
1



Main aliasing in shading is caused by specular highlights and looks like sparkling. 

The problem of a small highlight can be more pronounced on small curved geometry.

Specular sparkling is especially noticeable in VR headsets, where pixels cover large 

solid angles and the camera is in continuous movement due to the head tracking.

Throwing even up to 16x MSAA rate does not help with the problem because specular 

highlights are usually smaller than geometric details.

There were many improvements to the stability of specular shading, most of them 

are related to the problem of normal map filtering (e.g., LEAN/CLEAN, vMF, etc.).

However, not many methods take into account all factors, including geometry 

curvature.

2



One such solution is to look at the spread of shading normals induced by the 

curvature of the surface.

Michael Toksvig introduced a Gaussian fitting into a spread of normals, which was 

then used to adjust the specular power. 

This method was used by Stephen Hill (SIGGRAPH 2012) along with the estimation of 

normal derivatives using ddx/ddy.

Alex Vlachos (GDC 2015) proposed a similar method with another empirical formula 

for clamping the roughness from below.

3



Both of these methods, while reducing specular aliasing, oftentimes lead to the 

change of the material appearance, especially on the objects with constant 

curvature.

4



Looking at the anatomy of a sparkling highlight, the sparkling problem appears 

because we have a relatively large pixel footprint, while the specular highlight takes 

a relatively small area of it. The problem manifests itself even more when the 

footprint projected on the surface is stretched by grazing angles or high curvature.

Specular highlights of highly glossy materials can be very small, taking a tiny fraction 

of a pixel. 

When using physically based materials, the highlight also gets brighter when 

decreasing the roughness due to the energy conservation. This amplifies the sparking 

problem, making it near practically impossible to render highly glossy materials.

With a small and bright highlight, it is also hard to find it on the surface. Because 

with rasterization we usually shade once per pixel per triangle, this shading point 

rarely hits the bright highlight. This makes the sparking prominent during camera 

movement. 

Now we will look into the NDF part of the shading.

5



For shading with physically based microfacet materials, we use a vector h, a halfway 

vector between the incident and the outgoing direction. This vector is defined in the 

local shading frame on the surface, which is achieved by multiplying by the rotation 

matrix T.

Normal Distribution Function (NDF) is then used to query how many perfectly 

reflecting microfacets are aligned with the half vector h on average. This models 

rough reflection and is used for shading.

If a pixel footprint is projected on a curved surface, it takes a large area and thus the 

half vector h can significantly change within the pixel footprint. This is the same 

problem of hitting a small highlight with a single shading sample, viewed from the 

point of the NDF.

Therefore, in order to eliminate shading aliasing, we want to filter the NDF with the 

variation of half vectors on the pixel footprint.

6



As an important detour, we need to redefine the half vector h to be in the parallel 

plane domain. This domain, also known as the slope domain for microfacet materials, 

is more suitable for filtering the NDF. 

For example, Beckmann is just a 2D Gaussian in this domain; GGX distribution has a 

solid geometric interpretation. 

7



When shading a single triangle, we are given with three normals. This is just enough 

to define a quadric.

Moreover, this virtual quadric used for shading usually defines a larger virtual 

surface. This surface is described only by shading normals is usually a more accurate 

and smooth version of the surface described by geometric triangles. The shading 

surface can smoothly span across multiple triangles, making it meaningful to rely on 

its curvature.

8



Now that we have overviewed the microfacet NDFs and the shading process of 

rasterization, let’s take a look at a more global picture.

9



We’re performing a direct lighting. From the light transport stand point, we have a 

path with three vertices: e, x, l.

Wenzel Jakob presented derivatives of the half vector h (at vertex x) with respect to 

all three vertices in his work on manifold exploration.

We can use these derivatives (modified by [Hanika et al. 2015] for parallel plane 

domain) to convert a change at any of the vertices into the first-order-precise change 

of the half vector!

We are particularly interested in the derivative matrix M (Jacobian) of dh/dx. This 

matrix differentiates the expression for half vector h described previously. Note that 

the half vector is defined in the local shading tangent frame, so we need to compute 

the derivative of the tangent frame with respect to x as well. This incorporates the 

curvature of the shading surface into the derivatives matrix M.

10



Once we obtained the derivative matrix M, we can project the pixel footprint from 

the camera onto the tangent plane around our shading point x.

We usually project only two vectors of this projected footprint from the camera to 

the surface. 

This parallelogram formed by such vectors then defines the change ∆𝑥 of the shading 

point x when we change the sample position within the pixel.

By multiplying with the derivatives matrix M, we can convert the variation of the 

shading point x that is induced by the pixel area into the variation ∆ℎ of the half 

vector h in the parallel plane domain. This is then again a parallelogram that 

describes the first-order change of the half vector induced by the pixel footprint.

11



Computing the derivatives matrix M is a tedious and computationally expensive 

procedure, which may be not suitable for real-time budgets even on high-end GPUs.

Luckily, each shading point is guaranteed to be shaded at least within a quad of 2x2 

samples within the same triangle on the GPU. 

This makes the quad-shading pipeline a perfect candidate for computing the 

derivative matrix using finite differencing with ddx/ddy.

Moreover, when taking the derivatives, they are taken in screen space and already 

encode the change corresponding to a one pixel offset.

So, we can easily compute the matrix U, which encodes both the derivatives matrix M 

and the multiplication by the variation ∆𝑥 of shading position within a pixel.

This matrix is easily computed by just taking the derivatives of the half vector in 

parallel plane domain (hpp) with respect to the change of the sample position in 

screen space. This matrix U then defines two vectors of a parallelogram in half vector 

domain. In order to take into account all possible half vectors within the pixel 

footprint during shading, we filter the NDF around the region defined by the 

parallelogram ∆ℎ (matrix U) in the slope domain. This allows us to approximate 

shading across the whole pixel footprint with one shading sample!

12



Now that we have a parallelogram filter for NDFs, let’s take a look at the concrete 

examples. 

First we will filter the Beckmann NDF with this parallelogram before doing shading.

For that we interpret the vectors of a parallelogram as standard deviations of a 2D 

Gaussian. This means that we assume a Gaussian pixel filter with a standard deviation 

of 0.5 pixel wide, which is a reasonable reconstruction filter.

After propagating both standard deviations of such Gaussian all the way from screen 

space to the slope domain, we have a matrix U that contains the propagated vectors 

of two standard deviations. We use a simple squaring in order to create a covariance 

matrix C out of matrix U.

Then we have a Beckmann NDF, which is a 2D Gaussian in slope domain, and another 

2D Gaussian for filtering that is induced by the pixel. The convolution of two 2D 

Gaussians is another Gaussian, whose covariance matrix is simply a sum of the two 

source covariance matrices.

Note the factor ‘2’ in front of the matrix C. It comes from the fact that we work with 

roughness, which is a scaled standard deviation.

Then we need to evaluate Beckmann NDF with the resulting full roughness matrix R’.

13



Here are the results. Our method (in the middle) manages to find all highlights 

present in the reference using just one shading sample per pixel!

14



For production assets having a tight parallelogram might be not sufficient for 

temporal stability due to many reasons (many small quadrics, non-manifold meshes, 

imprecise or averaged shading normals).

With NDF filtering we have a standard noise (aliasing) vs. bias approach. 

Similarly to h/w texture filtering, we can prefer to have more bias for better 

temporal stability.

One option is to filter over an axis-aligned bounding rectangle region around the 

parallelogram. This way, we don’t rely on the tightly estimated region, but rather 

allow some error and noise for our filter.

Obviously, better stability with this filter comes at a price of having a few false-

positive specular highlights. 

The code snippet for filtering with a rectangle is using a regular anisotropic 

Beckmann shading.

Pixel footprint can also get very large in slope domain, especially at grazing angles 

and on small details with extremely high curvature. 

In order to avoid false highlights due to the overestimated filter size, it is important 

to clamp the filter region from above. 

The value of fp_max is in roughness units and we usually use a value of 1.0 as a 

limiting factor.

15



Similarly, we can filter a GGX NDF. Instead of filtering with a Gaussian kernel, this 

time we just filter with a constant flat kernel.

This leads to a simple axis-aligned 2D integral over the GGX NDF. This filter kernel 

assumes a box pixel filter, which is the case for rasterization.

Note that the integral is taken in the slope domain. In order to come back to the solid 

angle domain of NDF, we need to also multiply by the corresponding transformation 

Jacobian afterwards.

16



Here is the closed form of the 2D rectangular integral over the GGX NDF in slope 

domain. It takes half-sides of a rectangle as two scalars in the ‘footprint’ argument.

The equation is relatively bulky, contains eight square roots and eight arctangents, 

however, it can be significantly optimized with approximations if necessary.

It is also important to clamp the footprint from below, otherwise the integrated 

equation can be numerically unstable.

17



Here are the video results of filtering a GGX NDF with isotropic roughness a=0.01 on 

the hairball model. 

You can see how the subpixel-sized highlights are accurately reconstructed using NDF 

filtering with one to four samples per pixel (middle).

We deliberately apply star-shaped posteffect to emphasize the temporal distribution 

of the HDR intensity of the highlight as well.

18



Here is a more detailed scene, this time it is a Beckmann NDF with roughness a=0.01 

and no filtering. 

Again, a posteffect is used to convey the HDR flickering of the highlights.

19



The same sequence with rectangular NDF filtering. 

20



We address only aliasing that comes from specular shading. 

Other sources of aliasing, such as visibility, are not covered, therefore, no 

improvements should be expected on geometric aliasing.

We also take into account only a single quadric when filtering an NDF. Thus, on a 

geometry with high-frequency details quadrics can change rapidly.

We can integrate over a first-order-precise pixel footprint in slope space, thus the 

filtering is good at extracting small highlights and, more importantly, their average 

intensity across the pixel. 

Since the filtering method works on shading quadrics, it is crucial to have accurate 

shading normals on geometry, which define the virtual shading surface used for NDF 

filtering.

21



22



23


