
1

2

To set the stage, first I want to mention a few ways that virtual reality rendering

differs from the more familiar kind of GPU rendering that real-time 3D apps and

games have been doing up to now.

3

First, virtual reality is extremely demanding with respect to rendering performance.

Both the Oculus Rift and HTC Vive headsets require 90 frames per second, which is

much higher than the 60 fps that’s usually considered the gold standard for real-time

rendering.

We also need to hit this framerate while maintaining low latency between head

motion and display updates. Research indicates that the total motion-to-photons

latency should be at most 20 milliseconds to ensure that the experience is

comfortable for players. This isn’t trivial to achieve, because we have a long

pipeline, where input has to be first processed by the CPU, then a new frame has to

be submitted to the GPU and rendered, then finally scanned out to the display.

Traditional real-time rendering pipelines have not been optimized to minimize

latency, so this goal requires us to change our mindset a little bit.

4

As a GPU company, of course NVIDIA is going to do all we can to help VR game and

headset developers use our GPUs to create the best VR experiences. To that end,

we’ve built—and are continuing to build—VRWorks. VRWorks is the name for a suite of

technologies we’re developing to tackle the challenges I’ve just mentioned—high-

framerate, low-latency, stereo, and distorted rendering.

It has several different components, which we’ll go through in this talk. The first two

features, multi-res shading and VR SLI, are targeted more at game and engine

developers. The last three are more low-level features, intended for VR headset

developers to use in their software stack.

5

6

Given that the two stereo views are independent of each other, it’s intuitively

obvious that you can parallelize the rendering of them across two GPUs to get a

massive improvement in performance.

In other words, you render one eye on each GPU, and combine both images together

into a single frame to send out to the headset. This reduces the amount of work each

GPU is doing, and thus improves your framerate—or alternatively, it allows you to use

higher graphics settings while staying above the headset’s 90 FPS refresh rate, and

without hurting latency at all.

7

Before we dig into VR SLI, as a quick interlude, let me first explain how “normal”,

non-VR SLI works. For years, we’ve had alternate-frame SLI, in which the GPUs trade

off frames. In the case of two GPUs, one renders the even frames and the other the

odd frames. The GPU start times are staggered half a frame apart to try to maintain

regular frame delivery to the display.

This works well to increase framerate relative to a single-GPU system, but it doesn’t

really help with latency. So this isn’t the best model for VR.

8

A better way to use two GPUs for VR rendering is to split the work of drawing a single

frame across them—namely, by rendering each eye on one GPU. This has the nice

property that it improves both framerate and latency relative to a single-GPU system.

9

I’ll touch on some of the main features of our VR SLI API. First, it enables GPU

affinity masking: the ability to select which GPUs a set of draw calls will go to. With

our API, you can do this with a simple API call that sets a bitmask of active GPUs.

Then all draw calls you issue will be sent to those GPUs, until you change the mask

again.

With this feature, if an engine already supports sequential stereo rendering, it’s very

easy to enable dual-GPU support. All you have to do is add a few lines of code to set

the mask to the first GPU before rendering the left eye, then set the mask to the

second GPU before rendering the right eye. For things like shadow maps, or GPU

physics simulations where the data will be used by both GPUs, you can set the mask

to include both GPUs, and the draw calls will be broadcast to them. It really is that

simple, and incredibly easy to integrate in an engine.

By the way, all of this extends to as many GPUs as you have in your machine, not just

two. So you can use affinity masking to explicitly control how work gets divided

across 4 or 8 GPUs, as well.

10

GPU affinity masking is a great way to get started adding VR SLI support to your

engine. However, note that with affinity masking you’re still paying the CPU cost for

rendering both eyes. After splitting the app’s rendering work across two GPUs, your

top performance bottleneck can easily shift to the CPU.

To alleviate this, VR SLI supports a second style of use, which we call broadcasting.

This allows you to render both eye views using a single set of draw calls, rather than

submitting entirely separate draw calls for each eye. Thus, it cuts the number of

draw calls per frame—and their associated CPU overhead—roughly in half.

This works because the draw calls for the two eyes are almost completely the same

to begin with. Both eyes can see the same objects, are rendering the same geometry,

with the same shaders, textures, and so on. So when you render them separately,

you’re doing a lot of redundant work on the CPU.

11

The only difference between the eyes is their view position—just a few numbers in a

constant buffer. So, VR SLI lets you send different constant buffers to each GPU, so

that each eye view is rendered from its correct position when the draw calls are

broadcast.

So, you can prepare one constant buffer that contains the left eye view matrix, and

another buffer with the right eye view matrix. Then, in our API we have a

SetConstantBuffers call that takes both the left and right eye constant buffers at

once and sends them to the respective GPUs. Similarly, you can set up the GPUs with

different viewports and scissor rectangles.

Altogether, this allows you to render your scene only once, broadcasting those draw

calls to both GPUs, and using a handful of per-GPU state settings. This lets you

render both eyes with hardly any more CPU overhead then it would cost to render a

single view.

12

Of course, at times we need to be able to transfer data between GPUs. For instance,

after we’ve finished rendering our two eye views, we have to get them back onto a

single GPU to output to the display. So we have an API call that lets you copy a

texture or a buffer between two specified GPUs, or to/from system memory, using

the PCI Express bus.

One point worth noting here is PCI Express bus bandwidth. PCIe2.0 x16 gives you 8

GB/sec of bandwidth, which isn’t a huge amount, and it means that transferring an

eye view will require about a millisecond. That’s a significant fraction of your frame

time at 90 Hz, so that’s something to keep in mind.

To help work around that problem, our API supports asynchronous copies. The copy

can be kicked off and done in the background while the GPU does some other

rendering work, and the GPU can later wait for the copy to finish using fences. So you

have the opportunity to hide the PCIe latency behind some other work.

13

14

First, the basic facts about how the optics in a VR headset work.

VR headsets have lenses to expand their field of view and enable your eyes to focus

on the screen. However, the lenses also introduce pincushion distortion in the image,

as seen here. Note how the straight grid lines on the background are bowed inward

when seen through the lens.

15

So we have to render an image that’s distorted in the opposite way—barrel distortion,

like what you see on the right—to cancel out the lens effects. When viewed through

the lens, the user perceives a geometrically correct image again.

Chromatic aberration, or the separation of red, green, and blue colors, is another

lens artifact that we have to counter in software to give the user a faithfully

rendered view.

16

The trouble is that GPUs can’t natively render into a nonlinearly distorted view like

this—their rasterization hardware is designed around the assumption of linear

perspective projections. Current VR software solves this problem by first rendering a

normal perspective projection (left), then resampling to the distorted view (right) as

a postprocess.

You’ll notice that the original rendered image is much larger than the distorted view.

In fact, on the Oculus Rift and HTC Vive headsets, the recommended rendered image

size is close to double the pixel count of the final distorted image.

17

The reason for this is that if you look at what happens during the distortion pass, you

find that while the center of the image stays the same, the outskirts are getting

squashed quite a bit.

Look at the green circles—they’re the same size, and they enclose the same region of

the image in both the original and the distorted views. Then compare that to the red

box. It gets mapped to a significantly smaller region in the distorted view.

This means we’re over-shading the outskirts of the image. We’re rendering and

shading lots of pixels that are never making it out to the display—they’re just getting

thrown away during the distortion pass. It’s a significant inefficiency, and it slows

you down.

18

That brings us to multi-resolution shading. The idea is to subdivide the image into a

set of adjoining viewports—here, a 3x3 grid of them. We keep the center viewport

the same size, but scale down all the ones around the outside. All the left, right, top

and bottom edges are scaled in, effectively reducing the resolution in the outskirts of

the image, while maintaining full resolution at the center.

Now, because everything is still just a standard, rectilinear perspective projection,

the GPU can render natively into this collection of viewports. But now we’re better

approximating the pixel density of the distorted image that we eventually want to

generate. Since we’re closer to the final pixel density, we’re not over-rendering and

wasting so many pixels, and we can get a substantial performance boost for no

perceptible reduction in image quality.

Depending on how aggressive you want to be with scaling down the outer regions, you

can save anywhere from 20% to 50% of the pixels.

19

The key thing that makes this technique a performance win is a hardware feature we

have on NVIDIA’s Maxwell architecture.

Ordinarily, replicating all scene geometry to several viewports would be expensive.

There are various ways you can do it, such as resubmitting draw calls, instancing, and

geometry shader expansion—but all of those can add enough overhead to eat up any

gains you got from reducing the pixel count.

With Maxwell, we have the ability to very efficiently broadcast the geometry to many

viewports, of arbitrary shapes and sizes, in hardware, while only submitting the draw

calls once and running the GPU geometry pipeline once. That lets us render into this

multi-resolution render target in a single pass, just as efficiently as an ordinary

render target.

20

Our SDK for multi-res shading is available on our website – that’s the link there. It’s

an open-source SDK that provides two main things: a set of NVAPIs that allow

developers to access the Maxwell viewport broadcast features, plus some open-

source helper code for configuring the multi-res viewport layout, mapping back and

forth between multi-res and linear UV spaces, and such.

There’s also a DX11 sample app, and a programming guide that explains everything in

detail, including notes on how to integrate this technique in an existing rendering

engine.

21

22

We’re also working on integrating multi-res into Unreal Engine. As of now, we have a

trial integration in UE 4.10, which is available on Github if you have access to UE4

there. It currently supports only a limited set of post effects, but the ones most

commonly used for VR are all there. Meanwhile, we’re also making progress on an

integration into UE 4.11.

23

Only certain post-passes have had multi-res support added, since it takes a bit of

attention to each one to make it work

24

25

26

These are the main points where multi-res code was integrated in UE4

27

28

For image-space passes, there are two things that commonly show up.

1. Reconstructing world space 3D position from 2D position + the depth buffer. Done

in lots of shaders e.g. lighting, reflections, shadows. For these, the reconstruction

math needs to be multi-res-aware.

2. Filter kernels like bloom, SSAO, and SSR. For consistent appearance, want the

filter size to be consistent across viewports. So, offsets to sample points should be

applied in linear space.

29

Remapping functions in the SDK map between corresponding points in linear UV space

(left) and multi-res space (right)

This comes down to checking which viewport you’re in (4 compares) and doing a 2D

scale-bias (2 MADs). So it’s not horribly expensive.

30

The shadow projection pixel shader is a good example of reconstructing 3D position.

Here, we take the input screen position (SV_POSITION) and use that to get the depth.

We then remap the position from multi-res to linear space, and use that with the

depth in the screen-space to shadow-space matrix.

31

The shadow projection pixel shader is a good example of reconstructing 3D position.

Here, we take the input screen position (SV_POSITION) and use that to get the depth.

We then remap the position from multi-res to linear space, and use that with the

depth in the screen-space to shadow-space matrix.

32

33

34

35

36

