

1

DYNAMIC PARALLELISM IN CUDA

Dynamic Parallelism in CUDA 5.0 enables a CUDA kernel to create and synchronize

new nested work, using the CUDA runtime API to launch other kernels, optionally

synchronize on kernel completion, perform device memory management, and create

and use streams and events, all without CPU involvement.

Here is an example of calling a CUDA kernel from within a kernel.

__global__ ChildKernel(void* data){

 //Operate on data

}

__global__ ParentKernel(void *data){

 if (threadIdx.x == 0) {

 ChildKernel<<<1, 32>>>(data);

 cudaThreadSynchronize();

 }

 __syncthreads();

 //Operate on data

}

// In Host Code

ParentKernel<<<8, 32>>>(data);

We call the launching kernel the “parent”, and the

new grid it launches the “child”. Child kernels may

themselves launch work, creating a “nested”

execution hierarchy. Launches may continue to a

depth of 24 generations, but this depth will

typically be limited by available resources on the

GPU. All child launches must complete in order

for the parent kernel to be seen as completed. For

example in the above diagram, kernel C will not be

able to begin execution until kernel Z has completed, because kernels X, Y and Z are

seen as part of kernel B.

The language interface and Device Runtime API available in CUDA C/C++ is a subset of

the CUDA Runtime API available on the Host. The syntax and semantics of the CUDA

Runtime API have been retained on the device in order to facilitate ease of code reuse for

API routines that may run in either the host or device environments. A kernel can also

call GPU libraries such as CUBLAS directly without needing to return to the CPU.

By using CUDA Dynamic Parallelism, algorithms and programming patterns that had

previously required modifications to eliminate recursion, irregular loop structure, or

other constructs that do not fit a flat, single-level of parallelism can be more

transparently expressed. Program flow control can be done from within a CUDA kernel

reducing PCI traffic in cases where data would otherwise have been copied back and

forth between GPU and CPU between kernel launches. CUDA Dynamic Parallelism also

allows for hierarchical algorithms to be written, where the data from a parent kernel

computation is used to decide how to partition the next lower level of the hierarchical

computation.

An example use of CUDA Dynamic Parallelism is adaptive grid generation in a

computational fluid dynamics simulation, where grid resolution is focused in regions of

greatest change. Without Dynamic Parallelism, performing such a simulation in CUDA

requires an expensive pre-processing pass over the data.

With CUDA Dynamic Parallelism, the grid resolution can be dynamically adapted at

run time based on the simulation data. Starting with a coarse grid, the simulation can

“zoom in” on areas of interest and avoid unnecessary calculation in areas with little

change. While this could be done using CPU launched kernels, it is more efficient for the

GPU to refine the grid directly by analyzing and launching additional work as needed.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and <add all the other product names listed in this document> are trademarks
and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2012 NVIDIA Corporation. All rights reserved.

