Advancec

Agenda

*DirectX 12: more control & responsibilities
*How to efficiently drive DirectX 12 on NVidia GPUs
*New DirectX 12 programming model use cases

*DirectX 12 & 11.1 new hardware feature use cases

‘Q&A

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Agenda

*DirectX 12: more control & responsibilities
*How to efficiently drive DirectX 12 on NVidia GPUs
*New DirectX 12 programming model use cases

*DirectX 12 & 11.1 new hardware feature use cases

‘Q&A

GC gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

DirectX 12: More Control

*Gives expert programmers more explicit control over the GPU

*Use multi-threading for faster draw call recording/submission
*Manage resource residency
«Explicit Multi-GPU access

In general lower level access to GPU HW (e.g. queues)

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Agenda

*DirectX 12: more control & responsibilities
*How to efficiently drive DirectX 12 on NVidia GPUs
*New DirectX 12 programming model use cases

*DirectX 12 & 11.1 new hardware feature use cases

‘Q&A

GC gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Recap:What does the DirectX11 driver do for you?

Vendor
specific
DirectX 11
driver

Driver sees a lot
'S'h/ of context and

GPU HW can minimize

barriers
Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

DirectX 12: more responsibilities

e
o ea\.e ods {0 utilhz |
4*© ne 10 optimize
(\ee ﬂeeds 0
DirectX 12 needs to actively handle
PP Needs ¢
S1o .
0 n Sxplicity pr Ogram
S i -
0, 'm
@0//.7 iza
e
o
%,o
S
s
GPU HW

Gc gameworks.nvidia.com @ NVIDIA.

gameworks.nvidia.com

Agenda

*DirectX 12: more control & responsibilities

*How to efficiently drive DirectX 12 on NVidia GPUs
*New DirectX 12 programming model use cases

*DirectX 12 & 11.1 new hardware feature use cases

‘Q&A

GC gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Efficient DirectX 12 on NVIDIA GPUs (1/2)

*Construct balanced number of Command Lists (CLs) in parallel
*Make sure barriers and fences are used optimally

Efficiently handle resource residency

*You can do a better job than the DX11 driver

*Make sensible use of HW queues

See also Gareth Thomas and Alex Dunns talk held at the Advanced Graphics Techniques Tutorial Day : ‘Practical
DirectX 12 - Programming Model and Hardware Capabilities’

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Efficient DirectX 12 on NVIDIA GPUs (2/2)

*Gracefully deal with the hardware tiers of NVIDIA GPUs
*Use CBVs and constants in the root signature when possible

Strategically flatten shader constants

*Never ever call SetStablePowerState() in shipping code

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Command Lists

* Use multiple threads to construct CLs in parallel

* Don’t execute too many CLs per frame, aim for:
* 15-30 Command Lists

e 5-10 ‘ExecuteCommandLists’

Adapter [NVIDIA GeForce GTX 980]
gard\vm Queue

 Avoid short CLs [—if

50-80
microsecs
Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Barriers

*You need to get the use of barriers right!
*Avoid redundancy

*Use minimum set of resource usage flags to avoid redundant flushes
*Don’t use D3D12_RESOURCE_USAGE_GENERIC_READ

*Use split barriers when possible

*Transition at the end of write

* Avoid read-to-read barriers

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Root Signatures

*Don’t just use one RST

*Use a reasonably small set of RSTs

*Keep RSTs small

°If possible place constants and CBVs in the RST
*Constants/CBVs in the RST speeds up shaders - target PS first

Limit resource visibility to the minimum set of stages
*No D3D12_SHADER_VISIBILITY_ALL if not required
*Use DENY_ROOT_SIGNATURE_*_ACCESS flags

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Resource Binding

*Current NVidia GPUs support Resource Binding Tier 2

*Gracefully handle CBV and UAV descriptors

*Fill all of the RST (and descriptor tables) with sensible data before a CL executes
*Even if the used shaders do not reference all descriptors

*Use nullCBVs and nullUAVs in descriptor tables

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Resource Tier 2 binding gone wrong

RootSighature

RS UAV: not init.

Desc Table:
not 1nit. Change
: Shader

Desc Table X
CBVO: not init.

CBV1: not init.

UAV: not init.

GBC

RootSignature2

CBV: gpuvadr1

Fill ——
RS UAV: not init.

Desc Table: Issue
Desc Table X Drawcall

Desc Table X
CBVO: not init.

BUN (51 CBVDsC

Table

UAVDsc2

Draw calls

gameworks.nvidia.com

<ANVIDIA.

gameworks.nvidia.com

Resource Tier 2 binding gone wrong

RootSighature

RS UAV: not init.

Desc Table:
not 1nit. Change
: Shader

Desc Table X
CBVO: not init.

CBV1: not init.

UAV: not init.

GBC

RootSignature2

CBV: gpuvadr1

all _
RS UAV: nullptr

Desc Table: Issue
Desc Table X Drawcall

Desc Table X
CBVO: not init.

BUN (51 CBVDsC

Table

UAVDsc2

Draw calls

gameworks.nvidia.com

<ANVIDIA.

gameworks.nvidia.com

Resource Tier 2 binding done right

RootSignature RootSignature2
not init. .
not 1nit. RS
el Issue
not init. Change | Shader does Drawcall
Shader not use UAV or e
Desc Table X DescTable::CBVO Desc Table X
not init.
not init. Fill
not init. Table
>
Draw calls

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Resource Heaps

*Current NVidia GPUs support Resource Heap Tier 1

*Max descriptors per heap ~55k
*UAV count across all stages is limited to 64
*CBV count is limited to 14 per stage

*Sampler count is limited to 16 per stage

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Strategic Constant Folding for Shaders

*DirectX 12 makes it harder for the driver to fold shader constants

°If you detect a big DX11 vs DX12 perf delta for key shaders

*Try to strategically fold constants manually

*Generate shaders without folded constants first

*Go for specialization later - use PSOs when they are ready

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Shaders - fold key constants manually

cbuffer
{
cbuffer #ifdef FOLD CBSWITCH
{ float cfSpecWeightCB;
float cfSpecWeight; #fdefine cfSpecWeight 0.0f
felse

manual transform ,
} float cfSpecWeight;

I #endif

float4 computelLighting/(..) cfSpecWeight == 0.0f
{ }

res=CalclLighting (cfSpecWeight) ; floatd4d computelLighting(...)
. {

res=CalcLighting (cfSpecWeight) ;

Gc gameworks.nvidia.com @A NVIDIA.

gameworks.nvidia.com

Shaders - folding constants manually

cbuffer
{
cbuffer #ifdef FOLD CBSWITCH
{ float cfSpecWeightCRB;
float cfSpecWeight; #fdefine cfSpecWeight 0.0f
felse

manual transform ,
} float cfSpecWeight;

I #endif

float4 computelLighting/(..) cfSpecWeight == 0.0f
{ }

res=CalclLighting (cfSpecWeight) ; floatd4 computelLighting(...)
. {

res=CalcLighting (0.0f);

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Resource Residency

*IDXGIAdapter3::QueryVideoMemoryinfo:How much vid-mem do | have?
*Foreground app is guaranteed a subset of total vidmem - this is your budget

*App needs to deal with changes in available mem and Evict() resources
*Use committed resources for RTVs, DSVs, UAVs

*Consider placing small resources in larger committed heaps

*Call MakeResident() on worker threads as it may take some time

* App must handle MakeResident failure

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Video Memory Over-commitment

*DX12 gives user a real advantage over the DX11 driver

*You what’s more important to have in vidmem

*Try to repurpose vidmem heaps
*Temporarily evacuate vidmem heaps to ‘overflow’ sysmem heaps
*Try to repurpose (‘older’) vidmem heaps

*Move textures from upload heaps to repurposed vidmem heaps

*Cap graphics settings/resolution based on memory available

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Handling Video Memory Over-commitment

App detects that the
next CL needs more
committed vidmem than
is currently available

Gc gameworks.nvidia.com @ NVIDIA.

gameworks.nvidia.com

Handling Video Memory Over-commitment

Gc gameworks.nvidia.com

Temporarily evacuate
some vidmem
resources to a sysmem
heap

<ANVIDIA.

gameworks.nvidia.com

Handling Video Memory Over-commitment

. h .
P ([
PS (X X ®
° °
Now reuse vidmem
heap for some temp
resource requirements vee
. B .

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Handling Video Memory Over-commitment

App detects that the
next CL needs more
additional texture
vidmem than is currently
available

Assume we got sysmem
copies for all our

/ textures in upload heaps

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Handling Video Memory Over-commitment

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Handling Video Memory Over-commitment

Move data from sysmem
copy heap of resource

Gc gameworks.nvidia.com @ANVIDIA.

gameworks.nvidia.com

Command Queues

-Use copy queues for async transfer operations

*Especially important for MultiGPU transfers

‘Use compute queues with care
*Not all workloads pair up nicely
Remember IHV specific path for DX12!
*Come and talk to us about getting this right

Gc gameworks.nvidia.com @ NVIDIA.

gameworks.nvidia.com

Agenda

*DirectX 12: more control & responsibilities

*How to efficiently drive DirectX 12 on NVidia GPUs
*New DirectX 12 programming model use cases

*DirectX 12 & 11.1 new hardware feature use cases

‘Q&A

GC gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

New DirectX 12 programming model use cases

*Predication

-Offers more flexibility than DirectX 11

*Executelndirect

*More powerful than DirectX 11 Drawlndirect() or Dispatchindirect()

*Explicit multi GPU support

*Full control over where resources go and where execution happen

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

New DirectX 12 Predication Model

*Now fully decoupled from queries
*Predication on the value at a location in a buffer

*GPU reads buffer value when executing SetPredication

-t l l 1y |
I I

gameworks.nvidia.com <ANVIDIA.

Predication
Buffer

GBC

gameworks.nvidia.com

Just FYI ;: Calls that can be Predicated

Drawinstanced, Drawlndexedlnstanced, Dispatch,
CopyTextureRegion, CopyBufferRegion,
CopyResource, CopyTiles, ResolveSubresource,
ClearDepthStencilView, ClearRenderTargetView,
ClearUnorderedAccessViewUint,
ClearUnorderedAccessViewFloat, Executelndirect

Gc ggggggggg .nvidia.com <ANVIDIA.

gameworks.nvidia.com

Usecase: Asynchronous CPU based occlusion

*CPU threads set 1: record command lists for objects

CLo o “an” <t oo

*CPU threads set 2: perform software occlusion queries and fill in buf

Buffer

*Excute the CL once the software occlusion is done

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Execute Indirect (1/2)

*Execute several Draw, Drawlndexed or Dispatch calls in one go

*It‘s more a MultiExecutelndirect()

‘Inbetween Draws/Dispatches:

*Change Vertex and/or Index Buffer (also prim count)
*Change root constants and root CBVs

*Change root SRVs and UAVs

Gc gameworks.nvidia.com <A NVIDIA.

gameworks.nvidia.com

Execute Indirect API

void Executelndirect(

ID3D12CommandSignature® pCommandSignature, } 0

UINT

ID3D12Resource*
UINT64

ID3D12Resource®
UINT64

);
GOC

Max count of

(Max)CommandCount, } repetitions
pArgumentBuffer, B Array of arguments

— that conform to
ArgumentBufferOffset, B the signature
pCountBuffer, Optional — _buffer that

— overrides
CountBufferOffset — MaxCommandCount

gameworks.nvidia.com

Defines the operations
be carried out repeatedly

<ANVIDIA.

gameworks.nvidia.com

Execute Indirect (2/2)
*Draw thousands of different objects in one Executelndirect

*Saves significant CPU time even for hundreds of objects

*Indirect compute work

*For ideal perf use NULL counter buffer arg

*Graphics draw calls

*For ideal perf keep counter buffer count ~= ArgMaxCount calls

Gc gameworks.nvidia.com ANVIDIA.

gameworks.nvidia.com

Execute Indirect - Drawing Simulated Trees

*Imagine large set of physically simulated unique trees

*Perhaps even broken up into tree parts by destruction

*For simplicity : All trees share the same texture atlas or texture array

*Each tree has a unique mesh and unique vertex and index buffer

*This also means vertex count and topolgy are unique as well

Gc gameworks.nvidia.com SANVIDIA.

gameworks.nvidia.com

Execute Indirect - Drawing Simulated Trees

Solution 1:

foreach(tree)
SetupMesh(VB,IB);
DrawTree();

Solution 2:

SetupMeshForAllTrees(VB,IB);
DrawTreeslnstanced();

Gc gameworks.nvidia.com @ANVIDIA.

gameworks.nvidia.com

Execute Indirect - Drawing Simulated Trees

CommandSignature

Argument Type

VertexBufferView

IndexBufferView

Drawlndexed

Data

VirtualAddressVB
Size
Stride

VirtualAddressIB
Size
Type

IndexCount
InstanceCount
StartindexLocation
BaselLocation
Startinstancelocation

gameworks.nvidia.com

<ANVIDIA.

gameworks.nvidia.com

Execute Indirect - Drawing Simulated Trees

Solution 1: CreateTreeCommandSignature();
foreach(tree) foreach(tree)
SetupMesh(VB, IB); appendDrawArgsAndVB(tree,argbuffer);
DrawTree();

_ Excutelndirect(...,argbuffer,..)
Solution 2:

SetupMeshForAllTrees(VB,IB); One Executelndirect() call efficiently

. draws all trees whilst using the right
DrawTreesInstanced(); VB and IB using the optimal vertex

count for the tree

Gc gameworks.nvidia.com @ANVIDIA.

gameworks.nvidia.com

Explicit multi GPU

Finally full control over what goes on each GPU
*Create resources on specific GPUs
*Execute command lists on specific GPUs

*Explicitly copy resources between GPUs

*Perfect usecase for DirectX 12 copy queues

*Distribute workloads between between GPUs

*Not restricted to AFR

<ANVIDIA.

G(gameworks.nvidia.com

gameworks.nvidia.com

MultiGPU work distribution sample

GPUO

Copy queue

]
GPU1T S R o

Check Juha Sj6éholms talk from the ‘Advanced Graphics Techniques Tutorial Day’ : ,Explicit
Multi GPU Programming with DirectX 12’

Frame time

GC gameworks.nvidia.com “@EANVIDIA.

gameworks.nvidia.com

Agenda

*DirectX 12: more control & responsibilities

*How to efficiently drive DirectX 12 on NVidia GPUs
*New DirectX 12 programming model use cases

DirectX 12 & 11.1 new hardware feature use cases

‘Q&A

GC gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Conservative Raster

*Door opener to advanced AA techniques

*Enables the rasterizer to be used to do triangle binning

*See Jon Story‘s presentation:

,/Advanced Geometrically Correct
Shadows for Modern
Game Engines’

directly after this talk!

Gc gameworks.nvidia.com 4@ NVIDIA.

gameworks.nvidia.com

DX12&11.1 FL3 hardware features use cases

*Volume Tiled Resources

*Store sparse volumetric data

*Run sparse volumetric simulations

see ,Latency Resistant Sparse Fluid Simulation’: [Alex Dunn, D3D Day - GDC 2015]

TT TN
L[/ | -
.,

Gc gameworks.nvidia.com <ANVIDIA.

gameworks.nvidia.com

Q&A Holger Gruen : hgruen@nvidia.com

NVIDIA GeForce
6xx series 9xx series
and above and above
Feature Level 11_0 12_1
Resource Binding Tier 2
Tiled Resources Tier 1 Tier 3

Typed UAV Loads No Yes

Conservative
Rasterization
Rasterizer-Ordered
Views

Stencil Reference Output
UAV Slots

Resource Heap

No Tier 1

No Yes

gameworks.nvidia.com <A NVIDIA.

gameworks.nvidia.com

