
USER GUIDE

v2021.4.1 | September 2021

User Manual

www.nvidia.com
User Guide v2021.4.1 | ii

TABLE OF CONTENTS

Chapter 1. Profiling from the CLI.. 1
1.1. Installing the CLI on Your Target...1
1.2. Command Line Options.. 1

1.2.1. CLI Global Options.. 2
1.3. CLI Command Switches.. 2

1.3.1. CLI Profile Command Switch Options.. 3
1.3.2. CLI Start Command Switch Options...26
1.3.3. CLI Stop Command Switch Options... 35
1.3.4. CLI Cancel Command Switch Options...36
1.3.5. CLI Launch Command Switch Options.. 37
1.3.6. CLI Shutdown Command Switch Options... 51
1.3.7. CLI Export Command Switch Options...52
1.3.8. CLI Stats Command Switch Options...53
1.3.9. CLI Analyze Command Switch Options... 58
1.3.10. CLI Status Command Switch Options.. 60
1.3.11. CLI Sessions Command Switch Subcommands..61

1.4. Example Single Command Lines.. 61
1.5. Example Interactive CLI Command Sequences... 63
1.6. Example Stats Command Sequences... 69
1.7. Example Output from --stats Option...70
1.8. Importing and Viewing Command Line Results Files...72
1.9. Using the CLI to Analyze MPI Codes... 74

1.9.1. Tracing MPI API calls.. 74
1.9.2. Using the CLI to Profile Applications Launched with mpirun............................... 74

Chapter 2. Profiling from the GUI.. 77
2.1. Profiling Linux Targets from the GUI...77

2.1.1. Connecting to the Target Device..77
2.1.2. System-Wide Profiling Options...79

2.1.2.1. Linux x86_64.. 79
2.1.2.2. Linux for Tegra..81

2.1.3. Target Sampling Options.. 81
Target Sampling Options for Workstation... 81
Target Sampling Options for Embedded Linux..82

2.1.4. Hotkey Trace Start/Stop.. 83
2.1.5. Launching and Attaching to Processes... 83

2.2. Profiling Windows Targets from the GUI.. 84
Remoting to a Windows Based Machine.. 84
Hotkey Trace Start/Stop.. 84
Target Sampling Options on Windows...85
Symbol Locations... 86

www.nvidia.com
User Guide v2021.4.1 | iii

2.3. Profiling Android Targets from the GUI..87
Configuring Your Android Device.. 87
Application...88

2.4. Profiling QNX Targets from the GUI.. 89
Chapter 3. Export Formats... 90

3.1. SQLite Schema Reference..90
3.2. JSON and Text Format Description... 91

Chapter 4. Report Scripts...92
Report Scripts Shipped With Nsight Systems... 92

apigpusum[:base] -- CUDA API & GPU Summary (CUDA API + kernels + memory ops)........... 92
cudaapisum -- CUDA API Summary.. 93
cudaapitrace -- CUDA API Trace... 93
gpukernsum[:base] -- CUDA GPU Kernel Summary... 93
gpumemsizesum -- GPU Memory Operations Summary (by Size)................................... 94
gpumemtimesum -- GPU Memory Operations Summary (by Time)................................. 94
gpusum[:base] -- GPU Summary (kernels + memory operations)...................................95
gputrace -- CUDA GPU Trace...95
nvtxppsum -- NVTX Push/Pop Range Summary..96
openmpevtsum -- OpenMP Event Summary.. 96
osrtsum -- OS Runtime Summary.. 96
vulkanmarkerssum -- Vulkan Range Summary... 97
pixsum -- PIX Range Summary... 97
khrdebugsum -- OpenGL KHR_debug Range Summary... 98

Report Formatters Shipped With Nsight Systems.. 98
Column... 98
Table.. 99
CSV..99
TSV.. 100
JSON...100
HDoc...100
HTable...101

Chapter 5. Migrating from NVIDIA nvprof.. 102
Using the Nsight Systems CLI nvprof Command.. 102
CLI nvprof Command Switch Options...102
Next Steps...105

Chapter 6. Profiling in a Docker on Linux Devices.. 106
Chapter 7. Direct3D Trace.. 108

7.1. D3D11 API trace..108
7.2. D3D12 API Trace... 108

Chapter 8. WDDM Queues... 112
Chapter 9. Vulkan API Trace..114

9.1. Vulkan Overview... 114
9.2. Pipeline Creation Feedback.. 115

www.nvidia.com
User Guide v2021.4.1 | iv

9.3. Vulkan GPU Trace Notes.. 116
Chapter 10. Stutter Analysis..117

10.1. FPS Overview..117
10.2. Frame Health..120
10.3. GPU Memory Utilization... 121
10.4. Vertical Synchronization...121

Chapter 11. OpenMP Trace..122
Chapter 12. OS Runtime Libraries Trace...124

12.1. Locking a Resource...125
12.2. Limitations...125
12.3. OS Runtime Libraries Trace Filters.. 126
12.4. OS Runtime Default Function List... 127

Chapter 13. NVTX Trace... 130
Chapter 14. CUDA Trace...133

14.1. CUDA GPU Memory Allocation Graph... 136
14.2. Unified Memory Transfer Trace.. 136

Unified Memory CPU Page Faults.. 138
Unified Memory GPU Page Faults.. 139

14.3. CUDA Default Function List for CLI... 141
14.4. cuDNN Function List for X86 CLI...143

Chapter 15. OpenACC Trace.. 145
Chapter 16. OpenGL Trace..147

16.1. OpenGL Trace Using Command Line...149
Chapter 17. Custom ETW Trace..151
Chapter 18. GPU Metric Sampling... 153

Overview...153
Launching GPU Metric Sampling from the GUI..154
Available Metrics... 155
Exporting and Querying Data.. 158
Limitations.. 158

Chapter 19. NVIDIA Video Codec SDK Trace...160
19.1. NV Encoder API Functions Traced by Default.. 161
19.2. NV Decoder API Functions Traced by Default..162

Chapter 20. Network Communication Profiling...163
20.1. MPI API Trace... 164
20.2. OpenSHMEM Library Trace.. 165
20.3. UCX Library Trace.. 166
20.4. NVIDIA NVSHMEM and NCCL Trace... 167

Chapter 21. Debug Versions of ELF Files.. 168
Chapter 22. Reading Your Report in GUI...169

22.1. Generating a New Report... 169
22.2. Opening an Existing Report... 169
22.3. Sharing a Report File.. 169

www.nvidia.com
User Guide v2021.4.1 | v

22.4. Report Tab... 169
22.5. Analysis Summary View..170
22.6. Timeline View... 170

22.6.1. Timeline...170
Row Height.. 171

22.6.2. Events View.. 171
22.6.3. Function Table Modes.. 173
22.6.4. Filter Dialog..176

22.7. Diagnostics Summary View..176
22.8. Symbol Resolution Logs View...177

Chapter 23. Adding Report to the Timeline...178
23.1. Time Synchronization.. 178
23.2. Timeline Hierarchy... 180
23.3. Example: MPI..181
23.4. Limitations...182

Chapter 24. Using Nsight Systems Expert System..183
Using Expert System from the CLI..183
Using Expert System from the GUI... 183
Expert System Rules...184

Synchronous Operation Rules... 184
GPU Low Utilization Rules.. 185

Chapter 25. Broken Backtraces on Tegra.. 187
Chapter 26. Launch Processes in Stopped State... 189

26.1. LD_PRELOAD... 189
26.2. Launcher... 190

Chapter 27. Import NVTXT..192
Commands...193

Chapter 28. Visual Studio Integration.. 195
Chapter 29. Troubleshooting... 197

GUI Troubleshooting... 197
Android Targets...198
Symbol Resolution... 198
Verbose Logging on Linux Targets...200
Verbose Logging on Windows Targets...200
QNX Troubleshooting.. 201

Chapter 30. Other Resources...202
Feature Videos... 202
Blog Posts... 202
Training Seminars.. 202
Conference Presentations.. 203
For More Support.. 203

www.nvidia.com
User Guide v2021.4.1 | vi

www.nvidia.com
User Guide v2021.4.1 | 1

Chapter 1.
PROFILING FROM THE CLI

1.1. Installing the CLI on Your Target
The Nsight Systems CLI provides a simple interface to collect on a target without using
the GUI. The collected data can then be copied to any system and analyzed later.

The CLI is distributed in the Target directory of the standard Nsight Systems download
package. Users who want to install the CLI as a standalone tool can do so by copying
the files within the Target directory. If you want the CLI output file (.qdstrm) to be auto-
converted (to .nsys-rep) after the analysis is complete, you will need to copy the host
directory as well.

If you wish to run the CLI without root (recommended mode), you will want to install in
a directory where you have full access.

1.2. Command Line Options
The Nsight Systems command lines can have one of two forms:
nsys [global_option]

or
nsys [command_switch][optional command_switch_options][application] [optional
 application_options]

All command line options are case sensitive. For command switch options, when short
options are used, the parameters should follow the switch after a space; e.g. -s cpu.
When long options are used, the switch should be followed by an equal sign and then
the parameter(s); e.g. --sample=cpu.

For this version of Nsight Systems, you must launch a process from the command line
to begin analysis. If an instance of the requested process is already running when the
CLI command is issued, the collection will fail. The launched process will be terminated
when collection is complete unless the user specifies the --kill none option (details
below).

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 2

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight
Systems session is defined by a sequence of CLI commands that define one or more
collections (e.g. when and what data is collected). A session begins with either a start,
launch, or profile command. A session ends with a shutdown command, when a profile
command terminates, or, if requested, when all the process tree(s) launched in the
session exit. Multiple sessions can run concurrently on the same system.

1.2.1. CLI Global Options

Short Long Description

-h --help Help message providing
information about available
command switches and
their options.

-v --version Output Nsight Systems CLI
version information.

1.3. CLI Command Switches
The Nsight Systems command line interface can be used in two modes. You may launch
your application and begin analysis with options specified to the nsys profile
command. Alternatively, you can control the launch of an application and data collection
using interactive CLI commands.

Command Description

profile A fully formed profiling description
requiring and accepting no further input.
The command switch options used
(see below table) determine when the
collection starts, stops, what collectors are
used (e.g. API trace, IP sampling, etc.),
what processes are monitored, etc.

start Start a collection in interactive mode. The
start command can be executed before or
after a launch command.

stop Stop a collection that was started in
interactive mode. When executed, all
active collections stop, the CLI process
terminates but the application continues
running.

cancel Cancels an existing collection started
in interactive mode. All data already
collected in the current collection is
discarded.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 3

Command Description

launch In interactive mode, launches an
application in an environment that
supports the requested options. The
launch command can be executed before
or after a start command.

shutdown Disconnects the CLI process from the
launched application and forces the CLI
process to exit. If a collection is pending or
active, it is cancelled

export Generates an export file from an
existing .nsys-rep file. For more
information about the exported formats
see the /documentation/nsys-exporter
directory in your Nsight Systems
installation directory.

stats Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate statistical information.

analyze Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate expert systems report.

status Reports on the status of a CLI-based
collection or the suitability of the profiling
environment.

sessions Gives information about all sessions
running on the system.

nvprof Special option to help with transition
from legacy NVIDIA nvprof tool. Calling
nsys nvprof [options] will provide
the best available translation of nvprof
[options] See Migrating from NVIDIA
nvprof topic for details. No additional
functionality of nsys will be available
when using this option. Note: Not
available on IBM Power targets.

1.3.1. CLI Profile Command Switch Options
After choosing the profile command switch, the following options are available.
Usage:
nsys [global-options] profile [options] <application> [application-arguments]

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 4

Short Long Possible
Parameters

Default Switch
Description

-t --trace cuda, nvtx,
cublas, cublas-
verbose,
cusparse,
cusparse-
verbose, cudnn,
opengl, opengl-
annotations,
openacc,
openmp, osrt,
mpi, nvvideo,
vulkan, vulkan-
annotations,
dx11, dx11-
annotations,
dx12, dx12-
annotations,
oshmem, ucx,
wddm, none

cuda, opengl,
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.
Multiple APIs
can be selected,
separated
by commas
only (no
spaces). Since
OpenACC,
cuDNN and
cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information
on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding
API will also
be traced. If the
none option
is selected,
no APIs are
traced and no
other API can
be selected.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 5

Short Long Possible
Parameters

Default Switch
Description

Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on
IBM Power
target.

--mpi-impl openmpi,mpich openmpi When using
--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --
trace=mpi is not
supported.

-s --sample cpu, none cpu Select whether
or not to collect
CPU samples. If
none is selected,
sampling
is disabled.
Note: Thread
scheduling
information
will still be
collected unless
--cpuctxsw
switch is set to
none.

--cpuctxsw process-tree,
none

process-tree Trace OS thread
scheduling
activity. Select
'none' to
disable tracing

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 6

Short Long Possible
Parameters

Default Switch
Description

CPU context
switches.

--sampling-
period

integers
between
4000000 and
125000

1000000 The number
of CPU
Instructions
Retired events
counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured, call
stacks may also
be collected.
The smaller
the sampling
period, the
higher the
sampling rate.
Note that
lower sampling
periods will
increase
overhead and
significantly
increase the size
of the result
file(s). This
option is only
supported for
Linux targets.

--sampling-
frequency

integers
between 100
and 8000

1000 Specify the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency
is 8000 Hz.
This option

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 7

Short Long Possible
Parameters

Default Switch
Description

is supported
only for QNX,
Linux for Tegra,
and Windows
targets.

--sampling-
trigger

timer, sched,
perf, cuda

timer,sched Specify
backtrace
collection
trigger.
Multiple APIs
can be selected,
separated by
commas only
(no spaces).
Available in
Nsight Systems
Embedded
Platforms
Edition only.

-b --backtrace fp,lbr,dwarf,none lbr Select the
backtrace
method to use
while sampling.
The option lbr
uses Intel(c)
Corporation's
Last Branch
Records,
available
only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option fp is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
dwarf uses
DWARF's CFI

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 8

Short Long Possible
Parameters

Default Switch
Description

(Call Frame
Information).

--command-file < filename > none Open a file
that contains
profile switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

-y --delay < seconds > 0 Collection
start delay in
seconds.

-d --duration < seconds > NA Collection
duration
in seconds,
duration must
be greater
than zero.
Note that the
profiler does
not detach from
the application,
it lives until
application
termination.

-e --env-var A=B NA Set
environment
variable(s) for
the application
process to
be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 9

Short Long Possible
Parameters

Default Switch
Description

be specified as
A=B,C=D.

--etw-provider "<name>,<guid>",
or path to JSON
file

none Add custom
ETW trace
provider(s). If
you want to
specify more
attributes
than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--osrt-threshold < nanoseconds > 1000 ns Set the
minimum
time that a
OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead
and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integer 24 Set the
depth for the
backtraces

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 10

Short Long Possible
Parameters

Default Switch
Description

collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds 80000 Set the
duration, in
nanoseconds,
that all OS
runtime
libraries
calls must
execute before
backtraces are
collected.

--cudabacktrace all, none,
kernel, memory,
sync, other

none When tracing
CUDA APIs,
enable the
collection of
a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead
may occur.
Values may
be combined
using ','. Each
value except
'none' may be
appended with
a threshold
after ':'.
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 11

Short Long Possible
Parameters

Default Switch
Description

Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

--cuda-flush-
interval

milliseconds 0 Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage.
Immediately
before data
is saved to
storage, a
cudaDeviceSynchonize
call is inserted
into the
workflow
which
will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds
an interval of
10 seconds is
recommended.

--cuda-
memory-usage

true, false false Track the
GPU memory
usage by
CUDA kernels.
Applicable only

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 12

Short Long Possible
Parameters

Default Switch
Description

when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead.

--cuda-um-gpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime
overhead.

-o --output < filename > report# Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the
value of the
environment
variable.
Any %h

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 13

Short Long Possible
Parameters

Default Switch
Description

pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,nsys-
rep,sqlite} in
the working
directory.

--export sqlite, none none Create
additional
output file(s)
based on the
data collected.
Current
options are
sqlite or none.
WARNING: If
the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

--stats true, false false Generate
summary
statistics after

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 14

Short Long Possible
Parameters

Default Switch
Description

the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(.qdstrm,.nsys-
rep, .sqlite)

-w --show-output true, false true If true, send
target process’
stdout and
stderr streams
to the console.

-n --inherit-
environment

true, false true When true,
the current
environment
variables
and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only
the tool’s
environment
variables will
be specified for
the launched
process.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 15

Short Long Possible
Parameters

Default Switch
Description

-x --stop-on-exit true, false true If true, stop
collecting
automatically
when the
launched
process has
exited or when
the duration
expires -
whichever
occurs first. If
false, duration
must be set and
the collection
stops only
when the
duration
expires. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--wait primary,all all If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--trace-fork-
before-exec

true, false false If true, trace
any child
process after
fork and before
they call one
of the exec
functions.
Beware, tracing
in this interval
relies on

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 16

Short Long Possible
Parameters

Default Switch
Description

undefined
behavior
and might
cause your
application
to crash or
deadlock. Note:
Not available
for Windows
targets.

-c --capture-range none,
cudaProfilerApi,
hotkey, nvtx

none When --
capture-range is
used, profiling
will start
only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
Hotkey works
for graphic
applications
only.

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],
repeat-
shutdown:N

stop-shutdown Specify the
desired
behavior when
a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 17

Short Long Possible
Parameters

Default Switch
Description

end. Any
subsequent
capture ranges
will be ignored.
Target app
will continue
running.
If stop-
shutdown,
collection will
stop at capture
range end and
session will be
shutdown. If
repeat[:N],
collection will
stop at capture
range end and
subsequent
capture
ranges will
trigger more
collections. Use
the optional
:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.
If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown
and repeat-
shutdown:N,
use --kill option

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 18

Short Long Possible
Parameters

Default Switch
Description

to specify
whether target
app should
be terminated
when shutting
down session.

--stop-on-range-
end

true,false true Stop profiling
when the
capture
range ends.
Applicable
only when
used along
with --capture-
range option.
WARNING:
This switch
has been
deprecated
and will be
removed in a
future version.

-p --nvtx-capture range@domain,range,range@ Specify NVTX
capture range.
See below
for details.
This option
is applicable
only when
used along
with --capture-
range=nvtx.

--ftrace Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/
event1,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not available

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 19

Short Long Possible
Parameters

Default Switch
Description

on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--vsync true, false false Collect vsync
events. If
collection of
vsync events
is enabled,
display/
display_scanline
ftrace events
will also be
captured.

--dx-force-
declare-
adapter-
removal-
support

true, false false The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding
it. Enabling
this flag
makes a call to
DXGIDeclareAdapterRemovalSupport()
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

--gpuctxsw true,false false Trace GPU
context
switches.
Note that this
requires driver
r435.17 or
later and root
permission.
Not available

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 20

Short Long Possible
Parameters

Default Switch
Description

on IBM Power
targets.

--gpu-metrics-
device

GPU ID, help,
none

none Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics-
frequency

integer 10000 Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000(Hz).

--gpu-metrics-
set

index first Specify metric
set for GPU
Metrics
sampling.
The argument
must be one of
indices reported
by --gpu-
metrics-
set=help
switch. Default
is the first
metric set
that supports
selected GPU.

--kill none, sigkill,
sigterm, signal
number

sigterm Send signal
to the target
application's
process group.

--session-new [a-Z][0-9,a-
Z,spaces]

profile-<id>-
<application>

Name the
session
created by the

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 21

Short Long Possible
Parameters

Default Switch
Description

command.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--retain-etw-
files

true, false false If true, retains
ETW files
generated
by the trace,
merges and
moves the files
to the output
directory.

--opengl-gpu-
workload

true, false true If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=opengl
is specified.
This option is
not supported

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 22

Short Long Possible
Parameters

Default Switch
Description

on IBM Power
targets.

--vulkan-gpu-
workload

true, false true If true, trace
the Vulkan
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--dx12-gpu-
workload

true, false true If true, trace
the DX12
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

--dx12-wait-
calls

true, false true If true, trace
wait calls that
block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 23

Short Long Possible
Parameters

Default Switch
Description

--wddm-
additional-
events

true, false true If true, collect
additional
range of
ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch
is applicable
only when --
trace=wddm
is specified.
This option is
only supported
on Windows
targets.

--hotkey-
capture

'F1' to 'F12' 'F12' Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey is
specified.

--cpu-core-
events

0x11,0x13,...,none %s Collect per-core
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces). Use
the --cpu-core-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 24

Short Long Possible
Parameters

Default Switch
Description

Platforms
Edition only.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none Collect per-
cluster Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpu-socket-
events

0x2a, 0x2c, ...,
none

none Collect per-
socket Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--process-scope main, process-
tree, system-
wide

main Select which
process(es)
to trace.
Available in
Nsight Systems

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 25

Short Long Possible
Parameters

Default Switch
Description

Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--accelerator-
trace

none, nvmedia none Collect other
accelerators
workload
trace from
the hardware
engine units.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--clock-
frequency-
changes

true, false false Collect clock
frequency
changes.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--xhv-trace < filepath
pct.json >

none Collect
hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--el1-sampling true, false false Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 26

Short Long Possible
Parameters

Default Switch
Description

--el1-sampling-
config

< filepath
config.json >

none EL1 sampling
config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

1.3.2. CLI Start Command Switch Options
After choosing the start command switch, the following options are available. Usage:
nsys [global-options] start [options]

Short Long Possible
Parameters

Default Switch
Description

-c --capture-range none,
cudaProfilerApi,
hotkey, nvtx

none When --
capture-range is
used, profiling
will start
only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
hotkey works
for graphic
applications
only.

-o --output < filename > report# Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the
value of the
environment
variable.
Any %h

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 27

Short Long Possible
Parameters

Default Switch
Description

pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{qdstrm,nsys-
rep,sqlite} in
the working
directory.

--export sqlite, hdf, text,
json, none

none Create
additional
output file(s)
based on the
data collected.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

--stats true, false false Generate
summary
statistics after
the collection.
WARNING:
When set to

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 28

Short Long Possible
Parameters

Default Switch
Description

true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

-f --force-
overwrite

true, false false If true,
overwrite all
existing result
files with same
output filename
(.qdstrm,.nsys-
rep, .sqlite)

-x --stop-on-exit true, false true If true, stop
collecting
automatically
when all
tracked
processes have
exited or when
stop command
is issued -
whichever
occurs first.
If false, stop
only on stop
command.
Note: When this
is true, stop
command is
optional. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],

stop-shutdown Specify the
desired
behavior when

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 29

Short Long Possible
Parameters

Default Switch
Description

repeat-
shutdown:N

a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any
subsequent
capture ranges
will be ignored.
Target app
will continue
running.
If stop-
shutdown,
collection will
stop at capture
range end and
session will be
shutdown. If
repeat[:N],
collection will
stop at capture
range end and
subsequent
capture
ranges will
trigger more
collections. Use
the optional
:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 30

Short Long Possible
Parameters

Default Switch
Description

collected.
If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown
and repeat-
shutdown:N,
use --kill option
to specify
whether target
app should
be terminated
when shutting
down session.

--stop-on-range-
end

true,false true Stop profiling
when the
capture
range ends.
Applicable
only when
used along
with --capture-
range option.
WARNING:
This switch
has been
deprecated
and will be
removed in a
future version.

--etw-provider "<name>,<guid>",
or path to JSON
file

none Add custom
ETW trace
provider(s). If
you want to
specify more
attributes
than Name
and GUID,
provide a JSON
configuration

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 31

Short Long Possible
Parameters

Default Switch
Description

file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--dx-force-
declare-
adapter-
removal-
support

true, false false The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding
it. Enabling
this flag
makes a call to
DXGIDeclareAdapterRemovalSupport()
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

--ftrace Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/
event1,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not supported
on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 32

Short Long Possible
Parameters

Default Switch
Description

configured
events. Default
resets the ftrace
configuration.

--gpu-metrics-
device

GPU ID, help,
none

none Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics-
frequency

integer 10000 Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000(Hz).

--gpu-metrics-
set

index first Specify metric
set for GPU
Metrics
sampling.
The argument
must be one of
indices reported
by --gpu-
metrics-
set=help
switch. Default
is the first
metric set
that supports
selected GPU.

--gpuctxsw true,false false Trace GPU
context
switches.
Note that this
requires driver

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 33

Short Long Possible
Parameters

Default Switch
Description

r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

--session session
identifier

none Start the
application in
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new [a-Z][0-9,a-
Z,spaces]

[default] Start the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 34

Short Long Possible
Parameters

Default Switch
Description

%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--vsync true, false false Collect vsync
events. If
collection of
vsync events
is enabled,
display/
display_scanline
ftrace events
will also be
captured.

--process-scope main, process-
tree, system-
wide

main Select which
process(es)
to trace.
Available in
Nsight Systems
Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--accelerator-
trace

none, nvmedia none Collect other
accelerators
workload
trace from
the hardware

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 35

Short Long Possible
Parameters

Default Switch
Description

engine units.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--clock-
frequency-
changes

true, false false Collect clock
frequency
changes.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--xhv-trace < filepath
pct.json >

none Collect
hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--el1-sampling true, false false Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--el1-sampling-
config

< filepath
config.json >

none EL1 sampling
config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

1.3.3. CLI Stop Command Switch Options
After choosing the stop command switch, the following options are available. Usage:
nsys [global-options] stop [options]

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 36

Short Long Possible
Parameters

Default Switch
Description

--session session
identifier

none Stop the
indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.4. CLI Cancel Command Switch Options
After choosing the cancel command switch, the following options are available. Usage:
nsys [global-options] cancel [options]

Short Long Possible
Parameters

Default Switch
Description

--session session
identifier

none Cancel the
indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 37

Short Long Possible
Parameters

Default Switch
Description

pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.5. CLI Launch Command Switch Options
After choosing the launch command switch, the following options are available. Usage:
nsys [global-options] launch [options] <application> [application-arguments]

Short Long Possible
Parameters

Default Switch
Description

-t --trace cuda, nvtx,
cublas, cublas-
verbose,
cusparse,
cusparse-
verbose, cudnn,
opengl, opengl-
annotations,
openacc,
openmp, osrt,
mpi, nvvideo,
vulkan, vulkan-
annotations,
dx11, dx11-
annotations,
dx12, dx12-
annotations,
oshmem, ucx,
wddm, none

cuda, opengl,
nvtx, osrt

Select the
API(s) to be
traced. The osrt
switch controls
the OS runtime
libraries tracing.
Multiple APIs
can be selected,
separated
by commas
only (no
spaces). Since
OpenACC,
cuDNN and
cuBLAS
APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 38

Short Long Possible
Parameters

Default Switch
Description

markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information
on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding
API will also
be traced. If the
none option
is selected,
no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on
IBM Power
target.

--mpi-impl openmpi,mpich openmpi When using
--trace=mpi
to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 39

Short Long Possible
Parameters

Default Switch
Description

trace=mpi is not
supported.

-s --sample cpu, none cpu Select whether
or not to collect
CPU samples. If
none is selected,
sampling
is disabled.
Note: Thread
scheduling
information
will still be
collected unless
--cpuctxsw
switch is set to
none.

--cpuctxsw process-tree,
none

process-tree Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.

--sampling-
period

integers
between
4000000 and
125000

1000000 The number
of CPU
Instructions
Retired events
counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured, call
stacks may also
be collected.
The smaller
the sampling
period, the
higher the
sampling rate.
Note that
lower sampling
periods will
increase

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 40

Short Long Possible
Parameters

Default Switch
Description

overhead and
significantly
increase the
size of the
result file(s).
This option
is available
only on Linux
targets.

--sampling-
frequency

integers
between 100
and 8000

1000 Specify the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency
is 8000 Hz.
This option
is supported
only on QNX,
Linux for Tegra,
and Windows
targets.

-b --backtrace fp,lbr,dwarf,none lbr Select the
backtrace
method to use
while sampling.
The option lbr
uses Intel(c)
Corporation's
Last Branch
Records,
available
only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option fp is
frame pointer
and assumes

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 41

Short Long Possible
Parameters

Default Switch
Description

that frame
pointers were
enabled during
compilation.
The option
dwarf uses
DWARF's CFI
(Call Frame
Information).

--command-file < filename > none Open a file
that contains
launch switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

-e --env-var A=B NA Set
environment
variable(s) for
the application
process to
be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--etw-provider "<name>,<guid>",
or path to JSON
file

none Add custom
ETW trace
provider(s). If
you want to
specify more
attributes
than Name
and GUID,

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 42

Short Long Possible
Parameters

Default Switch
Description

provide a JSON
configuration
file as outlined
below. This
switch can be
used multiple
times to add
multiple
providers.
Note: Only
available for
Windows
targets.

--osrt-threshold < nanoseconds > 1000 ns Set the
minimum
time that a
OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead
and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integer 24 Set the
depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds 80000 Set the
duration, in
nanoseconds,
that all OS
runtime
libraries
calls must

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 43

Short Long Possible
Parameters

Default Switch
Description

execute before
backtraces are
collected.

--cudabacktrace all, none,
kernel, memory,
sync, other

none When tracing
CUDA APIs,
enable the
collection of
a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead
may occur.
Values may
be combined
using ','. Each
value except
'none' may be
appended with
a threshold
after ':'.
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

--cuda-flush-
interval

milliseconds 0 Set the interval,
in milliseconds,
when buffered

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 44

Short Long Possible
Parameters

Default Switch
Description

CUDA data is
automatically
saved to
storage.
Immediately
before data
is saved to
storage, a
cudaDeviceSynchonize
call is inserted
into the
workflow
which
will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds
an interval of
10 seconds is
recommended.

--cuda-
memory-usage

true, false false Track the
GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false false This switch
tracks the page

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 45

Short Long Possible
Parameters

Default Switch
Description

faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead.

--cuda-um-gpu-
page-faults

true, false false This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime
overhead.

-w --show-output true, false true If true, send
target process’
stdout and
stderr streams
to the console

-n --inherit-
environment

true, false true When true,
the current
environment
variables
and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only
the tool’s
environment
variables will
be specified for

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 46

Short Long Possible
Parameters

Default Switch
Description

the launched
process.

-p --nvtx-capture message@idomainnone Specify NVTX
capture range.
See below for
details.

--trace-fork-
before-exec

true, false false If true, trace
any child
process after
fork and before
they call one
of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior
and might
cause your
application
to crash or
deadlock. Note:
Not available
for Windows
targets.

--wait primary,all all If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

--session session
identifier

none Launch the
application in
the indicated
session.
The option
argument must

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 47

Short Long Possible
Parameters

Default Switch
Description

represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new [a-Z][0-9,a-
Z,spaces]

[default] Launch the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable
or space
characters. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 48

Short Long Possible
Parameters

Default Switch
Description

be substituted
with %.

--opengl-gpu-
workload

true, false true If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=opengl
is specified.
This option is
not supported
on IBM Power
targets.

--vulkan-gpu-
workload

true, false true If true, trace
the Vulkan
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--dx12-gpu-
workload

true, false true If true, trace
the DX12
workloads'
GPU activity.
Note that
this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 49

Short Long Possible
Parameters

Default Switch
Description

--dx12-wait-
calls

true, false true If true, trace
wait calls that
block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12
is specified.
This option is
only supported
on Windows
targets.

--wddm-
additional-
events

true, false true If true, collect
additional
range of
ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch
is applicable
only when --
trace=wddm
is specified.
This option is
only supported
on Windows
targets.

--hotkey-
capture

'F1' to 'F12' 'F12' Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey is
specified.

--cpu-core-
events

0x11,0x13,...,none %s Collect per-core
PMU counters.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 50

Short Long Possible
Parameters

Default Switch
Description

Multiple values
can be selected,
separated by
commas only
(no spaces). Use
the --cpu-core-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none Collect per-
cluster Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpu-socket-
events

0x2a, 0x2c, ...,
none

none Collect per-
socket Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 51

Short Long Possible
Parameters

Default Switch
Description

switch to see
the full list
of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

1.3.6. CLI Shutdown Command Switch Options
After choosing the shutdown command switch, the following options are available.
Usage:
nsys [global-options] shutdown [options]

Short Long Possible
Parameters

Default Switch
Description

--kill none, sigkill,
sigterm, signal
number

sigterm Send signal
to the target
application's
process group.

--session session
identifier

none Shutdown
the indicated
session.
The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 52

Short Long Possible
Parameters

Default Switch
Description

% pattern will
be substituted
with %.

1.3.7. CLI Export Command Switch Options
After choosing the export command switch, the following options are available. Usage:
nsys [global-options] export [options] [nsys-rep-file]

Short Long Possible
Parameters

Default Switch
Description

-o --output <filename> <inputfile.ext> Set the .output
filename. The
default is
the .nsys-rep
filename with
the extension
for the chosen
format.

-t --type sqlite, hdf, text,
json, info

sqlite Export format
type. HDF
format is
supported
only on x86_64
Linux and
Windows

-f --force-
overwrite

true, false false If true,
overwrite
existing result
file

-l --lazy true, false true Controls if table
creation is lazy
or not. When
true, a table
will only be
created when it
contains data.
This option will
be deprecated
in the future,
and all exports
will be non-
lazy. This
affects SQLite

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 53

Short Long Possible
Parameters

Default Switch
Description

and HDF5
exports only.

-q --quiet true, false false If true, do
not display
progress bar

--separate-
strings

true,false false Output stored
strings and
thread names
separately, with
one value per
line. This affects
JSON and text
output only.

1.3.8. CLI Stats Command Switch Options
The nsys stats command generates a series of summary or trace reports. These
reports can be output to the console, or to individual files, or piped to external processes.
Reports can be rendered in a variety of different output formats, from human readable
columns of text, to formats more appropriate for data exchange, such as CSV.

Reports are generated from an SQLite export of a .nsys-rep file. If a .nsys-rep file is
specified, Nsight Systems will look for an accompanying SQLite file and use it. If no
SQLite file exists, one will be exported and created.

Individual reports are generated by calling out to scripts that read data from the SQLite
file and return their report data in CSV format. Nsight Systems ingests this data and
formats it as requested, then displays the data to the console, writes it to a file, or pipes
it to an external process. Adding new reports is as simple as writing a script that can
read the SQLite file and generate the required CSV output. See the shipped scripts as an
example. Both reports and formatters may take arguments to tweak their processing. For
details on shipped scripts and formatters, see Report Scripts topic.

Reports are processed using a three-tuple that consists of 1) the requested report (and
any arguments), 2) the presentation format (and any arguments), and 3) the output
(filename, console, or external process). The first report specified uses the first format
specified, and is presented via the first output specified. The second report uses the
second format for the second output, and so forth. If more reports are specified than
formats or outputs, the format and/or output list is expanded to match the number of
provided reports by repeating the last specified element of the list (or the default, if
nothing was specified).

nsys stats is a very powerful command and can handle complex argument structures,
please see the topic below on Example Stats Command Sequences.

After choosing the stats command switch, the following options are available. Usage:

nsys [global-options] stats [options] [input-file]

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 54

Short Long Possible
Parameters

Default Switch
Description

--help-reports <report_name>,
ALL, [none]

none With no
argument, give
a summary of
the available
summary and
trace reports. If
a report name
is given, a
more detailed
explanation of
the report is
displayed. If
ALL is given, a
more detailed
explanation of
all available
reports is
displayed.

--help-formats <format_name>,
ALL, [none]

none With no
argument, give
a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
that format is
displayed. If
ALL is given, a
more detailed
explanation of
all available
formats is
displayed.

--sqlite <file.sqlite> Specify the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 55

Short Long Possible
Parameters

Default Switch
Description

from the
specified .nsys-
rep file
before report
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

-r --report See Report
Scripts

Specify the
report(s) to
generate,
including any
arguments. This
option may be
used multiple
times. Multiple
reports
may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
If no reports
are specified,
the following
will be used
as the default
report set:
cudaapisum,
gpukernsum,
gpumemtimesum,
gpumemsizesum,
osrtsum,
nvtxppsum,
openmpevtsum.
See Report
Scripts section
for details
about existing
built-in scripts
and how to
make your own.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 56

Short Long Possible
Parameters

Default Switch
Description

-f --format column, table,
csv, tsv, json,
hdoc, htable, .

Specify
the output
format of the
corresponding
report(s). The
special name
"." indicates the
default format
for the given
output. The
default format
for console
is column,
while files
and process
outputs default
to csv. This
option may be
used multiple
times. Multiple
formats
may also be
specified using
a comma-
separated list
(<name[:args...]
[,name[:args...]...]>).
See Report
Scripts for
options
available with
each format.

-o --output -, @<command>,
<basename>, .

- Specify
the output
mechanism
for the
corresponding
reports(s).
There are
three output
mechanisms:
print to console
(-), output
to command
(@<command>),

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 57

Short Long Possible
Parameters

Default Switch
Description

or output to file
(<basename>).
The option "."
can be used to
specify using
the default
basefile, which
is the basename
of the input file.
The filename
used will be
<basename>_<report&args>.<output_format>.

--report-dir Add a directory
to the path
used to find
report scripts.
This is usually
only needed
if you have
one or more
directories with
personal scripts.
This option
may be used
multiple times.
Each use adds
a new directory
to the end of the
path. The last
two entries in
the path will
always be the
current working
directory,
followed by
the directory
containing the
shipped nsys
reports.

--force-export true, false false Force a re-
export of
the SQLite
file from the
specified .nsys-
rep file, even if

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 58

Short Long Possible
Parameters

Default Switch
Description

an SQLite file
already exists.

--force-
overwrite

true, false false Overwrite any
existing report
file(s).

-q --quiet Only display
errors.

1.3.9. CLI Analyze Command Switch Options
The nsys analyze command generates and outputs to the terminal a report using
expert system rules on existing results. Reports are generated from an SQLite export
of a .nsys-rep file. If a .nsys-rep file is specified, Nsight Systems will look for an
accompanying SQLite file and use it. If no SQLite export file exists, one will be created.

After choosing the analyze command switch, the following options are available.
Usage:

nsys [global-options] analyze [options] [input-file]

Short Long Possible
Parameters

Default Switch
Description

-h --help Print help
message.

--help-rules <report_name>,
ALL, [none]

none With no
argument, list
available rules
with a short
description.
If a rule name
is given, a
more detailed
explanation
of the rule is
displayed. If
ALL is given, a
more detailed
explanation of
all available
rules is
displayed.

--sqlite <file.sqlite> Specify the
SQLite export
filename. If this
file exists, it will

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 59

Short Long Possible
Parameters

Default Switch
Description

be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file
before report
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

-r --rule asyn-memcpy-
pageable,
sync-memcpy,
sync-memset,
sync-api, gpu-
starvation, gpu-
low-utilization

all Specify the
rules(s) to
execute,
including any
arguments. This
option may be
used multiple
times. Multiple
reports
may also be
specified using
a comma-
separated list.
See Expert
Systems section
for details on all
rules.

--force-export true, false false Force a re-
export of
the SQLite
file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

-q --quiet Do not display
verbose
messages.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 60

1.3.10. CLI Status Command Switch Options
After choosing the status command switch, the following options are available. Usage:
nsys [global-options] status [options]

Short Long Possible
Parameters

Default Switch
Description

<none> Returns current
state of the CLI.

-e --environment Returns
information
about the
system
regarding
suitability of
the profiling
environment.

--session session
identifier

none Print the status
of the indicated
session.
The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
%q{ENV_VAR}
pattern will
be substituted
with the
value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 61

1.3.11. CLI Sessions Command Switch Subcommands
After choosing the sessions command switch, the following subcommands are
available. Usage:
nsys [global-options] sessions [subcommand]

Subcommand Description

list List all active sessions including ID, name,
and state information

1.4. Example Single Command Lines
Version Information
nsys -v

Effect: Prints tool version information to the screen.

Default analysis run
nsys profile <application>
 [application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection when the application stops. Trace CUDA, OpenGL, NVTX, and
OS runtime libraries APIs. Collect CPU sampling information and thread scheduling
information. With Nsight Systems Embedded Platforms Edition this will only analysis
the single process. With Nsight Systems Workstation Edition this will trace the process
tree. Generate the report#.nsys-rep file in the default location, incrementing the report
number if needed to avoid overwriting any existing output files.

Limited trace only run
nsys profile --trace=cuda,nvtx -d 20
 --sample=none --cpuctxsw=none -o my_test <application>
 [application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection after 20 seconds or when the application ends. Trace CUDA and
NVTX APIs. Do not collect CPU sampling information or thread scheduling information.
Profile any child processes. Generate the output file as my_test.nsys-rep in the current
working directory.

Delayed start run
nsys profile -e TEST_ONLY=0 -y 20
 <application> [application-arguments]

Effect: Set environment variable TEST_ONLY=0. Launch the application using the given
arguments. Start collecting after 20 seconds and end collection at application exit. Trace
CUDA, OpenGL, NVTX, and OS runtime libraries APIs. Collect CPU sampling and
thread schedule information. Profile any child processes. Generate the report#.nsys-rep
file in the default location, incrementing if needed to avoid overwriting any existing
output files.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 62

Collect ftrace events
nsys profile --ftrace=drm/drm_vblank_event
 -d 20

Effect: Collect ftrace drm_vblank_event events for 20 seconds. Generate the
report#.nsys-rep file in the current working directory. Note that ftrace event collection
requires running as root. To get a list of ftrace events available from the kernel, run the
following:
sudo cat /sys/kernel/debug/tracing/available_events

Run GPU metric sampling on one TU10x
nsys profile --gpu-metrics-device=0
 --gpu-metrics-set=tu10x-gfxt <application>

Effect: Launch application. Collect default options and GPU metrics for the first GPU
(a TU10x), using the tu10x-gfxt metric set at the default frequency (10 kHz). Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Run GPU metric sampling on all GPUs at a set frequency
nsys profile --gpu-metrics-device=all
 --gpu-metrics-frequency=20000 <application>

Effect: Launch application. Collect default options and GPU metrics for all available
GPUs using the first suitable metric set for each and sampling at 20 kHz. Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Collect custom ETW trace using configuration file
nsys profile --etw-provider=file.JSON

Effect: Configure custom ETW collectors using the contents of file.JSON. Collect data for
20 seconds. Generate the report#.nsys-rep file in the current working directory.

A template JSON configuration file is located at in the Nsight Systems installation
directory as \target-windows-x64\etw_providers_template.json. This path will show up
automatically if you call
nsys profile --help

The level attribute can only be set to one of the following:

‣ TRACE_LEVEL_CRITICAL
‣ TRACE_LEVEL_ERROR
‣ TRACE_LEVEL_WARNING
‣ TRACE_LEVEL_INFORMATION
‣ TRACE_LEVEL_VERBOSE

The flags attribute can only be set to one or more of the following:

‣ EVENT_TRACE_FLAG_ALPC
‣ EVENT_TRACE_FLAG_CSWITCH
‣ EVENT_TRACE_FLAG_DBGPRINT
‣ EVENT_TRACE_FLAG_DISK_FILE_IO
‣ EVENT_TRACE_FLAG_DISK_IO

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 63

‣ EVENT_TRACE_FLAG_DISK_IO_INIT
‣ EVENT_TRACE_FLAG_DISPATCHER
‣ EVENT_TRACE_FLAG_DPC
‣ EVENT_TRACE_FLAG_DRIVER
‣ EVENT_TRACE_FLAG_FILE_IO
‣ EVENT_TRACE_FLAG_FILE_IO_INIT
‣ EVENT_TRACE_FLAG_IMAGE_LOAD
‣ EVENT_TRACE_FLAG_INTERRUPT
‣ EVENT_TRACE_FLAG_JOB
‣ EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS
‣ EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS
‣ EVENT_TRACE_FLAG_NETWORK_TCPIP
‣ EVENT_TRACE_FLAG_NO_SYSCONFIG
‣ EVENT_TRACE_FLAG_PROCESS
‣ EVENT_TRACE_FLAG_PROCESS_COUNTERS
‣ EVENT_TRACE_FLAG_PROFILE
‣ EVENT_TRACE_FLAG_REGISTRY
‣ EVENT_TRACE_FLAG_SPLIT_IO
‣ EVENT_TRACE_FLAG_SYSTEMCALL
‣ EVENT_TRACE_FLAG_THREAD
‣ EVENT_TRACE_FLAG_VAMAP
‣ EVENT_TRACE_FLAG_VIRTUAL_ALLOC

Typical case: profile a Python script that uses CUDA
nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx
 --delay=60 python my_dnn_script.py

Effect: Launch a Python script and start profiling it 60 seconds after the launch, tracing
CUDA, cuDNN, cuBLAS, OS runtime APIs, and NVTX as well as collecting thread
schedule information.

Typical case: profile an app that uses Vulkan
nsys profile --trace=vulkan,osrt,nvtx
 --delay=60 ./myapp

Effect: Launch an app and start profiling it 60 seconds after the launch, tracing Vulkan,
OS runtime APIs, and NVTX as well as collecting CPU sampling and thread schedule
information.

1.5. Example Interactive CLI Command Sequences
Collect from beginning of application, end manually
nsys start --stop-on-exit=false
nsys launch --trace=cuda,nvtx --sample=none <application> [application-
arguments]
nsys stop

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
application is launched. Launch the application, set up to allow tracing of CUDA and

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 64

NVTX as well as collection of thread schedule information. Stop only when explicitly
requested. Generate the report#.nsys-rep in the default location.

 Note:

If
you
start
a
collection
and
fail
to
stop
the
collection
(or
if
you
are
allowing
it
to
stop
on
exit,
and
the
application
runs
for
too
long)
your
system’s
storage
space
may
be
filled
with
collected
data
causing
significant
issues
for
the
system.
Nsight
Systems
will
collect
a
different
amount
of
data/
sec
depending

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 65

on
options,
but
in
general
Nsight
Systems
does
not
support
runs
of
more
than
5
minutes
duration.

Run application, begin collection manually, run until process ends
nsys launch -w true <application> [application-arguments]
nsys start

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until you manually
start collection at area of interest. Profile until the application ends. Generate the
report#.nsys-rep in the default location.

 Note:

If
you
launch
an
application
and
that
application
and
any
descendants
exit
before
start
is
called
Nsight
Systems
will
create
a
fully
formed .nsys-
rep
file
containing
no
data.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 66

Run application, start/stop collection using cudaProfilerStart/Stop
nsys start -c cudaProfileApi
nsys launch -w true <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as
a cudaProfileStart() is detected. Launch application for default analysis, sending
application output to the terminal. Stop collection at next call to cudaProfilerStop,
when the user calls nsys stop, or when the root process terminates. Generate the
report#.nsys-rep in the default location.

 Note:

If
you
call
nsys
launch
before
nsys
start
-
c
cudaProfilerApi
and
the
code
contains
a
large
number
of
short
duration
cudaProfilerStart/
Stop
pairs,
Nsight
Systems
may
be
unable
to
process
them
correctly,
causing
a
fault.
This
will
be
corrected
in
a
future
version.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 67

 Note:

The
Nsight
Systems
CLI
does
not
support
multiple
calls
to
the
cudaProfilerStart/
Stop
API
at
this
time.

Run application, start/stop collection using NVTX
nsys start -c nvtx
nsys launch -w true -p MESSAGE@DOMAIN <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
NVTX range with given message in given domain (capture range) is opened. Launch
application for default analysis, sending application output to the terminal. Stop
collection when all capture ranges are closed, when the user calls nsys stop, or when
the root process terminates. Generate the report#.nsys-rep in the default location.

 Note:

The
Nsight
Systems
CLI
only
triggers
the
profiling
session
for
the
first
capture
range.

NVTX capture range can be specified:

‣ Message@Domain: All ranges with given message in given domain are capture
ranges. For example:
nsys launch -w true -p profiler@service ./app

This would make the profiling start when the first range with message "profiler" is
opened in domain "service".

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 68

‣ Message@*: All ranges with given message in all domains are capture ranges. For
example:
nsys launch -w true -p profiler@* ./app

This would make the profiling start when the first range with message "profiler" is
opened in any domain.

‣ Message: All ranges with given message in default domain are capture ranges. For
example:
nsys launch -w true -p profiler ./app

This would make the profiling start when the first range with message "profiler" is
opened in the default domain.

‣ By default only messages, provided by NVTX registered strings are considered to
avoid additional overhead. To enable non-registered strings check please launch
your application with NSYS_NVTX_PROFILER_REGISTER_ONLY=0 environment:
nsys launch -w true -p profiler@service -e
 NSYS_NVTX_PROFILER_REGISTER_ONLY=0 ./app

Run application, start/stop collection multiple times

The interactive CLI supports multiple sequential collections per launch.
nsys launch <application> [application-arguments]
nsys start
nsys stop
nsys start
nsys stop
nsys shutdown --kill sigkill

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until the start command
is executed. Collect data from start until stop requested, generate report#.qstrm in the
current working directory. Collect data from second start until the second stop request,
generate report#.nsys-rep (incremented by one) in the current working directory.
Shutdown the interactive CLI and send sigkill to the target application's process group.

 Note:

Calling
nsys
cancel
after
nsys
start
will
cancel
the
collection
without
generating
a
report.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 69

1.6. Example Stats Command Sequences
Display default statistics

nsys stats report1.nsys-rep

Effect: Export an SQLite file named report1.sqlite from report1.nsys-rep (assuming it
does not already exist). Print the default reports in column format to the console.

Note: The following two command sequences should present very similar information:

nsys profile --stats=true <application>

or

nsys profile <application>

nsys stats report1.nsys-rep

Display specific data from a report

nsys stats --report gputrace report1.nsys-rep

Effect: Export an SQLite file named report1.sqlite from report1.nsys-rep (assuming it
does not already exist). Print the report generated by the gputrace script to the console
in column format.

Generate multiple reports, in multiple formats, output multiple places

nsys stats --report gputrace --report gpukernsum --report cudaapisum
--format csv,column --output .,- report1.nsys-rep

Effect: Export an SQLite file named report1.sqlite from report1.nsys-rep (assuming
it does not already exist). Generate three reports. The first, the gputrace report,
will be output to the file report1_gputrace.csv in CSV format. The other two reports,
gpukernsum and cudaapisum, will be output to the console as columns of data.
Although three reports were given, only two formats and outputs are given. To reconcile
this, both the list of formats and outputs is expanded to match the list of reports by
repeating the last element.

Submit report data to a command

nsys stats --report cudaapisum --format table \ --output @"grep -E
(-|Name|cudaFree)" test.sqlite

Effect: Open test.sqlite and run the cudaapisum script on that file. Generate table data
and feed that into the command grep -E (-|Name|cudaFree). The grep command
will filter out everything but the header, formatting, and the cudaFree data, and display
the results to the console.

Note: When the output name starts with @, it is defined as a command. The command
is run, and the output of the report is piped to the command's stdin (standard-input).
The command's stdout and stderr remain attached to the console, so any output will be
displayed directly to the console.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 70

Be aware there are some limitations in how the command string is parsed. No shell
expansions (including *, ?, [], and ~) are supported. The command cannot be piped
to another command, nor redirected to a file using shell syntax. The command and
command arguments are split on whitespace, and no quotes (within the command
syntax) are supported. For commands that require complex command line syntax, it is
suggested that the command be put into a shell script file, and the script designated as
the output command

1.7. Example Output from --stats Option
The nsys stats command can be used post analysis to generate specific or
personalized reports. For a default fixed set of summary statistics to be automatically
generated, you can use the --stats option with the nsys profile or nsys start
command to generate a fixed set of useful summary statistics.

If your run traces CUDA, these include CUDA API, Kernel, and Memory Operation
statistics:

If your run traces OS runtime events or NVTX push-pop ranges:

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 71

If your run traces graphics debug markers these include DX11 debug markers, DX12
debug markers, Vulkan debug markers or KHR debug markers:

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 72

Recipes for these statistics as well as documentation on how to create your own metrics
will be available in a future version of the tool.

1.8. Importing and Viewing Command Line Results
Files
The CLI generates a .qdstrm file. The .qdstrm file is an intermediate result file, not
intended for multiple imports. It needs to be processed, either by importing it into the
GUI or by using the standalone QdstrmImporter to generate an optimized .nsys-rep
file. Use this .nsys-rep file when re-opening the result on the same machine, opening the
result on a different machine, or sharing results with teammates.

This version of Nsight Systems will attempt to automatically convert the .qdstrm file
to a .nsys-rep file with the same name after the run finishes if the required libraries are
available. The ability to turn off auto-conversion will be added in a later version.

Import Into the GUI

The CLI and host GUI versions must match to import a .qdstrm file successfully. The
host GUI is backward compatible only with .nsys-rep files.

Copy the .qdstrm file you are interested in viewing to a system where the Nsight
Systems host GUI is installed. Launch the Nsight Systems GUI. Select File->Import...
and choose the .qdstrm file you wish to open.

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 73

The import of really large, multi-gigabyte, .qdstrm files may take up all of the memory
on the host computer and lock up the system. This will be fixed in a later version.

Importing Windows ETL files

For Windows targets, ETL files captured with Xperf or the log.cmd command supplied
with GPUView in the Windows Performance Toolkit can be imported to create reports
as if they were captured with Nsight Systems's "WDDM trace" and "Custom ETW trace"
features. Simply choose the .etl file from the Import dialog to convert it to a .nsys-rep
file.

Create .nsys-rep Using QdstrmImporter

The CLI and QdstrmImporter versions must match to convert a .qdstrm file into a .nsys-
rep file. This .nsys-rep file can then be opened in the same version or more recent
versions of the GUI.

To run QdstrmImporter on the host system, find the QdstrmImporter binary in the Host-
x86_64 directory in your installation. QdstrmImporter is available for all host platforms.
See options below.

To run QdstrmImporter on the target system, copy the Linux Host-x86_64 directory to
the target Linux system or install Nsight Systems for Linux host directly on the target.
The Windows or MacOS host QdstrmImporter will not work on a Linux Target. See
options below.

Short Long Parameter Description

-h --help Help message
providing
information
about available
options and their
parameters.

-v --version Output
QdstrmImporter
version information

-i --input-file filename or path Import .qdstrm file
from this location.

-o --output-file filename or path Provide a different
file name or path for
the resulting .nsys-

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 74

Short Long Parameter Description

rep file. Default is
the same name and
path as the .qdstrm
file

1.9. Using the CLI to Analyze MPI Codes

1.9.1. Tracing MPI API calls
The Nsight Systems CLI has built-in API trace support via --trace=mpi option
only for the OpenMPI and MPICH implementations of MPI. It traces a default list of
synchronous MPI APIs. If you require more control over the list of traced APIs or if you
are using a different MPI implementation, see github nvtx pmpi wrappers.

You can use this documentation to generate a shared object to wrap a list of synchronous
MPI APIs with NVTX using the MPI profiling interface (PMPI). If you set your
LD_PRELOAD environment variable to the path of that object, nsys will capture and
report the MPI API trace information when --trace=nvtx is used. There is no need to
use --trace=MPI.

NVTX tracing is automatically enabled when MPI trace is turned on.

1.9.2. Using the CLI to Profile Applications Launched
with mpirun
This version of the Nsight Systems CLI supports concurrent use of the nsys profile
command. Each instance will create a separate report file.

You cannot use multiple instances of the interactive CLI concurrently, or use the
interactive CLI concurrently with nsys profile in this version.

Nsight Systems can be used to profile applications launched with mpirun command.
Since concurrent use of the CLI is supported only when using the nsys profile
command, Nsight Systems cannot profile each node from the GUI or from the interactive
CLI.

To profile everything, putting the data in one file:
nsys [nsys options] mpirun [mpi options]

To profile everything putting the data from each rank into a separate file:
mpirun [mpi options] nsys profile [nsys options]

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 75

To profile a single MPI process use a wrapper script. The following script(called
"wrap.sh") runs nsys on rank 0 only:
#!/bin/bash
if [[$OMPI_COMM_WORLD_RANK == 0]]; then
~/nsys/nsys profile ./myapp "$@" --mydummyargument
else
./myapp "$@"
fi

and then execute mpirun ./wrap.sh.

 Note:

Currently
you
will
need
a
dummy
argument
to
the
process,
so
that
Nsight
Systems
can
decide
which
process
to
profile.
This
means
that
your
process
must
accept
dummy
arguments
to
take
advantage
of
this
workaround.
This
script
as
written
is
for
Open
MPI,
but
should
be
easily

Profiling from the CLI

www.nvidia.com
User Guide v2021.4.1 | 76

adaptable
to
other
MPI
implementations.

www.nvidia.com
User Guide v2021.4.1 | 77

Chapter 2.
PROFILING FROM THE GUI

2.1. Profiling Linux Targets from the GUI

2.1.1. Connecting to the Target Device
Nsight Systems provides a simple interface to profile on localhost or manage multiple
connections to Linux or Windows based devices via SSH. The network connections
manager can be launched through the device selection dropdown:

On x86_64:

On Tegra:

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 78

The dialog has simple controls that allow adding, removing, and modifying connections:

Security notice: SSH is only used to establish the initial connection to a target device,
perform checks, and upload necessary files. The actual profiling commands and data
are transferred through a raw, unencrypted socket. Nsight Systems should not be used
in a network setup where attacker-in-the-middle attack is possible, or where untrusted
parties may have network access to the target device.

While connecting to the target device, you will be prompted to input the user's
password. Please note that if you choose to remember the password, it will be stored in
plain text in the configuration file on the host. Stored passwords are bound to the public
key fingerprint of the remote device.

The No authentication option is useful for devices configured for passwordless
login using root username. To enable such a configuration, edit the file /etc/ssh/
sshd_config on the target and specify the following option:
PermitRootLogin yes

Then set empty password using passwd and restart the SSH service with service ssh
restart.

Open ports: The Nsight Systems daemon requires port 22 and port 45555 to be open for
listening. You can confirm that these ports are open with the following command:
sudo firewall-cmd --list-ports --permanent
sudo firewall-cmd --reload

To open a port use the following command, skip --permanent option to open only for
this session:
sudo firewall-cmd --permanent --add-port 45555/tcp
sudo firewall-cmd --reload

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 79

Likewise, if you are running on a cloud system, you must open port 22 and port 45555
for ingress.

Kernel Version Number - To check for the version number of the kernel support of
Nsight Systems on a target device, run the following command on the remote device:
cat /proc/quadd/version

Minimal supported version is 1.82.

Additionally, presence of Netcat command (nc) is required on the target device. For
example, on Ubuntu this package can be installed using the following command:
sudo apt-get install netcat-openbsd

2.1.2. System-Wide Profiling Options

2.1.2.1. Linux x86_64
System-wide profiling is available on x86 for Linux targets only when run with root
privileges.

Ftrace Events Collection

Select Ftrace events

Choose which events you would like to collect.

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 80

GPU Context Switch Trace

Tracing of context switching on the GPU is enabled with driver r435.17 or higher.

Here is a screenshot showing three CUDA kernels running simultaneously in three
different CUDA contexts on a single GPU.

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 81

2.1.2.2. Linux for Tegra

Trace all processes – On compatible devices (with kernel module support version 1.107
or higher), this enables trace of all processes and threads in the system. Scheduler events
from all tasks will be recorded.

Collect PMU counters – This allows you to choose which PMU (Performance
Monitoring Unit) counters Nsight Systems will sample. Enable specific counters when
interested in correlating cache misses to functions in your application.

2.1.3. Target Sampling Options
Target sampling behavior is somewhat different for Nsight Systems Workstation Edition
and Nsight Systems Embedded Platforms Edition.

Target Sampling Options for Workstation

Three different backtrace collections options are available when sampling CPU
instruction pointers. Backtraces can be generated using Intel (c) Last Branch Record
(LBR) registers. LBR backtraces generate minimal overhead but the backtraces have

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 82

limited depth. Backtraces can also be generated using DWARF debug data. DWARF
backtraces incur more overhead than LBR backtraces but have much better depth.
Finally, backtraces can be generated using frame pointers. Frame pointer backtraces
incur medium overhead and have good depth but only resolve frames in the portions
of the application and its libraries (including 3rd party libraries) that were compiled
with frame pointers enabled. Normally, frame pointers are disabled by default during
compilation.

By default, Nsight Systems will use Intel(c) LBRs if available and fall back to using dwarf
unwind if they are not. Choose modes... will allow you to override the default.

The Include child processes switch controls whether API tracing is only for the
launched process, or for all existing and new child processes of the launched process. If
you are running your application through a script, for example a bash script, you need
to set this checkbox.

The Include child processes switch does not control sampling in this version of Nsight
Systems. The full process tree will be sampled regardless of this setting. This will be
fixed in a future version of the product.

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor after a certain number of events and collecting an instruction pointer (IP)/
backtrace sample if the processor is executing the profilee.

When sampling the CPU on a workstation target, Nsight Systems traces thread
context switches and infers thread state as either Running or Blocked. Note that
Blocked in the timeline indicates the thread may be Blocked (Interruptible) or Blocked
(Uninterruptible). Blocked (Uninterruptible) often occurs when a thread has transitioned
into the kernel and cannot be interrupted by a signal. Sampling can be enhanced with
OS runtime libraries tracing; see OS Runtime Libraries Trace for more information.

Target Sampling Options for Embedded Linux

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 83

Currently Nsight Systems can only sample one process. Sampling here means that the
profilee will be stopped periodically, and backtraces of active threads will be recorded.

Most applications use stripped libraries. In this case, many symbols may stay
unresolved. If unstripped libraries exist, paths to them can be specified using the
Symbol locations... button. Symbol resolution happens on host, and therefore does not
affect performance of profiling on the target.

Additionally, debug versions of ELF files may be picked up from the target system. Refer
to Debug Versions of ELF Files for more information.

2.1.4. Hotkey Trace Start/Stop
Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

The default hotkey is F12.

2.1.5. Launching and Attaching to Processes
Nsight Systems Embedded Platforms Edition can work with Linux-based devices in
three modes:

 1. Attaching to a process by name
 2. Attaching to a process by name, or launching a new process
 3. Attaching to a process by its PID

The purpose of the configuration here is to define which process the profiler will attach
to for sampling and tracing. Additionally, the profiler can launch a process prior to
attaching to it, ensuring that all environment variables are set correctly to successfully
collect trace information.

In Attach only mode, the process is selected by its name and command line arguments,
as visible using the ps tool.

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 84

In Attach or launch mode, the process is to first search as if in the Attach only mode,
but if it is not found, the process is launched using the same path and command line
arguments. If NVTX, CUDA, or other trace settings are selected, the process will be
automatically launched with appropriate environment variables.

Note that in some cases, the capabilities of Nsight Systems are not sufficient to correctly
launch the application; for example, if certain environment variables have to be
corrected. In this case, the application has to be started manually and Nsight Systems
should be used in Attach only mode.

The Edit arguments... link will open an editor window, where every command line
argument is edited on a separate line. This is convenient when arguments contain spaces
or quotes.

To properly populate the Search criteria field based on a currently running process on
the target system, use the Select a process button on the right, which has ellipsis as the
caption. The list of processes is automatically refreshed upon opening.

Attach by PID mode should be used to connect to a specific process.

To choose one of the currently running processes on the target system, use the Select a
process button on the right.

2.2. Profiling Windows Targets from the GUI
Profiling on Windows devices is similar to the profiling on Linux devices. Please refer
to the Profiling Linux Targets from the GUI section for the detailed documentation and
connection information. The major differences on the platforms are listed below:

Remoting to a Windows Based Machine
To perform remote profiling to a target Windows based machines, install and configure
an OpenSSH Server on the target machine.

Hotkey Trace Start/Stop
Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 85

window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

The default hotkey is F12.

Changing the Default Hotkey Binding - A different hotkey binding can be configured
by setting the HotKeyIntValue configuration field in the config.ini file.

Set the decimal numeric identifier of the hotkey you would like to use for triggering
start/stop from the target app graphics window. The default value is 123 which
corresponds to 0x7B, or the F12 key.

Virtual key identifiers are detailed in MSDN's Virtual-Key Codes.

Note that you must convert the hexadecimal values detailed in this page to their decimal
counterpart before using them in the file. For example, to use the F1 key as a start/stop
trace hotkey, use the following settings in the config.ini file:
HotKeyIntValue=112

Target Sampling Options on Windows

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor periodically. The sampling rate is defined in the project settings and is either
100Hz, 1KHz (default value), 2Khz, 4KHz, or 8KHz.

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 86

On Windows, Nsight Systems can collect thread activity of one process tree. Collecting
thread activity means that each thread context switch event is logged and (optionally) a
backtrace is collected at the point that the thread is scheduled back for execution. Thread
states are displayed on the timeline.

If it was collected, the thread backtrace is displayed when hovering over a region where
the thread execution is blocked.

Symbol Locations
Symbol resolution happens on host, and therefore does not affect performance of
profiling on the target.

Press the Symbol locations... button to open the Configure debug symbols location
dialog.

Use this dialog to specify:

‣ Paths of PDB files
‣ Symbols servers
‣ The location of the local symbol cache

To use a symbol server:

 1. Install Debugging Tools for Windows, a part of the Windows 10 SDK.
 2. Add the symbol server URL using the Add Server button.

Information about Microsoft's public symbol server, which enables getting Windows
operating system related debug symbols can be found here.

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/microsoft-public-symbols

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 87

2.3. Profiling Android Targets from the GUI
Profiling on Android devices is similar to the profiling on Linux devices. Please refer to
the Profiling Linux Targets from the GUI section for the detailed documentation. The
major differences on the platforms are listed below:

Configuring Your Android Device
To work with Nsight Systems, the target Android device should be configured for
USB debugging in the Developer options settings menu. Please refer to Android
development documentation to learn how to configure the device for USB debugging.

On the host, a compatible USB driver should be installed. Please refer to device
manufacturer's documentation to learn how to obtain and install the driver.

Connect your target device via a USB cable and power it on (or wake it up). Make sure
that you have the adb command available (it is part of Android SDK Platform Tools
package). Nsight Systems can only connect to devices that are marked as device in the
output of the adb devices command. Make sure you can enter the ADB shell of the
target device by running adb shell on the host.

Launch the Nsight Systems application. On the first launch, a new project called
Project 1 is created automatically.

When connecting to the target device, Nsight Systems will validate it and install its
daemon into the following location on the device:
/data/local/tmp/com.nvidia.nsightsystems.tools/

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 88

Once the daemon and all required files are installed correctly, a green check mark will
appear and Device is ready text will be displayed:

Application
This section allows you to choose which application to profile. All information will be
collected about the main process of the selected application, except when the Trace all
processes checkbox is enabled.

For non-rooted Android devices, the list of applications only shows information about
debuggable applications. By default, applications that are being developed using the
Android SDK already contain the debuggable option in their manifests.

On rooted Android devices, profiling of all applications is allowed.

For convenience, the application list also shows the process identifiers (PID) of processes
correlated to the listed packages. To refresh this information, use the button in the upper
right corner of the list.

The two checkboxes below the application list are important to ensure that the correct
launch or attach behavior is configured.

Allow sending intent to launch the default activity, when unselected, forces the
profiler to attach to a running process. If no processes are found to correlate to the
specified application name, the profiling session fails to start with an error message.
When selected, Nsight Systems may launch the default intent of the selected application
to make sure it is running and appears on top of the screen on the target device.

In some applications, especially in early stages of development, common bugs related to
handling the lifecycle of activities can be found. In such cases, sending the default intent
may lead to undesired behavior or even crashes of the profilee. Leaving the checkbox
unselected ensures that the profiler does not affect the application.

Restart application if running is a convenient option in two cases:

 1. When profiling from the very beginning of the application is desired.
 2. When using some of the trace features described below. They require that a

special library is injected into the application in runtime, which happens when
the application is paused by the Android runtime's virtual machine just after
starting. In this case, enabling this option helps ensure that the application is always
restarted and the injection always happens, as opposed to potentially attaching to
the application's process without injection.

Collect NVTX trace. See NVTX Trace for more information.

Collect OpenGL trace. See OpenGL Trace for more information.

Profiling from the GUI

www.nvidia.com
User Guide v2021.4.1 | 89

2.4. Profiling QNX Targets from the GUI
Profiling on QNX devices is similar to the profiling on Linux devices. Please refer to the
Profiling Linux Targets from the GUI section for the detailed documentation. The major
differences on the platforms are listed below:

‣ Backtrace sampling is not supported. Instead backtraces are collected for long OS
runtime libraries calls. Please refer to the OS Runtime Libraries Trace section for the
detailed documentation.

‣ CUDA support is limited to CUDA 9.0+
‣ Filesystem on QNX device might be mounted read-only. In that case Nsight Systems

is not able to install target-side binaries, required to run the profiling session. Please
make sure that target filesystem is writable before connecting to QNX target. For
example, make sure the following command works:
echo XX > /xx && ls -l /xx

www.nvidia.com
User Guide v2021.4.1 | 90

Chapter 3.
EXPORT FORMATS

3.1. SQLite Schema Reference
Nsight Systems has the ability to export SQLite database files from the.nsys-rep
results file. From the CLI, use nsys export. From the GUI, call File->Export....
Complete documentation of the schema, with samples is installed with the product in
the documentation\nsys-exporter directory.

Note: The .nsys-rep report format is the the only data format for Nsight Systems that
should be considered forward compatible. The SQLite schema can and will change in the
future.

The schema for a concrete database can be obtained with the sqlite3 tool built-in
command .schema. The sqlite3 tool can be located in the Target directory of your Nsight
Systems installation.

sqlite> .schema
CREATE TABLE StringIds (id INTEGER PRIMARY KEY, value TEXT NOT NULL);
CREATE TABLE SCHED_EVENTS (id INTEGER PRIMARY KEY AUTOINCREMENT, start INT NOT
 NULL, cpu INT NOT NULL, isSchedIn INT NOT NULL, globalTid INT NOT NULL);
CREATE TABLE sqlite_sequence(name,seq);
CREATE TABLE COMPOSITE_EVENTS (id INT NOT NULL PRIMARY KEY, start INT NOT NULL,
 cpu INT NOT NULL, threadState INT NOT NULL, globalTid INT NOT NULL, cpuCycles
 INT NOT NULL);
...

Note: Currently tables are created lazily therefore not every table described in the
documentation will be present in a particular database. This will change in a future
version of the product

Currently, a table is created for each data type in the exported database. Since usage
patterns for exported data may vary greatly and no default use cases have been
established, no indexes or extra constraints are created. Instead, refer to the Examples
section in your installed documentation directory for a list of common recipes. This may
change in a future version of the product.

Export Formats

www.nvidia.com
User Guide v2021.4.1 | 91

Due to current limitations, all fields are declared as NOT NULL, even if the actual value
may be missing. If the value is missing, the cell is set to the default value for that field.
This might change in future versions.

3.2. JSON and Text Format Description
JSON and TXT export formats are generated by serializing buffered messages, each on
a new line. First, all collected events are processed. Then strings are serialized, followed
by stdout, stderr streams if any, followed by thread names.

Output layout:

{Event #1}
{Event #2}
...
{Event #N}
{Strings}
{Streams}
{Threads}

For easier grepping of JSON output, the --separate-strings switch may be used to
force manual splitting of strings, streams and thread names data.

Example line split: nsys export --export-json --separate-strings
sample.nsys-rep -- -

{"type":"String","id":"3720","value":"Process 14944 was launched by the
 profiler"}
{"type":"String","id":"3721","value":"Profiling has started."}
{"type":"String","id":"3722","value":"Profiler attached to the process."}
{"type":"String","id":"3723","value":"Profiling has stopped."}
{"type":"ThreadName","globalTid":"72057844756653436","nameId":"14","priority":"10"}
{"type":"ThreadName","globalTid":"72057844756657940","nameId":"15","priority":"10"}
{"type":"ThreadName","globalTid":"72057844756654400","nameId":"24","priority":"10"}

Compare with: nsys export --export-json sample.nsys-rep -- -

{"data":["[Unknown]","[Unknown kernel module]","[Max depth]","[Broken
 backtraces]",
 "[Called from
 Java]","QnxKernelTrace","mm_","task_submit","class_id","syncpt_id",
 "syncpt_thresh","pid","tid","FTrace","[NSys]","[NSys Comms]", "..." ,"Process
 14944 was launched by the profiler","Profiling has started.","Profiler
 attached
 to the process.","Profiling has stopped."]}
{"data":[{"nameIdx":"14","priority":"10","globalTid":"72057844756653436"},
 {"nameIdx":"15","priority":"10","globalTid":"72057844756657940"},
{"nameIdx":"24",
 "priority":"10","globalTid":"72057844756654400"}]}

Note, that only last few lines are shown here for clarity and that carriage returns and
indents were added to avoid wrapping documentation.

www.nvidia.com
User Guide v2021.4.1 | 92

Chapter 4.
REPORT SCRIPTS

Report Scripts Shipped With Nsight Systems
The Nsight Systems development team created and maintains a set of report scripts for
some of the commonly requested reports. These scripts will be updated to adapt to any
changes in SQLite schema or internal data structures.

These scripts are located in the Nsight Systems package in the Target-<architecture>/
reports directory. The following standard reports are available:

apigpusum[:base] -- CUDA API & GPU Summary (CUDA
API + kernels + memory ops)
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this kernel
‣ Instances: The number of executions of this object
‣ Average : The average execution time of this kernel
‣ Minimum : The smallest execution time of this kernel
‣ Maximum : The largest execution time of this kernel
‣ Category : The category of the operation
‣ Operation : The name of the kernel

This report provides a summary of CUDA API calls, kernels and memory operations,
and their execution times. Note that the Time(%) column is calculated using a
summation of the Total Time column, and represents that API call's, kernel's, or memory
operation's percent of the execution time of the APIs, kernels and memory operations
listed, and not a percentage of the application wall or CPU execution time.

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 93

This report combines data from the cudaapisum, gpukernsum, and gpumemsizesum
reports. It is very similar to profile section of nvprof --dependency-analysis.

cudaapisum -- CUDA API Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this function
‣ Num Calls : The number of calls to this function
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ Name : The name of the function

This report provides a summary of CUDA API functions and their execution times. Note
that the Time(%) column is calculated using a summation of the Total Time column, and
represents that function's percent of the execution time of the functions listed, and not a
percentage of the application wall or CPU execution time.

cudaapitrace -- CUDA API Trace
Arguments - None

Output: All time values given in nanoseconds

‣ Start : Timestamp when API call was made
‣ Duration : Length of API calls
‣ Name : API function name
‣ Result : return value of API call
‣ CorrID : Correlation used to map to other CUDA calls
‣ Pid : Process ID that made the call
‣ Tid : Thread ID that made the call
‣ T-Pri : Run priority of call thread
‣ Thread Name : Name of thread that called API function

This report provides a trace record of CUDA API function calls and their execution
times.

gpukernsum[:base] -- CUDA GPU Kernel Summary
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 94

‣ Total Time : The total time used by all executions of this kernel
‣ Instances : The number of calls to this kernel
‣ Average : The average execution time of this kernel
‣ Minimum : The smallest execution time of this kernel
‣ Maximum : The largest execution time of this kernel
‣ Name : The name of the kernel

This report provides a summary of CUDA kernels and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that kernel's percent of the execution time of the kernels listed, and not a
percentage of the application wall or CPU execution time.

gpumemsizesum -- GPU Memory Operations Summary
(by Size)
Arguments - None

Output: All memory values given in KiB

‣ Total : Total number of KiB utilized by this operation
‣ Operations : Number of executions of this operation
‣ Average : The average memory size of this operation
‣ Minimum : The smallest memory size of this operation
‣ Maximum : The largest memory size of this operation
‣ Name : The name of the operation

This report provides a summary of GPU memory operations and the amount of memory
they utilize.

gpumemtimesum -- GPU Memory Operations Summary
(by Time)
Arguments - None

Output: All memory values given in KiB

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this operation
‣ Operations: The number of operations of this type
‣ Average : The average execution time of this operation
‣ Minimum : The smallest execution time of this operation
‣ Maximum : The largest execution time of this operation
‣ Operation : The name of the memory operation

This report provides a summary of GPU memory operations and their execution times.
Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that operation's percent of the execution time of the operations
listed, and not a percentage of the application wall or CPU execution time.

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 95

gpusum[:base] -- GPU Summary (kernels + memory
operations)
Arguments

‣ base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this kernel
‣ Instances : The number of executions of this object
‣ Average : The average execution time of this kernel
‣ Minimum : The smallest execution time of this kernel
‣ Maximum : The largest execution time of this kernel
‣ Category : The category of the operation
‣ Name : The name of the kernel

This report provides a summary of CUDA kernels and memory operations, and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that kernel's or memory operation's percent of the
execution time of the kernels and memory operations listed, and not a\ percentage of
the application wall or CPU execution time.

This report combines data from the gpukernsum and gpumemtimesum reports. This
report is very similar to output of the command nvprof --print-gpu-summary.

gputrace -- CUDA GPU Trace
Arguments - None

Output:

‣ Start : Start time of trace event in seconds
‣ Duration : Length of event in nanoseconds
‣ CorrId : Correlation ID
‣ GrdX, GrdY, GrdZ : Grid values
‣ BlkX, BlkY, BlkZ : Block values
‣ Reg/Trd : Registers per thread
‣ StcSMem : Size of Static Shared Memory
‣ DymSMem : Size of Dynamic Shared Memory
‣ Bytes : Size of memory operation
‣ Thru : Throughput in MB per Second
‣ SrcMemKd : Memcpy source memory kind or memset memory kind
‣ DstMemKd : Memcpy destination memory kind
‣ Device : GPU device name and ID
‣ Ctx : Context ID

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 96

‣ Strm : Stream ID
‣ Name : Trace event name

This report displays a trace of CUDA kernels and memory operations. Items are sorted
by start time.

nvtxppsum -- NVTX Push/Pop Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all instances of this range
‣ Instances : The number of instances of this range
‣ Average : The average execution time of this range
‣ Minimum : The smallest execution time of this range
‣ Maximum : The largest execution time of this range
‣ Range : The name of the range

This report provides a summary of NV Tools Extensions Push/Pop Ranges and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that range's percent of the execution time of the
ranges listed, and not a percentage of the application wall or CPU execution time.

openmpevtsum -- OpenMP Event Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of event type
‣ Count : The number of event type
‣ Average : The average execution time of event type
‣ Minimum : The smallest execution time of event type
‣ Maximum : The largest execution time of event type
‣ Name : The name of the event

This report provides a summary of OpenMP events and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

osrtsum -- OS Runtime Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 97

‣ Total Time : The total time used by all executions of this function
‣ Num Calls : The number of calls to this function
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ Name : The name of the function

This report provides a summary of operating system functions and their execution
times. Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

vulkanmarkerssum -- Vulkan Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this function
‣ Instances : The number of instances of this range
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ StdDev : The standard deviation of execution time of this range
‣ Range : The name of the range

This report provides a summary of Vulkan debug markers on the CPU, and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that function's percent of the execution time of the
functions listed, and not a percentage of the application wall or CPU execution time.

pixsum -- PIX Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this function
‣ Instances : The number of instances of this range
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ StdDev : The standard deviation of execution time of this range
‣ Range : The name of the range

This report provides a summary of PIX CPU debug markers, and their execution times.
Note that the Time(%) column is calculated using a summation of the Total Time

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 98

column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

khrdebugsum -- OpenGL KHR_debug Range Summary
Arguments - None

Output: All time values given in nanoseconds

‣ Time(%) : Percentage of Total Time
‣ Total Time : The total time used by all executions of this function
‣ Instances : The number of instances of this range
‣ Average : The average execution time of this function
‣ Minimum : The smallest execution time of this function
‣ Maximum : The largest execution time of this function
‣ StdDev : The standard deviation of execution time of this range
‣ Range : The name of the range

This report provides a summary of OpenGL KHR_debug CPU PUSH/POP debug
Ranges, and their execution times. Note that the Time(%) column is calculated using
a summation of the Total Time column, and represents that function's percent of the
execution time of the functions listed, and not a percentage of the application wall or
CPU execution time.

Report Formatters Shipped With Nsight Systems
The following formats are available in Nsight Systems

Column
Usage:

column[:nohdr][:nolimit][:nofmt][:<width>[:<width>]...]

Arguments

‣ nohdr : Do not display the header
‣ nolimit : Remove 100 character limit from auto-width columns Note: This can result

in extremely wide columns.
‣ nofmt : Do not reformat numbers.
‣ <width>... : Define the explicit width of one or more columns. If the value "." is

given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The column formatter presents data in vertical text columns. It is primarily designed to
be a human-readable format for displaying data on a console display.

Text data will be left-justified, while numeric data will be right-justified. If the data
overflows the available column width, it will be marked with a "…" character, to indicate

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 99

the data values were clipped. Clipping always occurs on the right-hand side, even for
numeric data.

Numbers will be reformatted to make easier to visually scan and understand.
This includes adding thousands-separators. This process requires that the string
representation of the number is converted into its native representation (integer or
floating point) and then converted back into a string representation to print. This
conversion process attempts to preserve elements of number presentation, such as the
number of decimal places, or the use of scientific notation, but the conversion is not
always perfect (the number should always be the same, but the presentation may not
be). To disable the reformatting process, use the argument nofmt.

If no explicit width is given, the columns auto-adjust their width based off the header
size and the first 100 lines of data. This auto-adjustment is limited to a maximum
width of 100 characters. To allow larger auto-width columns, pass the initial argument
nolimit. If the first 100 lines do not calculate the correct column width, it is suggested
that explicit column widths be provided.

Table
Usage:

table[:nohdr][:nolimit][:nofmt][:<width>[:<width>]...]

Arguments

‣ nohdr : Do not display the header
‣ nolimit : Remove 100 character limit from auto-width columns Note: This can result

in extremely wide columns.
‣ nofmt : Do not reformat numbers.
‣ <width>... : Define the explicit width of one or more columns. If the value "." is

given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The table formatter presents data in vertical text columns inside text boxes. Other than
the lines between columns, it is identical to the column formatter.

CSV
Usage:

csv[:nohdr]

Arguments

‣ nohdr : Do not display the header

The csv formatter outputs data as comma-separated values. This format is commonly
used for import into other data applications, such as spread-sheets and databases.

There are many different standards for CSV files. Most differences are in how escapes
are handled, meaning data values that contain a comma or space.

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 100

This CSV formatter will escape commas by surrounding the whole value in double-
quotes.

TSV
Usage:

tsv[:nohdr][:esc]

Arguments

‣ nohdr : Do not display the header
‣ esc : escape tab characters, rather than removing them

The tsv formatter outputs data as tab-separated values. This format is sometimes used
for import into other data applications, such as spreadsheets and databases.

Most TSV import/export systems disallow the tab character in data values. The formatter
will normally replace any tab characters with a single space. If the esc argument has
been provided, any tab characters will be replaced with the literal characters "\t".

JSON
Usage:

json

Arguments: no arguments

The json formatter outputs data as an array of JSON objects. Each object represents one
line of data, and uses the column names as field labels. All objects have the same fields.
The formatter attempts to recognize numeric values, as well as JSON keywords, and
converts them. Empty values are passed as an empty string (and not nil, or as a missing
field).

At this time the formatter does not escape quotes, so if a data value includes double-
quotation marks, it will corrupt the JSON file.

HDoc
Usage:

hdoc[:title=<title>][:css=<URL>]

Arguments:

‣ title : string for HTML document title
‣ css : URL of CSS document to include

The hdoc formatter generates a complete, verifiable (mostly), standalone HTML
document. It is designed to be opened in a web browser, or included in a larger
document via an <iframe>.

Report Scripts

www.nvidia.com
User Guide v2021.4.1 | 101

HTable
Usage:

htable

Arguments: no arguments

The htable formatter outputs a raw HTML <table> without any of the surrounding
HTML document. It is designed to be included into a larger HTML document. Although
most web browsers will open and display the document, it is better to use the hdoc
format for this type of use.

www.nvidia.com
User Guide v2021.4.1 | 102

Chapter 5.
MIGRATING FROM NVIDIA NVPROF

Using the Nsight Systems CLI nvprof Command
The nvprof command of the Nsight Systems CLI is intended to help former nvprof
users transition to nsys. Many nvprof switches are not supported by nsys, often because
they are now part of NVIDIA Nsight Compute.

The full nvprof documentation can be found at https://docs.nvidia.com/cuda/profiler-
users-guide.

The nvprof transition guide for Nsight Compute can be found at https://
docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide.

Any nvprof switch not listed below is not supported by the nsys nvprof command. No
additional nsys functionality is available through this command. New features will not
be added to this command in the future.

CLI nvprof Command Switch Options
After choosing the nvprof command switch, the following options are available. When
you are ready to move to using Nsight Systems CLI directly, see Command Line Options
documentation for the nsys switch(es) given below. Note that the nsys implementation
and output may vary from nvprof.

Usage.
nsys nvprof [options]

Switch Parameters (Default
in Bold)

nsys switch Switch Description

--annotate-mpi off, openmpi, mpich --trace=mpi AND --
mpi-impl

Automatically
annotate MPI
calls with
NVTX markers.
Specify the MPI

https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

Migrating from NVIDIA nvprof

www.nvidia.com
User Guide v2021.4.1 | 103

Switch Parameters (Default
in Bold)

nsys switch Switch Description

implementation
installed on
your machine.
Only OpenMPI
and MPICH
implementations are
supported.

--cpu-thread-tracing on, off --trace=osrt Collect information
about CPU thread
API activity.

--profile-api-trace none, runtime,
driver,all

--trace=cuda Turn on/off CUDA
runtime and driver
API tracing. For
Nsight Systems
there is no separate
CUDA runtime
and CUDA driver
trace, so selecting
runtime or driver
is equivalent to
selecting all .

--profile-from-start on, off if off use --capture-
range=cudaProfilerApi

Enable/disable
profiling from
the start of the
application. If
disabled, the
application can use
{cu,cuda}Profiler{Start,Stop}
to turn on/off
profiling.

-t,--timeout <nanoseconds>
default=0

--duration=seconds If greater than
0, stop the
collection and
kill the launched
application after
timeout seconds.
nvprof started
counting when the
CUDA driver is
initialized. nsys
starts counting
immediately.

Migrating from NVIDIA nvprof

www.nvidia.com
User Guide v2021.4.1 | 104

Switch Parameters (Default
in Bold)

nsys switch Switch Description

--cpu-profiling on, off --sampling=cpu Turn on/off CPU
profiling

--openacc-profiling on, off --trace=openacc to
turn on

Enable/disable
recording
information from
the OpenACC
profiling interface.
Note: OpenACC
profiling interface
depends on the
presence of the
OpenACC runtime.
For supported
runtimes, see
CUDA Trace section
of documentation

-o, --export-profile <filename> --output={filename}
and/or --
export=sqlite

Export named file
to be imported
or opened in the
Nsight Systems
GUI. %q{ENV_VAR}
in string will be
replaced with
the set value of
the environment
variable. If not set
this is an error.
%h in the string is
replaced with the
system hostname.
%% in the string is
replaced with %.
%p in the string
is not supported
currently. Any other
character following
% is illegal. The
default is report1,
with the number
incrementing to
avoid overwriting
files, in users
working directory.

Migrating from NVIDIA nvprof

www.nvidia.com
User Guide v2021.4.1 | 105

Switch Parameters (Default
in Bold)

nsys switch Switch Description

-f, --force-overwrite --force-
overwrite=true

Force overwriting
all output files with
same name.

-h, --help --help Print Nsight
Systems CLI help

-V, --version --version Print Nsight
Systems CLI version
information

Next Steps
NVIDIA Visual Profiler (NVVP) and NVIDIA nvprof are deprecated. New GPUs and
features will not be supported by those tools. We encourage you to make the move to
Nsight Systems now. For additional information, suggestions, and rationale, see the blog
series in Other Resources.

www.nvidia.com
User Guide v2021.4.1 | 106

Chapter 6.
PROFILING IN A DOCKER ON LINUX
DEVICES

Collecting data within a Docker

The following information assumes the reader is knowledgeable regarding Docker
containers. For further information about Docker use in general, see the Docker
documentation.

Enable Docker Collection

When starting the Docker to perform a Nsight Systems collection, additional steps are
required to enable the perf_event_open system call. This is required in order to utilize
the Linux kernel’s perf subsystem which provides sampling information to Nsight
Systems.

There are three ways to enable the perf_event_open syscall. You can enable it by using
the --privileged=true switch, adding --cap-add=SYS_ADMIN switch to your docker
run command file, or you can enable it by setting the seccomp security profile if your
system meets the requirements.

Secure computing mode (seccomp) is a feature of the Linux kernel that can be used to
restrict an application's access. This feature is available only if the kernel is enabled with
seccomp support. To check for seccomp support:
$ grep CONFIG_SECCOMP= /boot/config-$(uname -r)

The official Docker documentation says:
"Seccomp profiles require seccomp 2.2.1 which is not available on Ubuntu 14.04,
 Debian Wheezy, or Debian Jessie. To use seccomp on these distributions, you
 must download the latest static Linux binaries (rather than packages)."

Download the default seccomp profile file, default.json, relevant to your Docker version.
If perf_event_open is already listed in the file as guarded by CAP_SYS_ADMIN, then
remove the perf_event_open line. Add the following lines under "syscalls" and save
the resulting file as default_with_perf.json.
{
 "name": "perf_event_open",
 "action": "SCMP_ACT_ALLOW",
 "args": []
},

https://docs.docker.com
https://docs.docker.com

Profiling in a Docker on Linux Devices

www.nvidia.com
User Guide v2021.4.1 | 107

Then you will be able to use the following switch when starting the Docker to apply the
new seccomp profile.
--security-opt seccomp=default_with_perf.json

Launch Docker Collection

Here is an example command that has been used to launch a Docker for testing with
Nsight Systems:
sudo nvidia-docker run --network=host --security-opt
seccomp=default_with_perf.json --rm -ti caffe-demo2 bash

There is a known issue where Docker collections terminate prematurely with older
versions of the driver and the CUDA Toolkit. If collection is ending unexpectedly, please
update to the latest versions.

After the Docker has been started, use the Nsight Systems CLI to launch a collection
within the Docker. The resulting .qdstrm file can be imported into the Nsight Systems
host like any other CLI result.

www.nvidia.com
User Guide v2021.4.1 | 108

Chapter 7.
DIRECT3D TRACE

Nsight Systems has the ability to trace both the Direct3D 11 API and the Direct3D 12 API
on Windows targets.

7.1. D3D11 API trace
Nsight Systems can capture information about Direct3D 11 API calls made by the
profiled process. This includes capturing the execution time of D3D11 API functions,
performance markers, and frame durations.

SLI Trace

Trace SLI queries and peer-to-peer transfers of D3D11 applications. Requires SLI
hardware and an active SLI profile definition in the NVIDIA console.

7.2. D3D12 API Trace
Direct3D 12 is a low-overhead 3D graphics and compute API for Microsoft Windows.
Information about Direct3D 12 can be found at the Direct3D 12 Programming Guide.

Nsight Systems can capture information about Direct3D 12 usage by the profiled
process. This includes capturing the execution time of D3D12 API functions,
corresponding workloads executed on the GPU, performance markers, and frame
durations.

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide

Direct3D Trace

www.nvidia.com
User Guide v2021.4.1 | 109

The Command List Creation row displays time periods when command lists
were being created. This enables developers to improve their application’s multi-
threaded command list creation. Command list creation time period is measured
between the call to ID3D12GraphicsCommandList::Reset and the call to
ID3D12GraphicsCommandList::Close.

The GPU row shows an aggregated view of D3D12 API calls and GPU workloads. Note
that not all D3D12 API calls are logged.

A Command Queue row is displayed for each D3D12 command queue created by the
profiled application. The row’s header displays the queue's running index and its type
(Direct, Compute, Copy).

The API row displays time periods where
ID3D12CommandQueue::ExecuteCommandLists was called. The GPU Workload row
displays time periods where workloads were executed by the GPU. The workload’s type
(Graphics, Compute, Copy, etc.) is displayed on the bar representing the workload’s
GPU execution.

Direct3D Trace

www.nvidia.com
User Guide v2021.4.1 | 110

In addition, you can see the PIX command queue CPU-side performance markers, GPU-
side performance markers and the GPU Command List performance markers, each in
their row.

Clicking on a GPU workload highlights the corresponding
ID3D12CommandQueue::ExecuteCommandLists,
ID3D12GraphicsCommandList::Reset and ID3D12GraphicsCommandList::Close
API calls, and vice versa.

Detecting which CPU thread was blocked by a fence can be difficult in complex apps
that run tens of CPU threads. The timeline view displays the 3 operations involved:

‣ The CPU thread pushing a signal command and fence value into the command
queue. This is displayed on the DX12 Synchronization sub-row of the calling thread.

‣ The GPU executing that command, setting the fence value and signaling the fence.
This is displayed on the GPU Queue Synchronization sub-row.

‣ The CPU thread calling a Win32 wait API to block-wait until the fence is signaled.
This is displayed on the Thread's OS runtime libraries row.

Clicking one of these will highlight it and the corresponding other two calls.

Direct3D Trace

www.nvidia.com
User Guide v2021.4.1 | 111

www.nvidia.com
User Guide v2021.4.1 | 112

Chapter 8.
WDDM QUEUES

The Windows Display Driver Model (WDDM) architecture uses queues to send work
packets from the CPU to the GPU. Each D3D device in each process is associated
with one or more contexts. Graphics, compute, and copy commands that the profiled
application uses are associated with a context, batched in a command buffer, and pushed
into the relevant queue associated with that context.

Nsight Systems can capture the state of these queues during the trace session.

Enabling the "Collect additional range of ETW events" option will also capture extended
DxgKrnl events such as context status, allocations, sync wait, signal events, etc.

A command buffer in a WDDM queues may have one the following types:

‣ Render
‣ Deferred
‣ System
‣ MMIOFlip
‣ Wait
‣ Signal
‣ Device
‣ Software

It may also be marked as a Present buffer, indicating that the application has finished
rendering and requests to display the source surface.

WDDM Queues

www.nvidia.com
User Guide v2021.4.1 | 113

See the Microsoft documentation for the WDDM architecture and the
DXGKETW_QUEUE_PACKET_TYPE enumeration.

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2021.4.1 | 114

Chapter 9.
VULKAN API TRACE

9.1. Vulkan Overview
Vulkan is a low-overhead, cross-platform 3D graphics and compute API, targeting
a wide variety of devices from PCs to mobile phones and embedded platforms. The
Vulkan API is defined by the Khronos Group. Information about Vulkan and the
Khronos Group can be found at the Khronos Vulkan Site.

Nsight Systems can capture information about Vulkan usage by the profiled process.
This includes capturing the execution time of Vulkan API functions, corresponding GPU
workloads, debug util labels, and frame durations. Vulkan profiling is supported on
both Windows and x86 Linux operating systems.

The Command Buffer Creation row displays time periods when command buffers were
being created. This enables developers to improve their application’s multi-threaded
command buffer creation. Command buffer creation time period is measured between
the call to vkBeginCommandBuffer and the call to vkEndCommandBuffer.

The Swap chains row displays the available swap chains and the time periods where
vkQueuePresentKHR was executed on each swap chain.

https://www.khronos.org/vulkan/

Vulkan API Trace

www.nvidia.com
User Guide v2021.4.1 | 115

A Queue row is displayed for each Vulkan queue created by the profiled application.
The API sub-row displays time periods where vkQueueSubmit was called. The GPU
Workload sub-row displays time periods where workloads were executed by the GPU.

In addition, you can see Vulkan debug util labels on both the CPU and the GPU.

Clicking on a GPU workload highlights the corresponding vkQueueSubmit call, and
vice versa.

9.2. Pipeline Creation Feedback
When tracing target application calls to Vulkan pipeline creation APIs, Nsight Systems
leverages the Pipeline Creation Feedback extension to collect more details about the
duration of individual pipeline creation stages.

See Pipeline Creation Feedback extension for details about this extension.

Vulkan pipeline creation feedback is available on NVIDIA driver release 435 or later.

https://github.com/KhronosGroup/Vulkan-Docs/blob/master/appendices/VK_EXT_debug_utils.txt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkPipelineCreationFeedbackEXT

Vulkan API Trace

www.nvidia.com
User Guide v2021.4.1 | 116

9.3. Vulkan GPU Trace Notes
‣ Vulkan GPU trace is available only when tracing apps that use NVIDIA GPUs.
‣ The endings of Vulkan Command Buffers execution ranges on Compute and

Transfer queues may appear earlier on the timeline than their actual occurrence.

www.nvidia.com
User Guide v2021.4.1 | 117

Chapter 10.
STUTTER ANALYSIS

Stutter Analysis Overview

Nsight Systems on Windows targets displays stutter analysis visualization aids for
profiled graphics applications that use either OpenGL, D3D11, D3D12 or Vulkan, as
detailed below in the following sections.

10.1. FPS Overview
The Frame Duration section displays frame durations on both the CPU and the GPU.

The frame duration row displays live FPS statistics for the current timeline viewport.
Values shown are:

 1. Number of CPU frames shown of the total number captured
 2. Average, minimal, and maximal CPU frame time of the currently displayed time

range
 3. Average FPS value for the currently displayed frames
 4. The 99th percentile value of the frame lengths (such that only 1% of the frames in the

range are longer than this value).

The values will update automatically when scrolling, zooming or filtering the timeline
view.

Stutter Analysis

www.nvidia.com
User Guide v2021.4.1 | 118

The stutter row highlights frames that are significantly longer than the other frames in
their immediate vicinity.

The stutter row uses an algorithm that compares the duration of each frame to the
median duration of the surrounding 19 frames. Duration difference under 4 milliseconds
is never considered a stutter, to avoid cluttering the display with frames whose absolute
stutter is small and not noticeable to the user.

For example, if the stutter threshold is set at 20%:

 1. Median duration is 10 ms. Frame with 13 ms time will not be reported (relative
difference > 20%, absolute difference < 4 ms)

 2. Median duration is 60 ms. Frame with 71 ms time will not be reported (relative
difference < 20%, absolute difference > 4 ms)

 3. Median duration is 60 ms. Frame with 80 ms is a stutter (relative difference > 20%,
absolute difference > 4 ms, both conditions met)

OSC detection

The "19 frame window median" algorithm by itself may not work well with some cases
of "oscillation" (consecutive fast and slow frames), resulting in some false positives. The
median duration is not meaningful in cases of oscillation and can be misleading.

To address the issue and identify if oscillating frames, the following method is applied:

 1. For every frame, calculate the median duration, 1st and 3rd quartiles of 19-frames
window.

 2. Calculate the delta and ratio between 1st and 3rd quartiles.
 3. If the 90th percentile of 3rd – 1st quartile delta array > 4 ms AND the 90th percentile

of 3rd/1st quartile array > 1.2 (120%) then mark the results with "OSC" text.

Right-clicking the Frame Duration row caption lets you choose the target frame rate (30,
60, 90 or custom frames per second).

By clicking the Customize FPS Display option, a customization dialog pops up. In the
dialog, you can now define the frame duration threshold to customize the view of the
potentially problematic frames. In addition, you can define the threshold for the stutter
analysis frames.

Stutter Analysis

www.nvidia.com
User Guide v2021.4.1 | 119

Frame duration bars are color coded:

‣ Green, the frame duration is shorter than required by the target FPS ratio.
‣ Yellow, duration is slightly longer than required by the target FPS rate.
‣ Red, duration far exceeds that required to maintain the target FPS rate.

The CPU Frame Duration row displays the CPU frame duration measured between the
ends of consecutive frame boundary calls:

‣ The OpenGL frame boundaries are eglSwapBuffers/glXSwapBuffers/
SwapBuffers calls.

‣ The D3D11 and D3D12 frame boundaries are IDXGISwapChainX::Present calls.
‣ The Vulkan frame boundaries are vkQueuePresentKHR calls.

The GPU Frame Duration row displays the time measured between

‣ The start time of the first GPU workload execution of this frame.
‣ The start time of the first GPU workload execution of the next frame.

Reflex SDK

NVIDIA Reflex SDK is a series of NVAPI calls that allow applications to integrate the
Ultra Low Latency driver feature more directly into their game to further optimize
synchronization between simulation and rendering stages and lower the latency
between user input and final image rendering. For more details about Reflex SDK, see
Reflex SDK Site.

Nsight Systems will automatically capture NVAPI functions when either Direct3D 11,
Direct3D 12, or Vulkan API trace are enabled.

The Reflex SDK row displays timeline ranges for the following types of latency markers:

‣ RenderSubmit.
‣ Simulation.
‣ Present.
‣ Driver.
‣ OS Render Queue.

https://developer.nvidia.com/reflex/

Stutter Analysis

www.nvidia.com
User Guide v2021.4.1 | 120

‣ GPU Render.

10.2. Frame Health
The Frame Health row displays actions that took significantly a longer time during
the current frame, compared to the median time of the same actions executed during
the surrounding 19-frames. This is a great tool for detecting the reason for frame time
stuttering. Such actions may be: shader compilation, present, memory mapping, and
more. Nsight Systems measures the accumulated time of such actions in each frame.
For example: calculating the accumulated time of shader compilations in each frame
and comparing it to the accumulated time of shader compilations in the surrounding 19
frames.

Example of a Vulkan frame health row:

Stutter Analysis

www.nvidia.com
User Guide v2021.4.1 | 121

10.3. GPU Memory Utilization
The Memory Utilization row displays the amount of used local GPU memory and the
commit limit for each GPU.

Note that this is not the same as the CUDA kernel memory allocation graph, see CUDA
GPU Memory Graph for that functionality.

10.4. Vertical Synchronization
The VSYNC rows display when the monitor's vertical synchronizations occur.

www.nvidia.com
User Guide v2021.4.1 | 122

Chapter 11.
OPENMP TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenMP events. This functionality is built on the OpenMP Tools Interface
(OMPT), full support is available only for runtime libraries supporting tools interface
defined in OpenMP 5.0 or greater.

As an example, LLVM OpenMP runtime library partially implements tools interface.
If you use PGI compiler <= 20.4 to build your OpenMP applications, add -mp=libomp
switch to use LLVM OpenMP runtime and enable OMPT based tracing. If you use
Clang, make sure the LLVM OpenMP runtime library you link to was compiled with
tools interface enabled.

Only a subset of the OMPT callbacks are processed:
ompt_callback_parallel_begin
ompt_callback_parallel_end
ompt_callback_sync_region
ompt_callback_task_create
ompt_callback_task_schedule
ompt_callback_implicit_task
ompt_callback_master
ompt_callback_reduction
ompt_callback_task_create
ompt_callback_cancel
ompt_callback_mutex_acquire, ompt_callback_mutex_acquired
ompt_callback_mutex_acquired, ompt_callback_mutex_released
ompt_callback_mutex_released
ompt_callback_work
ompt_callback_dispatch
ompt_callback_flush

 Note:

The
raw
OMPT
events
are

OpenMP Trace

www.nvidia.com
User Guide v2021.4.1 | 123

used
to
generate
ranges
indicating
the
runtime
of
OpenMP
operations
and
constructs.

Example screenshot:

www.nvidia.com
User Guide v2021.4.1 | 124

Chapter 12.
OS RUNTIME LIBRARIES TRACE

OS runtime libraries can be traced to gather information about low-level userspace APIs.
This traces the system call wrappers and thread synchronization interfaces exposed by
the C runtime and POSIX Threads (pthread) libraries. This does not perform a complete
runtime library API trace, but instead focuses on the functions that can take a long time
to execute, or could potentially cause your thread be unscheduled from the CPU while
waiting for an event to complete.

OS runtime tracing complements and enhances sampling information by:

 1. Visualizing when the process is communicating with the hardware, controlling
resources, performing multi-threading synchronization or interacting with the
kernel scheduler.

 2. Adding additional thread states by correlating how OS runtime libraries traces affect
the thread scheduling:

‣ Waiting — the thread is not scheduled on a CPU, it is inside of an OS runtime
libraries trace and is believed to be waiting on the firmware to complete a
request.

‣ In OS runtime library function — the thread is scheduled on a CPU and inside
of an OS runtime libraries trace. If the trace represents a system call, the process
is likely running in kernel mode.

 3. Collecting backtraces for long OS runtime libraries call. This provides a way to
gather blocked-state backtraces, allowing you to gain more context about why the
thread was blocked so long, yet avoiding unnecessary overhead for short events.

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2021.4.1 | 125

To enable OS runtime libraries tracing from Nsight Systems:

CLI — Use the -t, --trace option with the osrt parameter. See Command Line
Options for more information.

GUI — Select the Collect OS runtime libraries trace checkbox.

You can also use Skip if shorter than. This will skip calls shorter than the given
threshold. Enabling this option will improve performances as well as reduce noise on
the timeline. We strongly encourage you to skip OS runtime libraries call shorter than 1
μs.

12.1. Locking a Resource
The functions listed below receive a special treatment. If the tool detects that the
resource is already acquired by another thread and will induce a blocking call, we
always trace it. Otherwise, it will never be traced.
pthread_mutex_lock
pthread_rwlock_rdlock
pthread_rwlock_wrlock
pthread_spin_lock
sem_wait

Note that even if a call is determined as potentially blocking, there is a chance that it
may not actually block after a few cycles have elapsed. The call will still be traced in this
scenario.

12.2. Limitations
‣ Nsight Systems only traces syscall wrappers exposed by the C runtime. It is not able

to trace syscall invoked through assembly code.

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2021.4.1 | 126

‣ Additional thread states, as well as backtrace collection on long calls, are only
enabled if sampling is turned on.

‣ It is not possible to configure the depth and duration threshold when collecting
backtraces. Currently, only OS runtime libraries calls longer than 80 μs will generate
a backtrace with a maximum of 24 frames. This limitation will be removed in a
future version of the product.

‣ It is required to compile your application and libraries with the -funwind-tables
compiler flag in order for Nsight Systems to unwind the backtraces correctly.

12.3. OS Runtime Libraries Trace Filters
The OS runtime libraries tracing is limited to a select list of functions. It also depends on
the version of the C runtime linked to the application.

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2021.4.1 | 127

12.4. OS Runtime Default Function List
Libc system call wrappers
accept
accept4
acct
alarm
arch_prctl
bind
bpf
brk
chroot
clock_nanosleep
connect
copy_file_range
creat
creat64
dup
dup2
dup3
epoll_ctl
epoll_pwait
epoll_wait
fallocate
fallocate64
fcntl
fdatasync
flock
fork
fsync
ftruncate
futex
ioctl
ioperm
iopl
kill
killpg
listen
membarrier
mlock
mlock2
mlockall
mmap
mmap64
mount
move_pages
mprotect
mq_notify
mq_open
mq_receive
mq_send
mq_timedreceive
mq_timedsend
mremap
msgctl
msgget
msgrcv
msgsnd
msync
munmap
nanosleep
nfsservctl
open
open64
openat
openat64
pause
pipe
pipe2
pivot_root
poll
ppoll
prctl
pread
pread64
preadv
preadv2
preadv64
process_vm_readv
process_vm_writev
pselect6
ptrace
pwrite
pwrite64
pwritev
pwritev2
pwritev64
read
readv
reboot
recv
recvfrom
recvmmsg
recvmsg
rt_sigaction
rt_sigqueueinfo
rt_sigsuspend
rt_sigtimedwait
sched_yield
seccomp
select
semctl
semget
semop
semtimedop
send
sendfile
sendfile64
sendmmsg
sendmsg
sendto
shmat
shmctl
shmdt
shmget
shutdown
sigaction
sigsuspend
sigtimedwait
socket
socketpair
splice
swapoff
swapon
sync
sync_file_range
syncfs
tee
tgkill
tgsigqueueinfo
tkill
truncate
umount2
unshare
uselib
vfork
vhangup
vmsplice
wait
wait3
wait4
waitid
waitpid
write
writev
_sysctl

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2021.4.1 | 128

POSIX Threads
pthread_barrier_wait
pthread_cancel
pthread_cond_broadcast
pthread_cond_signal
pthread_cond_timedwait
pthread_cond_wait
pthread_create
pthread_join
pthread_kill
pthread_mutex_lock
pthread_mutex_timedlock
pthread_mutex_trylock
pthread_rwlock_rdlock
pthread_rwlock_timedrdlock
pthread_rwlock_timedwrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_wrlock
pthread_spin_lock
pthread_spin_trylock
pthread_timedjoin_np
pthread_tryjoin_np
pthread_yield
sem_timedwait
sem_trywait
sem_wait

OS Runtime Libraries Trace

www.nvidia.com
User Guide v2021.4.1 | 129

I/O
aio_fsync
aio_fsync64
aio_suspend
aio_suspend64
fclose
fcloseall
fflush
fflush_unlocked
fgetc
fgetc_unlocked
fgets
fgets_unlocked
fgetwc
fgetwc_unlocked
fgetws
fgetws_unlocked
flockfile
fopen
fopen64
fputc
fputc_unlocked
fputs
fputs_unlocked
fputwc
fputwc_unlocked
fputws
fputws_unlocked
fread
fread_unlocked
freopen
freopen64
ftrylockfile
fwrite
fwrite_unlocked
getc
getc_unlocked
getdelim
getline
getw
getwc
getwc_unlocked
lockf
lockf64
mkfifo
mkfifoat
posix_fallocate
posix_fallocate64
putc
putc_unlocked
putwc
putwc_unlocked

Miscellaneous
forkpty
popen
posix_spawn
posix_spawnp
sigwait
sigwaitinfo
sleep
system
usleep

www.nvidia.com
User Guide v2021.4.1 | 130

Chapter 13.
NVTX TRACE

The NVIDIA Tools Extension Library (NVTX) is a powerful mechanism that allows
users to manually instrument their application. Nsight Systems can then collect the
information and present it on the timeline.

Nsight Systems supports version 3.0 of the NVTX specification.

The following features are supported:

‣ Domains
nvtxDomainCreate(), nvtxDomainDestroy()

nvtxDomainRegisterString()

‣ Push-pop ranges (nested ranges that start and end in the same thread).
nvtxRangePush(), nvtxRangePushEx()

nvtxRangePop()

nvtxDomainRangePushEx()

nvtxDomainRangePop()

‣ Start-end ranges (ranges that are global to the process and are not restricted to a
single thread)
nvtxRangeStart(), nvtxRangeStartEx()

nvtxRangeEnd()

nvtxDomainRangeStartEx()

nvtxDomainRangeEnd()

‣ Marks
nvtxMark(), nvtxMarkEx()

nvtxDomainMarkEx()

‣ Thread names
nvtxNameOsThread()

‣ Categories
nvtxNameCategory()

nvtxDomainNameCategory()

To learn more about specific features of NVTX, please refer to the NVTX header file:
nvToolsExt.h or the NVTX documentation.

https://nvidia.github.io/NVTX/

NVTX Trace

www.nvidia.com
User Guide v2021.4.1 | 131

To use NVTX in your application, follow these steps:

 1. Add #include "nvtx3/nvToolsExt.h" in your source code. The nvtx3 directory
is located in the Nsight Systems package in the Target-<architecture>/nvtx/include
directory and is available via github at http://github.com/NVIDIA/NVTX.

 2. Add the following compiler flag: -ldl
 3. Add calls to the NVTX API functions. For example, try adding

nvtxRangePush("main") in the beginning of the main() function, and
nvtxRangePop() just before the return statement in the end.

For convenience in C++ code, consider adding a wrapper that implements RAII
(resource acquisition is initialization) pattern, which would guarantee that every
range gets closed.

 4. In the project settings, select the Collect NVTX trace checkbox.
 5. If you are on Android target, make sure that your application is launched by Nsight

Systems. This is required so that the necessary launch environment is prepared, and
the library responsible for collection of NVTX trace data is properly injected into the
process.

 6. If you are on Linux on Tegra, if launching the application manually, the following
environment variables should be specified:

‣ For ARMv7 processes:
NVTX_INJECTION32_PATH=/opt/nvidia/nsight_systems/libToolsInjection32.so

‣ For ARMv8 processes:
NVTX_INJECTION64_PATH=/opt/nvidia/nsight_systems/libToolsInjection64.so

In addition, by enabling the "Insert NVTX Marker hotkey" option it is possible to add
NVTX markers to a running non-console applications by pressing the F11 key. These will
appear in the report under the NVTX Domain named "HotKey markers".

Typically calls to NVTX functions can be left in the source code even if the application is
not being built for profiling purposes, since the overhead is very low when the profiler is
not attached.

NVTX is not intended to annotate very small pieces of code that are being called very
frequently. A good rule of thumb to use: if code being annotated usually takes less than
1 microsecond to execute, adding an NVTX range around this code should be done
carefully.

 Note:

Range
annotations
should
be
matched
carefully.
If
many
ranges
are
opened
but
not
closed,

http://github.com/NVIDIA/NVTX

NVTX Trace

www.nvidia.com
User Guide v2021.4.1 | 132

Nsight
Systems
has
no
meaningful
way
to
visualize
it.
A
rule
of
thumb
is
to
not
have
more
than
a
couple
dozen
ranges
open
at
any
point
in
time.
Nsight
Systems
does
not
support
reports
with
many
unclosed
ranges.

www.nvidia.com
User Guide v2021.4.1 | 133

Chapter 14.
CUDA TRACE

Nsight Systems is capable of capturing information about CUDA execution in the
profiled process.

The following information can be collected and presented on the timeline in the report:

‣ CUDA API trace — trace of CUDA Runtime and CUDA Driver calls made by the
application.

‣ CUDA Runtime calls typically start with cuda prefix (e.g. cudaLaunch).
‣ CUDA Driver calls typically start with cu prefix (e.g. cuDeviceGetCount).

‣ CUDA workload trace — trace of activity happening on the GPU, which includes
memory operations (e.g., Host-to-Device memory copies) and kernel executions.
Within the threads that use the CUDA API, additional child rows will appear in the
timeline tree.

‣ On Nsight Systems Workstation Edition, cuDNN and cuBLAS API tracing and
OpenACC tracing.

Near the bottom of the timeline row tree, the GPU node will appear and contain a
CUDA node. Within the CUDA node, each CUDA context used within the process will
be shown along with its corresponding CUDA streams. Steams will contain memory
operations and kernel launches on the GPU. Kernel launches are represented by blue,
while memory transfers are displayed in red.

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 134

The easiest way to capture CUDA information is to launch the process from Nsight
Systems, and it will setup the environment for you. To do so, simply set up a normal
launch and select the Collect CUDA trace checkbox.

For Nsight Systems Workstation Edition this looks like:

For Nsight Systems Embedded Platforms Edition this looks like:

Additional configuration parameters are available:

‣ Collect backtraces for API calls longer than X seconds - turns on collection
of CUDA API backtraces and sets the minimum time a CUDA API event must
take before its backtraces are collected. Setting this value too low can cause high
application overhead and seriously increase the size of your results file.

‣ Flush data periodically — specifies the period after which an attempt to
flush CUDA trace data will be made. Normally, in order to collect full CUDA
trace, the application needs to finalize the device used for CUDA work (call

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 135

cudaDeviceReset(), and then let the application gracefully exit (as opposed to
crashing).

This option allows flushing CUDA trace data even before the device is finalized.
However, it might introduce additional overhead to a random CUDA Driver or
CUDA Runtime API call.

‣ Skip some API calls — avoids tracing insignificant CUDA Runtime
API calls (namely, cudaConfigureCall(), cudaSetupArgument(),
cudaHostGetDevicePointers()). Not tracing these functions allows Nsight
Systems to significantly reduce the profiling overhead, without losing any
interesting data. (See CUDA Trace Filters, below)

‣ Collect GPU Memory Usage - collects information used to generate a graph of
CUDA allocated memory across time. Note that this will increase overhead. See
section on CUDA GPU Memory Allocation Graph below.

‣ Collect Unified Memory CPU page faults - collects information on page faults that
occur when CPU code tries to access a memory page that resides on the device. See
section on Unified Memory CPU Page Faults in the Unified Memory Transfer
Trace documentation below.

‣ Collect Unified Memory GPU page faults - collects information on page faults that
occur when GPU code tries to access a memory page that resides on the CPU. See
section on Unified Memory GPU Page Faults in the Unified Memory Transfer
Trace documentation below.

‣ For Nsight Systems Workstation Edition, Collect cuDNN trace, Collect cuBLAS
trace, Collect OpenACC trace - selects which (if any) extra libraries that depend on
CUDA to trace.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version
15.7 or greater and not compiling statically. In order to differentiate constructs, a PGI
runtime of 16.1 or later is required. Note that Nsight Systems Workstation Edition
does not support the GCC implementation of OpenACC at this time.

‣ For Nsight Systems Embedded Platforms Edition if desired, the target application
can be manually set up to collect CUDA trace. To capture information about CUDA
execution, the following requirements should be satisfied:

‣ The profiled process should be started with the specified environment variable,
depending on the architecture of the process:

‣ For ARMv7 (32-bit) processes: CUDA_INJECTION32_PATH, which should
point to the injection library:
/opt/nvidia/nsight_systems/libToolsInjection32.so

‣ For ARMv8 (64-bit) processes: CUDA_INJECTION64_PATH, which should
point to the injection library:
/opt/nvidia/nsight_systems/libToolsInjection64.so

‣ If the application is started by Nsight Systems, all required environment
variables will be set automatically.

Please note that if your application crashes before all collected CUDA trace data has
been copied out, some or all data might be lost and not present in the report.

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 136

14.1. CUDA GPU Memory Allocation Graph
When the Collect GPU Memory Usage option is selected from the Collect CUDA trace
option set, Nsight Systems will track CUDA GPU memory allocations and deallocations
and present a graph of this information in the timeline. This is not the same as the GPU
memory graph generated during stutter analysis on the Windows target (see Stutter
Memory Trace)

Below, in the report on the left, memory is allocated and freed during the collection. In
the report on the right, memory is allocated, but not freed during the collection.

Here is another example, where allocations are happening on multiple GPUs

14.2. Unified Memory Transfer Trace
For Nsight Systems Workstation Edition, Unified Memory (also called Managed
Memory) transfer trace is enabled automatically in Nsight Systems when CUDA trace
is selected. It incurs no overhead in programs that do not perform any Unified Memory
transfers. Data is displayed in the Managed Memory area of the timeline:

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 137

HtoD transfer indicates the CUDA kernel accessed managed memory that was residing
on the host, so the kernel execution paused and transferred the data to the device. Heavy
traffic here will incur performance penalties in CUDA kernels, so consider using manual
cudaMemcpy operations from pinned host memory instead.

PtoP transfer indicates the CUDA kernel accessed managed memory that was residing
on a different device, so the kernel execution paused and transferred the data to this
device. Heavy traffic here will incur performance penalties, so consider using manual
cudaMemcpyPeer operations to transfer from other devices' memory instead. The row
showing these events is for the destination device -- the source device is shown in the
tooltip for each transfer event.

DtoH transfer indicates the CPU accessed managed memory that was residing on a
CUDA device, so the CPU execution paused and transferred the data to system memory.
Heavy traffic here will incur performance penalties in CPU code, so consider using
manual cudaMemcpy operations from pinned host memory instead.

Some Unified Memory transfers are highlighted with red to indicate potential
performance issues:

Transfers with the following migration causes are highlighted:

‣ Coherence
Unified Memory migration occurred to guarantee data coherence. SMs (streaming
multiprocessors) stop until the migration completes.

‣ Eviction
Unified Memory migrated to the CPU because it was evicted to make room
for another block of memory on the GPU. This happens due to memory
overcommitment which is available on Linux with Compute Capability ≥ 6.

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 138

Unified Memory CPU Page Faults
The Unified Memory CPU page faults feature in Nsight Systems tracks the page faults
that occur when CPU code tries to access a memory page that resides on the device.

 Note:

Collecting
Unified
Memory
CPU
page
faults
can
cause
overhead
of
up
to
70%
in
testing.
Please
use
this
functionality
only
when
needed.

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 139

Unified Memory GPU Page Faults
The Unified Memory GPU page faults feature in Nsight Systems tracks the page faults
that occur when GPU code tries to access a memory page that resides on the host.

 Note:

Collecting
Unified
Memory
GPU
page
faults
can
cause
overhead
of
up
to
70%
in
testing.
Please
use
this
functionality
only

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 140

when
needed.

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 141

14.3. CUDA Default Function List for CLI
CUDA Runtime API
cudaBindSurfaceToArray
cudaBindTexture
cudaBindTexture2D
cudaBindTextureToArray
cudaBindTextureToMipmappedArray
cudaConfigureCall
cudaCreateSurfaceObject
cudaCreateTextureObject
cudaD3D10MapResources
cudaD3D10RegisterResource
cudaD3D10UnmapResources
cudaD3D10UnregisterResource
cudaD3D9MapResources
cudaD3D9MapVertexBuffer
cudaD3D9RegisterResource
cudaD3D9RegisterVertexBuffer
cudaD3D9UnmapResources
cudaD3D9UnmapVertexBuffer
cudaD3D9UnregisterResource
cudaD3D9UnregisterVertexBuffer
cudaDestroySurfaceObject
cudaDestroyTextureObject
cudaDeviceReset
cudaDeviceSynchronize
cudaEGLStreamConsumerAcquireFrame
cudaEGLStreamConsumerConnect
cudaEGLStreamConsumerConnectWithFlags
cudaEGLStreamConsumerDisconnect
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamProducerConnect
cudaEGLStreamProducerDisconnect
cudaEGLStreamProducerReturnFrame
cudaEventCreate
cudaEventCreateFromEGLSync
cudaEventCreateWithFlags
cudaEventDestroy
cudaEventQuery
cudaEventRecord
cudaEventRecord_ptsz
cudaEventSynchronize
cudaFree
cudaFreeArray
cudaFreeHost
cudaFreeMipmappedArray
cudaGLMapBufferObject
cudaGLMapBufferObjectAsync
cudaGLRegisterBufferObject
cudaGLUnmapBufferObject
cudaGLUnmapBufferObjectAsync
cudaGLUnregisterBufferObject
cudaGraphicsD3D10RegisterResource
cudaGraphicsD3D11RegisterResource
cudaGraphicsD3D9RegisterResource
cudaGraphicsEGLRegisterImage
cudaGraphicsGLRegisterBuffer
cudaGraphicsGLRegisterImage
cudaGraphicsMapResources
cudaGraphicsUnmapResources
cudaGraphicsUnregisterResource
cudaGraphicsVDPAURegisterOutputSurface
cudaGraphicsVDPAURegisterVideoSurface
cudaHostAlloc
cudaHostRegister
cudaHostUnregister
cudaLaunch
cudaLaunchCooperativeKernel
cudaLaunchCooperativeKernelMultiDevice
cudaLaunchCooperativeKernel_ptsz
cudaLaunchKernel
cudaLaunchKernel_ptsz
cudaLaunch_ptsz
cudaMalloc
cudaMalloc3D
cudaMalloc3DArray
cudaMallocArray
cudaMallocHost
cudaMallocManaged
cudaMallocMipmappedArray
cudaMallocPitch
cudaMemGetInfo
cudaMemPrefetchAsync
cudaMemPrefetchAsync_ptsz
cudaMemcpy
cudaMemcpy2D
cudaMemcpy2DArrayToArray
cudaMemcpy2DArrayToArray_ptds
cudaMemcpy2DAsync
cudaMemcpy2DAsync_ptsz
cudaMemcpy2DFromArray
cudaMemcpy2DFromArrayAsync
cudaMemcpy2DFromArrayAsync_ptsz
cudaMemcpy2DFromArray_ptds
cudaMemcpy2DToArray
cudaMemcpy2DToArrayAsync
cudaMemcpy2DToArrayAsync_ptsz
cudaMemcpy2DToArray_ptds
cudaMemcpy2D_ptds
cudaMemcpy3D
cudaMemcpy3DAsync
cudaMemcpy3DAsync_ptsz
cudaMemcpy3DPeer
cudaMemcpy3DPeerAsync
cudaMemcpy3DPeerAsync_ptsz
cudaMemcpy3DPeer_ptds
cudaMemcpy3D_ptds
cudaMemcpyArrayToArray
cudaMemcpyArrayToArray_ptds
cudaMemcpyAsync
cudaMemcpyAsync_ptsz
cudaMemcpyFromArray
cudaMemcpyFromArrayAsync
cudaMemcpyFromArrayAsync_ptsz
cudaMemcpyFromArray_ptds
cudaMemcpyFromSymbol
cudaMemcpyFromSymbolAsync
cudaMemcpyFromSymbolAsync_ptsz
cudaMemcpyFromSymbol_ptds
cudaMemcpyPeer
cudaMemcpyPeerAsync
cudaMemcpyToArray
cudaMemcpyToArrayAsync
cudaMemcpyToArrayAsync_ptsz
cudaMemcpyToArray_ptds
cudaMemcpyToSymbol
cudaMemcpyToSymbolAsync
cudaMemcpyToSymbolAsync_ptsz
cudaMemcpyToSymbol_ptds
cudaMemcpy_ptds
cudaMemset
cudaMemset2D
cudaMemset2DAsync
cudaMemset2DAsync_ptsz
cudaMemset2D_ptds
cudaMemset3D
cudaMemset3DAsync
cudaMemset3DAsync_ptsz
cudaMemset3D_ptds
cudaMemsetAsync
cudaMemsetAsync_ptsz
cudaMemset_ptds
cudaPeerRegister
cudaPeerUnregister
cudaStreamAddCallback
cudaStreamAddCallback_ptsz
cudaStreamAttachMemAsync
cudaStreamAttachMemAsync_ptsz
cudaStreamCreate
cudaStreamCreateWithFlags
cudaStreamCreateWithPriority
cudaStreamDestroy
cudaStreamQuery
cudaStreamQuery_ptsz
cudaStreamSynchronize
cudaStreamSynchronize_ptsz
cudaStreamWaitEvent
cudaStreamWaitEvent_ptsz
cudaThreadSynchronize
cudaUnbindTexture

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 142

CUDA Primary API
cu64Array3DCreate
cu64ArrayCreate
cu64D3D9MapVertexBuffer
cu64GLMapBufferObject
cu64GLMapBufferObjectAsync
cu64MemAlloc
cu64MemAllocPitch
cu64MemFree
cu64MemGetInfo
cu64MemHostAlloc
cu64Memcpy2D
cu64Memcpy2DAsync
cu64Memcpy2DUnaligned
cu64Memcpy3D
cu64Memcpy3DAsync
cu64MemcpyAtoD
cu64MemcpyDtoA
cu64MemcpyDtoD
cu64MemcpyDtoDAsync
cu64MemcpyDtoH
cu64MemcpyDtoHAsync
cu64MemcpyHtoD
cu64MemcpyHtoDAsync
cu64MemsetD16
cu64MemsetD16Async
cu64MemsetD2D16
cu64MemsetD2D16Async
cu64MemsetD2D32
cu64MemsetD2D32Async
cu64MemsetD2D8
cu64MemsetD2D8Async
cu64MemsetD32
cu64MemsetD32Async
cu64MemsetD8
cu64MemsetD8Async
cuArray3DCreate
cuArray3DCreate_v2
cuArrayCreate
cuArrayCreate_v2
cuArrayDestroy
cuBinaryFree
cuCompilePtx
cuCtxCreate
cuCtxCreate_v2
cuCtxDestroy
cuCtxDestroy_v2
cuCtxSynchronize
cuD3D10CtxCreate
cuD3D10CtxCreateOnDevice
cuD3D10CtxCreate_v2
cuD3D10MapResources
cuD3D10RegisterResource
cuD3D10UnmapResources
cuD3D10UnregisterResource
cuD3D11CtxCreate
cuD3D11CtxCreateOnDevice
cuD3D11CtxCreate_v2
cuD3D9CtxCreate
cuD3D9CtxCreateOnDevice
cuD3D9CtxCreate_v2
cuD3D9MapResources
cuD3D9MapVertexBuffer
cuD3D9MapVertexBuffer_v2
cuD3D9RegisterResource
cuD3D9RegisterVertexBuffer
cuD3D9UnmapResources
cuD3D9UnmapVertexBuffer
cuD3D9UnregisterResource
cuD3D9UnregisterVertexBuffer
cuEGLStreamConsumerAcquireFrame
cuEGLStreamConsumerConnect
cuEGLStreamConsumerConnectWithFlags
cuEGLStreamConsumerDisconnect
cuEGLStreamConsumerReleaseFrame
cuEGLStreamProducerConnect
cuEGLStreamProducerDisconnect
cuEGLStreamProducerPresentFrame
cuEGLStreamProducerReturnFrame
cuEventCreate
cuEventCreateFromEGLSync
cuEventCreateFromNVNSync
cuEventDestroy
cuEventDestroy_v2
cuEventQuery
cuEventRecord
cuEventRecord_ptsz
cuEventSynchronize
cuGLCtxCreate
cuGLCtxCreate_v2
cuGLInit
cuGLMapBufferObject
cuGLMapBufferObjectAsync
cuGLMapBufferObjectAsync_v2
cuGLMapBufferObjectAsync_v2_ptsz
cuGLMapBufferObject_v2
cuGLMapBufferObject_v2_ptds
cuGLRegisterBufferObject
cuGLUnmapBufferObject
cuGLUnmapBufferObjectAsync
cuGLUnregisterBufferObject
cuGraphicsD3D10RegisterResource
cuGraphicsD3D11RegisterResource
cuGraphicsD3D9RegisterResource
cuGraphicsEGLRegisterImage
cuGraphicsGLRegisterBuffer
cuGraphicsGLRegisterImage
cuGraphicsMapResources
cuGraphicsMapResources_ptsz
cuGraphicsUnmapResources
cuGraphicsUnmapResources_ptsz
cuGraphicsUnregisterResource
cuGraphicsVDPAURegisterOutputSurface
cuGraphicsVDPAURegisterVideoSurface
cuInit
cuLaunch
cuLaunchCooperativeKernel
cuLaunchCooperativeKernelMultiDevice
cuLaunchCooperativeKernel_ptsz
cuLaunchGrid
cuLaunchGridAsync
cuLaunchKernel
cuLaunchKernel_ptsz
cuLinkComplete
cuLinkCreate
cuLinkCreate_v2
cuLinkDestroy
cuMemAlloc
cuMemAllocHost
cuMemAllocHost_v2
cuMemAllocManaged
cuMemAllocPitch
cuMemAllocPitch_v2
cuMemAlloc_v2
cuMemFree
cuMemFreeHost
cuMemFree_v2
cuMemGetInfo
cuMemGetInfo_v2
cuMemHostAlloc
cuMemHostAlloc_v2
cuMemHostRegister
cuMemHostRegister_v2
cuMemHostUnregister
cuMemPeerRegister
cuMemPeerUnregister
cuMemPrefetchAsync
cuMemPrefetchAsync_ptsz
cuMemcpy
cuMemcpy2D
cuMemcpy2DAsync
cuMemcpy2DAsync_v2
cuMemcpy2DAsync_v2_ptsz
cuMemcpy2DUnaligned
cuMemcpy2DUnaligned_v2
cuMemcpy2DUnaligned_v2_ptds
cuMemcpy2D_v2
cuMemcpy2D_v2_ptds
cuMemcpy3D
cuMemcpy3DAsync
cuMemcpy3DAsync_v2
cuMemcpy3DAsync_v2_ptsz
cuMemcpy3DPeer
cuMemcpy3DPeerAsync
cuMemcpy3DPeerAsync_ptsz
cuMemcpy3DPeer_ptds
cuMemcpy3D_v2
cuMemcpy3D_v2_ptds
cuMemcpyAsync
cuMemcpyAsync_ptsz
cuMemcpyAtoA
cuMemcpyAtoA_v2
cuMemcpyAtoA_v2_ptds
cuMemcpyAtoD
cuMemcpyAtoD_v2
cuMemcpyAtoD_v2_ptds
cuMemcpyAtoH
cuMemcpyAtoHAsync
cuMemcpyAtoHAsync_v2
cuMemcpyAtoHAsync_v2_ptsz
cuMemcpyAtoH_v2
cuMemcpyAtoH_v2_ptds
cuMemcpyDtoA
cuMemcpyDtoA_v2
cuMemcpyDtoA_v2_ptds
cuMemcpyDtoD
cuMemcpyDtoDAsync
cuMemcpyDtoDAsync_v2
cuMemcpyDtoDAsync_v2_ptsz
cuMemcpyDtoD_v2
cuMemcpyDtoD_v2_ptds
cuMemcpyDtoH
cuMemcpyDtoHAsync
cuMemcpyDtoHAsync_v2
cuMemcpyDtoHAsync_v2_ptsz
cuMemcpyDtoH_v2
cuMemcpyDtoH_v2_ptds
cuMemcpyHtoA
cuMemcpyHtoAAsync
cuMemcpyHtoAAsync_v2
cuMemcpyHtoAAsync_v2_ptsz
cuMemcpyHtoA_v2
cuMemcpyHtoA_v2_ptds
cuMemcpyHtoD
cuMemcpyHtoDAsync
cuMemcpyHtoDAsync_v2
cuMemcpyHtoDAsync_v2_ptsz
cuMemcpyHtoD_v2
cuMemcpyHtoD_v2_ptds
cuMemcpyPeer
cuMemcpyPeerAsync
cuMemcpyPeerAsync_ptsz
cuMemcpyPeer_ptds
cuMemcpy_ptds
cuMemcpy_v2
cuMemsetD16
cuMemsetD16Async
cuMemsetD16Async_ptsz
cuMemsetD16_v2
cuMemsetD16_v2_ptds
cuMemsetD2D16
cuMemsetD2D16Async
cuMemsetD2D16Async_ptsz
cuMemsetD2D16_v2
cuMemsetD2D16_v2_ptds
cuMemsetD2D32
cuMemsetD2D32Async
cuMemsetD2D32Async_ptsz
cuMemsetD2D32_v2
cuMemsetD2D32_v2_ptds
cuMemsetD2D8
cuMemsetD2D8Async
cuMemsetD2D8Async_ptsz
cuMemsetD2D8_v2
cuMemsetD2D8_v2_ptds
cuMemsetD32
cuMemsetD32Async
cuMemsetD32Async_ptsz
cuMemsetD32_v2
cuMemsetD32_v2_ptds
cuMemsetD8
cuMemsetD8Async
cuMemsetD8Async_ptsz
cuMemsetD8_v2
cuMemsetD8_v2_ptds
cuMipmappedArrayCreate
cuMipmappedArrayDestroy
cuModuleLoad
cuModuleLoadData
cuModuleLoadDataEx
cuModuleLoadFatBinary
cuModuleUnload
cuStreamAddCallback
cuStreamAddCallback_ptsz
cuStreamAttachMemAsync
cuStreamAttachMemAsync_ptsz
cuStreamBatchMemOp
cuStreamBatchMemOp_ptsz
cuStreamCreate
cuStreamCreateWithPriority
cuStreamDestroy
cuStreamDestroy_v2
cuStreamSynchronize
cuStreamSynchronize_ptsz
cuStreamWaitEvent
cuStreamWaitEvent_ptsz
cuStreamWaitValue32
cuStreamWaitValue32_ptsz
cuStreamWaitValue64
cuStreamWaitValue64_ptsz
cuStreamWriteValue32
cuStreamWriteValue32_ptsz
cuStreamWriteValue64
cuStreamWriteValue64_ptsz
cuSurfObjectCreate
cuSurfObjectDestroy
cuSurfRefCreate
cuSurfRefDestroy
cuTexObjectCreate
cuTexObjectDestroy
cuTexRefCreate
cuTexRefDestroy
cuVDPAUCtxCreate
cuVDPAUCtxCreate_v2

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 143

14.4. cuDNN Function List for X86 CLI
cuDNN API functions
cudnnActivationBackward
cudnnActivationBackward_v3
cudnnActivationBackward_v4
cudnnActivationForward
cudnnActivationForward_v3
cudnnActivationForward_v4
cudnnAddTensor
cudnnBatchNormalizationBackward
cudnnBatchNormalizationBackwardEx
cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTraining
cudnnBatchNormalizationForwardTrainingEx
cudnnCTCLoss
cudnnConvolutionBackwardBias
cudnnConvolutionBackwardData
cudnnConvolutionBackwardFilter
cudnnConvolutionBiasActivationForward
cudnnConvolutionForward
cudnnCreate
cudnnCreateAlgorithmPerformance
cudnnDestroy
cudnnDestroyAlgorithmPerformance
cudnnDestroyPersistentRNNPlan
cudnnDivisiveNormalizationBackward
cudnnDivisiveNormalizationForward
cudnnDropoutBackward
cudnnDropoutForward
cudnnDropoutGetReserveSpaceSize
cudnnDropoutGetStatesSize
cudnnFindConvolutionBackwardDataAlgorithm
cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnFindConvolutionBackwardFilterAlgorithm
cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnFindConvolutionForwardAlgorithm
cudnnFindConvolutionForwardAlgorithmEx
cudnnFindRNNBackwardDataAlgorithmEx
cudnnFindRNNBackwardWeightsAlgorithmEx
cudnnFindRNNForwardInferenceAlgorithmEx
cudnnFindRNNForwardTrainingAlgorithmEx
cudnnFusedOpsExecute
cudnnIm2Col
cudnnLRNCrossChannelBackward
cudnnLRNCrossChannelForward
cudnnMakeFusedOpsPlan
cudnnMultiHeadAttnBackwardData
cudnnMultiHeadAttnBackwardWeights
cudnnMultiHeadAttnForward
cudnnOpTensor
cudnnPoolingBackward
cudnnPoolingForward
cudnnRNNBackwardData
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeights
cudnnRNNBackwardWeightsEx
cudnnRNNForwardInference
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining
cudnnRNNForwardTrainingEx
cudnnReduceTensor
cudnnReorderFilterAndBias
cudnnRestoreAlgorithm
cudnnRestoreDropoutDescriptor
cudnnSaveAlgorithm
cudnnScaleTensor
cudnnSoftmaxBackward
cudnnSoftmaxForward
cudnnSpatialTfGridGeneratorBackward
cudnnSpatialTfGridGeneratorForward
cudnnSpatialTfSamplerBackward
cudnnSpatialTfSamplerForward
cudnnTransformFilter
cudnnTransformTensor
cudnnTransformTensorEx

CUDA Trace

www.nvidia.com
User Guide v2021.4.1 | 144

www.nvidia.com
User Guide v2021.4.1 | 145

Chapter 15.
OPENACC TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenACC execution in the profiled process.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version 15.7
or later. In order to differentiate constructs (see tooltip below), a PGI runtime of 16.0 or
later is required. Note that Nsight Systems does not support the GCC implementation of
OpenACC at this time.

Under the CPU rows in the timeline tree, each thread that uses OpenACC will show
OpenACC trace information. You can click on a OpenACC API call to see correlation
with the underlying CUDA API calls (highlighted in teal):

If the OpenACC API results in GPU work, that will also be highlighted:

OpenACC Trace

www.nvidia.com
User Guide v2021.4.1 | 146

Hovering over a particular OpenACC construct will bring up a tooltip with details about
that construct:

To capture OpenACC information from the Nsight Systems GUI, select the Collect
OpenACC trace checkbox under Collect CUDA trace configurations. Note that turning
on OpenACC tracing will also turn on CUDA tracing.

Please note that if your application crashes before all collected OpenACC trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com
User Guide v2021.4.1 | 147

Chapter 16.
OPENGL TRACE

OpenGL and OpenGL ES APIs can be traced to assist in the analysis of CPU and GPU
interactions.

A few usage examples are:

 1. Visualize how long eglSwapBuffers (or similar) is taking.
 2. API trace can easily show correlations between thread state and graphics driver's

behavior, uncovering where the CPU may be waiting on the GPU.
 3. Spot bubbles of opportunity on the GPU, where more GPU workload could be

created.
 4. Use KHR_debug extension to trace GL events on both the CPU and GPU.

OpenGL trace feature in Nsight Systems consists of two different activities which will be
shown in the CPU rows for those threads

‣ CPU trace: interception of API calls that an application does to APIs (such as
OpenGL, OpenGL ES, EGL, GLX, WGL, etc.).

‣ GPU trace (or workload trace): trace of GPU workload (activity) triggered by use
of OpenGL or OpenGL ES. Since draw calls are executed back-to-back, the GPU
workload trace ranges include many OpenGL draw calls and operations in order to
optimize performance overhead, rather than tracing each individual operation.

To collect GPU trace, the glQueryCounter() function is used to measure how much
time batches of GPU workload take to complete.

OpenGL Trace

www.nvidia.com
User Guide v2021.4.1 | 148

Ranges defined by the KHR_debug calls are represented similarly to OpenGL API and
OpenGL GPU workload trace. GPU ranges in this case represent incremental draw cost.
They cannot fully account for GPUs that can execute multiple draw calls in parallel. In
this case, Nsight Systems will not show overlapping GPU ranges.

OpenGL Trace

www.nvidia.com
User Guide v2021.4.1 | 149

16.1. OpenGL Trace Using Command Line
For general information on using the target CLI, see CLI Profiling on Linux. For the CLI,
the functions that are traced are set to the following list:
glWaitSync
glReadPixels
glReadnPixelsKHR
glReadnPixelsEXT
glReadnPixelsARB
glReadnPixels
glFlush
glFinishFenceNV
glFinish
glClientWaitSync
glClearTexSubImage
glClearTexImage
glClearStencil
glClearNamedFramebufferuiv
glClearNamedFramebufferiv
glClearNamedFramebufferfv
glClearNamedFramebufferfi
glClearNamedBufferSubDataEXT
glClearNamedBufferSubData
glClearNamedBufferDataEXT
glClearNamedBufferData
glClearIndex
glClearDepthx
glClearDepthf
glClearDepthdNV
glClearDepth
glClearColorx
glClearColorIuiEXT
glClearColorIiEXT
glClearColor
glClearBufferuiv
glClearBufferSubData
glClearBufferiv
glClearBufferfv
glClearBufferfi
glClearBufferData
glClearAccum
glClear
glDispatchComputeIndirect
glDispatchComputeGroupSizeARB
glDispatchCompute
glComputeStreamNV
glNamedFramebufferDrawBuffers
glNamedFramebufferDrawBuffer
glMultiDrawElementsIndirectEXT
glMultiDrawElementsIndirectCountARB
glMultiDrawElementsIndirectBindlessNV
glMultiDrawElementsIndirectBindlessCountNV
glMultiDrawElementsIndirectAMD
glMultiDrawElementsIndirect
glMultiDrawElementsEXT
glMultiDrawElementsBaseVertex
glMultiDrawElements
glMultiDrawArraysIndirectEXT
glMultiDrawArraysIndirectCountARB
glMultiDrawArraysIndirectBindlessNV
glMultiDrawArraysIndirectBindlessCountNV
glMultiDrawArraysIndirectAMD
glMultiDrawArraysIndirect
glMultiDrawArraysEXT
glMultiDrawArrays
glListDrawCommandsStatesClientNV
glFramebufferDrawBuffersEXT
glFramebufferDrawBufferEXT
glDrawTransformFeedbackStreamInstanced
glDrawTransformFeedbackStream
glDrawTransformFeedbackNV
glDrawTransformFeedbackInstancedEXT
glDrawTransformFeedbackInstanced
glDrawTransformFeedbackEXT
glDrawTransformFeedback
glDrawTexxvOES
glDrawTexxOES
glDrawTextureNV
glDrawTexsvOES
glDrawTexsOES
glDrawTexivOES
glDrawTexiOES
glDrawTexfvOES
glDrawTexfOES
glDrawRangeElementsEXT
glDrawRangeElementsBaseVertexOES
glDrawRangeElementsBaseVertexEXT
glDrawRangeElementsBaseVertex
glDrawRangeElements
glDrawPixels
glDrawElementsInstancedNV
glDrawElementsInstancedEXT
glDrawElementsInstancedBaseVertexOES
glDrawElementsInstancedBaseVertexEXT
glDrawElementsInstancedBaseVertexBaseInstanceEXT
glDrawElementsInstancedBaseVertexBaseInstance
glDrawElementsInstancedBaseVertex
glDrawElementsInstancedBaseInstanceEXT
glDrawElementsInstancedBaseInstance
glDrawElementsInstancedARB
glDrawElementsInstanced
glDrawElementsIndirect
glDrawElementsBaseVertexOES
glDrawElementsBaseVertexEXT
glDrawElementsBaseVertex
glDrawElements
glDrawCommandsStatesNV
glDrawCommandsStatesAddressNV
glDrawCommandsNV
glDrawCommandsAddressNV
glDrawBuffersNV
glDrawBuffersATI
glDrawBuffersARB
glDrawBuffers
glDrawBuffer
glDrawArraysInstancedNV
glDrawArraysInstancedEXT
glDrawArraysInstancedBaseInstanceEXT
glDrawArraysInstancedBaseInstance
glDrawArraysInstancedARB
glDrawArraysInstanced
glDrawArraysIndirect
glDrawArraysEXT
glDrawArrays
eglSwapBuffersWithDamageKHR
eglSwapBuffers
glXSwapBuffers
glXQueryDrawable
glXGetCurrentReadDrawable
glXGetCurrentDrawable
glGetQueryObjectuivEXT
glGetQueryObjectuivARB
glGetQueryObjectuiv
glGetQueryObjectivARB
glGetQueryObjectiv

OpenGL Trace

www.nvidia.com
User Guide v2021.4.1 | 150

www.nvidia.com
User Guide v2021.4.1 | 151

Chapter 17.
CUSTOM ETW TRACE

Use the custom ETW trace feature to enable and collect any manifest-based ETW log.
The collected events are displayed on the timeline on dedicated rows for each event
type.

Custom ETW is available on Windows target machines.

Custom ETW Trace

www.nvidia.com
User Guide v2021.4.1 | 152

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2021.4.1 | 153

Chapter 18.
GPU METRIC SAMPLING

Overview
GPU performance metrics sampling is intended to identify performance limiters in
applications using GPU for computations and graphics. It uses periodic sampling to
gather performance metrics and detailed timing statistics associated with different GPU
hardware units taking advantage of specialized hardware to capture this data in a single
pass with minimal overhead.

These metrics provide an overview of GPU efficiency over time within compute,
graphics, and input/output (IO) activities such as:

‣ IO throughputs: PCIe, NVLink, and GPU memory bandwidth
‣ SM utilization: SMs activity, tensor core activity, instructions issued, warp

occupancy, and unassigned warp slots

GPU Metric Sampling

www.nvidia.com
User Guide v2021.4.1 | 154

It is designed to help users answer the common questions:

‣ Is my GPU idle?
‣ Is my GPU full? Enough kernel grids size and streams? Are my SMs and warp slots

full?
‣ Am I using TensorCores?
‣ Is my instruction rate high?
‣ Am I possibly blocked on IO, or number of warps, etc

Nsight Systems GPU metric sampling is only available for Linux targets on x86-64 and
for Windows targets. It requires NVIDIA Turing architecture or newer with minimum
driver version r460.

Note:Elevated permissions are required. On Linux use sudo to elevate privileges.
On Windows the user must run from an admin command prompt or accept the
UAC escalation dialog. See Permissions Issues and Performance Counters for more
information.

Launching GPU Metric Sampling from the GUI
For commands to launch GPU metric sampling from the CLI with examples, see the CLI
documentation.

When launching analysis in Nsight Systems, select Collect GPU Metrics.

Select the GPUs dropdown to pick which GPUs you wish to sample.

Select the Metric set: dropdown to choose which available metric set you would like to
sample.

Note that metric sets for GPUs that are not being sampled will be greyed out.

hthttps://developer.nvidia.com/nvidia-development-tools-solutions-err_nvgpuctrperm-permission-issue-performance-counters

GPU Metric Sampling

www.nvidia.com
User Guide v2021.4.1 | 155

Available Metrics
‣ GPC Clock Frequency - gpc__cycles_elapsed.avg.per_second

The average GPC clock frequency in hertz. In public documentation the GPC clock
may be called the "Application" clock, "Graphic" clock, "Base" clock, or "Boost" clock.

Note: The collection mechanism for GPC can result in a small fluctuation between
samples.

‣ SYS Clock Frequency - sys__cycles_elapsed.avg.per_second

The average SYS clock frequency in hertz. The GPU front end (command processor),
copy engines, and the performance monitor run at the SYS clock. On Turing and
NVIDIA GA100 GPUs the GPU metrics sampling frequency is based upon a period
of SYS clocks (not time) so samples per second will vary with SYS clock. On NVIDIA
GA10x GPUs the GPU metrics sampling rate is based upon a fixed frequency clock.
The maximum sampling rate scales linearly with the SYS clock.

‣ GR Active - gr__cycles_active.sum.pct_of_peak_sustained_elapsed

The percentage of cycles the graphics/compute engine is active. The graphics/
compute engine is active if there is any work in the graphics pipe or if the compute
pipe is processing work.

GA100 MIG - MIG is not yet supported. This counter will report the activity of the
primary GR engine.

‣ Sync Compute In Flight -
gr__dispatch_cycles_active_queue_sync.avg.pct_of_peak_sustained_elapsed

The percentage of cycles with synchronous compute in flight.

CUDA: CUDA will only report synchronous queue in the case of MPS configured
with 64 sub-context. Synchronous refers to work submitted in VEID=0.

Graphics: This will be true if any compute work submitted from the direct queue is
in flight.

‣ Async Compute in Flight -
gr__dispatch_cycles_active_queue_async.avg.pct_of_peak_sustained_elapsed

The percentage of cycles with asynchronous compute in flight.

CUDA: CUDA will only report all compute work as asynchronous. The one
exception is if MPS is configured and all 64 sub-context are in use. 1 sub-context
(VEID=0) will report as synchronous.

Graphics: This will be true if any compute work submitted from a compute queue is
in flight.

‣ Draw Started - fe__draw_count.avg.pct_of_peak_sustained_elapsed

The ratio of draw calls issued to the graphics pipe to the maximum sustained rate of
the graphics pipe.

GPU Metric Sampling

www.nvidia.com
User Guide v2021.4.1 | 156

Note:The percentage will always be very low as the front end can issue draw calls
significantly faster than the pipe can execute the draw call. The rendering of this row
will be changed to help indicate when draw calls are being issued.

‣ Dispatch Started -
gr__dispatch_count.avg.pct_of_peak_sustained_elapsed

The ratio of compute grid launches (dispatches) to the compute pipe to the
maximum sustained rate of the compute pipe.

Note: The percentage will always be very low as the front end can issue grid
launches significantly faster than the pipe can execute the draw call. The rendering
of this row will be changed to help indicate when grid launches are being issued.

‣ Vertex/Tess/Geometry Warps in Flight -
tpc__warps_active_shader_vtg_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of active vertex, geometry, tessellation, and meshlet shader warps resident
on the SMs to the maximum number of warps per SM as a percentage.

‣ Pixel Warps in Flight -
tpc__warps_active_shader_ps_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of active pixel/fragment shader warps resident on the SMs to the
maximum number of warps per SM as a percentage.

‣ Compute Warps in Flight -
tpc__warps_active_shader_cs_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of active compute shader warps resident on the SMs to the maximum
number of warps per SM as a percentage.

‣ Active SM Unused Warp Slots -
tpc__warps_inactive_sm_active_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of inactive warp slots on the SMs to the maximum number of warps per
SM as a percentage. This is an indication of how many more warps may fit on the
SMs if occupancy is not limited by a resource such as max warps of a shader type,
shared memory, registers per thread, or thread blocks per SM.

‣ Idle SM Unused Warp Slots -
tpc__warps_inactive_sm_idle_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of inactive warps slots due to idle SMs to the the maximum number of
warps per SM as a percentage.

This is an indicator that the current workload on the SM is not sufficient to put work
on all SMs. This can be due to:

‣ CPU starving the GPU
‣ current work is too small to saturate the GPU
‣ current work is trailing off but blocking next work

‣ SM Active - sm__cycles_active.avg.pct_of_peak_sustained_elapsed

The ratio of cycles SMs had at least 1 warp in flight (allocated on SM) to the number
of cycles as a percentage. A value of 0 indicates all SMs were idle (no warps in
flight). A value of 50% can indicate some gradient between all SMs active 50% of the
sample period or 50% of SMs active 100% of the sample period.

GPU Metric Sampling

www.nvidia.com
User Guide v2021.4.1 | 157

‣ SM Issue -
sm__inst_executed_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of cycles that SM sub-partitions (warp schedulers) issued an instruction to
the number of cycles in the sample period as a percentage.

‣ Tensor Active -
sm__pipe_tensor_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

The ratio of cycles the SM tensor pipes were active issuing tensor instructions to the
number of cycles in the sample period as a percentage.

TU102/4/6: This metric is not available on TU10x for periodic sampling. Please see
Tensor Active/FP16 Active.

‣ Tensor Active / FP16 Active -
sm__pipe_shared_cycles_active_realtime.avg.pct_of_peak_sustained_elapsed

TU102/4/6 only

The ratio of cycles the SM tensor pipes or FP16x2 pipes were active issuing tensor
instructions to the number of cycles in the sample period as a percentage.

‣ VRAM Bandwidth -
dram__throughput.avg.pct_of_peak_sustained_elapsed

The ratio of cycles the GPU device memory controllers were actively performing
read or write operations to the number of cycles in the sample period as a
percentage.

‣ NVLINK bytes received -
nvlrx__bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes received on the NVLINK interface to the maximum number of
bytes receivable in the sample period as a percentage. This value includes protocol
overhead.

‣ NVLINK bytes transmitted -
nvltx__bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes transmitted on the NVLINK interface to the maximum number
of bytes transmittable in the sample period as a percentage. This value includes
protocol overhead.

‣ PCIe Read Throughput -
pcie__read_bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes received on the PCIe interface to the maximum number of bytes
receivable in the sample period as a percentage. The theoretical value is calculated
based upon the PCIe generation and number of lanes. This value includes protocol
overhead.

‣ PCIe Write Throughput -
pcie__write_bytes.avg.pct_of_peak_sustained_elapsed

The ratio of bytes received on the PCIe interface to the maximum number of bytes
receivable in the sample period as a percentage. The theoretical value is calculated
based upon the PCIe generation and number of lanes. This value includes protocol
overhead.

GPU Metric Sampling

www.nvidia.com
User Guide v2021.4.1 | 158

Exporting and Querying Data
It is possible to access the metric values for automated processing using the Nsight
Systems CLI export capabilities.

An example that extracts values of "SM Active":

 $ nsys export -t sqlite report.nsys-rep
 $ sqlite3 report.sqlite "SELECT rawTimestamp, CAST(JSON_EXTRACT(data, '$.
\"SM Active\"') as INTEGER) as value FROM GENERIC_EVENTS WHERE value != 0 LIMIT
 10"

 309277039|80
 309301295|99
 309325583|99
 309349776|99
 309373872|60
 309397872|19
 309421840|100
 309446000|100
 309470096|100
 309494161|99

An overview of the contents of the data stored in each event (JSON):

 $ sqlite3 report.sqlite "SELECT data FROM GENERIC_EVENTS LIMIT 1"
 {
 "Unallocated Warps in Active SM": "0",
 "Compute Warps In Flight": "52",
 "Pixel Warps In Flight": "0",
 "Vertex\/Tess\/Geometry Warps In Flight": "0",
 "Total SM Occupancy": "52",
 "GR Active (GE\/CE)": "100",
 "Sync Compute In Flight": "0",
 "Async Compute In Flight": "98",
 "NVLINK bytes received": "0",
 "NVLINK bytes transmitted": "0",
 "PCIe Rx Throughput": "0",
 "PCIe Tx Throughput": "1",
 "DRAM Read Throughput": "0",
 "DRAM Write Throughput": "0",
 "Tensor Active \/ FP16 Active": "0",
 "SM Issue": "10",
 "SM Active": "52"
 }

Values are integer percentages (0..100)

Limitations
‣ If metrics sets with NVLink are used but the links are not active, they may appear as

fully utilized.
‣ Only one tool that subscribes to these counters can be used at a time, therefore,

Nsight Systems GPU metric sampling cannot be used at the same time as the
following tools:

GPU Metric Sampling

www.nvidia.com
User Guide v2021.4.1 | 159

‣ Nsight Graphics
‣ Nsight Compute
‣ DCGM (Data Center GPU Manager)

Use the following command:

‣ dcgmi profile --pause
‣ dcgmi profile --resume

Or API:

‣ dcgmProfPause
‣ dcgmProfResume

‣ Non-NVIDIA products which use:

‣ CUPTI sampling used directly in the application. CUPTI trace is okay
(although it will block Nsight Systems CUDA trace)

‣ DCGM library
‣ Nsight Systems limits the amount of memory that can be used to store GPU metrics

sampling data. Analysis with higher sampling rates or on GPUs with more SMs has
a risk of filling these buffers. This will lead to gaps with long samples on timeline.
If you select that area on the timeline you will see that the counters will pause and
remain at a steady state for a while. Future releases will reduce the frequency of this
happening and better present these periods.

www.nvidia.com
User Guide v2021.4.1 | 160

Chapter 19.
NVIDIA VIDEO CODEC SDK TRACE

Nsight Systems for x86 Linux and Windows targets can trace calls from the NV Video
Codec SDK. This software trace can be launched from the GUI or using the --trace
nvvideo from the CLI

On the timeline, calls on the CPU to the NV Encoder API and NV Decoder API will be
shown.

NVIDIA Video Codec SDK Trace

www.nvidia.com
User Guide v2021.4.1 | 161

19.1. NV Encoder API Functions Traced by Default
NvEncodeAPICreateInstance
nvEncOpenEncodeSession
nvEncGetEncodeGUIDCount
nvEncGetEncodeGUIDs
nvEncGetEncodeProfileGUIDCount
nvEncGetEncodeProfileGUIDs
nvEncGetInputFormatCount
nvEncGetInputFormats
nvEncGetEncodeCaps
nvEncGetEncodePresetCount
nvEncGetEncodePresetGUIDs
nvEncGetEncodePresetConfig
nvEncGetEncodePresetConfigEx
nvEncInitializeEncoder
nvEncCreateInputBuffer
nvEncDestroyInputBuffer
nvEncCreateBitstreamBuffer
nvEncDestroyBitstreamBuffer
nvEncEncodePicture
nvEncLockBitstream
nvEncUnlockBitstream
nvEncLockInputBuffer
nvEncUnlockInputBuffer
nvEncGetEncodeStats
nvEndGetSequenceParams
nvEncRegisterAsyncEvent
nvEncUnregisterAsyncEvent
nvEncMapInputResource
nvEncUnmapInputResource
nvEncDestroyEncoder
nvEncInvalidateRefFrames
nvEncOpenEncodeSessionEx
nvEncRegisterResource
nvEncUnregisterResource
nvEncReconfigureEncoder
nvEncCreateMVBuffer
nvEncDestroyMVBuffer
nvEncRunMotionEstimationOnly
nvEncGetLastErrorString
nvEncSetIOCudaStreams
nvEncGetSequenceParamEx

NVIDIA Video Codec SDK Trace

www.nvidia.com
User Guide v2021.4.1 | 162

19.2. NV Decoder API Functions Traced by Default
cuvidCreateVideoSource
cuvidCreateVideoSourceW
cuvidDestroyVideoSource
cuvidSetVideoSourceState
cudaVideoState
cuvidGetSourceVideoFormat
cuvidGetSourceAudioFormat
cuvidCreateVideoParser
cuvidParseVideoData
cuvidDestroyVideoParser
cuvidCreateDecoder
cuvidDestroyDecoder
cuvidDecodePicture
cuvidGetDecodeStatus
cuvidReconfigureDecoder
cuvidMapVideoFrame
cuvidUnmapVideoFrame
cuvidMapVideoFrame64
cuvidUnmapVideoFrame64
cuvidCtxLockCreate
cuvidCtxLockDestroy
cuvidCtxLock
cuvidCtxUnlock

www.nvidia.com
User Guide v2021.4.1 | 163

Chapter 20.
NETWORK COMMUNICATION PROFILING

Nsight Systems can be used to profiles several popular network communication
protocols. To enable this, please select the Communication profiling options dropdown.

Then select the libraries you would like to trace:

Network Communication Profiling

www.nvidia.com
User Guide v2021.4.1 | 164

20.1. MPI API Trace
For Linux x86_64 and Power targets, Nsight Systems is capable of capturing information
about the MPI APIs executed in the profiled process. It has built-in API trace support
only for the OpenMPI and MPICH implementations of MPI and only for a default list of
synchronous APIs.

If you require more control over the list of traced APIs or if you are using a different
MPI implementation, see github nvtx pmpi wrappers. You can use this documentation
to generate a shared object to wrap a list of synchronous MPI APIs with NVTX using
the MPI profiling interface (PMPI). If you set your LD_PRELOAD environment variable
to the path of that object, Nsight Systems will capture and report the MPI API trace
information when NVTX tracing is enabled.

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Network Communication Profiling

www.nvidia.com
User Guide v2021.4.1 | 165

NVTX tracing is automatically enabled when MPI trace is turned on.

20.2. OpenSHMEM Library Trace
If OpenSHMEM library trace is selected Nsight Systems will trace the subset of
OpenSHMEM API functions that are most likely be involved in performance
bottlenecks. To keep overhead low Nsight Systems does not trace all functions.

OpenSHMEM 1.5 Functions Not Traced

shmem_my_pe
shmem_n_pes
shmem_global_exit
shmem_pe_accessible
shmem_addr_accessible
shmem_ctx_{create,destroy,get_team}
shmem_global_exit
shmem_info_get_{version,name}
shmem_{my_pe,n_pes,pe_accessible,ptr}
shmem_query_thread
shmem_team_{create_ctx,destroy}
shmem_team_get_config
shmem_team_{my_pe,n_pes,translate_pe}
shmem_team_split_{2d,strided}
shmem_test*

Network Communication Profiling

www.nvidia.com
User Guide v2021.4.1 | 166

20.3. UCX Library Trace
If UCX library trace is selected Nsight Systems will trace the subset of functions of the
UCX protocol layer UCP that are most likely be involved in performance bottlenecks. To
keep overhead low Nsight Systems does not trace all functions.

UCX functions traced:

ucp_am_send_nb[x]
ucp_am_recv_data_nbx
ucp_am_data_release
ucp_atomic_{add{32,64},cswap{32,64},fadd{32,64},swap{32,64}}
ucp_atomic_{post,fetch_nb,op_nbx}
ucp_cleanup
ucp_config_{modify,read,release}
ucp_disconnect_nb
ucp_dt_{create_generic,destroy}
ucp_ep_{create,destroy,modify_nb,close_nbx}
ucp_ep_flush[{_nb,_nbx}]
ucp_listener_{create,destroy,query,reject}
ucp_mem_{advise,map,unmap,query}
ucp_{put,get}[_nbi]
ucp_{put,get}_nb[x]
ucp_request_{alloc,cancel,check_status,is_completed}
ucp_rkey_{buffer_release,destroy,pack,ptr}
ucp_stream_data_release
ucp_stream_recv_{data_nb,request_test}
ucp_stream_{send,recv}_nb[x]
ucp_stream_worker_poll
ucp_tag_msg_recv_nb[x]
ucp_tag_probe_nb
ucp_tag_{send,recv}_nbr
ucp_tag_{send,recv}_nb[x]
ucp_tag_recv_request_test
ucp_tag_send_sync_nb[x]
ucp_worker_{create,destroy,get_address,get_efd,arm,fence,wait,signal,wait_mem}
ucp_worker_flush[{_nb,_nbx}]
ucp_worker_set_am_{handler,recv_handler}

UCX Functions Not Traced:

ucp_config_print
ucp_conn_request_query
ucp_context_{query,print_info}
ucp_get_version[_string]
ucp_ep_{close_nb,print_info,rkey_unpack}
ucp_mem_print_info
ucp_request_{test,free,release}
ucp_worker_{progress,query,release_address,print_info}

Additional API functions from other UCX layers may be added in a future version of the
product.

Network Communication Profiling

www.nvidia.com
User Guide v2021.4.1 | 167

20.4. NVIDIA NVSHMEM and NCCL Trace
The NVIDIA network communication libraries NVSHMEM and NCCL have been
instrumented using NVTX annotations. To enable tracing these libraries in Nsight
Systems, turn on NVTX tracing in the GUI or CLI. To enable the NVTX instrumentation
of the NVSHMEM library, make sure that the environment variable NVSHMEM_NVTX is set
properly, e.g. NVSHMEM_NVTX=common.

www.nvidia.com
User Guide v2021.4.1 | 168

Chapter 21.
DEBUG VERSIONS OF ELF FILES

Often, after a binary is built, especially if it is built with debug information (-g compiler
flag), it gets stripped before deploying or installing. In this case, ELF sections that
contain useful information, such as non-export function names or unwind information,
can get stripped as well.

One solution is to deploy or install the original unstripped library instead of the stripped
one, but in many cases this would be inconvenient. Nsight Systems can use missing
information from alternative locations.

For target devices with Ubuntu, see Debug Symbol Packages. These packages typically
install debug ELF files with /usr/lib/debug prefix. Nsight Systems can find debug
libraries there, and if it matches the original library (e.g., the built-in BuildID is the
same), it will be picked up and used to provide symbol names and unwind information.

Many packages have debug companions in the same repository and can be directly
installed with APT (apt-get). Look for packages with the -dbg suffix. For other
packages, refer to the Debug Symbol Packages wiki page on how to add the debs
package repository. After setting up the repository and running apt-get update, look for
packages with -dbgsym suffix.

To verify that a debug version of a library has been picked up and downloaded from the
target device, look in the Module Summary section of Analysis Summary:

https://wiki.ubuntu.com/Debug_Symbol_packages
https://wiki.ubuntu.com/Debug_Symbol_packages

www.nvidia.com
User Guide v2021.4.1 | 169

Chapter 22.
READING YOUR REPORT IN GUI

22.1. Generating a New Report
Users can generate a new report by stopping a profiling session. If a profiling session has
been canceled, a report will not be generated, and all collected data will be discarded.

A new .nsys-rep file will be created and put into the same directory as the project file
(.qdproj).

22.2. Opening an Existing Report
An existing .nsys-rep file can be opened using File > Open....

22.3. Sharing a Report File
Report files (.nsys-rep) are self-contained and can be shared with other users of
Nsight Systems. The only requirement is that the same or newer version of Nsight
Systems is always used to open report files.

Project files (.qdproj) are currently not shareable, since they contain full paths to the
report files.

To quickly navigate to the directory containing the report file, right click on it in the
Project Explorer, and choose Show in folder... in the context menu.

22.4. Report Tab
While generating a new report or loading an existing one, a new tab will be created. The
most important parts of the report tab are:

‣ View selector — Allows switching between Analysis Summary, Timeline View,
Diagnostics Summary, and Symbol Resolution Logs views.

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 170

‣ Timeline — This is where all charts are displayed.
‣ Function table — Located below the timeline, it displays statistical information

about functions in the target application in multiple ways.

Additionally, the following controls are available:

‣ Zoom slider — Allows you to vertically zoom the charts on the timeline.

22.5. Analysis Summary View
This view shows a summary of the profiling session. In particular, it is useful to review
the project configuration used to generate this report. Information from this view can be
selected and copied using the mouse cursor.

22.6. Timeline View
The timeline view consists of two main controls: the timeline at the top, and a bottom
pane that contains the events view and the function table. In some cases, when sampling
of a process has not been enabled, the function table might be empty and hidden.

The bottom view selector sets the view that is displayed in the bottom pane.

22.6.1. Timeline
Timeline is a versatile control that contains a tree-like hierarchy on the left, and
corresponding charts on the right.

Contents of the hierarchy depend on the project settings used to collect the report. For
example, if a certain feature has not been enabled, corresponding rows will not be show
on the timeline.

To generate a timeline screenshot without opening the full GUI, use the command
nsys-ui.exe --screenshot filename.nsys-rep

To display trace events in the Events View right-click a timeline row and select the
“Show in Events View” command. The events of the selected row and all of its sub-rows
will be displayed in the Events View.

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 171

If a timeline row has been selected for display in the Events View then double-clicking
a timeline item on that row will automatically scroll the content of the Events View to
make the corresponding Events View item visible and select it.

Row Height
Several of the rows in the timeline use height as a way to model the percent utilization
of resources. This gives the user insight into what is going on even when the timeline is
zoomed all the way out.

In this picture you see that for kernel occupation there is a colored bar of variable height.

Nsight Systems calculates the average occupancy for the period of time represented by
particular pixel width of screen. It then uses that average to set the top of the colored
section. So, for instance, if 25% of that timeslice the kernel is active, the bar goes 25% of
the distance to the top of the row.

In order to make the difference clear, if the percentage of the row height is non-zero, but
would be represented by less than one vertical pixel, Nsight Systems displays it as one
pixel high. The gray height represents the maximum usage in that time range.

This row height coding is used in the CPU utilization, thread and process occupancy,
kernel occupancy, and memory transfer activity rows.

22.6.2. Events View
The Events View provides a tabular display of the trace events. The view contents can be
searched and sorted.

Double-clicking an item in the Events View automatically focuses the Timeline View on
the corresponding timeline item.

API calls, GPU executions, and debug markers that occurred within the boundaries of a
debug marker are displayed nested to that debug marker. Multiple levels of nesting are
supported.

Events view recognizes these types of debug markers:

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 172

‣ NVTX
‣ Vulkan VK_EXT_debug_marker markers, VK_EXT_debug_utils labels
‣ PIX events and markers
‣ OpenGL KHR_debug markers

You can copy and paste from the events view by highlighting rows, using Shift or Ctrl
to enable multi-select. Right clicking on the selection will give you a copy option.

Pasting into text gives you a tab separated view:

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 173

Pasting into spreadsheet properly copies into rows and columns:

22.6.3. Function Table Modes

The function table can work in three modes:

‣ Top-Down View — In this mode, expanding top-level functions provides
information about the callee functions. One of the top-level functions is typically the
main function of your application, or another entry point defined by the runtime
libraries.

‣ Bottom-Up View — This is a reverse of the Top-Down view. On the top level,
there are functions directly hit by the sampling profiler. To explore all possible call
chains leading to these functions, you need to expand the subtrees of the top-level
functions.

‣ Flat View — This view enumerates all functions ever observed by the profiler, even
if they have never been directly hit, but just appeared somewhere on the call stack.
This view typically provides a high-level overview of which parts of the code are
CPU-intensive.

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 174

Each of the views helps understand particular performance issues of the application
being profiled. For example:

‣ When trying to find specific bottleneck functions that can be optimized, the Bottom-
Up view should be used. Typically, the top few functions should be examined.
Expand them to understand in which contexts they are being used.

‣ To navigate the call tree of the application and while generally searching for
algorithms and parts of the code that consume unexpectedly large amount of CPU
time, the Top-Down view should be used.

‣ To quickly assess which parts of the application, or high level parts of an algorithm,
consume significant amount of CPU time, use the Flat view.

The Top-Down and Bottom-Up views have Self and Total columns, while the Flat view
has a Flat column. It is important to understand the meaning of each of the columns:

‣ Top-Down view

‣ Self column denotes the relative amount of time spent executing instructions of
this particular function.

‣ Total column shows how much time has been spent executing this function,
including all other functions called from this one. Total values of sibling rows
sum up to the Total value of the parent row, or 100% for the top-level rows.

‣ Bottom-Up view

‣ Self column for top-level rows, as in the Top-Down view, shows how much time
has been spent directly in this function. Self times of all top-level rows add up to
100%.

‣ Self column for children rows breaks down the value of the parent row based on
the various call chains leading to that function. Self times of sibling rows add up
to the value of the parent row.

‣ Flat view

‣ Flat column shows how much time this function has been anywhere on the
call stack. Values in this column do not add up or have other significant
relationships.

 Note:

If
low-
impact
functions
have
been
filtered
out,
values
may
not
add
up
correctly
to
100%,
or

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 175

to
the
value
of
the
parent
row.
This
filtering
can
be
disabled.

Contents of the symbols table is tightly related to the timeline. Users can apply and
modify filters on the timeline, and they will affect which information is displayed in
the symbols table:

‣ Per-thread filtering — Each thread that has sampling information associated with it
has a checkbox next to it on the timeline. Only threads with selected checkboxes are
represented in the symbols table.

‣ Time filtering — A time filter can be setup on the timeline by pressing the left
mouse button, dragging over a region of interest on the timeline, and then choosing
Filter by selection in the dropdown menu. In this case, only sampling information
collected during the selected time range will be used to build the symbols table.

 Note:

If
too
little
sampling
data
is
being
used
to
build
the
symbols
table
(for
example,
when
the
sampling
rate
is
configured
to
be
low,
and
a
short
period
of
time
is
used

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 176

for
time-
based
filtering),
the
numbers
in
the
symbols
table
might
not
be
representative
or
accurate
in
some
cases.

22.6.4. Filter Dialog

‣ Collapse unresolved lines is useful if some of the binary code does not have
symbols. In this case, subtrees that consist of only unresolved symbols get collapsed
in the Top-Down view, since they provide very little useful information.

‣ Hide functions with CPU usage below X% is useful for large applications, where
the sampling profiler hits lots of function just a few times. To filter out the "long
tail," which is typically not important for CPU performance bottleneck analysis, this
checkbox should be selected.

22.7. Diagnostics Summary View
This view shows important messages. Some of them were generated during the profiling
session, while some were added while processing and analyzing data in the report.
Messages can be one of the following types:

‣ Informational messages

Reading Your Report in GUI

www.nvidia.com
User Guide v2021.4.1 | 177

‣ Warnings
‣ Errors

To draw attention to important diagnostics messages, a summary line is displayed on
the timeline view in the top right corner:

Information from this view can be selected and copied using the mouse cursor.

22.8. Symbol Resolution Logs View
This view shows all messages related to the process of resolving symbols. It might be
useful to debug issues when some of the symbol names in the symbols table of the
timeline view are unresolved.

www.nvidia.com
User Guide v2021.4.1 | 178

Chapter 23.
ADDING REPORT TO THE TIMELINE

Starting with 2021.3, Nsight Systems can load multiple report files into a single timeline.
This is a BETA feature and will be improved in the future releases. Please let us know
about your experience on the forums or through Help > Send Feedback... in the main
menu.

To load multiple report files into a single timeline, first start by opening a report as usual
— using File > Open... from the main menu, or double clicking on a report in the Project
Explorer window. Then additional report files can be loaded into the same timeline
using one of the methods:

‣ File > Add Report (beta)... in the main menu, and select another report file that you
want to open

‣ Right click on the report in the project explorer window, and click Add Report
(beta)

23.1. Time Synchronization
When multiple reports are loaded into a single timeline, timestamps between them need
to be adjusted, such that events that happened at the same time appear to be aligned.

Adding Report to the Timeline

www.nvidia.com
User Guide v2021.4.1 | 179

Nsight Systems can automatically adjust timestamps based on UTC time recorded
around the collection start time. This method is used by default when other more
precise methods are not available. This time can be seen as UTC time at t=0 in the
Analysis Summary page of the report file. Refer to your OS documentation to learn how
to sync the software clock using the Network Time Protocol (NTP). NTP-based time
synchronization is not very precise, with the typical errors on the scale of one to tens of
milliseconds.

Reports collected on the same physical machine can use synchronization based on
Timestamp Counter (TSC) values. These are platform-specific counters, typically
accessed in user space applications using the RDTSC instruction on x86_64 architecture,
or by reading the CNTVCT register on Arm64. Their values converted to nanoseconds
can be seen as TSC value at t=0 in the Analysis Summary page of the report file.
Reports synchronized using TSC values can be aligned with nanoseconds-level
precision.

TSC-based time synchronization is activated automatically, when Nsight Systems detects
that the same TSC value corresponds to very close UTC times. UTC time difference
must be below 1 second in this case. This method is expected to only work for reports
collected on the same physical machine.

To find out which synchronization method was used, navigate to the Analysis Summary
tab of an added report and check the Report alignment source property of a target.
Note, that the first report won’t have this parameter.

When loading multiple reports into a single timeline, it is always advisable to first
check that time synchronization looks correct, by zooming into synchronization or
communication events that are expected to be aligned.

Adding Report to the Timeline

www.nvidia.com
User Guide v2021.4.1 | 180

23.2. Timeline Hierarchy
When reports are added to the same timeline Nsight Systems will automatically
line them up by timestamps as described above. If you want Nsight Systems to also
recognize matching process or hardware information, you will need to set environment
variables NSYS_SYSTEM_ID and NSYS_HW_ID as shown below at the time of report
collection (such as when using "nsys profile ..." command).

When loading a pair of given report files into the same timeline, they will be merged in
one of the following configurations:

‣ Different hardware (default) — is used when reports are coming from different
physical machines, and no hardware resources are shared in these reports. This
mode is used by default, and can be additionally signalled by specifying different
NSYS_HW_ID values.

‣ Different systems, same hardware — is used when reports are collected on different
virtual machines (VMs) or containers on the same physical machine. To activate this
mode, specify the same value of NSYS_HW_ID when collecting the reports.

‣ Same system — is used when reports are collected within the same operating system
(or container) environment. In this mode a process identifier (PID) 100 will refer to
the same process in both reports. To activate this mode, specify the same value of
NSYS_SYSTEM_ID when collecting the reports.

The following diagrams demonstrate typical cases:

Adding Report to the Timeline

www.nvidia.com
User Guide v2021.4.1 | 181

23.3. Example: MPI
A typical scenario is when a computing job is run using one of the MPI
implementations. Each instance of the app can be profiled separately, resulting in
multiple report files. For example:

Run MPI job without the profiler:
mpirun <MPI-options> ./myApp
Run MPI job and profile each instance of the application:
mpirun <MPI-options> nsys profile -o report-%p <nsys-options>./myApp

When each MPI rank runs on a different node, the command above works fine, since the
default pairing mode (different hardware) will be used.

When all MPI ranks run the localhost only, use this command (value "A" was chosen
arbitrarily, it can be any non-empty string):

NSYS_SYSTEM_ID=A mpirun <MPI-options> nsys profile -o report-%p
<nsys-options> ./myApp

For convenience, the MPI rank can be encoded into the report filename. Specifics depend
on the MPI implementation. For Open MPI, use the following command to create report
files based on the global rank value:

Adding Report to the Timeline

www.nvidia.com
User Guide v2021.4.1 | 182

mpirun <MPI-options> nsys profile -o 'report-
%q{OMPI_COMM_WORLD_RANK}' <nsys-options> ./myApp

For MPICH, use the following command:

mpirun <MPI-options> nsys profile -o 'report-%q{PMI_RANK}' <nsys-
options> ./myApp

23.4. Limitations
‣ Only report files collected with Nsight Systems version 2021.3 and newer are fully

supported.
‣ Sequential reports collected in a single CLI profiling session cannot be loaded into a

single timeline yet.

www.nvidia.com
User Guide v2021.4.1 | 183

Chapter 24.
USING NSIGHT SYSTEMS EXPERT SYSTEM

The Nsight Systems expert system is an emerging feature in Nsight Systems aimed
at automatic detection of performance optimization opportunities in an application's
profile. It uses a set of predefined rules to determine if the application has known bad
patterns.

Using Expert System from the CLI
usage:
nsys [global-options] analyze [options]
 [nsys-rep-or-sqlite-file]

If a .nsys-rep file is given as the input file and there is no .sqlite file with the same name
in the same directory, it will be generated.

Note: The Expert System view in the GUI will give you the equivalent command line.

Using Expert System from the GUI
The Expert System View can be found in the same drop-down as the Events View. If
there is no .sqlite file with the same name as the .nsys-rep file in the same directory, it
will be generated.

The Expert System View has the following components:

 1. Drop-down to select the rule to be run
 2. Rule description and advice summary
 3. CLI command that will give the same result
 4. Table containing results of running the rule
 5. Settings button that allows users to specify the rule’s arguments

Using Nsight Systems Expert System

www.nvidia.com
User Guide v2021.4.1 | 184

A context menu is available to correlate the table entry with the timeline. The options are
the same as the Events View:

‣ Highlight selected on timeline (double-click)
‣ Show current on timeline (ctrl+double-click)

The highlighting is not supported for rules that do not return an event but rather an
arbitrary time range (e.g. GPU utilization rules).

The CLI and GUI share the same rule scripts and messages. There might be some
formatting differences between the output table in GUI and CLI.

Expert System Rules
Rules are scripts that run on the SQLite DB output from Nsight Systems to find common
improvable usage patterns.

Each rule has an advice summary with explanation of the problem found and
suggestions to address it. Only the top 50 results are displayed by default.

There are currently six CUDA rules in the expert system. They are described below.
Additional rules will be made available in a future version of Nsight Systems.

Synchronous Operation Rules
Asynchronous memcpy with pageable memory

This rule identifies asynchronous memory transfers that end up becoming synchronous
if the memory is pageable. This rule is not applicable for Nsight Systems Embedded
Platforms Edition

Suggestion: If applicable, use pinned memory instead

Using Nsight Systems Expert System

www.nvidia.com
User Guide v2021.4.1 | 185

Synchronous Memcpy

This rule identifies synchronous memory transfers that block the host.

Suggestion: Use cudaMemcpy*Async APIs instead.

Synchronous Memset

This rule identifies synchronous memset operations that block the host.

Suggestion: Use cudaMemset*Async APIs instead.

Synchronization APIs

This rule identifies synchronization APIs that block the host until all issued CUDA calls
are complete.

Suggestions: Avoid excessive use of synchronization. Use asynchronous CUDA event
calls, such as cudaStreamWaitEvent and cudaEventSynchronize, to prevent host
synchronization.

GPU Low Utilization Rules
GPU Starvation

This rule identifies time ranges where a GPU is idle for longer than 500ms. The
threshold is adjustable.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

Using Nsight Systems Expert System

www.nvidia.com
User Guide v2021.4.1 | 186

‣ For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device.

‣ GPU gaps that cannot be addressed by the user are excluded. This includes:

‣ CUDA profiling overhead in the middle of a GPU gap.
‣ The initial gap in the report that is seen before the first GPU operation.
‣ The final gap that is seen after the last GPU operation.

GPU Low Utilization

This rule identifies time regions with low utilization.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

‣ For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device. This time range is then
divided into equal chunks, and the GPU utilization is calculated for each chunk. The
utilization includes all GPU operations as well as CUDA profiling overheads that
the user cannot address.

‣ The utilization refers to the "time" utilization and not the "resource" utilization.
This rule attempts to find time gaps when the GPU is or isn't being used, but does
not take into account how many GPU resources are being used. Therefore, a single
running memcpy is considered the same amount of "utilization" as a huge kernel
that takes over all the cores. If multiple operations run concurrently in the same
chunk, their utilization will be added up and may exceed 100%.

‣ Chunks with an in-use percentage less than the threshold value are displayed.
If consecutive chunks have a low in-use percentage, the individual chunks are
coalesced into a single display record, keeping the weighted average of percentages.
This is why returned chunks may have different durations.

www.nvidia.com
User Guide v2021.4.1 | 187

Chapter 25.
BROKEN BACKTRACES ON TEGRA

In Nsight Systems Embedded Platforms Edition, in the symbols table there is a special
entry called Broken backtraces. This entry is used to denote the point in the call chain
where the unwinding algorithms used by Nsight Systems could not determine what is
the next (caller) function.

Broken backtraces happen because there is no information related to the current function
that the unwinding algorithms can use. In the Top-Down view, these functions are
immediate children of the Broken backtraces row.

One can eliminate broken backtraces by modifying the build system to provide at
least one kind of unwind information. The types of unwind information, used by the
algorithms in Nsight Systems, include the following:

For ARMv7 binaries:

‣ DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_hdr. This information is the most precise. .zdebug_frame is a
compressed version of .debug_frame, so at most one of them is typically present.
.eh_frame_hdr is a companion section for .eh_frame and might be absent.

Compiler flag: -g.
‣ Exception handling information in EHABI format provided in .ARM.exidx and

.ARM.extab ELF sections. .ARM.extab might be absent if all information is
compact enough to be encoded into .ARM.exidx.

Compiler flag: -funwind-tables.
‣ Frame pointers (built into the .text section).

Compiler flag: -fno-omit-frame-pointer.

For Aarch64 binaries:

‣ DWARF information in ELF sections: .debug_frame, .zdebug_frame, .eh_frame,
.eh_frame_hdr. See additional comments above.

Compiler flag: -g.
‣ Frame pointers (built into the .text section).

Compiler flag: -fno-omit-frame-pointer.

Broken Backtraces on Tegra

www.nvidia.com
User Guide v2021.4.1 | 188

The following ELF sections should be considered empty if they have size of 4 bytes:
.debug_frame, .eh_frame, .ARM.exidx. In this case, these sections only contain
termination records and no useful information.

For GCC, use the following compiler invocation to see which compiler flags are enabled
in your toolchain by default (for example, to check if -funwind-tables is enabled by
default):
$ gcc -Q --help=common

For GCC and Clang, add -### to the compiler invocation command to see which
compiler flags are actually being used.

Since EHABI and DWARF information is compiled on per-unit basis (every .cpp or
.c file, as well as every static library, can be built with or without this information),
presence of the ELF sections does not guarantee that every function has necessary
unwind information.

Frame pointers are required by the Aarch64 Procedure Call Standard. Adding frame
pointers slows down execution time, but in most cases the difference is negligible.

www.nvidia.com
User Guide v2021.4.1 | 189

Chapter 26.
LAUNCH PROCESSES IN STOPPED STATE

In many cases, it is important to profile an application from the very beginning of its
execution. When launching processes, Nsight Systems takes care of it by making sure
that the profiling session is fully initialized before making the exec() system call on
Linux, and by using the JDWP protocol on Android.

If the process launch capabilities of Nsight Systems are not sufficient, the application
should be launched manually, and the profiler should be configured to attach to the
already launched process. One approach would be to call sleep() somewhere early in
the application code, which would provide time for the user to attach to the process in
Nsight Systems Embedded Platforms Edition, but there are two other more convenient
mechanisms that can be used on Linux, without the need to recompile the application.
(Note that the rest of this section is only applicable to Linux-based target devices, not
Windows or Android.)

Both mechanisms ensure that between the time the process is created (and therefore its
PID is known) and the time any of the application's code is called, the process is stopped
and waits for a signal to be delivered before continuing.

26.1. LD_PRELOAD
The first mechanism uses LD_PRELOAD environment variable. It only works with
dynamically linked binaries, since static binaries do not invoke the runtime linker, and
therefore are not affected by the LD_PRELOAD environment variable.

‣ For ARMv7 binaries, preload
/opt/nvidia/nsight_systems/libLauncher32.so

‣ Otherwise if running from host, preload
/opt/nvidia/nsight_systems/libLauncher64.so

‣ Otherwise if running from CLI, preload
[installation_directory]/libLauncher64.so

The most common way to do that is to specify the environment variable as part of the
process launch command, for example:
$ LD_PRELOAD=/opt/nvidia/nsight_systems/libLauncher64.so ./my-aarch64-binary --
arguments

Launch Processes in Stopped State

www.nvidia.com
User Guide v2021.4.1 | 190

When loaded, this library will send itself a SIGSTOP signal, which is equivalent to typing
Ctrl+Z in the terminal. The process is now a background job, and you can use standard
commands like jobs, fg and bg to control them. Use jobs -l to see the PID of the
launched process.

When attaching to a stopped process, Nsight Systems will send SIGCONT signal, which is
equivalent to using the bg command.

26.2. Launcher
The second mechanism can be used with any binary. Use
[installation_directory]/launcher to launch your application, for example:
$ /opt/nvidia/nsight_systems/launcher ./my-binary --arguments

The process will be launched, daemonized, and wait for SIGUSR1 signal. After attaching
to the process with Nsight Systems, the user needs to manually resume execution of the
process from command line:
$ pkill -USR1 launcher

 Note:

Note
that
pkill
will
send
the
signal
to
any
process
with
the
matching
name.
If
that
is
not
desirable,
use
kill
to
send
it
to
a
specific
process.
The
standard
output
and
error
streams
are
redirected

Launch Processes in Stopped State

www.nvidia.com
User Guide v2021.4.1 | 191

to
/
tmp/
stdout_<PID>.txt
and
/
tmp/
stderr_<PID>.txt.

The launcher mechanism is more complex and less automated than the LD_PRELOAD
option, but gives more control to the user.

www.nvidia.com
User Guide v2021.4.1 | 192

Chapter 27.
IMPORT NVTXT

ImportNvtxt is an utility which allows conversion of a NVTXT file to a Nsight Systems
report file (*.nsys-rep) or to merge it with an existing report file.

Note: NvtxtImport supports custom TimeBase values. Only these values are supported:

‣ Manual — timestamps are set using absolute values.
‣ Relative — timestamps are set using relative values with regards to report file

which is being merged with nvtxt file.
‣ ClockMonotonicRaw — timestamps values in nvtxt file are considered to be

gathered on the same target as the report file which is to be merged with nvtxt using
clock_gettime(CLOCK_MONOTONIC_RAW, ...) call.

‣ CNTVCT — timestamps values in nvtxt file are considered to be gathered on the
same target as the report file which is to be merged with nvtxt using CNTVCT
values.

You can get usage info via help message:

Print help message:
-h [--help]

Show information about report file:
--cmd info -i [--input] arg

Create report file from existing nvtxt file:
--cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode] mode_name
 mode_args] [--target <Hw:Vm>] [--update_report_time]

Merge nvtxt file to existing report file:
--cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m [--mode]
 mode_name mode_args] [--target <Hw:Vm>] [--update_report_time]

Modes description:

‣ lerp - Insert with linear interpolation
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

‣ lin - insert with linear equation
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

Modes' parameters:

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/analysis_nvtxt_file_extension.htm

Import NVTXT

www.nvidia.com
User Guide v2021.4.1 | 193

‣ ns_a - a nanoseconds value
‣ ns_b - a nanoseconds value (greater than ns_a)
‣ nvtxt_a - an nvtxt file's time unit value corresponding to ns_a nanoseconds
‣ nvtxt_b - an nvtxt file's time unit value corresponding to ns_b nanoseconds
‣ freq - the nvtxt file's timer frequency
‣ --target <Hw:Vm> - specify target id, e.g. --target 0:1
‣ --update_report_time - prolong report's profiling session time while merging if

needed. Without this option all events outside the profiling session time window
will be skipped during merging.

Commands
Info

To find out report's start and end time use info command.

Usage:
ImportNvtxt --cmd info -i [--input] arg

Example:
ImportNvtxt info Report.nsys-rep
Analysis start (ns) 83501026500000
Analysis end (ns) 83506375000000

Create

You can create a report file using existing NVTXT with create command.

Usage:
ImportNvtxt --cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode]
 mode_name mode_args]

Available modes are:

‣ lerp — insert with linear interpolation.
‣ lin — insert with linear equation.

Usage for lerp mode is:
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

with:

‣ ns_a — a nanoseconds value.
‣ ns_b — a nanoseconds value (greater than ns_a).
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.
‣ nvtxt_b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

with:

Import NVTXT

www.nvidia.com
User Guide v2021.4.1 | 194

‣ ns_a — a nanoseconds value.
‣ freq — the nvtxt file's timer frequency.
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Examples:
ImportNvtxt --cmd create -n Sample.nvtxt -o Report.nsys-rep

The output will be a new generated report file which can be opened and viewed by
Nsight Systems.

Merge

To merge NVTXT file with an existing report file use merge command.

Usage:
ImportNvtxt --cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m
 [--mode] mode_name mode_args]

Available modes are:

‣ lerp — insert with linear interpolation.
‣ lin — insert with linear equation.

Usage for lerp mode is:
--mode lerp --ns_a arg --ns_b arg [--nvtxt_a arg --nvtxt_b arg]

with:

‣ ns_a — a nanoseconds value.
‣ ns_b — a nanoseconds value (greater than ns_a).
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.
‣ nvtxt_b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:
--mode lin --ns_a arg --freq arg [--nvtxt_a arg]

with:

‣ ns_a — a nanoseconds value.
‣ freq — the nvtxt file's timer frequency.
‣ nvtxt_a — an nvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Time values in <filename.nvtxt> are assumed to be nanoseconds if no mode
specified.

Example
ImportNvtxt --cmd merge -i Report.nsys-rep -n Sample.nvtxt -o NewReport.nsys-rep

www.nvidia.com
User Guide v2021.4.1 | 195

Chapter 28.
VISUAL STUDIO INTEGRATION

NVIDIA Nsight Integration is a Visual Studio extension that allows you to access the
power of Nsight Systems from within Visual Studio.

When Nsight Systems is installed along with NVIDIA Nsight Integration, Nsight
Systems activities will appear under the NVIDIA Nsight menu in the Visual Studio
menu bar. These activities launch Nsight Systems with the current project settings and
executable.

Selecting the "Trace" command will launch Nsight Systems, create a new Nsight Systems
project and apply settings from the current Visual Studio project:

‣ Target application path
‣ Command line parameters
‣ Working folder

If the "Trace" command has already been used with this Visual Studio project then
Nsight Systems will load the respective Nsight Systems project and any previously
captured trace sessions will be available for review using the Nsight Systems project
explorer tree.

Visual Studio Integration

www.nvidia.com
User Guide v2021.4.1 | 196

For more information about using Nsight Systems from within Visual Studio, please
visit

‣ NVIDIA Nsight Integration Overview
‣ NVIDIA Nsight Integration User Guide

https:/developer.nvidia.com/nsight-tools-visual-studio-integration
https:/docs.nvidia.com/nsight-vs-integration/index.html

www.nvidia.com
User Guide v2021.4.1 | 197

Chapter 29.
TROUBLESHOOTING

If the profiler behaves unexpectedly during the profiling session, or the profiling session
fails to start, try the following steps:

‣ Close the host application.
‣ Restart the target device.
‣ Start the host application and connect to the target device.

To enable logging on the host, refer to this config file:
host-linux-x64/nvlog.config.template

When reporting any bugs please include the build version number as described in the
Help → About dialog. If possible, attach log files and report (.nsys-rep) files, as they
already contain necessary version information.

Nsight Systems uses a settings file (NVIDIA Nsight Systems.ini) on the host to
store information about loaded projects, report files, window layout configuration,
etc. Location of the settings file is described in the Help → About dialog. Deleting the
settings file will restore Nsight Systems to a fresh state, but all projects and reports will
disappear from the Project Explorer.

GUI Troubleshooting
If opening the Nsight Systems Linux GUI fails with the following error, you may be
missing some required libraries:
This application failed to start because it could not find or load the Qt
 platform plugin "xcb" in "". Available platform plugins are: xcb. Reinstalling
 the application may fix this problem.

Launch Nsight Systems using the following command line to determine which libraries
are missing and install them.
$ QT_DEBUG_PLUGINS=1 ./nsys-ui

If the workload does not run when launched via Nsight Systems or the timeline is
empty, check the stderr.log and stdout.log (click on drop-down menu showing Timeline
View and click on Files) to see the errors encountered by the app.

Troubleshooting

www.nvidia.com
User Guide v2021.4.1 | 198

Android Targets
When connecting to an Android-based device, Nsight Systems installs its executable and
library files into the following directory:
/data/local/tmp/com.nvidia.nsightsystems.tools/

Logs on the target device are collected into this file:
/data/local/tmp/com.nvidia.nsightsystems.tools/nsys.log

To enable verbose logging on the target device, follow these steps:

 1. Close the host application.
 2. Place nvlog.config from host directory to /sdcard/ directory on target.
 3. Restart the target device.
 4. From ADB shell, launch the following command:

/data/local/tmp/com.nvidia.nsightsystems.tools/nsys --daemon --debug

On rooted Android devices, the command above should be started from superuser
(e.g., adb shell su -c ...).

 5. Start the host application and connect to the target device.

Please note that in some cases, debug logging can significantly slow down the profiler

Symbol Resolution
If stack trace information is missing symbols and you have a symbol file, you can
manually re-resolve using the ResolveSymbols utility. This can be done by right-clicking
the report file in the Project Explorer window and selecting "Resolve Symbols...".

Alternatively, you can find the utility as a separate executable in the
[installation_path]\Host directory. This utility works with ELF format files, with
Windows PDB directories and symbol servers, or with files where each line is in the
format <start><length><name>.

Short Long Argument Description

-h --help Help message
providing
information about
available options.

-l --process-list Print global process
IDs list

-s --sym-file filename Path to symbol file

Troubleshooting

www.nvidia.com
User Guide v2021.4.1 | 199

Short Long Argument Description

-b --base-addr address If set then <start>
in symbol file is
treated as relative
address starting
from this base
address

-p --global-pid pid Which process in
the report should
be resolved. May be
omitted if there is
only one process in
the report.

-f --force This option forces
use of a given
symbol file.

-i --report filename Path to the report
with unresolved
symbols.

-o --output filename Path and name of
the output file. If
it is omitted then
"resolved" suffix
is added to the
original filename.

-d --directories directory paths List of symbol folder
paths, separated
by semi-colon
characters. Available
only on Windows.

-v --servers server URLs List of symbol
servers that uses
the same format as
_NT_SYMBOL_PATH
environment
variable, i.e.
srv*<LocalStore>*<SymbolServerURL>.
Available only on
Windows.

-n --ignore-nt-sym-
path

Ignore the
symbol locations
stored in the
_NT_SYMBOL_PATH
environment

Troubleshooting

www.nvidia.com
User Guide v2021.4.1 | 200

Short Long Argument Description

variable. Available
only on Windows.

Verbose Logging on Linux Targets
Verbose logging is available when connecting to a Linux-based device from the GUI on
the host. This extra debug information is not available when launching via the command
line. Nsight Systems installs its executable and library files into the following directory:
/opt/nvidia/nsight_systems/

To enable verbose logging on the target device, when launched from the host, follow
these steps:

 1. Close the host application.
 2. Restart the target device.
 3. Place nvlog.config from host directory to the /opt/nvidia/nsight_systems

directory on target.
 4. From SSH console, launch the following command:

sudo /opt/nvidia/nsight_systems/nsys --daemon --debug

 5. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsys.log

in the directory where nsys command was launched.

Please note that in some cases, debug logging can significantly slow down the profiler.

Verbose Logging on Windows Targets
Verbose logging is available when connecting to a Windows-based device from the GUI
on the host. Nsight Systems installs its executable and library files into the following
directory by default:
C:\Program Files\NVIDIA Corporation\Nsight Systems 2021.2

To enable verbose logging on the target device, when launched from the host, follow
these steps:

 1. Close the host application.
 2. Terminate the nsys process.
 3. Place nvlog.config from host directory next to Nsight Systems Windows agent on

the target device

‣ Local Windows target:
C:\Program Files\NVIDIA Corporation\Nsight Systems 2021.2\target-
windows-x64

Troubleshooting

www.nvidia.com
User Guide v2021.4.1 | 201

‣ Remote Windows target:
C:\Users\<user name>\AppData\Local\Temp\nvidia\nsight_systems

 4. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsight-sys.log

in the same directory as Nsight Systems Windows agent.

Please note that in some cases debug logging can significantly slow down the profiler.

QNX Troubleshooting
Common issues with QNX targets:

‣ Make sure that tracelogger utility is available and can be run on the target.
‣ Make sure that /tmp directory is accessible and supports sub-directories.
‣ When switching between Nsight Systems versions, processes related to the previous

version, including profiled applications forked by the daemon, must be killed before
the new version is used. If you experience issues after switching between Nsight
Systems versions, try rebooting the target.

www.nvidia.com
User Guide v2021.4.1 | 202

Chapter 30.
OTHER RESOURCES

Looking for information to help you use Nsight Systems the most effectively? Here are
some more resources you might want to review:

Feature Videos
Short videos, only a minute or two, to introduce new features.

‣ OpenMP Trace Feature Spotlight
‣ Command Line Sessions Video Spotlight
‣ Direct3D11 Feature Spotlight
‣ Vulkan Trace
‣ Statistics Driven Profiling

Blog Posts
NVIDIA developer blogs, these are longer form, technical pieces written by tool and
domain experts.

‣ 2019 - Migrating to NVIDIA Nsight Tools from NVVP and nvprof
‣ 2019 - Transitioning to Nsight Systems from NVIDIA Visual Profiler / nvprof
‣ 2019 - NVIDIA Nsight Systems Add Vulkan Support
‣ 2019 - TensorFlow Performance Logging Plugin nvtx-plugins-tf Goes Public
‣ 2020 - NVIDIA Nsight Systems in Containers and the Cloud
‣ 2020 - Understanding the Visualization of Overhead and Latency in Nsight Systems
‣ 2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM

Training Seminars
2018 NCSA Blue Waters Webinar - Introduction to NVIDIA Nsight Systems

https://youtu.be/ZeuM2k_hrq0
https://youtu.be/r2ewwd4d0vc
https://youtu.be/DUhzjyBr-wg
https://youtu.be/witzRF-wu8M
https://www.youtube.com/watch?v=fyhPFTF75tk
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/nvidia-nsight-systems-adds-vulkan-support/
https://devblogs.nvidia.com/tensorflow-performance-logging-plugin-nvtx-plugins-tf-public/
https://developer.nvidia.com/blog/nvidia-nsight-systems-containers-cloud/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://www.youtube.com/watch?v=WA8C48FJi3c

Other Resources

www.nvidia.com
User Guide v2021.4.1 | 203

Conference Presentations
‣ GTC 2020 - Rebalancing the Load: Profile-Guided Optimization of the NAMD

Molecular Dynamics Program for Modern GPUs using Nsight Systems
‣ GTC 2020 - Scaling the Transformer Model Implementation in PyTorch Across

Multiple Nodes
‣ GTC 2019 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics

Simulation Program
‣ GTC 2019 - Optimizing Facebook AI Workloads for NVIDIA GPUs
‣ GTC 2018 - Optimizing HPC Simulation and Visualization Codes Using NVIDIA

Nsight Systems
‣ GTC 2018 - Israel - Boost DNN Training Performance using NVIDIA Tools
‣ Siggraph 2018 - Taming the Beast; Using NVIDIA Tools to Unlock Hidden GPU

Performance

For More Support
To file a bug report or to ask a question on the Nsight Systems forums, you will need to
register with the NVIDIA Developer Program. See the FAQ. You do not need to register
to read the forums.

After that, you can access Nsight Systems Forums and the NVIDIA Bug Tracking
System.

To submit feedback directly from the GUI, go to Help->Send Feedback and fill out the
form. Enter your email address if you would like to hear back from the Nsight Systems
team.

https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21351
https://developer.nvidia.com/gtc/2020/video/s21351
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9866-optimizing+facebook+ai+workloads+for+nvidia+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=sil8105-boost+dnn+training+performance+using+nvidia+tools
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
https://www.nvidia.com/en-us/account/faq/
https://forums.developer.nvidia.com/c/development-tools/nsight-systems/116
https://developer.nvidia.com/nvidia_bug/add
https://developer.nvidia.com/nvidia_bug/add

Other Resources

www.nvidia.com
User Guide v2021.4.1 | 204

	Table of Contents
	Profiling from the CLI
	1.1. Installing the CLI on Your Target
	1.2. Command Line Options
	1.2.1. CLI Global Options

	1.3. CLI Command Switches
	1.3.1. CLI Profile Command Switch Options
	1.3.2. CLI Start Command Switch Options
	1.3.3. CLI Stop Command Switch Options
	1.3.4. CLI Cancel Command Switch Options
	1.3.5. CLI Launch Command Switch Options
	1.3.6. CLI Shutdown Command Switch Options
	1.3.7. CLI Export Command Switch Options
	1.3.8. CLI Stats Command Switch Options
	1.3.9. CLI Analyze Command Switch Options
	1.3.10. CLI Status Command Switch Options
	1.3.11. CLI Sessions Command Switch Subcommands

	1.4. Example Single Command Lines
	1.5. Example Interactive CLI Command Sequences
	1.6. Example Stats Command Sequences
	1.7. Example Output from --stats Option
	1.8. Importing and Viewing Command Line Results Files
	1.9. Using the CLI to Analyze MPI Codes
	1.9.1. Tracing MPI API calls
	1.9.2. Using the CLI to Profile Applications Launched with mpirun

	Profiling from the GUI
	2.1. Profiling Linux Targets from the GUI
	2.1.1. Connecting to the Target Device
	2.1.2. System-Wide Profiling Options
	2.1.2.1. Linux x86_64
	2.1.2.2. Linux for Tegra

	2.1.3. Target Sampling Options
	Target Sampling Options for Workstation
	Target Sampling Options for Embedded Linux

	2.1.4. Hotkey Trace Start/Stop
	2.1.5. Launching and Attaching to Processes

	2.2. Profiling Windows Targets from the GUI
	Remoting to a Windows Based Machine
	Hotkey Trace Start/Stop
	Target Sampling Options on Windows
	Symbol Locations

	2.3. Profiling Android Targets from the GUI
	Configuring Your Android Device
	Application

	2.4. Profiling QNX Targets from the GUI

	Export Formats
	3.1. SQLite Schema Reference
	3.2. JSON and Text Format Description

	Report Scripts
	Report Scripts Shipped With Nsight Systems
	apigpusum[:base] -- CUDA API & GPU Summary (CUDA API + kernels + memory ops)
	cudaapisum -- CUDA API Summary
	cudaapitrace -- CUDA API Trace
	gpukernsum[:base] -- CUDA GPU Kernel Summary
	gpumemsizesum -- GPU Memory Operations Summary (by Size)
	gpumemtimesum -- GPU Memory Operations Summary (by Time)
	gpusum[:base] -- GPU Summary (kernels + memory operations)
	gputrace -- CUDA GPU Trace
	nvtxppsum -- NVTX Push/Pop Range Summary
	openmpevtsum -- OpenMP Event Summary
	osrtsum -- OS Runtime Summary
	vulkanmarkerssum -- Vulkan Range Summary
	pixsum -- PIX Range Summary
	khrdebugsum -- OpenGL KHR_debug Range Summary

	Report Formatters Shipped With Nsight Systems
	Column
	Table
	CSV
	TSV
	JSON
	HDoc
	HTable

	Migrating from NVIDIA nvprof
	Using the Nsight Systems CLI nvprof Command
	CLI nvprof Command Switch Options
	Next Steps

	Profiling in a Docker on Linux Devices
	Direct3D Trace
	7.1. D3D11 API trace
	7.2. D3D12 API Trace

	WDDM Queues
	Vulkan API Trace
	9.1. Vulkan Overview
	9.2. Pipeline Creation Feedback
	9.3. Vulkan GPU Trace Notes

	Stutter Analysis
	10.1. FPS Overview
	10.2. Frame Health
	10.3. GPU Memory Utilization
	10.4. Vertical Synchronization

	OpenMP Trace
	OS Runtime Libraries Trace
	12.1. Locking a Resource
	12.2. Limitations
	12.3. OS Runtime Libraries Trace Filters
	12.4. OS Runtime Default Function List

	NVTX Trace
	CUDA Trace
	14.1. CUDA GPU Memory Allocation Graph
	14.2. Unified Memory Transfer Trace
	Unified Memory CPU Page Faults
	Unified Memory GPU Page Faults

	14.3. CUDA Default Function List for CLI
	14.4. cuDNN Function List for X86 CLI

	OpenACC Trace
	OpenGL Trace
	16.1. OpenGL Trace Using Command Line

	Custom ETW Trace
	GPU Metric Sampling
	Overview
	Launching GPU Metric Sampling from the GUI
	Available Metrics
	Exporting and Querying Data
	Limitations

	NVIDIA Video Codec SDK Trace
	19.1. NV Encoder API Functions Traced by Default
	19.2. NV Decoder API Functions Traced by Default

	Network Communication Profiling
	20.1. MPI API Trace
	20.2. OpenSHMEM Library Trace
	20.3. UCX Library Trace
	20.4. NVIDIA NVSHMEM and NCCL Trace

	Debug Versions of ELF Files
	Reading Your Report in GUI
	22.1. Generating a New Report
	22.2. Opening an Existing Report
	22.3. Sharing a Report File
	22.4. Report Tab
	22.5. Analysis Summary View
	22.6. Timeline View
	22.6.1. Timeline
	Row Height

	22.6.2. Events View
	22.6.3. Function Table Modes
	22.6.4. Filter Dialog

	22.7. Diagnostics Summary View
	22.8. Symbol Resolution Logs View

	Adding Report to the Timeline
	23.1. Time Synchronization
	23.2. Timeline Hierarchy
	23.3. Example: MPI
	23.4. Limitations

	Using Nsight Systems Expert System
	Using Expert System from the CLI
	Using Expert System from the GUI
	Expert System Rules
	Synchronous Operation Rules
	GPU Low Utilization Rules

	Broken Backtraces on Tegra
	Launch Processes in Stopped State
	26.1. LD_PRELOAD
	26.2. Launcher

	Import NVTXT
	Commands

	Visual Studio Integration
	Troubleshooting
	GUI Troubleshooting
	Android Targets
	Symbol Resolution
	Verbose Logging on Linux Targets
	Verbose Logging on Windows Targets
	QNX Troubleshooting

	Other Resources
	Feature Videos
	Blog Posts
	Training Seminars
	Conference Presentations
	For More Support

