
Holger Gruen Senior Developer Technology Engineer, March 16th 2016

Advanced Rendering with DirectX 12®

2 gameworks.nvidia.com

Agenda

•DirectX 12: more control & responsibilities

•How to efficiently drive DirectX 12 on NVidia GPUs

•New DirectX 12 programming model use cases

•DirectX 12 & 11.1 new hardware feature use cases

•Q&A

gameworks.nvidia.com

3 gameworks.nvidia.com

Agenda

•DirectX 12: more control & responsibilities

•How to efficiently drive DirectX 12 on NVidia GPUs

•New DirectX 12 programming model use cases

•DirectX 12 & 11.1 new hardware feature use cases

•Q&A

gameworks.nvidia.com

4 gameworks.nvidia.com

DirectX 12: More Control

•Gives expert programmers more explicit control over the GPU

•Use multi-threading for faster draw call recording/submission

•Manage resource residency

•Explicit Multi-GPU access

•In general lower level access to GPU HW (e.g. queues)

gameworks.nvidia.com

5 gameworks.nvidia.com

Agenda

•DirectX 12: more control & responsibilities

•How to efficiently drive DirectX 12 on NVidia GPUs

•New DirectX 12 programming model use cases

•DirectX 12 & 11.1 new hardware feature use cases

•Q&A

gameworks.nvidia.com

6 gameworks.nvidia.com

Recap:What does the DirectX11 driver do for you?

Vendor

specific

DirectX 11

driver

Worker

threads
Hardware Engines/Queues

Resource

Residency

Vidmem over-

commitment

GPU HW

Resource

Barriers Driver sees a lot

of context and

can minimize

barriers

MultiGPU

gameworks.nvidia.com

7 gameworks.nvidia.com

DirectX 12: more responsibilities

DirectX 12

app

Worker

threads
HW Queues

Resource

Residency

Vidmem over-

commitment

GPU HW

Resource

Barriers

needs to actively handle

MultiGPU

gameworks.nvidia.com

8 gameworks.nvidia.com

Agenda

•DirectX 12: more control & responsibilities

•How to efficiently drive DirectX 12 on NVidia GPUs

•New DirectX 12 programming model use cases

•DirectX 12 & 11.1 new hardware feature use cases

•Q&A

gameworks.nvidia.com

9 gameworks.nvidia.com

Efficient DirectX 12 on NVIDIA GPUs (1/2)

•Construct balanced number of Command Lists (CLs) in parallel

•Make sure barriers and fences are used optimally

•Efficiently handle resource residency

•You can do a better job than the DX11 driver

•Make sensible use of HW queues

See also Gareth Thomas and Alex Dunns talk held at the Advanced Graphics Techniques Tutorial Day : ‘Practical
DirectX 12 - Programming Model and Hardware Capabilities’

gameworks.nvidia.com

10 gameworks.nvidia.com

Efficient DirectX 12 on NVIDIA GPUs (2/2)

•Gracefully deal with the hardware tiers of NVIDIA GPUs

•Use CBVs and constants in the root signature when possible

•Strategically flatten shader constants

•Never ever call SetStablePowerState() in shipping code

gameworks.nvidia.com

11 gameworks.nvidia.com

Command Lists

• Use multiple threads to construct CLs in parallel

• Don’t execute too many CLs per frame, aim for:

• 15-30 Command Lists

• 5-10 ‘ExecuteCommandLists’

• Avoid short CLs

IDLE

50-80
microsecs

gameworks.nvidia.com

12 gameworks.nvidia.com

Barriers

•You need to get the use of barriers right!

•Avoid redundancy

•Use minimum set of resource usage flags to avoid redundant flushes

•Don’t use D3D12_RESOURCE_USAGE_GENERIC_READ

•Use split barriers when possible

•Transition at the end of write

•Avoid read-to-read barriers

gameworks.nvidia.com

13 gameworks.nvidia.com

Root Signatures

•Don’t just use one RST

•Use a reasonably small set of RSTs

•Keep RSTs small

•If possible place constants and CBVs in the RST

•Constants/CBVs in the RST speeds up shaders - target PS first

•Limit resource visibility to the minimum set of stages

•No D3D12_SHADER_VISIBILITY_ALL if not required

•Use DENY_ROOT_SIGNATURE_*_ACCESS flags

gameworks.nvidia.com

14 gameworks.nvidia.com

Resource Binding

•Current NVidia GPUs support Resource Binding Tier 2

•Gracefully handle CBV and UAV descriptors

•Fill all of the RST (and descriptor tables) with sensible data before a CL executes

•Even if the used shaders do not reference all descriptors

•Use nullCBVs and nullUAVs in descriptor tables

gameworks.nvidia.com

15 gameworks.nvidia.com

Change

RS

Resource Tier 2 binding gone wrong

Draw calls

Desc Table X

CBV0: not init.

CBV1:CBVDsc1

UAVDsc2

Shader does
not use UAV or

DescTable::CBV0

RootSignature

CBV: not init.

UAV: not init.

Desc Table:

not init.

Fill

RS

RootSignature2

CBV: gpuvadr1

UAV: not init.

Desc Table:

Desc Table X
Change

Shader

Issue

Drawcall

Desc Table X

CBV0: not init.

CBV1: not init.

UAV: not init.

Fill

Table

not

filled

gameworks.nvidia.com

16 gameworks.nvidia.com

Change

RS

Resource Tier 2 binding gone wrong

Draw calls

Desc Table X

CBV0: not init.

CBV1:CBVDsc1

UAVDsc2

RootSignature

CBV: not init.

UAV: not init.

Desc Table:

not init.

Fill

RS

RootSignature2

CBV: gpuvadr1

UAV: nullptr

Desc Table:

Desc Table X
Change

Shader

Issue

Drawcall

Desc Table X

CBV0: not init.

CBV1: not init.

UAV: not init.

Fill

Table

not

filled

Shader does
not use UAV or

DescTable::CBV0

gameworks.nvidia.com

17 gameworks.nvidia.com

Change

RS

Resource Tier 2 binding done right

Draw calls

Desc Table X

CBV0: nullCBV

CBV1:CBVDsc1

UAVDsc2

RootSignature

CBV: not init.

UAV: not init.

Desc Table:

not init.

Fill

RS

RootSignature2

CBV: gpuvadr1

UAV: nullptr

Desc Table:

Desc Table X
Change

Shader

Issue

Drawcall

Desc Table X

CBV0: not init.

CBV1: not init.

UAV: not init.

Fill

Table

Shader does
not use UAV or

DescTable::CBV0

gameworks.nvidia.com

18 gameworks.nvidia.com

Resource Heaps

•Current NVidia GPUs support Resource Heap Tier 1

•Max descriptors per heap ~55k

•UAV count across all stages is limited to 64

•CBV count is limited to 14 per stage

•Sampler count is limited to 16 per stage

gameworks.nvidia.com

19 gameworks.nvidia.com

Strategic Constant Folding for Shaders

•DirectX 12 makes it harder for the driver to fold shader constants

•If you detect a big DX11 vs DX12 perf delta for key shaders

•Try to strategically fold constants manually

•Generate shaders without folded constants first

•Go for specialization later – use PSOs when they are ready

gameworks.nvidia.com

20 gameworks.nvidia.com

Shaders – fold key constants manually

cbuffer

{

 float cfSpecWeight;

 …

}

float4 computeLighting(…)

{

 …

 res=CalcLighting(cfSpecWeight);

 …

}

cbuffer

{

#ifdef FOLD_CBSWITCH

 float cfSpecWeightCB;

 #define cfSpecWeight 0.0f

#else

 float cfSpecWeight;

#endif

 …

}

float4 computeLighting(…)

{

 …

 res=CalcLighting(cfSpecWeight);

 …

}

manual transform

cfSpecWeight == 0.0f

gameworks.nvidia.com

21 gameworks.nvidia.com

Shaders – folding constants manually

cbuffer

{

 float cfSpecWeight;

 …

}

float4 computeLighting(…)

{

 …

 res=CalcLighting(cfSpecWeight);

 …

}

cbuffer

{

#ifdef FOLD_CBSWITCH

 float cfSpecWeightCB;

 #define cfSpecWeight 0.0f

#else

 float cfSpecWeight;

#endif

 …

}

float4 computeLighting(…)

{

 …

 res=CalcLighting(0.0f);

 …

}

manual transform

cfSpecWeight == 0.0f

gameworks.nvidia.com

22 gameworks.nvidia.com

Resource Residency

•IDXGIAdapter3::QueryVideoMemoryInfo:How much vid-mem do I have?

•Foreground app is guaranteed a subset of total vidmem – this is your budget

•App needs to deal with changes in available mem and Evict() resources

•Use committed resources for RTVs, DSVs, UAVs

•Consider placing small resources in larger committed heaps

•Call MakeResident() on worker threads as it may take some time

•App must handle MakeResident failure

gameworks.nvidia.com

23 gameworks.nvidia.com

Video Memory Over-commitment

•DX12 gives user a real advantage over the DX11 driver

•You what’s more important to have in vidmem

•Try to repurpose vidmem heaps

•Temporarily evacuate vidmem heaps to ‘overflow’ sysmem heaps

•Try to repurpose (‘older’) vidmem heaps

•Move textures from upload heaps to repurposed vidmem heaps

•Cap graphics settings/resolution based on memory available

gameworks.nvidia.com

24 gameworks.nvidia.com

Handling Video Memory Over-commitment

Vidmem

Resource

Heap 1

Vidmem

Resource

Heap n

Vidmem

Resource

Heap m

Vidmem

Resource

Heap nm

Sysmem

Resource

Evacuation

Heap 1

Sysmem

Resource

Evacuation

Heap N

App detects that the
next CL needs more
committed vidmem than
is currently available

gameworks.nvidia.com

25 gameworks.nvidia.com

Handling Video Memory Over-commitment

Vidmem

Resource

Heap 1

Vidmem

Resource

Heap n

Vidmem

Resource

Heap m

Vidmem

Resource

Heap nm

Temporarily evacuate
some vidmem
resources to a sysmem
heap

Sysmem

Resource

Evacuation

Heap 1

Sysmem

Resource

Evacuation

Heap N

gameworks.nvidia.com

26 gameworks.nvidia.com

Handling Video Memory Over-commitment

Vidmem

Resource

Heap 1

Vidmem

Resource

Heap n

Vidmem

Resource

Heap m

Vidmem

Resource

Heap nm

Sysmem

Resource

Heap 1

Sysmem

Resource

Heap N

Now reuse vidmem
heap for some temp
resource requirements

gameworks.nvidia.com

27 gameworks.nvidia.com

Handling Video Memory Over-commitment

Vidmem

Resource

Heap 1

Vidmem

Resource

Heap n

Vidmem

Resource

Heap m

Vidmem

Resource

Heap nm

Sysmem

Resource

Upload

Heap 1

Sysmem

Resource

Upload

Heap N

Assume we got sysmem
copies for all our
textures in upload heaps

App detects that the
next CL needs more
additional texture
vidmem than is currently
available

gameworks.nvidia.com

28 gameworks.nvidia.com

Handling Video Memory Over-commitment

Vidmem

Resource

Heap 1

Vidmem

Resource

Heap n

Vidmem

Resource

Heap m

Vidmem

Resource

Heap nm

Sysmem

Resource

Upload

Heap 1

Sysmem

Resource

Upload

Heap N

‘Free’ old vidmem heap

gameworks.nvidia.com

29 gameworks.nvidia.com

Handling Video Memory Over-commitment

Vidmem

Resource

Heap 1

Vidmem

Resource

Heap n

Vidmem

Resource

Heap m

Vidmem

Resource

Heap nm

Sysmem

Resource

Upload

Heap 1

Sysmem

Resource

Upload

Heap N

Move data from sysmem
copy heap of resource

gameworks.nvidia.com

30 gameworks.nvidia.com

Command Queues

•Use copy queues for async transfer operations

•Especially important for MultiGPU transfers

•Use compute queues with care

•Not all workloads pair up nicely

•Remember IHV specific path for DX12!

•Come and talk to us about getting this right

3D

COMPUTE

COPY

gameworks.nvidia.com

31 gameworks.nvidia.com

Agenda

•DirectX 12: more control & responsibilities

•How to efficiently drive DirectX 12 on NVidia GPUs

•New DirectX 12 programming model use cases

•DirectX 12 & 11.1 new hardware feature use cases

•Q&A

gameworks.nvidia.com

32 gameworks.nvidia.com

New DirectX 12 programming model use cases

•Predication

•Offers more flexibility than DirectX 11

•ExecuteIndirect

•More powerful than DirectX 11 DrawIndirect() or DispatchIndirect()

•Explicit multi GPU support

•Full control over where resources go and where execution happen

gameworks.nvidia.com

33 gameworks.nvidia.com

New DirectX 12 Predication Model

•Now fully decoupled from queries

•Predication on the value at a location in a buffer

•GPU reads buffer value when executing SetPredication

 CL

Predication

Buffer

SetPredication(0)

Draw(),Draw()...

SetPredication(1)

Draw(),Draw()...

SetPredication(..)

Draw(),Draw()...

SetPredication(N)

Draw(),Draw()...

0 1 ... 1

gameworks.nvidia.com

34 gameworks.nvidia.com

Just FYI : Calls that can be Predicated

DrawInstanced, DrawIndexedInstanced, Dispatch,
CopyTextureRegion, CopyBufferRegion,
CopyResource, CopyTiles, ResolveSubresource,
ClearDepthStencilView, ClearRenderTargetView,
ClearUnorderedAccessViewUint,
ClearUnorderedAccessViewFloat, ExecuteIndirect

gameworks.nvidia.com

35 gameworks.nvidia.com

Usecase: Asynchronous CPU based occlusion

•CPU threads set 1: record command lists for objects

•CPU threads set 2: perform software occlusion queries and fill in buf

•Excute the CL once the software occlusion is done

Predication

Buffer

CL
SetPredication(0)

DrawObj(0)

SetPredication(1)

DrawObj(1)

SetPredication(..)

DrawObj(..)

SetPredication(N)

DrawObj(N)

0 1 ... 1

gameworks.nvidia.com

36 gameworks.nvidia.com

Execute Indirect (1/2)

•Execute several Draw, DrawIndexed or Dispatch calls in one go

• It‘s more a MultiExecuteIndirect()

•Inbetween Draws/Dispatches:

•Change Vertex and/or Index Buffer (also prim count)

•Change root constants and root CBVs

•Change root SRVs and UAVs

– Change

gameworks.nvidia.com

37 gameworks.nvidia.com

Execute Indirect API

void ExecuteIndirect(

ID3D12CommandSignature* pCommandSignature,

UINT (Max)CommandCount,

ID3D12Resource* pArgumentBuffer,

UINT64 ArgumentBufferOffset,

ID3D12Resource* pCountBuffer,

UINT64 CountBufferOffset

);

Array of arguments

that conform to

the signature

Defines the operations

to be carried out repeatedly

Max count of

repetitions

Optional – buffer that

overrides

MaxCommandCount

gameworks.nvidia.com

38 gameworks.nvidia.com

Execute Indirect (2/2)

•Draw thousands of different objects in one ExecuteIndirect

•Saves significant CPU time even for hundreds of objects

•Indirect compute work

•For ideal perf use NULL counter buffer arg

•Graphics draw calls

•For ideal perf keep counter buffer count ~= ArgMaxCount calls

gameworks.nvidia.com

39 gameworks.nvidia.com

•Imagine large set of physically simulated unique trees

•Perhaps even broken up into tree parts by destruction

•For simplicity : All trees share the same texture atlas or texture array

•Each tree has a unique mesh and unique vertex and index buffer

•This also means vertex count and topolgy are unique as well

Execute Indirect – Drawing Simulated Trees

gameworks.nvidia.com

40 gameworks.nvidia.com

Execute Indirect – Drawing Simulated Trees

DirectX 11

Solution 1:

foreach(tree)
 SetupMesh(VB,IB);
 DrawTree();

Solution 2:

SetupMeshForAllTrees(VB,IB);
DrawTreesInstanced();

Slow – too
many API call

Needs to draw each tree with the
same numbers of vertices/ topology
for instancing to work

gameworks.nvidia.com

41 gameworks.nvidia.com

Execute Indirect – Drawing Simulated Trees

DirectX 12

Argument Type Data

VertexBufferView VirtualAddressVB

Size

Stride

IndexBufferView VirtualAddressIB

Size

Type

DrawIndexed IndexCount

InstanceCount

StartIndexLocation

BaseLocation

StartInstanceLocation

CommandSignature

gameworks.nvidia.com

42 gameworks.nvidia.com

Execute Indirect – Drawing Simulated Trees

DirectX 11

Solution 1:

foreach(tree)
 SetupMesh(VB,IB);
 DrawTree();

 Solution 2:

SetupMeshForAllTrees(VB,IB);
DrawTreesInstanced();

Slow – too
many API call

One ExecuteIndirect() call efficiently
draws all trees whilst using the right
VB and IB using the optimal vertex
count for the tree

DirectX 12

CreateTreeCommandSignature();

foreach(tree)
 appendDrawArgsAndVB(tree,argbuffer);

ExcuteIndirect(...,argbuffer,..)

Needs to draw each tree with the
same numbers of vertices/ topology
for instancing to work

gameworks.nvidia.com

43 gameworks.nvidia.com

Explicit multi GPU

•Finally full control over what goes on each GPU

•Create resources on specific GPUs

•Execute command lists on specific GPUs

•Explicitly copy resources between GPUs

•Perfect usecase for DirectX 12 copy queues

•Distribute workloads between between GPUs

•Not restricted to AFR

gameworks.nvidia.com

44 gameworks.nvidia.com

Check Juha Sjöholms talk from the ‘Advanced Graphics Techniques Tutorial Day’ : ‚Explicit
Multi GPU Programming with DirectX 12’

MultiGPU work distribution sample

Frame time

Depth
pass

Linear
Depth

SS
AO

Shadow
Map

Depth
pass

Linear
Depth

SS
AO

Shadow
Map

MotionBlur Primary pass FXAA Lighting

gameworks.nvidia.com

45 gameworks.nvidia.com

Agenda

•DirectX 12: more control & responsibilities

•How to efficiently drive DirectX 12 on NVidia GPUs

•New DirectX 12 programming model use cases

•DirectX 12 & 11.1 new hardware feature use cases

•Q&A

gameworks.nvidia.com

46 gameworks.nvidia.com

Conservative Raster

•Door opener to advanced AA techniques

•Enables the rasterizer to be used to do triangle binning

•See Jon Story‘s presentation:

‚Advanced Geometrically Correct
Shadows for Modern
Game Engines’

directly after this talk!

gameworks.nvidia.com

47 gameworks.nvidia.com

DX12&11.1 FL3 hardware features use cases

•Volume Tiled Resources

•Store sparse volumetric data

•Run sparse volumetric simulations

see ‚Latency Resistant Sparse Fluid Simulation’: [Alex Dunn, D3D Day – GDC 2015]

gameworks.nvidia.com

48 gameworks.nvidia.com

Q&A Holger Gruen : hgruen@nvidia.com

NVIDIA GeForce

6xx series

and above

9xx series

and above

Feature Level 11_0 12_1

Resource Binding Tier 2

Tiled Resources Tier 1 Tier 3

Typed UAV Loads No Yes

Conservative

Rasterization
No Tier 1

Rasterizer-Ordered

Views
No Yes

Stencil Reference Output No

UAV Slots 64

Resource Heap Tier 1

gameworks.nvidia.com

