
 

DA_07839-001_01  |  March 1, 2016 
 

Tegra Linux Driver Package for Tegra X1 

PLATFORM ADAPTATION AND 
BRING-UP GUIDE  

 

 

  

 

  



Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  ii 

DOCUMENT CHANGE HISTORY 

DA_07378-001_01 

Version Date Authors Description of Change 

v1.0 1 Mar 2016 msum, jsachs Initial release 

    

    

 

  



Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  iii 

 

TABLE OF CONTENTS 

Platform Adaptation and Bring-Up Guide ........................................ 4 
Porting Linux for Tegra (L4T) to Your Design ............................................... 4 

Board Naming ................................................................................. 4 
Placeholders in the Porting Instructions ................................................... 5 
Pinmux Changes .............................................................................. 5 
Exporting Pinmux for U-Boot ................................................................ 6 
Exporting Pinmux for the L4T Linux Kernel ............................................... 7 
Porting U-Boot ................................................................................ 8 
Porting the Linux Kernel ..................................................................... 9 
Pad Power Detection ........................................................................ 10 
Other Considerations When Porting ....................................................... 12 
Hardware Bring-Up Checklist............................................................... 13 

Before Power-On ......................................................................... 13 
Initial Power-On .......................................................................... 14 
Initial Software Flashing ................................................................. 14 
Power ...................................................................................... 14 
Power Optimization ...................................................................... 14 
USB 2.0 PHY .............................................................................. 14 
USB 3.0 .................................................................................... 15 
HDMI ...................................................................................... 15 
Audio ....................................................................................... 15 
UART ....................................................................................... 16 
SD Card (SDMMC1) ...................................................................... 16 
Sensors I2C: General .................................................................... 16 
Sensors I2C: Touch Screen (Optional) ................................................ 16 
PEX (Optional) ............................................................................ 16 
SATA (Optional) .......................................................................... 17 
Embedded Display(s) (Optional) ....................................................... 17 
Imager(s) (Optional) ..................................................................... 17 

Software Bring-Up Checklist ............................................................... 18 
Preparation ................................................................................ 18 
Bring-up Hardware Validation .......................................................... 18 
U-Boot Port and Boot Validation ....................................................... 18 
Kernel and Peripherals, Port and Validation .......................................... 18 
System Power and Clocks ............................................................... 19 

 

 



 

NVIDIA CONFIDENTIAL 
Platform Adaptation and Bring-Up Guide DA_07378-001_01|  4 

PLATFORM ADAPTATION AND BRING-UP 
GUIDE 

This document is for software developers whose target is the NVIDIA® Jetson™ TX1 
module. It describes how to port the NVIDIA® Tegra® Linux Driver Package and the U-
Boot boot loader from NVIDIA® Jetson™ TX1 Developer Kit to other hardware 
platforms. 

PORTING LINUX FOR TEGRA (L4T) TO YOUR 
DESIGN 
For all of the procedures below, the NVIDIA® Tegra® Linux Driver Package (also known 
as L4T: Linux for Tegra) release includes code for the Jetson TX1 Developer Kit (P2371-
2180) that can serve as an example. 

Board Naming 
To support your board in L4T, you must choose a simple lower-case, alpha-numeric 
name for your board, possibly including dashes (-) or underscores (_) but containing no 
spaces, such as the following examples: 
 
jetson-tx1 
p2371-2180 
beaver 
 

The name you choose will appear in file names and path names in U-Boot and Linux 
kernel source code, user-visible device tree file names, and be exposed to the user via the 
U-Boot command prompt and various Linux kernel /proc files. 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  5 

In this document, <board> represents your board name. 

You must also choose a similarly-constructed vendor name. The same character set rules 
apply, such as the following example: 
 
nvidia 
 

In this document, <vendor> represents your vendor name. 

Note: Do not simply re-use and modify the existing NVIDIA® Jetson™ TX1 
Developer Kit code without choosing and using your own board name. 
If you do not use your own board name it will not be obvious to Jetson 
TX1 users whether modified source code supports the original Jetson 
TX1 Developer Kit carrier board or your board. 

Placeholders in the Porting Instructions 
The following sections refer to filenames and pathnames that contain these placeholders. 
Substitute an appropriate value for each placeholder when you enter the commands. 

• <function> is a functional module name, which may be power-tree, pinmux, 
sdmmc-drv, keys, comm (WIFI/BT), camera, etc. 

• <board> is a name you have chosen to represent your platform. For example, 
p2597 is the name of the Jetson TX1 Developer Kit carrier board. Note that NVIDIA 
<board> names use lower case letters only. 

• <som> is a System on a Module (SOM) board name, such as 2180. 
• <version> is a board version number, such as a00. Files for NVIDIA reference 

boards include a version number. Files for customer platforms need not include one. 
• <vendor> is your organization’s name, or the name of your board’s vendor. 
• <root> is the device that holds the platform’s root file system. At present the only 

supported value is emmc. 

Pinmux Changes 
If your board schematic differs from that for Jetson™ TX1 Developer Kit carrier board, 
you must change the pinmux configuration applied by the software. 

To define your board’s pinmux configuration, you must obtain 
Jetson_TX1_customer_pinmux_release.xlsm from NVIDIA and customize it for 
the configuration of your board using the following procedures. 

To customize the pinmux spreadsheet 

1. Create a copy of the file with a name based on your board name, e.g. 
<board>_pinmux.xlsm.  

2. Ensure that the new file is writable. 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  6 

3. On a Windows PC, open the new file in Microsoft Excel. 
4. If Microsoft Excel displays any warnings such as “PROTECTED VIEW” or 

“SECURITY WARNING,” click Enable Editing or Enable Content, so that you can 
save your changes to the new file. 

5. Rename the Jetson TX1 Configuration tab based on the name of your board: 

● Right-click on the Jetson TX1 Configuration tab at the bottom of the window. 
● Click the Rename menu option. 
● Type your board name into the tab, then press ENTER. 

6. Modify columns AE through AO of the spreadsheet as required by the pinmux 
configuration for your board, based on the schematic. 

Once the spreadsheet reflects the configuration you want, export the configuration data 
in a format that U-Boot and the Linux kernel can use. 

Exporting Pinmux for U-Boot 
U-Boot uses a header file to define the pinmux configuration. This header file may be 
generated using the tegra-pinmux-scripts tool.  

To customize tegra-pinmux-scripts for your board 

1. Obtain tegra-pinmux-scripts by running the following commands on your 
Linux system: 
 
$ git clone https://github.com/NVIDIA/tegra-pinmux-scripts.git 
$ cd tegra-pinmux-scripts 
 

2. In the tegra-pinmux-scripts directory, open csv-to-board.py in a text 
editor. 

3. Locate the definition of the supported_boards data structure, at approximately 
line 50. 

4. Add an entry for your board to the supported_boards data structure similar to 
the following example: 
 
   '<board>': { 
       # <board>_pinmux.xlsm worksheet <board> 
       'filename': 'csv/<board>.csv', 
       'rsvd_0based': False, 
   }, 

5. Save the file and exit the editor. 
6. Commit this change to your local Git repository: 

 
$ git commit –a –m "Add support for <board>" –s  



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  7 

 

The tegra-pinmux-scripts read a CSV (Comma Separated Values) version of the 
pinmux spreadsheet as input. 

To save the spreadsheet in CSV format 

1. In Microsoft Excel, click the File tab. 
2. On the File tab, click Save As. 
3. From Save as type, choose CSV (MS-DOC) (*.csv). 
4. Verify that the file name ends in.csv, but otherwise matches the file name in your 

changes to csv-to-board.py. 
5. Click Save. 
6. Copy the CSV file to the csv/ directory of tegra-pinmux-scripts on your Linux 

system. 

To generate the U-Boot pinmux header file 

1. Enter the following command in the tegra-pinnmux-scripts directory to import 
the data into the tegra-pinmux-script internal format: 
 
$ ./csv-to-board.py <board> 
 

Optionally, use the --csv <csv_file_name> command line option to specify the 
CSV file to import. This allows you to copy the CSV file to an arbitrary location on 
your Linux system if you wish. 

2. Enter the following command to generate the U-Boot pinmux header file: 
 
$ ./board-to-uboot.py <board> > pinmux-config-<board>.h 
 

Later, you will copy pinmux-config-<board>.h into the U-Boot source tree. 

Exporting Pinmux for the L4T Linux Kernel 
The Linux kernel uses device tree files to define the pinmux configuration, which you 
can generate directly from the Excel spreadsheet.  

To generate device tree files for your pinmux configuration 

1. In the spreadsheet, click Generate DT. 
2. Answer “yes” to the prompt asking whether you wish to generate the DT files and 

provide the name of your board when prompted. 

The device tree files are saved in the same location as the Excel spreadsheet. After the 
file is generated, make sure that the file name matches what you use in your kernel code. 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  8 

Correct the file name if there is a mismatch. Later, you will copy the device tree files into 
the Linux kernel source tree. 

Porting U-Boot 
Perform the following actions in the U-Boot source code to add support for your board. 

1. Copy include/configs/jetson-p2371-2180.h to 
include/configs/<board>.h. 

2. Edit the set of enabled devices and features in <board>.h as appropriate for your 
board. For example, you must change the following: 
 
#define CONFIG_TEGRA_BOARD_STRING       "NVIDIA P2371-2180" 
 

3. Copy arch/arm/dts/tegra210-p2371-2180.dts to 
arch/arm/dts/tegra210-<board>.dts. 

4. Edit the set of enabled devices and their parameters (e.g. GPIO and IRQ IDs) in 
tegra210-<board>.dts as appropriate for your board. 

Nodes and properties might need to be added, removed, or edited. 

Note: U-Boot and the Linux kernel do not always use the exact same 
device tree schema (bindings) to represent the same data. Follow 
examples from U-Boot rather than from the Linux kernel. 

5. Add tegra210-<board>.dtb to arch/arm/dts/Makefile. 
6. Copy configs/p2371-2180_defconfig to configs/<board>_defconfig. 
7. Edit <board>_defconfig to refer to your board name. 
8. Edit arch/arm/mach-tegra/tegra210/Kconfig to add target config and 

Kconfig. 
9. Copy the board/nvidia/p2371-2180/ directory to 

board/<vendor>/<board>/. 
10. Edit all of the files in board/<vendor>/<board>/ to refer to your board name 

rather than the P2371-2180. The files in this directory contain many instances of the 
P2371-2180 board name. 

11. Edit board/<vendor>/<board>/MAINTAINERS to provide the correct maintainer 
contact information for your board. 

12. Edit board/<vendor>/<board>/<board>.c to provide the correct PMIC 
programming for your board, if required. 

13. Copy the pinmux header you generated (pinmux-config-<board>.h) to the 
board/<vendor>/<board>/ directory. 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  9 

Porting the Linux Kernel 
To port the kernel configuration code (the device tree) to your platform, modify one of 
the distributed configuration files to describe your platform’s design. 

The configuration files are in arch/arm64/boot/dts/. Their names have the form 
tegra210-jetson-cv-base-<board>-<som>.dts, where <board> refers to one of 
the NVIDIA reference boards, such as p2597. 

NVIDIA recommends that you use this file and the files included, which describes the 
device tree of reference board P2597: 
 
arch/arm64/boot/dts/tegra210-jetson-cv-base-p2597-2180-a00.dts 
 

This device tree file includes many .dtsi files for various types of hardware. To 
configure the kernel to work on your platform, make copies of the .dts file and the 
.dtsi files it references, and modify the copies to correspond to your platform’s design. 

The following procedure will guide you through this process. 

1. Copy the .dts file you have chosen to this location: 
 
arch/arm64/boot/dts/tegra210-<board>.dts 
 

2. From the arch/arm64/boot/dts/tegra210-platforms/ directory, copy each 
file whose name has the form: 
 
tegra210-jetson-cv-<function>-<board>-<som>-<version>.dtsi 
 

Copy each file to: 
 
arch/arm64/boot/dts/tegra210-platforms/tegra210-<board>-
<function>.dtsi 
 

You may rename the copies if that makes your work easier. 

3. Edit your copy of the .dts file to refer to your copies of the .dtsi files. 
4. Edit the set of enabled devices and their parameters (e.g. GPIO and IRQ IDs) in each 

copied file as appropriate for your board. 

You may need to add, remove, or edit .dtsi file nodes and properties. 

Note: U-Boot and the Linux kernel do not always use the exact same 
device tree schema (bindings) to represent the same data. Follow 
examples from the Linux kernel rather than from U-Boot. 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  10 

5. Replace the content of tegra210-<board>-gpio.dtsi and tegra210-
<board>-pinmux.dtsi with the content you generated from the kernel pinmux 
files earlier. 

6. Edit arch/arm64/boot/dts/Makefile to add an entry for your board, modeled 
after the existing Jetson™ TX1 entry. 

7. Copy this file: 
 
Linux_for_Tegra/bootloader/t210ref/p2371-2180/extlinux.conf.emmc  
 

To this location: 
 
Linux_for_Tegra/bootloader/t210ref/<board>-<som>/extlinux.conf.emmc 
 

8. Edit the following statements in each copied file to refer to your board: 
 
FDT /boot/tegra210-jetson-cv-base-p2597-2180-a00.dtb 
 

9. Copy Linux_for_Tegra/jetson-tx1.conf to 
Linux_for_Tegra/<board>.conf. 

10. Edit SYSBOOTFILE and DTB_FILE in <board>.conf to refer to your board. 

Following are some examples of modifications that you may have to make. 

Regulator 

VDDIO of SDMMC1 comes from PMU LDO2. That section looks like this: 
 
    regulators { 
        ldo2 { 
            regulator-name = "vddio-sdmmc1"; 
        }; 
    }; 
 

If there is any change for this power tree, this item should be changed. 

Pad Power Detection 
Pad power on the T210 defaults to 3.3 V. Unlike some other Tegra models, the T210 does 
not have auto power detect cells. I/O pads that are powered at 1.8 V must be set 
manually in DTS to 1.8 V. 
 
gpio { 
nvidia,io-pad-init-voltage = <IO_PAD_VOLTAGE_1_8V>;  
}; 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  11 

 

GPIO 

There are many GPIO configurations in different hardware modules. To change the 
GPIO setting, check the related device tree file. 

For example, VDD of SDMMC is controlled by a GPIO pin (GPIO_PZ3). That is a power 
tree module, so the definition of this part is in: 
 
tegra210-platforms/tegra210-jetson-cv-power-tree-p2597-2180-a00.dtsi 
 

And looks like this: 
 
    en_vdd_sd: regulator@4 { 
        gpio = <&gpio TEGRA_GPIO(Z, 3) 0>; 
    }; 
 

You can change this setting according to platform circuit. 

Interrupt 

For modules that make interrupt requests, the interrupt requests can also be declared in 
the .dts file. 

For example, this file: 
 
tegra210-platforms/tegra210-comms-p2530-0930.dtsi 
 

Describes a WIFI interrupt like this: 
 
    bcmdhd_wlan { 
        compatible = "android,bcmdhd_wlan"; 
        interrupt-parent = <&gpio>; 
        interrupts = <TEGRA_GPIO(H, 2) 0x14>; 
        wlan-pwr-gpio = <&gpio TEGRA_GPIO(H, 0) 0>; 
        status = "okay"; 
    }; 
 

This specifies GPIO_PH02 (same pin as WIFI_WAKE_AP) as the interrupt request pin 
from the WIFI module. 

Key 

The key is defined in: 
 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  12 

tegra210-platforms/tegra210-keys-p2530-0930.dtsi 
 

The power key is defined as: 
 
    power { 
        label = "Power"; 
        gpios = <&gpio TEGRA_GPIO(X, 5) GPIO_ACTIVE_LOW>; 
        linux,code = <KEY_POWER>; 
        gpio-key,wakeup; 
    }; 
 

  

Note: This example is meant only to show how to define a key in a .dts 
file. 'Power key' is a special key, and cannot be changed. 

For the detailed information about .dts files, refer to the documentation at 
Documentation/devicetree/bindings in the NVIDIA released Linux kernel 
source package. 

Other Considerations When Porting 
This section describes other considerations and recommendations to consider when 
porting. 

To flash the build image 

• When flashing the build image, use your specific board name: 
 
$ sudo ./flash.sh <board>-<som> mmcblk0p1 
 

To flash with BOARDID if the design does not use EEPROM 

BOARDID is either passed using an XML file during flashing or is read from EEPROM. 
The flashing software uses the BOARDID from the XML file if provided; otherwise it 
uses the EEPROM value. The file board_config_p2597-devkit.xml, shown below, 
illustrates the XML file format. 
 
<?xml version="1.0"?> 
<!-- Nvidia Tegra board info configuration file --> 
<board_configs> 
    <board type="proc" id="2180" sku="1000" fab="0" /> 
    <board type="display" id="0000" sku="0000"/> 
    <board type="pmu" id="2180" sku="0000" /> 
</board_configs> 
 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  13 

This flashing config file p2371-2180-devkit.conf passes the name of the XML file 
as an option: 
 
BCFFILE="bootloader/${target_board}/cfg/board_config_p2597-devkit.xml"; 
 

The file contains the processor module ID (type="proc"), display board ID 
(type="display"), and power management unit ID (type="pmu"). Since the 
processor and PMU are on the same module in the development kit, they have the same 
ID. 

If you add new values for the board tag’s id property, you must add them to the list of 
valid values in nvtboot. 

To change the UART port to UARTA 

1. In Linux_for_Tegra/<board>.conf, modify the ODMDATA assignment: 
 
ODMDATA=0x60084000; 
 

2. In the U-Boot boot loader, locate the following lines in 
/include/configs/jetson-tx1.h : 
 
#define CONFIG_TEGRA_ENABLE_UARTD 
#define CONFIG_SYS_NS16550_COM1             NV_PA_APB_UARTD_BASE 
 

3. Modify those lines to specify UARTA: 
 
#define CONFIG_TEGRA_ENABLE_UARTA 
#define CONFIG_SYS_NS16550_COM1             NV_PA_APB_UARTA_BASE 
 

4. In the kernel, modify the debug_uartport assignment: 
 
debug_uartport=lsport,0 
 

Hardware Bring-Up Checklist 
This section provides a checklist for the platform hardware bring-up process. 

Before Power-On 
 
Make sure that the Jetson TX1 is connected to the BTB connector correctly and 
securely. 

 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  14 

Verify that power supplies are not shorted to ground or to other power supplies.  

Initial Power-On 
 
Verify that VDD_IN from carrier board is in the 6 V to 19 V range.  

Verify that CARRIER_WR_ON goes to HIGH when power is turned on.  

Verify that system can enter force recovery.  

Initial Software Flashing 
 
Verify that system can be flashed with TegraFlash.  

Verify that TegraBoot and U-boot run to completion by checking log output.  

Verify that OS runs to desktop.  

Verify that any UARTs intended for debugging are enabled and functional.  

Power 
 
Verify that all supplies required on at power-on are enabled appropriately.  

Verify that all supplies required off at power-on are not enabled initially.  

Verify that each controllable supply can be enabled and disabled, and different voltage 
levels can be set if applicable. 

 

Verify that carrier board power-on sequence starts after CARRIER_PWR_ON signal is 
asserted. 

 

Power Optimization 
 
Capture CPU PWR Request entering and exiting Suspend (LP1) and Deep Sleep (LP0).   
Ensure that CPU PWR Request and associated power rail sequence meets Tegra Data 
Sheet requirements. 

 

Verify that all rails which must be OFF in Deep Sleep (LP0) are OFF.  

Verify that all rails which must be ON in Deep Sleep (LP0) are ON.  

Verify that required rails are back and at correct voltage under hardware control exiting 
Deep Sleep (LP0). 

 

USB 2.0 PHY 
 
Verify that USB0 supports USB Recovery (device mode).  

Verify that USB0 device mode works with intended peripheral types, if supported.  

Verify USB0, USB1 and or USB2 Host mode, if implemented.  

Verify USB0 Device/Host detection, if supported.  

Verify that USB PHYs go to lowest power mode when not used or when the system is in  



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  15 

low power mode. 

Verify that AVDD_USB and AVDD_PLL_UTMIP are off during Deep Sleep (LP0).  

Capture USB0_D+/D- signals at both ends of link (connector and test points near Tegra).  

Capture USB2_D+/D- signals at both ends of link (connector and test points near Tegra).  

Using USB-IF procedures, verify that signals meet requirements (correct eye 
height/width, etc.). 

 

If USB signals do not meet requirements, use the Tegra USB Tuning Guide to adjust 
settings until requirements are met. 

 

USB 3.0 
 
Verify USB 3.0 Host mode.  

Verify USB 3.0 Device mode, if enabled.  

Verify that the USB 3.0 interface goes to the lowest power mode when not used or when 
the system is in low power mode. 

 

HDMI 
 
Verify that HDMI-compatible display works at 1080p.  

Verify that display is detected properly (HPD).  

Verify that HDMI reads and writes to the display using DDC interface.  

Verify that HDMI related rails are powered off when not used or system is in Deep Sleep 
(LP0) or Suspend (LP1). 

 

Capture HDMI signals at the connector (using appropriate test fixture and termination).  

Verify that signal quality is acceptable (meets EYE diagram, etc.). Consult Tegra HDMI 
Tuning Guide for details. 

 

If HDMI signals do not meet requirements, use the Tegra HDMI Tuning Guide to adjust 
settings until requirements are met. 

 

Audio 
 
Verify reads and writes on I2C interface used for Audio Codec.  

Verify that playback works properly on speakers, headphones, and headset.  

Verify that capture works properly: Sound is recorded from microphone/headset if 
supported. 

 

Verify that tones, voice, etc. can be heard from speakers or headphones/headset.  

Verify that Audio Codec goes to lowest power mode when not in use or system enters 
low power mode. 

 

Capture signals at receiver end of link, if accessible, for each I2S I/FT used.  

Verify that signal quality is acceptable. Look for excessive over/undershoot and glitches 
on signal edges. 

 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  16 

UART 
 
Verify that Tegra TX/RX/CTS/RTS connects to device RX/TX/RTS/CTS for each UART 
used. 

 

Verify that signal quality is acceptable. Look for excessive over/undershoot and glitches 
on signal edges. 

 

SD Card (SDMMC1) 
 
Verify proper connectivity by setting Tegra pins to GPIOs, if necessary, to debug.  

Verify that basic SD commands operate properly.  

Verify reads and writes for a variety of SD Cards.  

Verify that SD Card insertion detection works and wakes system, if supported.  

Verify that SD Card Write Protect works, if implemented.  

Verify that SD Card goes to low power mode or rails are powered off when not used or 
in low power system state. 

 

Verify that signal quality is acceptable when probed at receiver end (socket or test 
points near BTB connector or both for bidirectional signals). Look for excessive over/ 
undershoot and glitches on signal edges and abnormal Clock duty cycle. 

 

Sensors I2C: General 
 
Verify that addresses of all I2C devices appear correctly, and no unknown ghost devices 
appear. 

 

Verify that signal quality is acceptable, including rise times of signals, when probed at 
BTB connector and devices. 

 

Sensors I2C: Touch Screen (Optional) 
 
Verify that Reads/Writes on I2C or SPI to Touch Screen controller are functional 
(reading device ID or a similar register is successful). 

 

Verify that interrupts are generated properly.  

Verify functionality of Touch Screen.  

Verify that Touch Screen Controller goes to lowest power mode when not used, or 
system is in low power state. 

 

PEX (Optional) 
 
Verify proper connectivity by checking lanes.  

Verify that any implemented PEX interfaces transition to the lowest power state in Deep 
Sleep (LP0) and Suspend (LP1). 

 

Verify that signal quality is acceptable when probed at receiver end of link near Tegra 
and device. Look for excessive over/ undershoot and glitches on signal edges. 

 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  17 

SATA (Optional) 
 
Verify proper connectivity by checking diff lines.  

Verify that any implemented SATA interfaces transition to the lowest power state in 
Deep Sleep (LP0) and Suspend (LP1). 

 

Verify that signal quality is acceptable when probed at receiver end of link near Tegra 
and device. Look for excessive over/ undershoot and glitches on signal edges. 

 

Embedded Display(s) (Optional) 
 
Verify that I2C or other control interface is able to perform writes/reads to display.  

Verify that each embedded display shows correct colors.  

Verify that each embedded display’s backlight is enabled when in normal display mode.  

Verify that each embedded display’s backlight brightness can be adjusted properly.  

Verify that each embedded display’s backlight is disabled when in a low power mode.  

Verify that each embedded display (and any display bridge) transitions to the lowest 
power state in Deep Sleep (LP0) and Suspend (LP1). 

 

Verify that power-on/off sequencing of rails associated with each display meets 
manufacturer's requirements. 

 

Verify DSI, LVDS or eDP timing (see Tegra DC and DSI Debugging Guide for details on 
how and what to verify). 

 

Probe DSI, LVDS or eDP signals near panel driver, or at connector/test points if access to 
driver is not possible, and verify that signal quality is acceptable. Look for excessive 
over/undershoot and glitches on signal edges. 

 

Imager(s) (Optional) 
 
Verify that I2C interface writes/reads work to all cameras.  

Verify that preview displays properly for all cameras.  

Verify that still capture works on all cameras.  

Verify that video capture works on all cameras.  

Verify that all flashes operate properly.  

Verify that any available autofocus mechanism functions properly.  

Verify that privacy LED operates properly, if implemented.  

Verify that cameras and related circuitry enter lowest power mode when not used or 
system is in a low power mode. 

 

Verify that power-on/off sequencing of rails associated with imager module meets 
manufacturer's requirements. 

 

Probe MCLK output at recommended test points, and verify that signal quality is 
acceptable. Look for excessive over/undershoot and glitches on signal edges. 

 



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  18 

Software Bring-Up Checklist 
This section provides a checklist for the software bring-up process. 

Preparation 
 
Verify Board BCT.  

Verify operation eMMC with the NVIDIA Diagnostic Tool.  

Obtain board schematics and component data sheets.  

Verify power tree.  

Review board pinmux.  

Bring-up Hardware Validation 
 
Power and Reset Sequence, Power Rail Check  

Recovery Mode  

NvTest (Tegra MODS) DDR, eMMC, CPU  

JTAG connection check  

U-Boot Port and Boot Validation 
 
TegraFlash  

UART output  

KBD connection  

Board config/PMIC regulator config/Pinmux/Review device tree  

Verify FS support/Config boot scripts (bootcmd)  

Boot to U-boot   

Boot to kernel  

Boot to kernel command line or custom desktop  

Kernel and Peripherals, Port and Validation 
 
Device tree review, Pinmux, GPIO, Wake pins  

PMU and regulator drivers  

Display/HDMI  

Audio codec   

Microphone and speaker   

USB  

SD card  



Platform Adaptation and Bring-Up Guide 

Platform Adaptation and Bring-Up Guide DA_07378-001_01  |  19 

Thermal Sensor  

EMC DFS table  

Ethernet  

SATA  

PCIe  

System Power and Clocks 
 
CPU/CORE/GPU DVFS  

EMC DFS table  

CPU/CORE EDP  

GPU EDP  

System EDP (Contain Current monitor & Voltage comparator)  

Power Off  

LP0 (optional)  

CPU power down (LP2)  

BCT, Full-speed  



 

www.nvidia.com 

 

Notice 
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER 
DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO 
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND ALL 
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY 
OR CONDITION OF TITLE, MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE 
AND ON-INFRINGEMENT, ARE HEREBY EXCLUDED TO THE MAXIMUM EXTENT PERMITTED BY LAW.  

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under 
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

Trademarks 
NVIDIA, the NVIDIA logo, Tegra, and Jetson are trademarks or registered trademarks of NVIDIA Corporation in 
the United States and other countries. Other company and product names may be trademarks of the 
respective companies with which they are associated. 

Copyright  
© 2016 NVIDIA Corporation. All rights reserved.  


	Platform Adaptation and Bring-Up Guide
	Porting Linux for Tegra (L4T) to Your Design
	Board Naming
	Placeholders in the Porting Instructions
	Pinmux Changes
	To customize the pinmux spreadsheet

	Exporting Pinmux for U-Boot
	To customize tegra-pinmux-scripts for your board
	To save the spreadsheet in CSV format
	To generate the U-Boot pinmux header file

	Exporting Pinmux for the L4T Linux Kernel
	To generate device tree files for your pinmux configuration

	Porting U-Boot
	Porting the Linux Kernel
	Regulator

	Pad Power Detection
	GPIO
	Interrupt
	Key

	Other Considerations When Porting
	To flash the build image
	To flash with BOARDID if the design does not use EEPROM
	To change the UART port to UARTA

	Hardware Bring-Up Checklist
	Before Power-On
	Initial Power-On
	Initial Software Flashing
	Power
	Power Optimization
	USB 2.0 PHY
	USB 3.0
	HDMI
	Audio
	UART
	SD Card (SDMMC1)
	Sensors I2C: General
	Sensors I2C: Touch Screen (Optional)
	PEX (Optional)
	SATA (Optional)
	Embedded Display(s) (Optional)
	Imager(s) (Optional)

	Software Bring-Up Checklist
	Preparation
	Bring-up Hardware Validation
	U-Boot Port and Boot Validation
	Kernel and Peripherals, Port and Validation
	System Power and Clocks




