at a higher level, lifecycle

issues like the device going to sleep or the user jumping to the home screen are, in a

sense, UI issues.

16

Gamepads are pivotal to most Android TV games. You should be prepared for a range

of available axes and buttons, and should ensure that your UI shows controller

diagrams where possible to help the user. Also, make sure the UI text replaces words

like “touch”, and “tap”; it’s a little thing but it gives the user confidence that the

app is going to work smoothly on Android TV. If you happen to recognize the exact

make and model of a common controller, say a SHIELD controller, include images of

that controller in the UI to add to the feeling of UI immersion. NVIDIA developer

technologies has a detailed document on handling Android TV and controllers on our

developer site – I recommend it highly.

17

Your game should be ready for multiple
controllers and be prepared if those controllers
are different brands and have different
capabilities. This is important even for single-
player games. Be ready to handle the controller
the user wants to use… within reason. You should
allow the base menus and UI to work with any of
the active controllers. Don’t lock global menus to first controller you

find. Obviously, you can and should lock per-player selections to specific player’s controller.

An important case is to handle controller disconnect. Since
these are wireless controllers in most cases, they
will go to sleep with inactivity, so be ready. Android
exports the InputDevice.getDescriptor() function to get a UID to avoid

controller confusion. It is very reliable at creating unique, persistent controller IDs. Also,

handle controller hot-plug. In the case of second controller hot-

plugging, consider game repercussions and handle them on the fly, for example, pausing and
asking if they want to add a new player.

18

Do not use “analog stick-based mouse” for menus! It may make sense in some forms

of gameplay, but never in menus. In addition, the Android TV on-screen keyboard is

NOT fun to use, so avoid making users re-enter items, for example with username

password failure. Avoid long text entry at all costs - consider alternative “sign-in”

and entry methods. Make your selection highlights obvious, and avoid doing it purely

by color changes. On Android TV, Java-based Android UI may just work with a game

controller. But test it and correct surprising left/right/up/down navigations by

editing the UI XML files to specify the appropriate “neighboring” widgets in each

direction. And most importantly when reusing Android Java UIs, ensure that there

are no inaccessible UI components. We’ve run into apps where there were entire

sections of the UI that were either impossible to access with the d-pad or else

required a non-intuitive path to the item.

19

Users may launch your game from their remote control. Even if you require a

gamepad for most gameplay, consider supporting the remote control in your menus.

You can still support shortcuts like paging and the like from a full game controller,

but users may launch your game from the remote and not bother picking up the

controller until it is time to play. Heck, if you have modes of gameplay that will

work fine with just the remote, consider supporting that.

20

Probably the number one cause of Android TV games getting poor reviews is getting

the basic Android and Android TV requirements wrong. For a game to be popular, it

has to be solid on the platform. Let’s discuss a few places where we commonly see

issues in core Android functionality.

21

First, the Android manifest xml file. Such a basic thing. Just an XML file. And yet so

many app issues, some taking surprisingly long to debug have ended up being one line

in this pivotal file. The manifest controls much of how your app launches, how it

behaves in conjunction with other apps, and even whether or not a potential

customer will ever see your app in the play store on their device. Sure, the basics

like setting up the required leanback launcher activity and banner images for Android

TV are really not an issue anymore in the games we test. But we still see issues with

apps not declaring required and optional features correctly, among other problems.

22

In fact, we had one case in a real-world title that we supported where the manifest

caused a complex lifecycle error. During NVIDIA SQA pre-release testing of this third

party title, the testers noticed that if they launched the app from the global settings

panel “apps” (the one that also has uninstall), played the game, and then pressed the

home button to go back to the homescreen, and THEN launched the app from the

app’s home screen tile, the app stopped working. Worse yet, there was no way to

make the app work again without rebooting. Even force-closing the app was not

sufficient. While this was a rare use case, the severity was quite bad, so it was a

pretty high priority issue.

23

After a good bit of debugging in the game and in a small test app, we realized <click>

that the two different ways of launching the app in the UI generated similar but

unique Intents in Android. As a result, <click> TWO copies of the app’s Java class

were being created, something the app had no intention of seeing or handling. In the

end, <click>it was a simple manifest key – the app wasn’t designed to handle two

instances of itself, but had not declared the <click> single instance requirement in

the manifest. One line, so much pain.

24

In general, we can’t stress this enough – if your app supports tablet and Android TV,

test as many lifecycle cases as you can on both systems. <click>The Leanback

launcher is quite different from the tablet launcher. Apps can actually be visible

behind the homescreen in some cases. It’s a cool feature, and one we’ll discuss later

in this session, but it does mean that your app’s lifecycle could be even more

complex. Also, keep in mind that since Android TV is a media device, <click>Audio

Focus is very important. Audio focus in Android can be independent of visual focus,

to allow things like a music player in the background. So your app should be aware of

audio focus, request focus when it wants to own all audio, and be a good citizen in

terms of releasing it when not needed.

25

Two cases are specific to Android TV and should be tested and handled in your app.

First, we found that the lifecycle events when exiting on Android TV can differ from

those on tablet. Test this, and be sure to keep your event loop spinning until you get

that final Destroy message, so your app isn’t sitting in Java/native limbo. Also,

<click>Android TV has a daydream mode – it is an active, visual form of “sleep” like a

screensaver. Your app should be sure to avoid holding wakelocks when paused or at a

menu, so that the user’s desired daydream mode can launch during periods of

inactivity. Also, test daydream, as the lifecycle messages may come in a different

order than you’ve seen when a tablet goes to sleep or wakes up.

26

There’s a good bit more to consider on this topic; it’s good to know what’s coming

up-front. NVIDIA Dev tech and SQA have collaborated to create a development guide

based on years of experience testing and supporting these apps. It covers a wide

range of topics that developers should consider when planning, coding and testing

their Android TV games.

27

Having gotten the basics right, the way to really stand out on Android TV is go the

extra mile specifically for the TV experience. The more a game feels tailor-made for

TV and less like a quick touch port, the more appreciative Android TV gamers are

likely to be.

28

As we’ve said by way of admonishment when talking about UI, Android TV is a living

room, lean-back platform. But there’s also serious benefit to that. Surround-sound

systems are pretty common on today’s living room TVs, and this is even more likely to

be the case with TVs connected to high-end sources like SHIELD. So games have a

really good reason to take advantage of this and use multi-channel sound. Android

has supported multi-channel surround sound for a while, and as of Android M, SHIELD

can support surround sound as a part of its low-latency path discussed earlier. So

consider taking advantage of this in your game.

29

The SHIELD controller and SHIELD remote include a headset jack – this is NOT just a

headphone jack. It supports two-way headsets with a microphone. This is likely not

something an Android TV game would expect, but it can be extremely useful,

especially if your game supports two-way network-based voice chat on other

platforms. The trick here is that the headset is exposed as being connected to a

dock. In this sense, the wireless controller appears as a dock and exports two Audio

devices to the Android APIs; one sink and one source. Consider hooking these up if

your game is designed to include chat.

30

For those of us who spent years on Android tablet apps and games before Android TV,

this next feature was surprising. The Android TV homescreen allows an app to

declare that it should still be visible when the user presses the home button. That’s

right, you can request that your app be visible and animated behind the homescreen

tiles! The API is simple, almost trivial – you request to be visible behind the

homescreen, and then you listen for events that tell you when you are visible behind

and when you are no longer visible. Not every game should use this. But in cases

where the user dropping to the homescreen will not actually end or pause the game,

say if they are a spectator in someone else’s game, or they are a part of a game that

does not pause or end just because they step back, it can be quite a cool feature.

Most importantly, it continues to keep your game in the user’s consciousness and can

help pull them back in.

31

The tiles across the top of the homescreen are not just the domain of Google’s

applications and services. ANY app can provide recommendations, including games.

It is a Java-only feature, but the APIs are quite simple. NVIDIA DevTech has a guide

for how apps can create , publish and update these tiles dynamically, referenced

here. Games can take great advantage of this as a way to remind users of their

game. Recommendations could include announcements of new in-game DLC, or

updates for free to play games that a new feature or resource is available. In some

ways, they can be used like tablet notifications. And just like notifications, be

responsible and considerate of the user when deciding what to show and how

frequently. Add value for the user, lest they get annoyed and uninstall your app.

32

Deep search integration allows your app to provide potential search results in the

global Android search. Not only can those results link to your app, they can link quite

deeply into your app. While making it possible to say your app’s name and launch its

main menu is fine, you can go further than this. For example, you could provide

search shortcuts that launch quick games, common matchups or other actions. If

your app supports information that changes over time like rankings, making it

possible to quickly voice search into the leadboard could be a nice shortcut for a

user. Once users learn about these search options, it makes it even easier for them

to jump back into your game.

33

So, this next one is a little… Out there, I’ll admit. But in terms of making your

game’s overall experience feel truly integrated into the Android TV experience, it’s

also pretty hard to beat. Android TV includes so-called “Live TV Channels”; while

they CAN be an interface for a physical tuning device like a cablecard tuner, they can

also be an interface for collections of streaming videos. So why would your game

want this? Well, if anyone streams your game or creates video content surrounding

your game, this is a novel and VERY nicely integrated way of getting this in front of

your users.

34

Any app can create an implementation of the TV Input Framework and start providing

“channels” of content. Often, these channels are nothing more than lists of

streaming video links. The linked videos appear in the Live Channels UI as a new TV

channel, one video after another. You can serve the information that generates the

channel “guide” and content from your game’s website and update it as desired.

Google even has a full sample of exactly this. It isn’t a one-liner, but once the code is

integrated, the ability to update the “guide” and content for your channel (or

channels) is a gift that keeps giving.

35

While the title of this talk focuses on Android M, Google recently made some of the

coming features of Android N public, and several of them are quite interesting and

worth mentioning here. Let’s discuss a few of the key visual features in N.

36

Android N is currently slated by Google to be released to OEMs and as open source in

Q3 of this year. But the first preview SDK and preview OS images are already

available. Supported platforms include the NVIDIA Tegra K1-based Nexus 9 tablet,

the Tegra X1-based Pixel-C tablet/crossover, the Nexus Player Android TV and the

Android emulator images. So plenty of interesting target devices to try already.

37

The most interesting new features to us consist of two forms of tablet multi-app

support, split screen and freeform, as well as the Android TV-based Picture in Picture

app mode. Finally, official Vulkan support arrives in Android N as well.

38

Split screen is a form of multi-app support on Android. It allows two apps to be

shown at once on a phone or tablet screen, with an adjustable split-point between

them. As a result, any app that supports split screen must support pretty generic

dynamic resizing. Also, the app cannot hide the system UI in this mode. Note that

there is still a single application stack that is active at once. Whichever app is the

last one to receive user interaction is the focused and active app. The other visible

app is in “paused” mode in terms of Android lifecycle. This is actually within even

the original scope of the paused lifecycle level; paused indicates that an app is not

interactible, but may be partially visible. Thus, the app can still render when it is

not the active application. So video apps should likely only pause video playback on

“stop” events. As for games, this is more complex, but likely they should detect

split-screen and not pause the game entirely.

39

To fully support split screen, it is best for the app to add a few keys into their

manifest. Specifically, the app should be able to resize without being restarted.

Most games already have to handle configuration changes dynamically for changes

like orientation, so the idea of flagging config changes for dynamic handling should

not be new. I’ve included a likely overzealous set here, but it should be more than

safe. Also, the app should declare itself as resizable. Technically, if you target

Android N as your API level, this defaults to true, but always best to be explicit. And

then to ensure that you never get a window too small for your rendering, you should

declare your minimum size, which applies to width and height.

40

There are few APIs for split screen, and they are both optional. The “in multi

window” query lets an app detect whether it happens to be in a multi-window mode

at any time. Alteratively, the activity can override the Activity “on multi window

changed” function. This function will be called by the window manager with a

boolean that indicates when the app is entering (true) or leaving (false) multi-window

mode. These are mainly useful if the app has to change its UI or behavior when going

to multi-window mode.

41

Freeform mode is less of a different mode and more of a logical extension of split

screen mode. It is Android’s new mode for larger tablets and presents something

closer to a classic desktop model. We only expect to see it used on larger screen

tablets, convertibles and notebook form factor devices.

42

There are three additional manifest keys that are useful for freeform mode. They all

define the desired defaults for your app. The keys set the desired default width and

height, and then the “gravity” or desired location on the screen where your app

would prefer to be launched when in freeform windowed mode. There are no new

APIs of interest at this level for freeform mode, as it is really just a more generic

version of split-screen mode.

43

Picture-in-picture is the multi-window support mode for Android TV. The visual

effect should be pretty familiar to most – the app is rendered to a small rectangle on

the screen, and is (for all intents and purposes) non-interactive. It is designed rather

explicitly for video playback, so games should use it for video-like cases; cutscenes

and spectator mode are the best examples.

44

There is an explicit manifest key that declares an activity as able to support picture

in picture. In addition, there are mode-change APIs for picture in picture that allow

for polled or callback-based query of the current picture in picture status. Finally,

unlike split screen and freeform modes, picture in picture mode is explicitly

requested by the app using “enter picture in picture”. This is a request function, so

use the query or callback functions to determine whether the app actually entered

picture in picture mode.

45

In terms of standout new features, fewer could be more forward-looking than Vulkan.

Vulkan (if you’ve somehow managed to miss it here at GDC…) is a new, open, cross-

platform 3D rendering API from the Khronos group. Vulkan is specifically designed to

be lightweight and thread-friendly. NVIDIA was deeply involved in the development

of it, and is shipping Vulkan drivers for all of its platforms today.

46

Vulkan is available for SHIELD Android TV on Android M today. The N-preview version

of the NDK adds official support for the Vulkan headers and libs, which will make it

even easier to use moving forward. The reason that Vulkan is of interest to Android

TV developers is that it is designed from the ground up to be a low-overhead, thread-

friendly rendering API. This is exactly the kind of API that can allow smart

developers to use all of the CPU cores in their target platforms to feed the GPU

efficiently. By lowering the overall CPU overhead, runtime hitching and expanding

thread support, it becomes easier for Android TV games to get the most out of the

powerful GPU in SHIELD and create really compelling visual experiences.

47

Finally, let’s look at some resources that can make Android games easier to develop.

48

Good tools are key to developing great games. Some of the individual NVIDIA tools for

Android development include NSIGHT Tegra Visual Studio Edition, which includes top-

notch development and debugging of Java and Native android code within Visual

Studio, and the Tegra Graphics Debugger, which allows developers to capture, review

and analyze OpenGL and OpenGL ES rendering in their Android app on a real device.

49

NVIDIA’s developer tools include not only the individual development tools you need

to create, debug and tune your games, but also makes setting up a new development

machine a one-stop affair. Code Works for Android is a package that installs,

manages and updates all of the tools you need for Android development, whether

those tools come from Google, NVIDIA or other sources. Code Works makes it

possible to take a PC with nothing more than Visual Studio and turn it into a fully-

configured Android development machine automatically. In addition, it can help you

manage and update those tools down the road. Visit NVIDIA’s developers tools site for

more details.

50

NVIDIA also provides tons of Android and SHIELD development resources at developer

dot NVIDIA dot com. Developer guides, dev cast videos and tons of conference

presentations covering Android, SHIELD, OpenGL and Vulkan development are all

available there.

51

In summary, to build a great game for NVIDIA SHIELD and Android TV on Marshmallow,

the key is to know what is available and take full advantage of as much of the

performance and as many of the features as possible. Android TV games should be

written as Android apps that happen to be great games. SHIELD games should take

advantage of the tremendous GPU and CPU power available and look and sound great

on big-screen televisions and surround-sound audio systems. All while keeping in

mind the basics of creating a solid, integrated Android application.

52

Thanks for joining me today – please visit our booth at the Expo floor, and see what

NVIDIA has to offer for mobile, TV, desktop and VR gaming.

53

