TABLE OF CONTENTS

Jetson TX2 Developer Kit
- Powering Up ... 4
- Force Recovery Mode ... 4
- Flashing the Boot Loader and Kernel 5
 - Flash Script Usage .. 6
- JetPack .. 7
 - JetPack Components ... 8
 - OS Images .. 8
 - Libraries ... 8
 - Developer Tools .. 9
 - Samples ... 9
 - Downloading the Latest JetPack 9
 - Installing JetPack TX2 .. 9
 - Compiling .. 17
 - Running JetPack Samples ... 18
- Compliance ... 20
 - United States ... 20
 - Canada .. 21
 - European Union ... 22
 - Australia and New Zealand ... 22
 - Japan ... 23
 - South Korea ... 23
 - Taiwan ... 24
 - China ... 25
 - SINGAPORE ... 25
 - Environmental Disclosures .. 25
 - China RoHS Material Content Declaration 26
- Legal Information ... 28
Document Change History

Document number: DA_07976-001

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Authors</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>14 Feb 2017</td>
<td>hlang</td>
<td>Applies to release 27.0. Updates for TX2.</td>
</tr>
<tr>
<td>1.4</td>
<td>3 Mar 2017</td>
<td>hlang</td>
<td>Updates for release 27.1 for exposure and compliance statements.</td>
</tr>
</tbody>
</table>

Note: Apparent hyperlinks in this document are a legacy of the HTML version and may not operate as expected in the PDF version.
Jetson TX2 Developer Kit

The NVIDIA® Jetson™ TX2 Developer Kit is a full-featured development platform for visual computing. It is ideal for applications requiring high computational performance in a low power envelope. The Jetson TX2 Developer Kit is designed to get you up and running quickly; it comes pre-flashed with a Linux environment, includes support for many common APIs, and is supported by NVIDIA’s complete development tool chain. The board exposes many standard hardware interfaces, enabling a highly flexible and extensible platform.

For software updates and the developer SDK supporting your OS image and host development platform, go to:

The SDK includes an OS image for you to load onto your device, developer tools, supporting documentation, and code samples to help you get started.

Individual development efforts vary and may result in modifications to the system configuration. NVIDIA recommends that you begin with the basic system configuration (as shipped) to ensure proper system operation prior to any further development.

Prerequisites

- A Jetson TX2 Developer Kit
- Your Jetson TX2 carrier board must be cabled as follows:
 - Serial cable plugged into the serial port on the target connected to your Linux host directly or through a serial-to-USB converter. This is required to setup serial console on the Linux host.
 - An Ethernet cable is plugged into the on-board Ethernet port.
 - An HDMI cable connects the carrier board to an external HDMI display.
 - (Not included in the developer kit) To connect USB peripherals such as keyboard, mouse, and USB/Ethernet adapter (for network connection), a USB hub must be connected to the working USB port on the system.

Powering Up

1. Connect a USB keyboard to the USB Type A connector of your device.
2. Connect an HDMI-compatible display to the HDMI connector on your device.
3. Connect the AC adapter supplied in your kit to the power connector of your device. Use the supplied AC adapter since it is appropriately rated for your device.
4. Plug the power adapter into an appropriately rated electrical outlet.

The system should power on. If not, press and release the power button on the device.

5. When prompted, enter nvidia for both the user name and password.

Force Recovery Mode

To update your system, you must be in Force USB Recovery Mode so that you can transfer system software
Flashing the Boot Loader and Kernel

To place system in Force USB Recovery Mode
1. Power down the device. If connected, remove the AC adapter from the device. The device **must** be powered OFF, and **not** in a suspend or sleep state.
2. Connect the Micro-B plug on the USB cable to the Recovery (USB Micro-B) Port on the device and the other end to an available USB port on the host PC.
3. Connect the power adapter to the device.
4. With the system powered on:
 - Press and hold the RECOVERY FORCE button.
 - While depressing the RECOVERY FORCE button, press and release the RESET button.
 - Wait 2 seconds and release the RECOVERY FORCE button.

Flashing the Boot Loader and Kernel

This topic describes the steps required for flashing and booting the target Tegra device. Usage information is also provided for the `flash.sh` helper script.

For detailed information see [Flashing the Boot Loader and Kernel](#).

The flashing procedure flashes the board with the boot loader and the kernel. Optionally, you can also flash the rootfs to the internal eMMC.

Prerequisites

The following directories must be present:

- `/bootloader`—boot loader and flashing tools such as NvFlash, CFG, BCT, etc.
- `/kernel`—a kernel zImage `/vmlinux.uimg`, DTB files, and kernel modules.
- `/rootfs`—the root file system that you download. This directory is empty initially, you populate it with the sample file system.
- `/nv_tegra`—NVIDIA® Tegra® user space binaries and sample applications.

Additionally, a USB cable is required and must be connected to the recovery port prior to running the flashing commands.

To flash the target Tegra device

1. Put the target board into reset/recovery mode as follows:
 - Power on the board.
 - Hold the recovery button and then press the reset button
2. Run the `flash.sh` script that is in the top-level directory of this release.

The script must be supplied with the target board (`jetson-tx2`) for the root file system:
$ sudo ./flash.sh <platform> <rootdev>

- If the root file system will be on a USB disk, execute the script as follows:
 $ sudo ./flash.sh <platform> sda1

- If a SATA device is connected, that device enumerates as sda1.
- If the root file system will be on an SD card, execute the script as follows:
 $ sudo ./flash.sh <platform> mmcblk1p1

- If the root file system will be on the internal eMMC, execute the script as follows:
 $ sudo ./flash.sh <platform> mmcblk0p1

Where <platform> is jetson-tx2.

The above examples are for u-boot. For fastboot, add the following argument:

-L <PATH_TO_FASTBOOT_BIN_FILE>

The boot loader and kernel will load.

For more information on U-Boot, see U-Boot Customization.

Flash Script Usage

Detailed usage information is available by running the following command:

```
flash.sh -h
```

Usage

```
sudo ./flash.sh [options] <platform> <rootdev>
```

Where you specify the required parameters and one or more of the options shown in the following table.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><platform></td>
<td>is jetson-tx2.</td>
</tr>
<tr>
<td><rootdev></td>
<td>is one of following:</td>
</tr>
<tr>
<td>mmcb0kl0p1</td>
<td>Specifies internal eMMC.</td>
</tr>
<tr>
<td>mmcb1kl1p1</td>
<td>Specifies external SDCARD.</td>
</tr>
<tr>
<td>sda1</td>
<td>Specifies external USB device (such as, USB memory stick or HDD).</td>
</tr>
<tr>
<td>eth0</td>
<td>Specifies nfsroot via external USB Ethernet interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>Specifies to print this usage information.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>-b <bctfile></td>
<td>Specifies the NvFlash Boot Configuration Table (BCT) file.</td>
</tr>
<tr>
<td>-c <cfgfile></td>
<td>Specifies the NvFlash configuration file.</td>
</tr>
<tr>
<td>-d <dtbfile></td>
<td>Optionally specifies a device tree file to use instead of the default.</td>
</tr>
<tr>
<td>-e <emmc_file></td>
<td>Specifies the eMMC size of the target device.</td>
</tr>
<tr>
<td>-f <flashapp></td>
<td>Specifies the path to flash application: nvflash or tegra-rcm.</td>
</tr>
<tr>
<td>-i</td>
<td>Specifies to pass the user kernel command line to the kernel as-is.</td>
</tr>
<tr>
<td>-k <partition id></td>
<td>Specifies the kernel partition ID to be updated (minimum = 5).</td>
</tr>
<tr>
<td>-n <nfs args></td>
<td>Specifies the static NFS network assignments: <code><Client IP>:<Server IP>:<Gateway IP>:<Netmask></code></td>
</tr>
<tr>
<td>-o <odmdata></td>
<td>Specifies the ODM data value.</td>
</tr>
<tr>
<td>-p</td>
<td>Total eMMC HW boot partition size.</td>
</tr>
<tr>
<td>-r</td>
<td>Specifies to skip building and reuse existing <code>system.img</code>.</td>
</tr>
<tr>
<td>-s <ubootscript></td>
<td>Specifies the boot script file for U-Boot.</td>
</tr>
<tr>
<td>-C <cmdline></td>
<td>Specifies the kernel command line. Warning: Each option in this kernel command-line gets higher precedence over the same option from fastboot. In case of NFS booting, this script adds NFS booting related arguments if the <code>-i</code> option is omitted.</td>
</tr>
<tr>
<td>-F <flasher></td>
<td>Specifies the flash server, such as <code>fastboot.bin</code>.</td>
</tr>
<tr>
<td>-I <initrd></td>
<td>Specifies <code>initrd</code> file. Null <code>initrd</code> is the default.</td>
</tr>
<tr>
<td>-K <kernel></td>
<td>Specifies the kernel image, such as <code>zImage</code>.</td>
</tr>
<tr>
<td>-L <bootloader></td>
<td>Specifies the full path to the boot loader, such as <code>fastboot.bin</code> or <code>u-boot.bin</code>.</td>
</tr>
<tr>
<td>-P</td>
<td>Specifies the sum of the primary GPT start address, the size of PPT, plus 1.</td>
</tr>
<tr>
<td>-R <rootfs dir></td>
<td>Specifies the sample rootfs directory.</td>
</tr>
<tr>
<td>-N <nfsroot></td>
<td>Specifies the nfsroot, for example: <code><my IP addr>:my/exported/nfs/rootfs</code></td>
</tr>
<tr>
<td>-S <size></td>
<td>Specifies the rootfs size in bytes. This is valid only for internal rootdev. KiB, MiB, GiB style shorthand is allowed. For example, 1GiB signifies 1024 * 1024 * 1024 bytes.</td>
</tr>
<tr>
<td>-T <ITS file></td>
<td>ITS file name. Valid only for <code>u-boot</code>.</td>
</tr>
</tbody>
</table>
environment for the NVIDIA Jetson Embedded Platform, and makes it easy to flash your Jetson system with the latest OS images. JetPack includes host and target tools, APIs, and packages (middleware, samples, and documentation including help for compiling samples) to enable you to jumpstart your environment and begin developing.

Supported Host Operating Systems

- Ubuntu Linux x64 (v14.04)

At least 10 GB of disk space is required for the complete installation of JetPack TX2.

Target Platform Requirements

- Jetson Tegra Developer Kit
- Connected as follows:
 - Serial cable plugged into the serial port J1A2 UART4 on the target connected to your Linux host directly or through a serial-to-USB converter. Required to setup serial console on the Linux host.
 - A USB Micro-B cable connecting the Jetson system to your Linux host for flashing.
 - (Not included in the Developer Kit) To connect USB peripherals such as a keyboard, mouse, and USB/Ethernet adapter for network connection, a USB hub must be connected to the working USB port (J1C2 USB2) on the Jetson system.
 - An HDMI cable is plugged into the Jetson system HDMI port, which is connected to an external HDMI display.
 - An Ethernet cable is plugged into the on-board Ethernet port.

JetPack Components

JetPack includes host (Ubuntu Desktop) and target (Jetson) development tools, APIs, and packages (OS images, tools, middleware, samples, and documentation) for developing on the NVIDIA Jetson Embedded platform.

OS Images

JetPack includes a sample file system derived from Ubuntu.

Libraries

JetPack includes the following libraries:

- CUDA Toolkit for Ubuntu (with cross-development support)
- CUDA Toolkit for L4T
- OpenCV for Tegra
- VisionWorks

For more information, see:

https://developer.nvidia.com/embedded/visionworks
Developer Tools
JetPack includes the following developer tools:

Tegra Graphics Debugger
A console-grade tool that allows you to debug and profile OpenGL ES 2.0, OpenGL ES 3.0, OpenGL ES 3.1, OpenGL 4.3, OpenGL 4.4 and OpenGL 4.5, enabling game and graphics developers to get the most out of Tegra.

For more information, see:
https://developer.nvidia.com/tegra-graphics-debugger

Tegra System Profiler
A multi-core CPU sampling profiler that provides an interactive view of captured profiling data, helping improve overall application performance.

For more information, see:
https://developer.nvidia.com/tegra-system-profiler

PerfKit
A software library that provides access to OpenGL driver and GPU hardware performance counters.

For more information, see:
https://developer.nvidia.com/nvidia-perfkit

Samples
NVIDIA GameWorks OpenGL samples are located at:
http://developer.nvidia.com/gameworks-opengl-samples

Downloading the Latest JetPack
- The latest version of Jetson is available in the NVIDIA Embedded Developer Zone at:
- All available JetPack downloads can be found at:
 https://developer.nvidia.com/jetpack-archive

Installing JetPack TX2
You must have downloaded the latest JetPack version, jetpack-${VERSION}.run. ${VERSION} refers to the version string for your installer.
1. Add execute permissions for `jetpack-$(VERSION).run`:

   ```bash
   chmod +x jetpack-$(VERSION).run
   ```

2. Run `jetpack-$(VERSION).run` in a terminal.

 ![JetPack installer](image1)

 The JetPack installer indicates the installation directory.

 ![Installation configuration](image2)

3. Select the development environment to setup.
4. The JetPack installer pop-up window displays and prompts for `sudo` permission to use during the installation process. Enter your `sudo` password.

The Component Manager opens, allowing you to customize the components to install.
5. Select the Jetson Developer Kit you are developing to customize the installation components. Jetson TK1 Developer Kit, Jetson TX1 Developer Kit, and Jetson TX2 Developer Kit support is available.

![JetPack L4T Component Manager](image)

6. To run a standalone Ubuntu install, deselect Jetson target specific entries.

7. Accept the license agreement for the selected components.
The component manager proceeds with the installation.

8. Once the host installation steps are completed, click the Next button to continue with the installation of the target components.
Jetpack proceeds with setting up the Jetson Developer Kit target if the corresponding components were selected. For example, flashing the OS and pushing components to the Jetson Developer Kit target.

9. If you de-selected Flash OS in the component Manager, you must enter the IP address, user name, and password to set up an ssh connection to the target device.

10. After entering the required information click **Next**.

JetPack installs the components on the target device.

11. If you selected **Flash OS in the Component Manager**, you must select the network layout for your specific environment.
12. If you selected the **Device access Internet via router/switch** layout, you must select which interface to use for Internet access.

13. If you selected the **Device get IP assigned by DHCP server on host and access Internet via host machine** layout, you must select which interface to use for Internet access and which to use for the target interface.
14. A pop-up window displays instructing you to put your device into Force USB Recovery Mode to flash the OS.

15. When prompted, install components on the specific target machine, and compile the samples.
16. After the post installation tasks are completed, the installation is complete.

Compiling

JetPack automatically compiles all samples if Compile Samples is checked during the components selection.

- If you selected CUDA components, CUDA samples are located at:
Running JetPack Samples

You can recompile the samples by running:

```
SMS=53 EXTRA_LDFLAGS=--unresolved-symbols=ignore-in-shared-libs TARGET_ARCH=aarch64 make
```

- If you selected GameWorks OpenGL samples, GameWorks OpenGL samples are available at:

```
<JetPack_Install_Dir>/GameWorksOpenGLSamples
```

You can cross compile them by running the `make` command under the following subfolder:

```
samples/build/linux-arm32
```

Running JetPack Samples

The CUDA samples directory is copied to the home directory on the device by JetPack. The built binaries are in the following directory:

```
/home/ubuntu/NVIDIA_CUDA-<version>_Samples/bin/armv71/linux/release/gnueabihf/
```

Run the samples at the command line or by double-clicking on them in the file browser. For example, when you run the `oceanFFT` sample, the following screen is displayed.
Running JetPack Samples

CUDA FFT Ocean Simulation
Compliance

The NVIDIA® Jetson TX2 Developer Kit is compliant with the regulations listed in this section. Compliance marks, including the FCC and IC ID numbers, can be found at:

United States

Federal Communications Commission (FCC)

FCC ID: VOB-P3310

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including any interference that may cause undesired operation of the device.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Warning: The FCC requires that you be notified that any changes or modifications to this device not expressly approved by the manufacturer could void the user’s authority to operate the equipment.

RF Radiation Exposure Statement

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

Only those antennas with same type and lesser/equal gain filed under this FCC ID number can be used with this device.
Underwriters Laboratories (UL)

UL Listed Product Logo for Jetson TX2 Developer Kit, model name P2597.

I.T.E E204896

UL Recognized Component Logo for Embedded System Module, model name P3310.

Canada

Industry Canada (IC)

IC: 7361A-P3310

CAN ICES-3(B)/NMB-3(B)

This device complies with Industry Canada’s licence-exempt RSSs of the Industry Canada Rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

5150–5250 MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile satellite systems;

Ce dispositif est conforme à la norme RSS-247 d’Industrie Canada applicable aux appareils radio exempts de licence. Son fonctionnement est sujet aux deux conditions suivantes: (1) le dispositif ne doit pas produire de brouillage préjudiciable, et (2) ce dispositif doit accepter tout brouillage reçu, y compris un brouillage susceptible de provoquer un fonctionnement indésirable.

RF Radiation Exposure Statement:

Jetson Dev Kit has been tested and complies with IC RSS 102 RF radiation exposure limits set forth for an uncontrolled environment when used with the NVIDIA accessories supplied or designated for this product. To satisfy IC exposure requirements, a separation distance of at least 20 cm must be maintained between the antenna of this device and persons during device operation. The use of any other accessories may not ensure compliance with IC RSS 102RF exposure guidelines.

Déclaration d'exposition aux radiations:

La Jetson Dev Kit a été testée conformément aux normes d’exposition d’émission RF de la IC RSS 102 pour un
environnement non contrôlé lors d’utilisation avec les accessoires fournis or recommandés par NVIDIA. Pour satisfaire aux exigences d’exposition IC, une distance de séparation d’au moins 20 cm doit être maintenue entre l’antenne de cet appareil et des personnes pendant le fonctionnement de l’appareil. L’utilisation d’accessoires autres que ceux recommandés par NVIDIA ne garantit pas la compatibilité avec les normes d’émission RF de la IC RSS 102.

European Union

European Conformity; Conformité Européenne (CE)

![CE Mark](image)

This device bears the CE mark and class-2 identifier in accordance with Directive 1999/5/EC.

This device complies with the following directives:

- R&TTE Directive for radio equipment
- Low Voltage Directive for electrical safety
- RoHS Directive for hazardous substances

A copy of the Declaration of Conformity to the essential requirements may be obtained directly from NVIDIA GmbH (Floessergasse 2, 81369 Munich, Germany).

Australia and New Zealand

Australian Communications and Media Authority (RCM)

![RCM Mark](image)

This product meets the applicable EMC requirements for Class B, I.T.E equipment and applicable radio equipment requirements.
Japan
Voluntary Control Council for Interference (VCCI)

Radio/ Telecommunications Certification

South Korea
Radio Research Agency (RRA)
Korean Agency for Technology and Standards (KATS)
Taiwan
National Communications Commission

注意！

依據低功率電波輻射性電機管理辦法

第十二條

經型式認證合格之低功率射頻電機，非經許可，公司、商號或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功能。

第十四條

低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現象時，應立即停用，並改善至無干擾時方得繼續使用。

前項合法通信，指依電信法規定作業之無線電通信。

低功率射頻電機須忍受合法通信或工業、科學及醫療用電波輻射性電機設備之干擾。

模組認證合格標籤 (ID)：

“ CAJA17LP1260T1 ”

如果使用本模組之平台，無法在外部看見審驗合格標籤時，應在外

平台的外部明顯標示

“內含射頻模組 CAJA17LP1260T1。"

應避免影響附近雷達系統之操作。

Jetson TX2 Developer Kit
高增益指向性天線只得應用於固定式點對點系統。

电磁波曝露量MPE标准值1mW/cm²，送测产品实测值为：0.109 mW/cm²。

China
State Radio Regulations Committee

CMIIT ID: 2015AJ7078

本设备包含型号核准代码为CMIIT ID: XXXYYZZZ 的无线电发射模块

SINGAPORE
Info-Communications Development Authority of Singapore

Complies with IDA Standards
DA00006A

Environmental Disclosures

California Prop 65 Warning – California law requires this warning to be provided to California customers.

Prop 65 Warning: This product contains chemicals known to the State of California to cause cancer and birth defects or other reproductive harm.
China RoHS Material Content Declaration

The Table of Hazardous Substances and their Content

根据中国《电器电子产品有害物质限制使用管理办法》
as required by Management Methods for Restricted Use of Hazardous Substances in Electrical and Electronic Products.

<table>
<thead>
<tr>
<th>Parts</th>
<th>铅 (Pb)</th>
<th>汞 (Hg)</th>
<th>铬 (Cr)</th>
<th>六价铬 (Cr(VI))</th>
<th>多溴联苯 (PBB)</th>
<th>多溴二苯醚 (PBDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>印刷电路部件</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Processor</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>存储设备</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>System memory</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>电源设备</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Power supply</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>摄像头</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Camera module</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>天线</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Antenna</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>机械部件</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Mechanicals</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>线材连接器</td>
<td>×</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Cables/Connectors</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>焊接金属</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>Soldering material</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>助焊剂，锡膏，标签及耗材</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
</tbody>
</table>

本表格依据SJ/T 11364-2014的规定编制

The table according to SJ/T 11364-2014

□：表示该有害物质在该部件任何均质材料中的含量均在GB/T 26572-2011标准规定的限量要求以下。
〇：表示该有害物质未在该部件任何均质材料中检测到。
×：表示该有害物质至少在该部件的某一均质材料中的含量超出GB/T 26572-2011标准规定的限量要求。

此表中所有名称中含“×”的部件均符合欧盟RoHS立法。
All parts named in this table with an "×" are in compliance with the European Union's RoHS Legislation.

注：环保使用期限的参考标准取决于产品正常工作的温度和湿度等条件。
Note: The referenced Environmental Protection Use Period Marking was determined according to normal operating use conditions of the product such as temperature and humidity.
Notice
© 2017 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and Jetson are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

© 2015 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, and JETSON DEV KIT are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated. ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND ON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks
NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.
Legal Information

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, DriveWorks, Jetson, Tegra, TensorRT, Vibrante, and VisionWorks are trademarks or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License.

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

ARM, AMBA, and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Copyright

© 2017 by NVIDIA Corporation. All rights reserved