IIIIIII

Chapter 1. Profiling from the CLI.....cciiiiiiiiiiiiiiiiiiiiinititeeieneeeeteesennncetecessnnssscccsonnas 1

1.1. Installing the CLI on YOUr Target.....coeeitiiiiitiiiiiiiiiiiiii i iee e eaaenns 1
1.2, ComMaANd LiNe OPtioNS. . .uuuetteieeiieeetteerineeeeresrnneeeesessnnnneeesessnnnsessessnnnnessessnnnns 1
1.2.1. CLI GLODaAl OPtiONS. c e uetiittteitteeettertetereeeeneereaaeeraneerenneesennessennesesnnssennens 2
1.3. CLI Command SWItCRES. ...t e ettt et e e e e e eneeeeaees 2
1.3.1. CLI Profile Command SWitCh Options.......ccciiiiiiiiiiiiiiiiiiiiiiiiiiiii i eeeaaaas 3
1.3.2. CLI Start Command SWiItCh OptioNS.......ceiiiiiiittiiiiiiiiiirriiiieeeeenriareereaannnnes 29
1.3.3. CLI Stop Command SWitCh Options.......ceiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeaannnaes 43
1.3.4. CLI Cancel Command Switch OptionS.......cciuiiiiiiiiiiiiiiii i eiie e eeieeaeneees 44
1.3.5. CLI Launch Command Switch OptioNns.....ccouuiiiiiiiiiiiiiiiiiiiiiiii it eeeeeiaeaens 45
1.3.6. CLI Shutdown Command Switch OptionS......cccuviiiiiiiiiiiiiiiiiiiiiiiiiii i eeeieeeans 58
1.3.7. CLI Export Command SWitCh Options.ciiiiiiieiiiiiiiiiiiiiiiieeeeeeiiieeeeeaennnnes 59
1.3.8. CLI Stats Command SWitch Options.......cooviiiiiiiiiiiiiiiiiii e 60
1.3.9. CLI Analyze Command SwWitCh Options.....ccveieieiiiiiiiiiiiiiiiiiiiereiiieeeeeaannnnes 65
1.3.10. CLI Status Command SWitch Options.......cccvvuiiiiiiiiiiiiiiiiiiiiiii e 67
1.3.11. CLI Sessions Command Switch Subcommands.........ccceviiiiiiiiiiiiiiiiiiiiiiinennnnen. 68
1.4. Example Single Command LiNeS. ...coiiiuiiiiiiiiiiie ittt tetiiiteeeeeeiineeeeeeennneseeenn 68
1.5. Example Interactive CLI Command SeqUENCES.uveiiiiiriieetirreiiireeeerenrnneeeeeeennnnes 71
1.6. Example Stats Command SEQUENCES.ciiiiieittiiiiiiiittiiiiteeteeeiieeeeeeeeaiseaeeeeennnes 76
1.7. Example Output from --stats Option......cciiieiiiiiiiiiiiiiiiii it ieii e i eeieeeaaaeen 77
1.8. Importing and Viewing Command Line Results FileS.......cccvviiiiiiiiiiiiiiiiiiiiiiiiiiieeennns 80
1.9. Using the CLI to ANalyze MPI COAES....ouuiiiintiiiitiiiieii et eeieteeeeerenneeaaneaeanns 82
1.9.1. Tracing MPI APl Calls....ceiiiiiiiiiiiiiiiiii it eeeiieeeeteeanneeeeeesennaseseeennnnes 82
1.9.2. Using the CLI to Profile Applications Launched with mpirun..............coocoeiiinnne... 82
Chapter 2. Profiling from the GUI.....cciiieuiiiiiiiieeeiiieiinneetecieseneeteccssennsseccsssnnssscccanes 85
2.1. Profiling Linux Targets from the GUL........ccoiuiiiiiiiiiiiiiiiiiiiii e es 85
2.1.1. Connecting to the Target DeViCe......uuiiiiiiiiiiiieiiiietieeiiieeeeeeennneeesessnnnneess 85
2.1.2. System-Wide Profiling Options.....c.eeeeruteriietiriieereitereieeeeaneeeenneeeeneeeeeneeeennees 87
2.1.2.1. LINUX X8O 64 eneeneiieiiteeteeteeteeteenteeneeenesanesaneseesnneennssnessnnsonssoness 87
2 B3 B R 1110 o i [T - T PP 89
2.1.3. Target Sampling OptioNns. ...cciiiiietitiiiiiittieeiieereeerneteereeennneeessessnnneessanes 89
Target Sampling Options for Workstation........cceeiiiiiiiiiiiiiiiiiiiiii i eeeiieeeeans 89
Target Sampling Options for Embedded LinUX......ccouiiiiuiiiiiiiiiiiiiiiiniieeiieenenneenns 90
2.1.4. HOtKeY TraCe Start/StOP...ueeeieiiietetieiiiiteeteeeirneteeeeeernaeeeeesernnseseesssnnaseseennn 91
2.1.5. Launching and Attaching 0 ProCessSes......civiuiiiiiiiiiiiiiitiiiiieiieeeeieeeaeeeeanns 91
2.2. Profiling Windows Targets from the GUI.......ccoiiiiiiiiiiiiiiiiiiiiiiiii i e eiaeeees 92
Remoting to a Windows Based Machine...........ooiiiiiiiiiiiiiiiiiiiiii e 92
[o1 VA T - Vol I - L] o] o F PP PP 92
Target Sampling Options 0N WINAOWS.uiiuiiiniiitiiiiiiiiii e eeeaaas 93
1377001 o] B I Tar- L[] 13 PP 94
www.nvidia.com

User Guide v2022.2.1 | ii

2.3. Profiling QNX Targets from the GUILcoiiiiiiiiiiiiiiiii it it ciie e eaaas 95

Chapter 3. EXPOrt FOrmMats.....cciriieiieieiiieieiieeeieteesneeeeneeennececsnsccannsscsnacasnsscannsanns 96
3.1, SQLite SChemMa REfEIENCE. .ottt ittt et et eessaneeeeeesssssnnnnnns 96
3.2. SQLite Schema EVent ValUes.ccciiuiiiuiiiiiiiiiiiiiieii i eei et eeteeeeeeeeaerness 98
3.3, CommON SQLITE EXAMPLES. ..uttiiiiiiitttiiieiiieeteteeiieeeeeeenraseeeesesennaseeeessnnseseeeanns 104
3.4, Arrow FOrmat DesCription.eeeeiiieiitiiiiiiii e teeeiaterreeeaeeesseennnnneesseesnnneesees 118
3.5. JSON and Text Format DesCription. . ..ceevieeeiiiiiiiiiiiiiiieeeeeeiieeeeereernneneeeecnnnnes 119

(0 =101 7=) i T 1 (=T o To] o AT of 4 [o] £ JN PP 120
Report Scripts Shipped With Nsight Systems.....coviiiiiiiiiiiiii e eeraeeens 120

apigpusum[:base] -- CUDA APl & GPU Summary (CUDA API + kernels + memory ops).......... 120
cudaapisum == CUDA APl SUMMAIY . ..uuuetttteiiieteeteeannaeeeeeeenrnneeeesessnnseeessssnsneessenns 121
CUdaapitrace - CUDA APl TraC. . .iitiiiiittttiieiiittetieeaiieteeeeeeiiseeeseeseinssessessnnneeeeenns 121
gpukernsum[:base] -- CUDA GPU Kernel SUMMary.....ccooeeeiiieiiineeerreenneeeeereenrnneeeeeenns 121
gpumemsizesum -- GPU Memory Operations Summary (by Siz€)......ccvvviiiiiiiiiiiiinnnnnnn. 122
gpumemtimesum -- GPU Memory Operations Summary (by Time)......ccovviiiiiiiiiinennnn. 122
gpusum[:base] -- GPU Summary (kernels + memory operations).......ccceeeevireeeereeennneenns 123
gPULrace -- CUDA GPU TraCe. . ciiuntiiiiiiiittteteeiiiteeeeeennaeeeeseennaneeessessnnnsesseennnnes 123
nvtxppsum -- NVTX Push/Pop Range SUMMaAIY.......ccceiiiiiieiiiieiiiineeeeeeiineeeeeeennnnneeens 124
openmpevtsum -- OpenMP Event SUMMaAry......c.ceviiiiiiiiiiiiiiiiiii i eeeiaeeeeanns 124
0SrtsUM -- OS RUNTIME SUMMIAIY. .. uutiiiiiiiitttttiiiiteeteeeiineeeeeeennneeeeeesssnnseesesonnnneees 124
vulkanmarkerssum -- Vulkan Range SUMmMary.........ccooeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieineenns 125
PIXSUM -- PIX RANGE SUMMAIY . i iitttiiiiiiiitttteriieeeeteeernneeeesessnnesessessnnnnesssssnnnns 125
khrdebugsum -- OpenGL KHR_debug Range Summary........cccvvviiiiiiiiiiiiiiineeneneeennnen. 126
Report Formatters Shipped With Nsight Systems.......ccovviiiiiiiiiiiiiiiiiiiiiiiiiiiciiieeeeeens 126
L6011 0] o PP 126
L1 (= PPN 127
0} PP PP 127
151 N 128
N PP 128
100 o 128
= 0 U 129

Chapter 5. Migrating from NVIDIA NVProf.....ccceiiiiiiiiiiiiiieiiieeeiieeeeieneecnensccnnnscannnees 130
Using the Nsight Systems CLI nvprof Command.........ccoviieeiiiiiiiiieiiiiiiineeeeeeennnneceeeanns 130
CLI nvprof Command SWitCh OptioNnS.......cceueiiiiiiiiiiiiiii i eiieiierereeeeeeerenneeaanes 130
LAY =T 0L P 133

Chapter 6. Profiling in @ Docker on LinUX DeViCes.....cceiiiiiiineeieieiineeeeeerennnneeeccennnnnees 134

Chapter 7. DireCt3D TraCe...cccueeiieieenneteneteenaeteesneeesnseeesnssesnsecssssecsnssessnssssnnseannes 136
A% 0 X1 X B o B - Tl O P PP PP PSP 136
A K10 X VA o B 1 - Ul PP 136

Chapter 8. WDDM QUEUES.ctieiiiineeteeeeeseneeteceassnsssecesesnssssecsassnsssesssssnssssccsssnnnes 141

Chapter 9. WDDM HW Scheduler........ciiiiiiiiiiiiiiiiiieiiiieiiiieteianeeeiesceancsennnsscnnnnnns 143

Chapter 10. VUIKAN APl TraC@..ciccueeeieiiirneeieeeeeneeeeeeeesnneesecsesansssecesssnasssccsssnnnssecons 144
10.1. VULKGN OVOIVIBW. 1ttt ittt ieiitteeetteettteeeeeeeaneeeenneeesnaeeesnsesennseesnsesesnseenns 144
www.nvidia.com

User Guide v2022.2.1 | iii

10.2. Pipeline Creation FEedbacK.uiiiiiiiiiiiiiiiiiiii ittt ettt teeiiee et eeeenaaaaens 146

10.3. VULKAN GPU Trace NOTES.. . ueiutiieiiteiteiteiteiteeteenteenteeneeeerenseenssonseonsesnesnns 146
Chapter 11, StUtter ANAlYSiS..ciieueeieeeiereeeteeeereneeteceessnaseecesessnsssecesssnnssscessssnnsscccanes 147
L T S o R O = T 1= N 147
11.2. Frame Health. ... i et ettt e e e e e e aeeeeenaens 151
11.3. GPU Memory UtiliZation.eiereiiri e it e e e i ee it eeeneeeenneeeanneenannens 151
11.4. Vertical SYyNChroNiZation.eeiiiiiiiiii it ieiiiieeerireeeeraaennneesseesnnnasaeens 151
Chapter 12. OPenNMP TraCe...cccuiiiieeiiiietiiienieianeteeenceeannsesenssessnssessnsessnssossnsessnnsennnes 152
Chapter 13. OS Runtime Libraries Trace......ccciieeeeiiieiiinneeeeeieeennereccesnnsscccesennssscccannns 154
13.1. LOCKING @ RESOUICE. .. utitttetittteiteeentteeaeeeeaneeeannteeaneesesneesenneessnnesssnneeennnennn 155
LS T I {1 111 - U (o] 3 N 155
13.3. OS Runtime Libraries TraCce Filters......cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiei it eeneiiiaeeeanas 156
13.4. OS Runtime Default FUNCHION List.....ciiiiiieiiiiiiiiiiiiiiiiiiiiieiiiieeeeeennnneeeeannns 157
Chapter 14, NVTX TraC...uueeeieiierneereeeeesnneeeeeeessnnsececesssnsssecesssnnsececssssnsssecesssnnsscens 160
Chapter 15. CUDA TraCe...uuiiieeieiintieineteeenetenaneeeannsecsneseannsecsnsseannssesnnsessnnseannssannnes 164
15.1. CUDA GPU Memory ALLOcation Graph.....ccciiueiiiiiiiiiiieiiiiiiiieeeeeiiieeeeeeennnaeeeeanns 167
15.2. Unified Memory Transfer TraCe. . ceeueeirieeieiitieiieeiteeeieeeaaeeeaiaeeeeneeeaaneeesnneens 167
Unified Memory CPU Page Faults......oiiiiueiiiiiiiiiitiiiiiiietteneiineeeeeesnrnnneesesannnneees 169
Unified Memory GPU Page Faulls........coeviuiiieiiieiiiiiiiiiiiiiiii e eeieceeeeneenee 170
15.3. CUDA Default Function List for CLI......c.oiieniiiiiiiiiiiii i eeei e eeeeeens 172
15.4. cuDNN Function List for X86 CLI.....c.uuiiiiiiiiiiiiiiiiiiiiiii it eeeiiee et eeeeiaeaaens 174
Chapter 16. OPENACC TraCl....ueeiiiiiereneeteeereennssecesesensssesessnnsssscssssnnsssscsssnnsssscsssnns 176
Chapter 17. OPENGL TraCe..ccieeeeeieeiereeeeteeeesnneeeecesssnasececssssssesecssssnssscsesssnnssccesnnnns 178
17.1. OpenGL Trace Using Command Lin@......c.uueiiiiiiiiieiireiiieeteeenreeeeeeesnnnneeessannnns 180
Chapter 18. CUStOM ETW TraC....ueitieiineteeeerenneeeeeeeesnnsececesssnsssccessssssscccsessnssscccnnns 182
Chapter 19. GPU Metric Sampling.....cceceiiiiiiiiieiiiieteiiteeenereesneeenneeecsncsccnnsecannseannes 184
O OV W . 1t ettt et ettt ettt ee et e eeaateeeneeseaneesanneeeennesennnesennnesennssennesennnsssnnesennnennn 184
Launching GPU Metric Sampling from the CLL.....coiiuiiiiiiiiiiiiiiii i eeeeeeaes 185
Launching GPU Metric Sampling from the GULc.c.ieiiiiiiiiiiiiiiiiiiiiii i ceeeeineeeeas 186
SAMPLING frEQUENCY . e uuttitt et eii et ettt eeeiteeeeaeeeenateeaneeeeaneeeenneessnnesesnseesnneennn 186
Y10 L T o o = 187
Exporting and QUErYiNG Data......ccueeeeueereietirietieitereneeeeaneerenneereneeeesneesenneerenaaeennes 190
001t L o] L= N 191
Chapter 20. NVIDIA Video Codec SDK TraCe....cieveeeeteeeerrneeeeeeeesnaeeeececssansecccesnsnsseccenns 192
20.1. NV Encoder API Functions Traced by Default.......coeviueiiiiiiiiiiiiiiiiiiiiiirneinnneeennns 193
20.2. NV Decoder API Functions Traced by Default......cccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeanns 194
20.3. NV JPEG API Functions Traced by Default......ccoiueiiiiiiiiiriiiiiiiiierieniieeerreennnnnes 195
Chapter 21. Network Communication Profiling.....c.ceeeeeieeiiieeeieeeiinneeereerennneereceennnanees 196
A R T | N | - Vo T N 197
21.2. OpPeNSHMEM Library TraCl...ueeeieeiiuetteieeiineeeeeeeniuueeeeeeesaeseeeessnnseseessnnnssssesenns 200
21,3, UCX LiDrary TraC. . cuuueeeeueteeiutteentteeeeeeenneeeenueeeaneesesneeeenneessnaseesnsessnsssesnseens 200
21.4. NVIDIA NVSHMEM and NCCL TraCe..ccuuieutrenereneraneennernnerneeeneeeneesneesnessnesenesennenns 201
21.5. NIC Metric SamPling.....ueiuiiieiiitiii ittt ettt ettt areetieesaeeeneeenaeens 202
www.nvidia.com

User Guide v2022.2.1 | iv

Chapter 22. Reading Your Report in GUL.......ccciiiieeiiiiiiinneeeeeiennnneeeeeessnensecccesnnnnseeces 204

22.1. Generating @ NeW RePOItciiiiiiiiiiiiiiii i eiiiiiteeeeieeeeeeennaneesesannnneeessanns 204
22.2. Opening an EXisting REPOIt....uiiiiiiiiiiiiiiiiiiiii ittt ettt eeeiineeeeeeannnaaaeens 204
22.3. Sharing @ REPOIT File. . .uiiiieiiiit i et e e et et et eeeeeeannaeannas 204
A T = o To] o A - o TP P PP 204
22.5. ANalySis SUMMANY ViEW. .. uuiiiitiiiitteiitteeeteeeieeeaneeeeaneeeenneeesnseeesnsesennseesnneenns 205
22.6. TIMEUNE VIBW. . ettt ittt et e et e eeateranatesanneeeannerannnesannnsaannesnns 205
P 2 0t T B 11011 13 T PP 205
300)T A =3 T 3 PP PP 206
A O A Y - = 206
22.6.3. Function Table MOAES.couuiiiiiiiiiii i ettt eee et eeneeeenas 208
22.6.4. FIlEEr Dialog. . ueeeiiiiiiiitiiiiiii ettt it ettt et teeeteteeeeeenseaeeeeennseseseennn 211
22.7. DiagnostiCs SUMMAIY VIEW. . iiiietttiiiiiiiteereeeieteeeeeennnneeseeesnnanesssssnnnnesssssnnnns 211
22.8. Symbol ResolUtioN LOGS ViEW. ...iiiiiiiiiiiiiiiiiiii it ettt eeeieeeeeeeeanaaaeens 212
Chapter 23. Adding Report to the Timeline......cciiiiiiiiiiiiiiiiiiiiiiiiiieeieeeereeeeeneaeannens 213
23.1. Time SYNChIONIZatioN. ..oiiiiii i et e i ittt eeeiiaeeeeeeennnaaeeeeennnneeeens 213
23.2. TiMeling HierarChy...o.uei ittt e e ettt e et e eenaeeeaeeeanneeaannens 215
T TR <= 1111 o] L= | o] P PPt 216
2K T SO T 110117 U (] o - PO 217
Chapter 24. Using Nsight Systems EXpert System.......cccciiiiieiiiiiiiiieeiieiienneeiecencnnenceees 218
Using Expert System from the CLL.........oiuiiiiiiiiiiii e 218
Using Expert System from the GUI.....ccoeniieiiiiiiiiiiiii it et eeeieeeeeeeennnaeens 218
o T AN VA =] o T U = F PP 219
CUDA Synchronous Operation RULES........ciiiiiiietiiiiiiiietireeiieeeeeeanereeeeesnnneceseanns 219
GPU Low UTIlIZAtion RULES......teetieeitieii et ettt e et eeeteeenaeeeeeeeanneesanneasennens 220
Chapter 25. IMPort NV T XT .. iiiiiiiiiiiiiiieineteaneteeanereanseensssesnssesnnsecnnnsesnnssannns 222
(@0 141 .0 =T T 223
Chapter 26. Visual Studio Integration........ccciiiiiiiiiiiiiiiiiii i ieieeeceeecnneeennaens 225
Chapter 27. TroubleshOOting.....cciiieeetiiiiiieneeieieiinneeetecierneeteceesnnsssecsesnnssseccssnnnnses 227
27.1. General TroubleshOOting.ueirueiiii it e tii e it eeieeeesneeeenaeeaaneeeanneens 227
27.2. CLI TroubleShOOtiNgG. ... uuueeitiiiiiiieiii et ieeiiieeeeeeennaeeeesesnnseeeesesnnsneesesnnnnes 228
27.3. Launch Processes in Stopped State.......covviiiiiiiiiiiiiiiiiiiii i eieeeaeees 228
LD _PRELOAD. ... etutiitteteeteenteeneeeneeenteanteaneeanesanssanssasesnessnsssnssnnssnsssnessnssennenns 229
I 1H] ed 3 T o P PP 229
27.4. GUI TroubleshOOting. ...oeueeetiereiitetreiiieteereernnneeeesessnneeessessnnnneessessnnnaessenns 230
Ubuntu 18.04/20.04 and CentQS 7/8 with root privileges......cccoviiiiiiiiiiiiiiiiiiiiiiinnenn. 230
Ubuntu 18.04/20.04 and CentOS 7/8 without root privileges........ccccvviiiiiiiiiiininnnnnnn. 231
Other platforms, or if the previous steps did not help.......c.ccooviiiiiiiiiiiiiiiiiiiiiiiieen, 231
27.5. SYMDBOL RESOIULION. . ettt ettt ettt ettt ettt eeneeeeaneeeanaeeeanaeeanneeeannenn 231
Broken BacKiraCes ON TeGIa....ueeieeiretetieeeiireeeteeeineeeeeesersseeeesssnnsseseessnnnssseeeanns 233
Debug Versions Of ELF Files...cieuuuiiiiuiiiiiiiiiiiiiiiiiiieii i e et renaeeeeneeeaanaeeanns 234
A T oY= 1] o T PPN 235
Verbose Logging On LinUX Targets....eeuueieretirrttieitereeteeaneereneeeeeneeeesneerenneeesneeeanns 235
www.nvidia.com

User Guide v2022.2.1 | v

Verbose Logging on WindOWSs Targets.uueiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeiieeeeeeeennneaeeens 235

Chapter 28. Other RESOUICES....ccieiiiieiiieiiiieieieeeteeaeteeenetennnceesnceesnnssesnnsecnnnsennnnns 237
T LU o [0 PPN 237
2] (oo o] S PP PP PPP 237
TrATINING SOMIINAIS. .t .t ttttieiitttetteeiieeeeeeeeaieeeeeeeesnseseseesensseeeesennnseesssssnnnesessesnnneneens 237
ConferenCe Presentations. . .u .t ieet i eeitieittterteeeeeeeeneerenneeeaneeeesneeeenneeenneeranns 238
o Yo T (I] oo] o PP 238
www.nvidia.com

User Guide v2022.2.1 | vi

Chapter 1.
PROFILING FROM THE CLI

1.1. Installing the CLI on Your Target

The Nsight Systems CLI provides a simple interface to collect on a target without using
the GUL The collected data can then be copied to any system and analyzed later.

The CLI is distributed in the Target directory of the standard Nsight Systems download
package. Users who want to install the CLI as a standalone tool can do so by copying
the files within the Target directory. If you want the CLI output file (.qdstrm) to be auto-
converted (to .nsys-rep) after the analysis is complete, you will need to copy the host
directory as well.

If you wish to run the CLI without root (recommended mode), you will want to install in
a directory where you have full access.

Note that you must run the CLI on Windows as administrator.

1.2. Command Line Options

The Nsight Systems command lines can have one of two forms:
nsys [global option]

or

nsys [command switch] [optional command switch options] [application] [optional
application options]

All command line options are case sensitive. For command switch options, when

short options are used, the parameters should follow the switch after a space; e.g. -s

process-tree. When long options are used, the switch should be followed by an equal

sign and then the parameter(s); e.g. --sample=process-tree.

For this version of Nsight Systemes, if you launch a process from the command line to
begin analysis, the launched process will be terminated when collection is complete,
including runs with --duration set, unless the user specifies the --kill none option (details

www.nvidia.com
User Guide v2022.2.1 | 1

Profiling from the CLI

below). The exception is that if the user uses NVTX, cudaProfilerStart/Stop, or hotkeys to
control the duration, the application will continue unless --kill is set.

The Nsight Systems CLI supports concurrent analysis by using sessions. Each Nsight
Systems session is defined by a sequence of CLI commands that define one or more
collections (e.g. when and what data is collected). A session begins with either a start,
launch, or profile command. A session ends with a shutdown command, when a profile
command terminates, or, if requested, when all the process tree(s) launched in the
session exit. Multiple sessions can run concurrently on the same system.

1.2.1. CLI Global Options

Short Long Description

-h --help Help message providing
information about available
command switches and
their options.

-v --version Output Nsight Systems CLI
version information.

1.3. CLI Command Switches

The Nsight Systems command line interface can be used in two modes. You may launch
your application and begin analysis with options specified to the nsys profile
command. Alternatively, you can control the launch of an application and data collection
using interactive CLI commands.

Command Description

profile A fully formed profiling description
requiring and accepting no further input.
The command switch options used

(see below table) determine when the
collection starts, stops, what collectors are
used (e.g. API trace, IP sampling, etc.),
what processes are monitored, etc.

start Start a collection in interactive mode. The
start command can be executed before or
after a launch command.

stop Stop a collection that was started in
interactive mode. When executed, all
active collections stop, the CLI process
terminates but the application continues
running.

cancel Cancels an existing collection started
in interactive mode. All data already

www.nvidia.com
User Guide v2022.2.1 | 2

Profiling from the CLI

Command Description
collected in the current collection is
discarded.

launch In interactive mode, launches an

application in an environment that
supports the requested options. The
launch command can be executed before
or after a start command.

shutdown Disconnects the CLI process from the
launched application and forces the CLI
process to exit. If a collection is pending or
active, it is cancelled

export Generates an export file from an
existing .nsys-rep file. For more
information about the exported formats
see the /documentation/nsys-exporter
directory in your Nsight Systems
installation directory.

stats Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate statistical information.

analyze Post process existing Nsight Systems
result, either in .nsys-rep or SQLite format,
to generate expert systems report.

status Reports on the status of a CLI-based
collection or the suitability of the profiling
environment.

sessions Gives information about all sessions

running on the system.

nvprof Special option to help with transition
from legacy NVIDIA nvprof tool. Calling
nsys nvprof [options] will provide
the best available translation of nvprof
[options] See Migrating from NVIDIA
nvprof topic for details. No additional
functionality of nsys will be available
when using this option. Note: Not
available on IBM Power targets.

1.3.1. CLI Profile Command Switch Options

After choosing the profile command switch, the following options are available.
Usage:

nsys [global-options] profile [options] <application> [application-arguments]

www.nvidia.com
User Guide v2022.2.1 | 3

Profiling from the CLI

www.nvidia.com
User Guide

verbose,
cusparse,
cusparse-
verbose, cudnn,
opengl, opengl-
annotations,
openacc,
openmp, osrt,
mpi, nvvideo,
vulkan, vulkan-
annotations,
dx11, dx11-
annotations,
dx12, dx12-
annotations,
oshmem, ucx,
wddm, none

Short Long Possible Default Switch
Parameters Description

-t --trace cuda, nvtx, cuda, openg], Select the
cublas, cublas- |nvtx, osrt API(s) to be

traced. The osrt
switch controls
the OS runtime
libraries tracing.
Multiple APIs
can be selected,
separated

by commas
only (no
spaces). Since
OpenACC,
cuDNN and
cuBLAS

APIs are
tightly linked
with CUDA,
selecting one of
those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information

on --mpi-impl
option below if
mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding
API will also
be traced. If the
none option

is selected,

no APIs are
traced and no
other API can
be selected.

v2022.2.1 | 4

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on
IBM Power
target.

--mpi-impl

openmpi,mpich

openmpi

When using
--trace=mpi

to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --
trace=mpi is not
supported.

www.nvidia.com
User Guide

--sample

process-tree,
system-wide,
none

process-tree

Select how to
collect CPU
IP/backtrace
samples.

If 'none' is
selected, CPU
sampling

is disabled.
Depending on
the platform,
some values
may require
admin or root
privileges.

If a target
application

is launched,
the default is
‘process-tree’,

v2022.2.1 | 5

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

otherwise, the
default is 'none'.
Note: 'system-
wide' is not
available on

all platforms.
Note: If set to
'none', CPU
context switch
data will still be
collected unless
the --cpuctxsw
switch is set to
'none’.

www.nvidia.com
User Guide

--backtrace

fp,Ibr,dwarf,nons

Ibr

Select the
backtrace
method to use
while sampling.
The option 'Tbr’
uses Intel(c)
Corporation's
Last Branch
Record
registers,
available

only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option 'fp'is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
'dwarf' uses
DWARF's CFI
(Call Frame
Information).
Setting the
value to 'none'
can reduce

v2022.2.1 | 6

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

collection
overhead.

--sampling-
period

The number
of CPU
Instructions
Retired events
counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured,
backtraces
may also be
collected.

The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the
size of the
result file(s).
This option is
available only
on some Linux
targets.

www.nvidia.com
User Guide

--samples-per-
backtrace

The number of
CPU IP samples
collected for
every CPU
IP/backtrace
sample
collected. For
example, if set
to 4, on the
fourth CPU

v2022.2.1 | 7

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

IP sample
collected, a
backtrace

will also be
collected.
Lower values
increase the
amount of
data collected.
Higher values
can reduce
collection
overhead and
reduce the
number of CPU
IP samples
dropped.

If DWARF
backtraces are
collected, the
default is 4,
otherwise the
defaultis 1.
This option is
available only
on some Linux
targets.

--sampling-
frequency

integers
between 100
and 8000

1000

Specity the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency

is 8000 Hz.
This option

is supported
only on QNX,
Linux for Tegra,
and Windows
targets.

www.nvidia.com
User Guide

v2022.2.1 | 8

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--sampling-
trigger

timer, sched,
perf, cuda

timer,sched

Specity
backtrace
collection
trigger.
Multiple APIs
can be selected,
separated by
commas only
(no spaces).
Available on
Nsight Systems
Embedded
Platforms
Edition targets
only.

www.nvidia.com
User Guide

--cpuctxsw

process-tree,
system-wide,
none

process-tree

Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.
Depending on
the platform,
some values
may require
admin or root
privileges.
Note: if the --
sample switch
is set to a value
other than
'none’, the
--cpuctxsw
setting is
hardcoded to
the same value
as the --sample
switch. If --
sample=none
and a target
application

is launched,
the default is
‘process-tree’,

v2022.2.1 | 9

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

otherwise the
default is 'none'.

--command-file

< filename >

none

Open a file

that contains
profile switches
and parse the
switches. Note
additional
switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--delay

< seconds >

Collection
start delay in
seconds.

--duration

< seconds >

NA

Collection
duration

in seconds,
duration must
be greater

than zero.

Note that the
profiler does
not detach from
the application,
it lives until
application
termination.

www.nvidia.com
User Guide

--env-var

NA

Set
environment
variable(s) for
the application
process to

be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can

v2022.2.1 | 10

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

be specified as
A=B,C=D.

--etw-provider

"<name>,<guid>"
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes

than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--osrt-threshold

<nanoseconds >

1000 ns

Set the
minimum
time that a

OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead

and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

www.nvidia.com
User Guide

--osrt-backtrace-
depth

integer

24

Set the
depth for the
backtraces

v2022.2.1 | 11

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds

80000

Set the
duration, in
nanoseconds,
that all OS
runtime
libraries

calls must
execute before
backtraces are
collected.

www.nvidia.com
User Guide

--cudabacktrace

all, none,
kernel, memory,
sync, other

none

When tracing
CUDA APIs,
enable the
collection of

a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead

may occur.
Values may
be combined
using ','. Each
value except
‘none' may be
appended with
a threshold
after "',
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).

v2022.2.1 | 12

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

--cuda-flush-
interval

milliseconds

Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage.
Immediately
before data

is saved to
storage, a
cudaDeviceSync]
call is inserted
into the
workflow
which

will cause
application
overhead. If
data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds

an interval of
10 seconds is
recommended.

honize

www.nvidia.com
User Guide

--cuda-
memory-usage

true, false

false

Track the

GPU memory
usage by
CUDA kernels.

Applicable only

v2022.2.1 | 13

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead.

--cuda-um-gpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when GPU code
tries to access a
memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime
overhead.

www.nvidia.com
User Guide

--output

< filename >

report#

Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the
value of the
environment
variable.

Any %h

v2022.2.1 | 14

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID

of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{gqdstrm,nsys-
rep,sqlite} in
the working
directory.

--export

arrow, hdf, json,
sqlite, text, none

none

Create
additional
output file(s)
based on the
data collected.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

www.nvidia.com
User Guide

--stats

true, false

false

Generate
summary
statistics after
the collection.
WARNING:
When set to

v2022.2.1 | 15

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

--force-
overwrite

true, false

false

If true,
overwrite all
existing result
files with same
output filename
(.qdstrm, .nsys-
rep, .arrows, .hdf

-W

--show-output

true, false

true

If true, send
target process’
stdout and
stderr streams
to the console.

--inherit-
environment

true, false

true

When true,

the current
environment
variables

and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only

the tool’s
environment
variables will
be specified for
the launched
process.

www.nvidia.com
User Guide

--stop-on-exit

true, false

true

If true, stop
collecting

automatically

v2022.2.1 | 16

json, .sqlite, .

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

when the
launched
process has
exited or when
the duration
expires -
whichever
occurs first. If
false, duration
must be set and
the collection
stops only
when the
duration
expires. Nsight
Systems does
not officially
support runs
longer than 5
minutes.

--wait

primary,all

all

If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

www.nvidia.com
User Guide

--trace-fork-
before-exec

true, false

false

If true, trace
any child
process after
fork and before
they call one

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior

and might

v2022.2.1 | 17

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

cause your
application

to crash or
deadlock. Note:
Not available
for Windows
targets.

--capture-range

none,
cudaProfilerApi,
hotkey, nvtx

none

When --
capture-range is
used, profiling
will start

only when
appropriate
start API or
hotkey is
invoked. If
--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
Hotkey works
for graphic
applications
only.

www.nvidia.com
User Guide

--capture-range-
end

none, stop,
stop-shutdown,
repeat[:N],
repeat-
shutdown:N

stop-shutdown

Specity the
desired
behavior when
a capture
range ends.
Applicable
only when
used along
with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any
subsequent
capture ranges

v2022.2.1 | 18

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

www.nvidia.com
User Guide

will be ignored.
Target app

will continue
running.

If stop-
shutdown,
collection will
stop at capture
range end and
session will be
shutdown. If
repeat|[:N],
collection will
stop at capture
range end and
subsequent
capture

ranges will
trigger more
collections. Use
the optional

:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.

If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown

and repeat-
shutdown:N,
as always, use
--kill option

to specify
whether target

v2022.2.1 | 19

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

app should

be terminated
when shutting
down session.

--nvtx-capture

range@domain, 13

inge,range@

Specity NVTX
capture range.
See below

for details.
This option

is applicable
only when
used along
with --capture-
range=nvtx.

--nvtx-domain-
include

default,
<domain_names]

Choose to

only include
NVTX events
from a comma
separated list
of domains.
'default’ filters
the NVTX
default domain.
A domain

with this name
or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

www.nvidia.com
User Guide

--nvtx-domain-
exclude

default,
<domain_names}

b

Choose to
exclude NVTX
events from

a comma
separated list

v2022.2.1 | 20

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
of domains.
'default’
excludes NVTX

events without
a domain. A
domain with
this name

or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--ftrace Collect ftrace
events.
Argument
should list
events to collect
as: subsystem1/
eventl,subsystem2/
event2.
Requires root.
No ftrace events
are collected by
default. Note:
Not available
on IBM Power
targets.

--ftrace-keep- Skip initial
user-config ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

www.nvidia.com
User Guide v2022.2.1 | 21

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--vsync

true, false

false

Collect vsync
events. If
collection of
vsync events

is enabled,
display/
display_scanline
ftrace events
will also be
captured.

--dx-force-
declare-
adapter-
removal-
support

true, false

false

The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding

it. Enabling

this flag

makes a call to
DXGIDeclareAd:
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

ipterRemovalS

--gpuctxsw

true,false

false

Trace GPU
context
switches.
Note that this
requires driver
r435.17 or
later and root
permission.
Not available
on IBM Power
targets.

www.nvidia.com
User Guide

--gpu-metrics-
device

GPU ID, help,
none

none

Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --

gpu-metrics-

v2022.2.1 | 22

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

device=help
switch.

--gpu-metrics-
frequency

integer

10000

Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000(Hz).

--gpu-metrics-
set

index

first

Specify metric
set for GPU
Metrics
sampling.

The argument
must be one of
indices reported
by --gpu-
metrics-
set=help
switch. Default
is the first
metric set

that supports
selected GPU.

--nic-metrics

true, false

false

(Experimental)
Collect metrics
from supported
NIC/HCA
devices

--kill

none, sigkill,
sigterm, signal
number

sigterm

Send signal

to the target
application's
process group.
Can be used
with --duration
or range
markers.

www.nvidia.com
User Guide

--session-new

[a-Z][0-9,a-
Z,spaces]

profile-<id>-
<application>

Name the
session
created by the

v2022.2.1 | 23

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

command.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--retain-etw-
files

true, false

false

If true, retains
ETW files
generated

by the trace,
merges and
moves the files
to the output
directory.

www.nvidia.com
User Guide

--opengl-gpu-
workload

true, false

true

If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch

is applicable
only when --
trace=opengl
is specified.
This option is
not supported

v2022.2.1 | 24

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

on IBM Power
targets.

--vulkan-gpu- [true, false true If true, trace
workload the Vulkan
workloads'
GPU activity.
Note that

this switch

is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--dx12-gpu- true, false true If true, trace
workload the DX12
workloads'
GPU activity.
Note that
this switch

is applicable
only when --
trace=dx12

is specified.
This option is

only supported

on Windows

targets.
--dx12-wait- true, false true If true, trace
calls wait calls that

block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12

is specified.
This option is
only supported
on Windows
targets.

www.nvidia.com
User Guide v2022.2.1 | 25

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--wddm-
additional-
events

true, false

true

If true, collect
additional
range of

ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch

is applicable
only when --
trace=swddm
is specified.
This option is
only supported
on Windows
targets.

--hotkey-
capture

'F1' to 'F12'

'F12'

Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey is
specified.

www.nvidia.com
User Guide

--Cpu-core-
events

0x11,0x13, ... nong

%s

Collect per-core
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces). Use
the --cpu-core-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded

v2022.2.1 | 26

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Platforms
Edition only.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none

Collect per-
cluster Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpu-socket-
events

0x2a, 0x2c, ...,
none

none

Collect per-
socket Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--process-scope

main, process-
tree, system-
wide

main

Select which
process(es)

to trace.
Available in
Nsight Systems

v2022.2.1 | 27

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--accelerator-
trace

none, nvmedia

none

Collect other
accelerators
workload
trace from
the hardware
engine units.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--clock-
frequency-
changes

true, false

false

Collect clock
frequency
changes.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--xhv-trace

< filepath
pct.json >

none

Collect
hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--ell-sampling

true, false

false

Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

v2022.2.1 | 28

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

--ell-sampling- |< filepath none EL1 sampling
config config.json > config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--run-as <username > none Run the target
application as
the specified
username. If
not specified,
the target
application will
be run by the
same user as
Nsight Systems.
Requires root
privileges.
Available for
Linux targets
only.

--resolve- true, false; true Resolve
symbols symbols of
captured
samples and
backtraces.

1.3.2. CLI Start Command Switch Options

After choosing the start command switch, the following options are available. Usage:
nsys [global-options] start [options]

Short Long Possible Default Switch
Parameters Description
-C --capture-range |none, none When --
cudaProfilerApi, capture-range is
hotkey, nvtx used, profiling
will start
only when
appropriate
start API or
hotkey is
invoked. If

www.nvidia.com
User Guide v2022.2.1 | 29

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--capture-
range is set to
none, start/stop
API calls and
hotkeys will be
ignored. Note:
hotkey works
for graphic
applications
only.

www.nvidia.com
User Guide

--output

< filename >

report#

Set report file
name. Any
%q{ENV_VAR}
pattern in the
filename will
be substituted
with the

value of the
environment
variable.

Any %h
pattern in the
filename will
be substituted
with the
hostname of the
system. Any %p
pattern in the
filename will
be substituted
with the PID
of the target
process or the
PID of the root
process if there
is a process
tree. Any %%
pattern in the
filename will
be substituted
with %. Default
is report#.
{gdstrm,nsys-
rep,sqlite} in

v2022.2.1 | 30

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

the working
directory.

--export

arrow, hdf, json,
sqlite, text, none

none

Create
additional
output file(s)
based on the
data collected.
WARNING: If
the collection
captures a large
amount of data,
creating the
export file may
take several
minutes to
complete.

--stats

true, false

false

Generate
summary
statistics after
the collection.
WARNING:
When set to
true, an SQLite
database will
be created after
the collection.
If the collection
captures a large
amount of
data, creating
the database
file may take
several minutes
to complete.

--force-
overwrite

true, false

false

If true,
overwrite all
existing result
files with same
output filename
(.qdstrm, .nsys-
rep, .arrows, .hdf

www.nvidia.com
User Guide

--stop-on-exit

true, false

true

If true, stop
collecting
automatically

v2022.2.1 | 31

json, .sqlite, .

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
when all
tracked

processes have
exited or when
stop command
is issued -
whichever
occurs first.

If false, stop
only on stop
command.
Note: When this
is true, stop
command is
optional. Nsight
Systems does
not officially
support runs
longer than 5

www.nvidia.com
User Guide

minutes.
--capture-range- [none, stop, stop-shutdown | Specify the
end stop-shutdown, desired
repeat[:N], behavior when
repeat- a capture
shutdown:N range ends.
Applicable
only when
used along

with --capture-
range option. If
none, capture
range end will
be ignored. If
stop, collection
will stop at
capture range
end. Any
subsequent
capture ranges
will be ignored.
Target app

will continue
running.

If stop-
shutdown,
collection will

v2022.2.1 | 32

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

stop at capture
range end and
session will be
shutdown. If
repeat|[:N],
collection will
stop at capture
range end and
subsequent
capture

ranges will
trigger more
collections. Use
the optional

:N to specify
max number of
capture ranges
to be honored.
Any subsequent
capture ranges
will be ignored
once N capture
ranges are
collected.

If repeat-
shutdown:N,
same behavior
as repeat:N
but session will
be shutdown
after N ranges.
For stop-
shutdown

and repeat-
shutdown:N,
as always use
--kill option

to specify
whether target
app should

be terminated
when shutting
down session.

www.nvidia.com
User Guide

v2022.2.1 | 33

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--etw-provider

"<name>,<guid>"|
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes

than Name
and GUID,
provide a JSON
configuration
file as as
outlined below.
This switch
can be used
multiple times
to add multiple
providers.
Note: Only
available for
Windows
targets.

--dx-force-
declare-
adapter-
removal-
support

true, false

false

The Nsight
Systems trace
initialization
involves
creating a D3D
device and
discarding

it. Enabling
this flag
makes a call to
DXGIDeclareAd:
before device
creation.
Requires DX11
or DX12 trace to
be enabled.

ipterRemovalS

www.nvidia.com
User Guide

--ftrace

Collect ftrace
events.
Argument
should list
events to collect

as: subsystem1/

eventl,subsystenI\Z/

event2.

v2022.2.1 | 34

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Requires root.
No ftrace events
are collected by
default. Note:
Not supported
on IBM Power
targets.

--ftrace-keep-
user-config

Skip initial
ftrace setup and
collect already
configured
events. Default
resets the ftrace
configuration.

--gpu-metrics-
device

GPU ID, help,
none

none

Collect GPU
Metrics from
specified
devices.
Determine GPU
IDs by using --
gpu-metrics-
device=help
switch.

--gpu-metrics-
frequency

integer

10000

Specify GPU
Metrics
sampling
frequency.
Minimum
supported
frequency is 10
(Hz). Maximum
supported
frequency is
200000(Hz).

www.nvidia.com
User Guide

--gpu-metrics-
set

index

first

Specify metric
set for GPU
Metrics
sampling.

The argument
must be one of
indices reported
by --gpu-
metrics-
set=help

v2022.2.1 | 35

Profiling from the CLI

Short

Long

Possible
Parameters

Default Switch
Description

switch. Default
is the first
metric set

that supports
selected GPU.

--nic-metrics

true, false

false (Experimental)
Collect metrics
from supported

NIC/HCA
devices

--gpuctxsw

true,false

false Trace GPU
context
switches.

Note that this
requires driver
r435.17 or
later and root
permission.
Not supported
on IBM Power
targets.

www.nvidia.com
User Guide

--sample

process-tree,
system-wide,
none

process-tree Select how to
collect CPU
IP/backtrace
samples.

If none'is
selected, CPU
sampling

is disabled.
Depending on
the platform,
some values
may require
admin or root
privileges.

If a target
application

is launched,
the default is
‘process-tree’,
otherwise, the
default is 'none'.
Note: 'system-
wide' is not
available on

v2022.2.1 | 36

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

all platforms.
Note: If set to
'none', CPU
context switch
data will still be
collected unless
the --cpuctxsw
switch is set to
'none’.

--backtrace

fp,Ibr,dwarf,nong

Ibr

Select the
backtrace
method to use
while sampling.
The option 'Tbr’
uses Intel(c)
Corporation's
Last Branch
Record
registers,
available

only with
Intel(c) CPUs
codenamed
Haswell and
later. The
option 'fp'is
frame pointer
and assumes
that frame
pointers were
enabled during
compilation.
The option
'dwarf' uses
DWARF's CFI
(Call Frame
Information).
Setting the
value to 'none'
can reduce
collection
overhead.

www.nvidia.com
User Guide

--sampling-
period

The number
of CPU
Instructions

v2022.2.1 | 37

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Retired events
counted
before a CPU
instruction
pointer (IP)
sample is
collected. If
configured,
backtraces
may also be
collected.

The smaller
the sampling
period, the
higher the
sampling
rate. Note
that smaller
sampling
periods will
increase
overhead and
significantly
increase the
size of the
result file(s).
This option is
available only
on some Linux
targets.

www.nvidia.com
User Guide

--samples-per-
backtrace

The number of
CPU IP samples
collected for
every CPU
IP/backtrace
sample
collected. For
example, if set
to 4, on the
fourth CPU

IP sample
collected, a
backtrace

will also be
collected.
Lower values

v2022.2.1 | 38

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

increase the
amount of
data collected.
Higher values
can reduce
collection
overhead and
reduce the
number of CPU
IP samples
dropped.

If DWARF
backtraces are
collected, the
default is 4,
otherwise the
defaultis 1.
This option is
available only
on some Linux
targets.

--sampling-
frequency

integers
between 100
and 8000

1000

Specity the
sampling/
backtracing
frequency.
The minimum
supported
frequency is
100 Hz. The
maximum
supported
frequency

is 8000 Hz.
This option

is supported
only on QNX,
Linux for Tegra,
and Windows
targets.

www.nvidia.com
User Guide

--sampling-
trigger

timer, sched,
perf, cuda

timer,sched

Specity
backtrace
collection
trigger.
Multiple APIs
can be selected,

v2022.2.1 | 39

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

separated by
commas only
(no spaces).
Available on
Nsight Systems
Embedded
Platforms
Edition targets
only.

--cpuctxsw

process-tree,
system-wide,
none

process-tree

Trace OS thread
scheduling
activity. Select
'none' to
disable tracing
CPU context
switches.
Depending on
the platform,
some values
may require
admin or root
privileges.
Note: if the --
sample switch
is set to a value
other than
'none’, the
--cpuctxsw
setting is
hardcoded to
the same value
as the --sample
switch. If --
sample=none
and a target
application

is launched,
the default is
‘process-tree’,
otherwise the
default is 'none'.

www.nvidia.com
User Guide

--session

session
identifier

none

Start the
application in
the indicated
session.

v2022.2.1 | 40

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

The option
argument must
represent a
valid session
name or ID

as reported

by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

www.nvidia.com
User Guide

--session-new

[a-Z][0-9,a-
Z,spaces]

[default]

Start the
application in
a new session.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the

v2022.2.1 | 41

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

system. Any %
% pattern will
be substituted
with %.

--vsync

true, false

false

Collect vsync
events. If
collection of
vsync events

is enabled,
display/
display_scanline
ftrace events
will also be
captured.

--process-scope

main, process-
tree, system-
wide

main

Select which
process(es)

to trace.
Available in
Nsight Systems
Embedded
Platforms
Edition only.
Nsight Systems
Workstation
Edition will
always trace
system-wide in
this version of
the tool.

--accelerator-
trace

none, nvimedia

none

Collect other
accelerators
workload
trace from
the hardware
engine units.
Auvailable in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--clock-
frequency-
changes

true, false

false

Collect clock
frequency
changes.
Available in

v2022.2.1 | 42

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

Nsight Systems
Embedded
Platforms
Edition only.

--xhv-trace <filepath none Collect

pctjson > hypervisor
trace. Available
in Nsight
Systems
Embedded
Platforms
Edition only.

--ell-sampling [true, false false Enable EL1
sampling.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--ell-sampling- |< filepath none EL1 sampling
config config.json > config.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

1.3.3. CLI Stop Command Switch Options

After choosing the stop command switch, the following options are available. Usage:
nsys [global-options] stop [options]

Short Long Possible Default Switch
Parameters Description
--session session none Stop the
identifier indicated
session.
The option

argument must
represent a
valid session
name or ID

as reported

by nsys

www.nvidia.com
User Guide v2022.2.1 | 43

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
sessions
list. Any

$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.4. CLI Cancel Command Switch Options

After choosing the cancel command switch, the following options are available. Usage:

nsys [global-options] cancel [options]
Short Long Possible Default Switch
Parameters Description
--session session none Cancel the
identifier indicated
session.
The option

www.nvidia.com
User Guide

argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the

v2022.2.1 | 44

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

hostname of the
system. Any %

% pattern will
be substituted
with %.

1.3.5. CLI Launch Command Switch Options

After choosing the 1launch command switch, the following options are available. Usage:

nsys [global-options] launch [options] <application> [application-arguments]
Short Long Possible Default Switch
Parameters Description
-t --trace cuda, nvtx, cuda, opengl, Select the
cublas, cublas- |nvtx, osrt API(s) to be
verbose, traced. The osrt
cusparse, switch controls
cusparse- the OS runtime
verbose, cudnn, libraries tracing.
opengl, opengl- Multiple APIs
annotations, can be selected,
openacc, separated
openmp, osrt, by commas
mpi, nvvideo, only (no
vulkan, vulkan- spaces). Since
annotations, OpenACC,
dx11, dx11- cuDNN and
annotations, cuBLAS
dx12, dx12- APIs are
annotations, tightly linked
oshmem, ucx, with CUDA,
wddm, none selecting one of
those APIs will
automatically
enable CUDA
tracing. Reflex
SDK latency
markers will be
automatically
collected when
DX or vulkan
API trace is
enabled. See
information

www.nvidia.com
User Guide

on --mpi-impl
option below if

v2022.2.1 | 45

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

mpi is selected.
If '<api>-
annotations' is
selected, the
corresponding
API will also
be traced. If the
none option

is selected,

no APIs are
traced and no
other API can
be selected.
Note: cublas,
cudnn, nvvideo,
opengl, and
vulkan are not
available on
IBM Power
target.

-—-mpi-impl

openmpi,mpich

openmpi

When using
--trace=mpi

to trace MPI
APIs use --mpi-
impl to specify
which MPI
implementation
the application
is using. If you
are using a
different MPI
implementation,
see Tracing
MPI API calls
section below.
Calling --mpi-
impl without --
trace=mpi is not
supported.

www.nvidia.com
User Guide

--command-file

< filename >

none

Open a file

that contains
launch switches
and parse the
switches. Note
additional

v2022.2.1 | 46

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

switches on the
command line
will override
switches in the
file. This flag
can be specified
more than once.

--eénv-var

NA

Set
environment
variable(s) for
the application
process to

be launched.
Environment
variables
should be
defined as
A=B. Multiple
environment
variables can
be specified as
A=B,C=D.

--etw-provider

"<name>,<guid>"
or path to JSON
file

none

Add custom
ETW trace
provider(s). If
you want to
specify more
attributes
than Name
and GUID,
provide a JSON
configuration
file as outlined
below. This
switch can be
used multiple
times to add
multiple
providers.
Note: Only
available for
Windows
targets.

www.nvidia.com
User Guide

--osrt-threshold

<nanoseconds >

1000 ns

Set the
minimum

v2022.2.1 | 47

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

time that a

OS Runtime
event must
take before it
is collected.
Setting this
value too low
can cause high
application
overhead

and seriously
increase the size
of your results
file. Note: Not
available for
IBM Power
targets.

--osrt-backtrace-
depth

integer

24

Set the

depth for the
backtraces
collected for
OS runtime
libraries calls.

--osrt-backtrace-
threshold

nanoseconds

80000

Set the
duration, in
nanoseconds,
that all OS
runtime
libraries

calls must
execute before
backtraces are
collected.

www.nvidia.com
User Guide

--cudabacktrace

all, none,
kernel, memory,
sync, other

none

When tracing
CUDA APIs,
enable the
collection of

a backtrace
when a CUDA
API is invoked.
Significant
runtime
overhead

may occur.
Values may

v2022.2.1 | 48

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

be combined
using ',". Each
value except
none' may be
appended with
a threshold
after ":".
Threshold is
duration, in
nanoseconds,
that CUDA
APIs must
execute before
backtraces are
collected, e.g.
'kernel:500'.
Default value
for each
threshold is
1000ns (1us).
Note: CPU
sampling must
be enabled.
Note: Not
available on
IBM Power
targets.

www.nvidia.com
User Guide

--cuda-flush-
interval

milliseconds

Set the interval,
in milliseconds,
when buffered
CUDA data is
automatically
saved to
storage.
Immediately
before data

is saved to
storage, a
cudaDeviceSync]
call is inserted
into the
workflow
which

will cause
application
overhead. If

honize

v2022.2.1 | 49

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

data is not
periodically
saved, nsys will
dynamically
allocate
memory as
needed to store
data during
collection. For
collections over
30 seconds

an interval of
10 seconds is
recommended.

--cuda-
memory-usage

true, false

false

Track the

GPU memory
usage by
CUDA kernels.
Applicable only
when CUDA
tracing is
enabled. Note:
This feature
may cause
significant
runtime
overhead.

--cuda-um-cpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when CPU code
tries to access a
memory page
that resides on
the device. Note
that this feature
may cause
significant
runtime
overhead.

www.nvidia.com
User Guide

--cuda-um-gpu-
page-faults

true, false

false

This switch
tracks the page
faults that occur
when GPU code
tries to access a

v2022.2.1 | 50

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

memory page
that resides on
the host. Note
that this feature
may cause
significant
runtime
overhead.

-w --show-output |[true, false true If true, send
target process’
stdout and
stderr streams
to the console

-n --inherit- true, false true When true,
environment the current
environment
variables

and the tool’s
environment
variables will
be specified for
the launched
process. When
false, only

the tool’s
environment
variables will
be specified for
the launched
process.

P --nvtx-capture |message@idomaimone Specify NVTX
capture range.
See below for

details.
--nvtx-domain- |default, Choose to
include <domain_names} only include

NVTX events

from a comma
separated list
of domains.
'default’ filters
the NVTX
default domain.
A domain

www.nvidia.com
User Guide v2022.2.1 | 51

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

with this name
or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

--nvtx-domain-
exclude

default,
<domain_names}

Choose to
exclude NVTX
events from

a comma
separated list
of domains.
'default’
excludes NVTX
events without
a domain. A
domain with
this name

or commas

in a domain
name must be
escaped with
"\'". Note: Only
one of --nvtx-
domain-include
and --nvtx-
domain-exclude
can be used.
This option is
only applicable
when --
trace=nvtx is
specified.

www.nvidia.com
User Guide

--trace-fork-
before-exec

true, false

false

If true, trace
any child

v2022.2.1 | 52

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

process after
fork and before
they call one

of the exec
functions.
Beware, tracing
in this interval
relies on
undefined
behavior

and might
cause your
application

to crash or
deadlock. Note:
Not available
for Windows
targets.

--wait

primary,all

all

If primary, the
CLI will wait on
the application
process
termination. If
all, the CLI will
additionally
wait on re-
parented
processes
created by the
application.

www.nvidia.com
User Guide

--session

session
identifier

none

Launch the
application in
the indicated
session.

The option
argument must
represent a
valid session
name or ID
as reported
by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will

v2022.2.1 | 53

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

--session-new

[a-Z][0-9,a-
Z,spaces]

[default]

Launch the
application in
anew session.
Name must
start with an
alphabetical
character
followed by
printable

or space
characters. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

www.nvidia.com
User Guide

--opengl-gpu-
workload

true, false

true

If true, trace
the OpenGL
workloads'
GPU activity.
Note that
this switch

v2022.2.1 | 54

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
is applicable
only when --

trace=opengl
is specified.
This option is
not supported
on IBM Power
targets.

--vulkan-gpu- [true, false true If true, trace
workload the Vulkan
workloads'
GPU activity.
Note that

this switch

is applicable
only when --
trace=vulkan is
specified. This
option is not
supported on
QNX.

--dx12-gpu- true, false true If true, trace
workload the DX12
workloads'
GPU activity.
Note that
this switch

is applicable
only when --
trace=dx12

is specified.
This option is

only supported

on Windows

targets.
--dx12-wait- true, false true If true, trace
calls wait calls that

block on fences
for DX12. Note
that this switch
is applicable
only when --
trace=dx12

is specified.
This option is

www.nvidia.com
User Guide v2022.2.1 | 55

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

only supported
on Windows
targets.

--wddm-
additional-
events

true, false

true

If true, collect
additional
range of

ETW events,
including
context status,
allocations,
sync wait and
signal events,
etc. Note that
this switch

is applicable
only when --
trace=swddm
is specified.
This option is
only supported
on Windows
targets.

--hotkey-
capture

'F1' to 'F12'

'F12'

Hotkey to
trigger the
profiling
session. Note
that this switch
is applicable
only when
--capture-
range=hotkey is
specified.

www.nvidia.com
User Guide

--Cpu-core-
events

0x11,0x13,...,nong

%s

Collect per-core
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces). Use
the --cpu-core-
events=help
switch to see
the full list

of values.
Available in

v2022.2.1 | 56

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

Nsight Systems
Embedded
Platforms
Edition only.

--cpu-cluster-
events

0x16, 0x17, ...,
none

none

Collect per-
cluster Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list

of values.
Available in
Nsight Systems
Embedded
Platforms
Edition only.

--cpu-socket-
events

0x2a, 0x2c, ...,
none

none

Collect per-
socket Uncore
PMU counters.
Multiple values
can be selected,
separated by
commas only
(no spaces).
Use the --
cpu-cluster-
events=help
switch to see
the full list

of values.
Auvailable in
Nsight Systems
Embedded
Platforms
Edition only.

www.nvidia.com
User Guide

--run-as

<username >

none

Run the target
application as
the specified

v2022.2.1 | 57

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

username. If
not specified,
the target
application will
be run by the
same user as
Nsight Systems.
Requires root
privileges.
Available for
Linux targets
only.

--resolve-
symbols

true, false;

true

Resolve
symbols of
captured
samples and
backtraces.

1.3.6. CLI Shutdown Command Switch Options

After choosing the shutdown command switch, the following options are available.

Usage:
nsys [global-options] shutdown [options]
Short Long Possible Default Switch
Parameters Description
--kill none, sigkill, sigterm Send signal
sigterm, signal to the target
number application's
process group.
--session session none Shutdown
identifier the indicated
session.
The option

www.nvidia.com
User Guide

argument must
represent a
valid session
name or ID

as reported
by nsys
sessions
list. Any
$q{ENV_VAR}
pattern will
be substituted

v2022.2.1 | 58

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

with the

value of the
environment
variable. Any
%h pattern will
be substituted
with the
hostname of the
system. Any %
% pattern will
be substituted
with %.

1.3.7. CLI Export Command Switch Options

After choosing the export command switch, the following options are available. Usage:

nsys [global-options]

export [options]

[nsys-rep-file]

Short

Long

Possible
Parameters

Default

Switch
Description

--output

<filename>

<inputfile.ext>

Set the .output
filename. The
default is

the .nsys-rep
filename with
the extension
for the chosen
format.

—type

arrow, hdf, info,
json, sqlite, text

sqlite

Export format
type. HDF
format is
supported
only on x86_64
Linux and
Windows

--force-
overwrite

true, false

false

If true,
overwrite
existing result
file

www.nvidia.com
User Guide

--lazy

true, false

true

Controls if table
creation is lazy
or not. When
true, a table
will only be

v2022.2.1 | 59

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

created when it
contains data.
This option will
be deprecated
in the future,
and all exports
will be non-
lazy. This
affects SQLite
and HDF5
exports only.

-q --quiet true, false false If true, do
not display
progress bar

--separate- true,false false Output stored
strings strings and
thread names
separately, with
one value per
line. This affects
JSON and text
output only.

1.3.8. CLI Stats Command Switch Options

The nsys stats command generates a series of summary or trace reports. These
reports can be output to the console, or to individual files, or piped to external processes.
Reports can be rendered in a variety of different output formats, from human readable
columns of text, to formats more appropriate for data exchange, such as CSV.

Reports are generated from an SQLite export of a .nsys-rep file. If a .nsys-rep file is
specified, Nsight Systems will look for an accompanying SQLite file and use it. If no
SQLite file exists, one will be exported and created.

Individual reports are generated by calling out to scripts that read data from the SQLite
file and return their report data in CSV format. Nsight Systems ingests this data and
formats it as requested, then displays the data to the console, writes it to a file, or pipes
it to an external process. Adding new reports is as simple as writing a script that can
read the SQLite file and generate the required CSV output. See the shipped scripts as an
example. Both reports and formatters may take arguments to tweak their processing. For
details on shipped scripts and formatters, see Report Scripts topic.

Reports are processed using a three-tuple that consists of 1) the requested report (and
any arguments), 2) the presentation format (and any arguments), and 3) the output
(filename, console, or external process). The first report specified uses the first format
specified, and is presented via the first output specified. The second report uses the

www.nvidia.com
User Guide v2022.2.1 | 60

Profiling from the CLI

second format for the second output, and so forth. If more reports are specified than
formats or outputs, the format and/or output list is expanded to match the number of
provided reports by repeating the last specified element of the list (or the default, if
nothing was specified).

nsys stats is a very powerful command and can handle complex argument structures,
please see the topic below on Example Stats Command Sequences.

After choosing the stats command switch, the following options are available. Usage:

nsys [global-options] stats [options] [input-file]

Short Long Possible Default Switch
Parameters Description
--help-reports | <report_name>, [none With no
ALL, [none] argument, give

a summary of
the available
summary and
trace reports. If
a report name
is given, a
more detailed
explanation of
the report is
displayed. If
ALLIis given, a
more detailed
explanation of
all available

reports is
displayed.
--help-formats |<format_name>, [none With no
ALL, [none] argument, give

a summary of
the available
output formats.
If a format
name is given,
a more detailed
explanation of
that format is
displayed. If
ALLIis given, a
more detailed
explanation of
all available
formats is
displayed.

www.nvidia.com
User Guide v2022.2.1 | 61

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

--sqlite

<file.sqlite>

Specify the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file

before report
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

www.nvidia.com
User Guide

--report

See Report
Scripts

Specify the
report(s) to
generate,
including any
arguments. This
option may be
used multiple
times. Multiple
reports

may also be
specified using
a comma-
separated list
(<name[:args...]
[name[:args...]...]
If no reports

are specified,
the following
will be used

as the default
report set:
cudaapisum,
gpukernsum,
gpumemtimesun

>).

gpumemsizesum

v2022.2.1 | 62

1/

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

osrtsum,
nvtxppsum,
openmpevtsum.
See Report
Scripts section
for details
about existing
built-in scripts
and how to
make your own.

--format

column, table,
csv, tsy, json,

hdoc, htable, .

Specity

the output
format of the
corresponding
report(s). The
special name
"." indicates the
default format
for the given
output. The
default format
for console

is column,
while files

and process
outputs default
to csv. This
option may be
used multiple
times. Multiple
formats

may also be
specified using
a comma-
separated list
(<namel:args...]
[name[:args...]...]
See Report
Scripts for
options
available with
each format.

www.nvidia.com
User Guide

--output

-, @<command>,
<basename>, .

Specity
the output

mechanism

v2022.2.1 | 63

>).

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

for the
corresponding
reports(s).
There are

three output
mechanisms:
print to console
(-), output

to command
(@<command>),
or output to file
(<basename>).
The option "."
can be used to
specify using
the default
basefile, which
is the basename
of the input file.
The filename
used will be
<basename>_<re]

port&args>.<ou

www.nvidia.com
User Guide

--report-dir

Add a directory
to the path
used to find
report scripts.
This is usually
only needed

if you have

one or more
directories with
personal scripts.
This option
may be used
multiple times.
Each use adds

a new directory
to the end of the
path. The last
two entries in
the path will
always be the
current working
directory,
followed by

the directory

v2022.2.1 | 64

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description

containing the
shipped nsys
reports.

--force-export | true, false false Force a re-
export of

the SQLite

file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

--force- true, false false Overwrite any
overwrite existing report
file(s).
-q --quiet Only display
errors.

1.3.9. CLI Analyze Command Switch Options

The nsys analyze command generates and outputs to the terminal a report using
expert system rules on existing results. Reports are generated from an SQLite export
of a .nsys-rep file. If a .nsys-rep file is specified, Nsight Systems will look for an
accompanying SQLite file and use it. If no SQLite export file exists, one will be created.

After choosing the analyze command switch, the following options are available.
Usage:

nsys [global-options] analyze [options] [input-file]

Short Long Possible Default Switch
Parameters Description
-h --help Print help
message.
--help-rules <report_name>, |none With no
ALL, [none] argument, list

available rules
with a short
description.

If a rule name
is given, a
more detailed
explanation
of the rule is
displayed. If
ALL s given, a

www.nvidia.com
User Guide v2022.2.1 | 65

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

more detailed
explanation of
all available
rules is
displayed.

--sqlite

<file.sqlite>

Specity the
SQLite export
filename. If this
file exists, it will
be used. If this
file doesn't exist
(or if --force-
export was
given) this file
will be created
from the
specified .nsys-
rep file

before report
processing. This
option cannot
be used if the
specified input
file is also an
SQLite file.

-Tr

--rule

asyn-memcpy-
pageable,
sync-memcpy,
sync-memset,
sync-api, gpu-
starvation, gpu-
low-utilization

all

Specity the
rules(s) to
execute,
including any
arguments. This
option may be
used multiple
times. Multiple
reports

may also be
specified using
a comma-
separated list.
See Expert
Systems section
for details on all
rules.

www.nvidia.com
User Guide

--force-export

true, false

false

Force a re-
export of
the SQLite

v2022.2.1 | 66

Profiling from the CLI

Short

Long

Possible
Parameters

Default

Switch
Description

file from the
specified .nsys-
rep file, even if
an SQLite file
already exists.

--quiet

Do not display
verbose
messages.

1.3.10. CLI Status Command Switch Options

After choosing the status command switch, the following options are available. Usage:

nsys [global-options] status [options]

Short

Long

Possible
Parameters

Default

Switch
Description

<none>

Returns current
state of the CLI.

--environment

Returns
information
about the
system
regarding
suitability of
the profiling
environment.

www.nvidia.com
User Guide

--session

session
identifier

none

Print the status
of the indicated
session.

The option
argument must
represent a
valid session
name or ID as
reported by
nsyssessions
list. Any
$q{ENV_VAR}
pattern will

be substituted
with the

value of the
environment
variable. Any

v2022.2.1 | 67

Profiling from the CLI

Short Long Possible Default Switch
Parameters Description
%h pattern will
be substituted
with the

hostname of the
system. Any %

% pattern will
be substituted
with %.

1.3.11. CLI Sessions Command Switch Subcommands

After choosing the sessions command switch, the following subcommands are
available. Usage:

nsys [global-options] sessions [subcommand]

Subcommand Description

list List all active sessions including ID, name,
and state information

1.4. Example Single Command Lines

Version Information

nsys -v
Effect: Prints tool version information to the screen.

Run with elevated privilege

sudo nsys profile <app>

Effect: Nsight Systems CLI (and target application) will run with elevated privilege.
This is necessary for some features, such as FTrace or system-wide CPU sampling. If you
don't want the target application to be elevated, use "--run-as’ option.

Default analysis run

nsys profile <application>
[application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection when the application stops. Trace CUDA, OpenGL, NVTX, and

OS runtime libraries APIs. Collect CPU sampling information and thread scheduling
information. With Nsight Systems Embedded Platforms Edition this will only analysis
the single process. With Nsight Systems Workstation Edition this will trace the process
tree. Generate the report#.nsys-rep file in the default location, incrementing the report
number if needed to avoid overwriting any existing output files.

www.nvidia.com
User Guide v2022.2.1 | 68

Profiling from the CLI

Limited trace only run

nsys profile --trace=cuda,nvtx -d 20
--sample=none --cpuctxsw=none -o my test <application>
[application-arguments]

Effect: Launch the application using the given arguments. Start collecting immediately
and end collection after 20 seconds or when the application ends. Trace CUDA and
NVTX APIs. Do not collect CPU sampling information or thread scheduling information.
Profile any child processes. Generate the output file as my_test.nsys-rep in the current
working directory.

Delayed start run
nsys profile -e TEST ONLY=0 -y 20

<application> [application-arguments]
Effect: Set environment variable TEST_ONLY=0. Launch the application using the given
arguments. Start collecting after 20 seconds and end collection at application exit. Trace
CUDA, OpenGL, NVTX, and OS runtime libraries APIs. Collect CPU sampling and
thread schedule information. Profile any child processes. Generate the report#.nsys-rep
file in the default location, incrementing if needed to avoid overwriting any existing
output files.

Collect ftrace events
nsys profile --ftrace=drm/drm vblank event

-d 20
Effect: Collect ftrace drm_vblank_event events for 20 seconds. Generate the
report#.nsys-rep file in the current working directory. Note that ftrace event collection
requires running as root. To get a list of ftrace events available from the kernel, run the
following:

sudo cat /sys/kernel/debug/tracing/available events

Run GPU metric sampling on one TU10x
nsys profile --gpu-metrics-device=0

-—-gpu-metrics-set=tulOx-gfxt <application>
Effect: Launch application. Collect default options and GPU metrics for the first GPU
(a TU10x), using the tulOx-gfxt metric set at the default frequency (10 kHz). Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Run GPU metric sampling on all GPUs at a set frequency
nsys profile --gpu-metrics-device=all
--gpu-metrics-frequency=20000 <application>

Effect: Launch application. Collect default options and GPU metrics for all available
GPUs using the first suitable metric set for each and sampling at 20 kHz. Profile any
child processes. Generate the report#.nsys-rep file in the default location, incrementing if
needed to avoid overwriting any existing output files.

Collect custom ETW trace using configuration file
nsys profile --etw-provider=file.JSON

Effect: Configure custom ETW collectors using the contents of file.JSON. Collect data for
20 seconds. Generate the report#.nsys-rep file in the current working directory.

www.nvidia.com
User Guide v2022.2.1 | 69

Profiling from the CLI

A template JSON configuration file is located at in the Nsight Systems installation
directory as \target-windows-x64\ etw_providers_template.json. This path will show up
automatically if you call

nsys profile --help

The level attribute can only be set to one of the following:

TRACE_LEVEL_CRITICAL
TRACE_LEVEL_ERROR
TRACE_LEVEL_WARNING
TRACE_LEVEL_INFORMATION
TRACE_LEVEL_VERBOSE

vV vV v v VY

The flags attribute can only be set to one or more of the following:

EVENT_TRACE_FLAG_ALPC
EVENT_TRACE_FLAG_CSWITCH
EVENT_TRACE_FLAG_DBGPRINT
EVENT_TRACE_FLAG_DISK_FILE_IO
EVENT_TRACE_FLAG_DISK_IO
EVENT_TRACE_FLAG_DISK_IO_INIT
EVENT_TRACE_FLAG_DISPATCHER
EVENT_TRACE_FLAG_DPC
EVENT_TRACE_FLAG_DRIVER
EVENT_TRACE_FLAG_FILE_IO
EVENT_TRACE_FLAG_FILE_IO_INIT
EVENT_TRACE_FLAG_IMAGE_LOAD
EVENT_TRACE_FLAG_INTERRUPT
EVENT_TRACE_FLAG_JOB
EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS
EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS
EVENT_TRACE_FLAG_NETWORK_TCPIP
EVENT_TRACE_FLAG_NO_SYSCONFIG
EVENT_TRACE_FLAG_PROCESS
EVENT_TRACE_FLAG_PROCESS_COUNTERS
EVENT_TRACE_FLAG_PROFILE
EVENT_TRACE_FLAG_REGISTRY
EVENT_TRACE_FLAG_SPLIT_IO
EVENT_TRACE_FLAG_SYSTEMCALL
EVENT_TRACE_FLAG_THREAD

» EVENT_TRACE_FLAG_VAMAP

» EVENT_TRACE_FLAG_VIRTUAL_ALLOC

vV V. v v vV vV v VvV vV v VvV vV v vV vV Y Y YV VvV Y v v Y%

v

Typical case: profile a Python script that uses CUDA

nsys profile --trace=cuda,cudnn,cublas,osrt,nvtx
--delay=60 python my dnn script.py

www.nvidia.com
User Guide v2022.2.1 |1 70

Profiling from the CLI

Effect: Launch a Python script and start profiling it 60 seconds after the launch, tracing
CUDA, cuDNN, cuBLAS, OS runtime APIs, and NVTX as well as collecting thread
schedule information.

Typical case: profile an app that uses Vulkan

nsys profile --trace=vulkan,osrt,nvtx
--delay=60 ./myapp

Effect: Launch an app and start profiling it 60 seconds after the launch, tracing Vulkan,
OS runtime APIs, and NVTX as well as collecting CPU sampling and thread schedule
information.

1.5. Example Interactive CLI Command Sequences

Collect from beginning of application, end manually

nsys start --stop-on-exit=false
nsys launch --trace=cuda,nvtx --sample=none <application> [application-
arguments]

nsys stop

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
application is launched. Launch the application, set up to allow tracing of CUDA and
NVTX as well as collection of thread schedule information. Stop only when explicitly
requested. Generate the report#.nsys-rep in the default location.

If

you

start

a
collection
and

fail

to

stop

the
collection
(or

if

you

are
allowing
it

to

stop

on

exit,

and

the
application
runs

for

too

long)
your
system’s

Note:

www.nvidia.com
User Guide v2022.2.1 | 71

Run application, begin collection manually, run until process ends

nsys launch -w true <application> [application-arguments]
nsys start

Profiling from the CLI

storage
space
may

be

filled
with
collected
data
causing
significant
issues

for

the
system.
Nsight
Systems
will
collect

a
different
amount
of

data/

sec
depending
on
options,
but

in
general
Nsight
Systems
does

not
support
runs

of

more
than

5
minutes
duration.

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until you manually
start collection at area of interest. Profile until the application ends. Generate the

report#.nsys-rep in the default location.

www.nvidia.com

User Guide

If

you
launch
an

v2022.2.1| 72

Profiling from the CLI

and
that

and
any

exit
before
start
is
called
Nsight
Systems
will
create
a

fully

rep
file

no
data.

Run application, start/stop collection using cudaProfilerStart/Stop

nsys start -c cudaProfileApi

nsys launch -w true <application> [application-arguments]

application

application

descendants

formed .nsys-

containing

Effect: Create interactive CLI process and set it up to begin collecting as soon as
a cudaProfileStart() is detected. Launch application for default analysis, sending
application output to the terminal. Stop collection at next call to cudaProfilerStop,
when the user calls nsys stop, or when the root process terminates. Generate the

report#.nsys-rep in the default location.

Note:

www.nvidia.com
User Guide

If

you

call
nsys
launch
before
nsys
start

c

and

the
code
contains
a

large
number
of

short
duration

cudaProfilerApi

v2022.2.1 | 73

Profiling from the CLI

Stop
pairs,
Nsight
Systems
may

be
unable
to
process
them
correctly,
causing
a

fault.
This
will

be
corrected
in

a

future
version.

Note:

The
Nsight
Systems
CLI
does
not
support
multiple
calls

to

the

Stop
API
at
this
time.

Run application, start/stop collection using NVTX

nsys start -c nvtx

cudaProfilerStart/

cudaProfilerStart/

nsys launch -w true -p MESSAGE@DOMAIN <application> [application-arguments]

Effect: Create interactive CLI process and set it up to begin collecting as soon as an
NVTX range with given message in given domain (capture range) is opened. Launch
application for default analysis, sending application output to the terminal. Stop
collection when all capture ranges are closed, when the user calls nsys stop, or when
the root process terminates. Generate the report#.nsys-rep in the default location.

www.nvidia.com
User Guide

v2022.2.1 | 74

Profiling from the CLI

The
Nsight
Systems
CLI

only
triggers
the
profiling
session
for

the

first
capture
range.

Note:

NVTX capture range can be specified:

>

Message@Domain: All ranges with given message in given domain are capture
ranges. For example:

nsys launch -w true -p profiler@service ./app

This would make the profiling start when the first range with message "profiler" is
opened in domain "service".

Message@*: All ranges with given message in all domains are capture ranges. For
example:

nsys launch -w true -p profiler@* ./app

This would make the profiling start when the first range with message "profiler" is
opened in any domain.

Message: All ranges with given message in default domain are capture ranges. For
example:

nsys launch -w true -p profiler ./app

This would make the profiling start when the first range with message "profiler" is
opened in the default domain.

By default only messages, provided by NVTX registered strings are considered to
avoid additional overhead. To enable non-registered strings check please launch
your application with NSYS_NVTX PROFILER REGISTER_ONLY=0 environment:

nsys launch -w true -p profiler@service -e
NSYS NVTX PROFILER REGISTER ONLY=0 ./app

Run application, start/stop collection multiple times

The interactive CLI supports multiple sequential collections per launch.

nsys launch <application> [application-arguments]
nsys start

nsys stop

nsys start

nsys stop

nsys shutdown --kill sigkill

Effect: Create interactive CLI and launch an application set up for default analysis.
Send application output to the terminal. No data is collected until the start command
is executed. Collect data from start until stop requested, generate report#.qstrm in the

www.nvidia.com

User Guide

v2022.2.1 | 75

Profiling from the CLI

current working directory. Collect data from second start until the second stop request,
generate report#.nsys-rep (incremented by one) in the current working directory.
Shutdown the interactive CLI and send sigkill to the target application's process group.

Calling
nsys
cancel
after
nsys
start
will
cancel
the
collection
without
generating
a

report.

Note:

1.6. Example Stats Command Sequences

Display default statistics
nsys stats reportl.nsys-rep

Effect: Export an SQLite file named reportl.sqlite from reportl.nsys-rep (assuming it
does not already exist). Print the default reports in column format to the console.

Note: The following two command sequences should present very similar information:
nsys profile --stats=true <application>

or

nsys profile <application>

nsys stats reportl.nsys-rep

Display specific data from a report

nsys stats --report gputrace reportl.nsys-rep

Effect: Export an SQLite file named reportl.sqlite from reportl.nsys-rep (assuming it
does not already exist). Print the report generated by the gputrace script to the console
in column format.

Generate multiple reports, in multiple formats, output multiple places

nsys stats --report gputrace --report gpukernsum --report cudaapisum
--format csv,column --output .,- reportl.nsys-rep

Effect: Export an SQLite file named reportl.sqlite from reportl.nsys-rep (assuming
it does not already exist). Generate three reports. The first, the gputrace report,
will be output to the file reportl_gputrace.csv in CSV format. The other two reports,
gpukernsum and cudaapisum, will be output to the console as columns of data.

www.nvidia.com
User Guide v2022.2.1 | 76

Profiling from the CLI

Although three reports were given, only two formats and outputs are given. To reconcile
this, both the list of formats and outputs is expanded to match the list of reports by
repeating the last element.

Submit report data to a command

nsys stats --report cudaapisum --format table \ --output @“grep -E
(- IName | cudaFree” test.sqlite

Effect: Open test.sqlite and run the cudaapisum script on that file. Generate table data
and feed that into the command grep -E (-|Name|cudaFree). The grep command
will filter out everything but the header, formatting, and the cudaFree data, and display
the results to the console.

Note: When the output name starts with @, it is defined as a command. The command
is run, and the output of the report is piped to the command's stdin (standard-input).
The command's stdout and stderr remain attached to the console, so any output will be
displayed directly to the console.

Be aware there are some limitations in how the command string is parsed. No shell
expansions (including *, ?, [], and ~) are supported. The command cannot be piped

to another command, nor redirected to a file using shell syntax. The command and
command arguments are split on whitespace, and no quotes (within the command
syntax) are supported. For commands that require complex command line syntax, it is
suggested that the command be put into a shell script file, and the script designated as
the output command

1.7. Example Output from --stats Option

The nsys stats command can be used post analysis to generate specific or
personalized reports. For a default fixed set of summary statistics to be automatically
generated, you can use the --stats option with the nsys profile or nsys start
command to generate a fixed set of useful summary statistics.

If your run traces CUDA, these include CUDA API, Kernel, and Memory Operation
statistics:

www.nvidia.com
User Guide v2022.2.1 | 77

Profiling from the CLI

Generating cuda API Statistics...
cuda API Statistics

Calls Min (ns)

1858829425 4601062.9 131864 18785795 [ILER)

287212369 287212369.0 287212369 287212369 cudaMalloc3DArray
108862768 49148.0 3478 15493937 cudaGraphicsMapResources
84097966 416326.6 258148 2046180 cudaMalloc

75687195 376553.2 167486 1559709 cudaFree

54669996 24681.7 3261 17194720 cudaGraphicsUnmapResources
37697367 8930.9 5532 71517 cudalLaunch

36258561 179497.8 5441 737046 cudaMemcpyToSymbol

1961207 392241.4 350245 490291 cudaGraphicsGLRegisterBuffer
661494 156.7 94 4855 cudaConfigurecCall

469750 469750.0 469750 469750 cudaMemcpy3D

6513 6513.0 6513 6513 cudaBindTextureToArray

@, AUNKFEOWW:-

Generating cuda Kernel and Memory Operation Statistics...
cuda Kernel Statistics

Time (ns) Instances Avg (ns) Min (ns) Max (ns)

28957543 17377.7 DeviceRadixSortDownsweepKernel
19951318 16543.4 RadixSortScanBinsKernel
7381869 6121.0 DeviceRadixSortUpsweepKernel
6605490 10954.4 _kernel_agent

Operation Statistics (time)

Time (ns) Operations Awvg (ns) Min (ns) Max (ns)

1680910 [CUDA memcpy HtoD]

421799 421799.0 421799 421799 [CUDA memcpy HtoA]

cuda Memory Operation Statistics (bytes)

Total Bytes (KB) Operations Avg (KB) Min (bytes) Max (KB)

[CUDA memcpy HtoD]
4194304 o [CUDA memcpy HtoA]

If your run traces OS runtime events or NVTX push-pop ranges:

www.nvidia.com
User Guide v2022.2.1 | 78

Profiling from the CLI

Generating Operating System Runtime API Statistics...
Operating System Runtime API Statistics

Time (ns) Calls Avg (ns) Min (ns) Max (ns)

7780422146 20052634.4 101325794

7486252249 801226050.6 18165 100621271 sem_timedwait
7001017913 500072708.1 500054528 500094119 pthread_cond_timedwait
691921867 240334.1 1600 16503430 ioctl
20746589 9622.7 4763 43645 fgets
15236506 55405.5 1821 14452991 recvmsg
5341120 11713.8 1122 258129 fopen

3961960 13950.6 1000 91521 mmap

3660301 8414.5 1457 27680 fclose
1959897 7963.8 2252 69097 munmap
1020789 5261.8 2068 19845 open64

841520 1720.9 1000 16808 sched_yield
623388 15584.7 1807 50469 read

582336 3685.7 1289 78529 recv

279456 3493.2 1111 18551 writev

149645 2338.2 1214 18598 open

144462 28892.4 22780 39774 pthread_create
139762 9317.5 1118 77744 fread

52949 4873.0 1341 9112 mprotect
38777 4308.6 2443 10141 write

22994 5748.5 4763 6798 socket

21660 5265.0 4674 5925 sendmsg

18287 4571.7 2795 T277 socketpair
16881 5627.0 2390 7615 connect

12617 2523.4 1157 3926 mmap64

11368 3789.3 2270 5849 pipe2

11014 5507.0 4484 6530 pthread_cond_signal
5121 5121.0 5121 5121 fopen64

5118 1706.0 1086 2945 fentl

4102 4102.0 4182 4102 shutdown

3587 3587.0 3587 3587 lockf

1744 1744.0 1744 1744 bind

1007 1087.0 1807 1007 fflush

@M W

Q0000000000000 Q00O MFEO-

D00 0000000000000 0000000000000 WWWW

R RERWHRNWU WA SRS

Generating NVTX Push-Pop Range Statistics...
NVTX Push-Pop Range Statistics

Time (ns) Instances Avg (ns) Min (ns) Max (ns)

6856491504 34111898.0 6935189 285693359 frame
499693190 2486035.8 1874225 31362835 render

If your run traces graphics debug markers these include DX11 debug markers, DX12
debug markers, Vulkan debug markers or KHR debug markers:

www.nvidia.com
User Guide v2022.2.1 |1 79

Profiling from the CLI

x64\reports\vulkanmarkerssun.py D:\src\output_host\Built\Bin\QuadD-Release\target-windows-x64\marker_test\ued_infiltrator_vulkan_markers.sqlite]...
Range
1716925

489111
20¢

ngGBuffer
eringTranslucency

Simulation
dowProjection

UpdateGPU:
ComputeLightGrid

Recipes for these statistics as well as documentation on how to create your own metrics
will be available in a future version of the tool.

1.8. Importing and Viewing Command Line Results
Files

The CLI generates a .qdstrm file. The .qdstrm file is an intermediate result file, not
intended for multiple imports. It needs to be processed, either by importing it into the
GUI or by using the standalone QdstrmImporter to generate an optimized .nsys-rep

tile. Use this .nsys-rep file when re-opening the result on the same machine, opening the
result on a different machine, or sharing results with teammates.

This version of Nsight Systems will attempt to automatically convert the .qdstrm file
to a .nsys-rep file with the same name after the run finishes if the required libraries are
available. The ability to turn off auto-conversion will be added in a later version.

Import Into the GUI

The CLI and host GUI versions must match to import a .qdstrm file successfully. The
host GUI is backward compatible only with .nsys-rep files.

Copy the .qdstrm file you are interested in viewing to a system where the Nsight
Systems host GUI is installed. Launch the Nsight Systems GUI. Select File->Import...
and choose the .qdstrm file you wish to open.

www.nvidia.com
User Guide v2022.2.1 | 80

Profiling from the CLI

File View Help

Mew Project Ctrl+M
Open... Ctrl+0
Import... Ctrl+|
Exit

T i L

The import of really large, multi-gigabyte, .qdstrm files may take up all of the memory
on the host computer and lock up the system. This will be fixed in a later version.

Importing Windows ETL files

For Windows targets, ETL files captured with Xperf or the 1og.emd command supplied
with GPUView in the Windows Performance Toolkit can be imported to create reports
as if they were captured with Nsight Systems's "WDDM trace" and "Custom ETW trace"
features. Simply choose the .etl file from the Import dialog to convert it to a .nsys-rep
file.

Create .nsys-rep Using QdstrmImporter

The CLI and QdstrmImporter versions must match to convert a .qdstrm file into a .nsys-
rep file. This .nsys-rep file can then be opened in the same version or more recent
versions of the GUI

To run QdstrmImporter on the host system, find the QdstrmImporter binary in the Host-
x86_64 directory in your installation. QdstrmImporter is available for all host platforms.
See options below.

To run QdstrmImporter on the target system, copy the Linux Host-x86_64 directory to
the target Linux system or install Nsight Systems for Linux host directly on the target.
The Windows or macOS host QdstrmImporter will not work on a Linux Target. See
options below.

Short Long Parameter Description

-h --help Help message
providing
information

about available
options and their
parameters.

-v --version Output
QdstrmImporter
version information

-i --input-file filename or path Import .qdstrm file
from this location.

-0 --output-file filename or path Provide a different
file name or path for
the resulting .nsys-

www.nvidia.com
User Guide v2022.2.1 | 81

Profiling from the CLI

Short Long Parameter Description

rep file. Default is
the same name and
path as the .qdstrm
file

1.9. Using the CLI to Analyze MPI Codes

1.9.1. Tracing MPI API calls

The Nsight Systems CLI has built-in API trace support via --trace=mpi option

only for the OpenMPI and MPICH implementations of MPL. It traces a default list of
synchronous MPI APIs. If you require more control over the list of traced APIs or if you
are using a different MPI implementation, see github nvtx pmpi wrappers.

You can use this documentation to generate a shared object to wrap a list of synchronous
MPI APIs with NVTX using the MPI profiling interface (PMPI). If you set your
LD_PRELOAD environment variable to the path of that object, nsys will capture and
report the MPI API trace information when --trace=nvtx is used. There is no need to
use --trace=MPI.

NVTX tracing is automatically enabled when MPI trace is turned on.

1.9.2. Using the CLI to Profile Applications Launched
with mpirun

This version of the Nsight Systems CLI supports concurrent use of the nsys profile
command. Each instance will create a separate report file.

You cannot use multiple instances of the interactive CLI concurrently, or use the
interactive CLI concurrently with nsys profile in this version.

Nsight Systems can be used to profile applications launched with mpirun command.
Since concurrent use of the CLI is supported only when using the nsys profile
command, Nsight Systems cannot profile each node from the GUI or from the interactive
CLL

To profile everything, putting the data in one file:

nsys [nsys options] mpirun [mpi options]

To profile everything putting the data from each rank into a separate file:

mpirun [mpi options] nsys profile [nsys options]

www.nvidia.com
User Guide v2022.2.1 | 82

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Profiling from the CLI

To profile a single MPI process use a wrapper script. The following script(called
"wrap.sh") runs nsys on rank 0 only:

#!/bin/bash

if [[$OMPI_COMM WORLD RANK == 0]]; then
~/nsys/nsys profile ./myapp "$@" --mydummyargument
else

./myapp lls@ll

fi

and then execute mpirun ./wrap.sh.

Currently
you

will

need

a

dummy
argument
to

the
process,
SO

that
Nsight
Systems
can
decide
which
process
to
profile.
This
means
that
Note: your
process
must
accept
dummy
arguments
to

take
advantage
of

this
workaround.
This
script

as
written

is

for

Open
MPI,

but
should

be

easily

www.nvidia.com
User Guide v2022.2.1 | 83

Profiling from the CLI

adaptable

to

other

MPI
implementations.

www.nvidia.com
User Guide v2022.2.1 | 84

Chapter 2.
PROFILING FROM THE GUI

2.1. Profiling Linux Targets from the GUI

2.1.1. Connecting to the Target Device

Nsight Systems provides a simple interface to profile on localhost or manage multiple
connections to Linux or Windows based devices via SSH. The network connections
manager can be launched through the device selection dropdown:

On x86_64:

File Wiew Help

| Path to ADB is not set +

Configure ADB location...

Localhost connection
=Y workstation

USB connections

S5H connections (1)

1% workstation@127.0.0.1
55H connection groups

Configure devices...

| samole.adreo

On Tegra:

www.nvidia.com
User Guide v2022.2.1 | 85

Profiling from the GUI

USE connections -

USE connections
S5H connections

Configure devices...

The dialog has simple controls that allow adding, removing, and modifying connections:

® Manage network connections

N EErEETGE @® Network connection

Recent connection! Hostname or IP address: Port:
Device Username 102.168.1.71 v 22
Username:
|ubuntyl -

Authentication type

No authentication

® Password-based authentication

-

g Create a new c P
! Cancel oK |

| Close

Security notice: SSH is only used to establish the initial connection to a target device,
perform checks, and upload necessary files. The actual profiling commands and data
are transferred through a raw, unencrypted socket. Nsight Systems should not be used
in a network setup where attacker-in-the-middle attack is possible, or where untrusted
parties may have network access to the target device.

While connecting to the target device, you will be prompted to input the user's
password. Please note that if you choose to remember the password, it will be stored in
plain text in the configuration file on the host. Stored passwords are bound to the public
key fingerprint of the remote device.

The No authentication option is useful for devices configured for passwordless
login using root username. To enable such a configuration, edit the file /etc/ssh/
sshd_config on the target and specify the following option:

PermitRootLogin yes

Then set empty password using passwd and restart the SSH service with service ssh
restart.

Open ports: The Nsight Systems daemon requires port 22 and port 45555 to be open for
listening. You can confirm that these ports are open with the following command:

sudo firewall-cmd --list-ports —--permanent

sudo firewall-cmd --reload

To open a port use the following command, skip --permanent option to open only for
this session:

sudo firewall-cmd --permanent —--add-port 45555/tcp
sudo firewall-cmd --reload

www.nvidia.com
User Guide v2022.2.1 | 86

Profiling from the GUI

Likewise, if you are running on a cloud system, you must open port 22 and port 45555
for ingress.

Kernel Version Number - To check for the version number of the kernel support of
Nsight Systems on a target device, run the following command on the remote device:

cat /proc/quadd/version
Minimal supported version is 1.82.

Additionally, presence of Netcat command (nc) is required on the target device. For
example, on Ubuntu this package can be installed using the following command:
sudo apt-get install netcat-openbsd

2.1.2. System-Wide Profiling Options

2.1.2.1. Linux x86_64

System-wide profiling is available on x86 for Linux targets only when run with root
privileges.

Ftrace Events Collection

Select Ftrace events

- Collect FTrace events

Choose FTrace events...
No events selected

Choose which events you would like to collect.

www.nvidia.com
User Guide v2022.2.1 | 87

Profiling from the GUI

Choose functions

Search criteria: Check all Uncheck all

[search.. 4y

Events

alarmtimer -
block
cgroup
clk
E cma
cma_alloc
V| cma_release
compaction
cpuhp
dma_fence
& drm
drm_vblank_event
V| drm_vblank_event_delivered
drm_vblank_event_gqueued
exceptions
extd
v/ fib
V| fib_table_lookup
v| fib_table_lookup_nh
v fib_validate_source
fib6
filelock
filemap
fies
fs
gpio
hda
hda_controller
hda_intel
huoe memaory

ivvw irv>vwr~w

ivw

Xcorc

GPU Context Switch Trace
Tracing of context switching on the GPU is enabled with driver r435.17 or higher.

» Collect OS runtime libraries trace
» Collect OpenGL trace

» v Collect CUDA trace

» Collect MPI trace

» v Collect NVTX trace

» Collect Vulkan trace

~ v Collect GPU context switch trace - BETA feature

Use this option to see how the GPU scheduler switches contexts.

Here is a screenshot showing three CUDA kernels running simultaneously in three
different CUDA contexts on a single GPU.

21 +90ms +95ms +100ms
~ [16338] CudaPreemptionExample
~ Threads (12)
~ v/ [16338] CudaPreemptionE - ! !!!
=t
CUDA API (11}
Profiler overhead 0o
11 threads hidden -

~ CUDA (Quadro GV100, 0000:04:00.0)
~ 29.0% Context 3
+ 100.0% Kernels
~ 32.5% Context 2
» 100.0% Kernels

~ 38.5% Context 1
» 100.0% Kemels
dGPU (Quadro GV100) An 6877(8-

[Run 6845[2... | Run 6861(2...|Run 6877(2.

[Run 684512...)|Run 686112, Run 6677(2...| [Run 6877-

www.nvidia.com
User Guide v2022.2.1 | 88

2.1.2.2. Linux for Tegra

Profiling from the GUI

System profiling options

=[] Trace all processes

Select to collect trace for all processes on the target device.

=] Collect PMU counters

PMU counters: 1 counter selected

CPU cydes
Licache msses: [|Read [write [Instruction
L2 cache misses: [JRead [Write [] Instruction

Trace all processes — On compatible devices (with kernel module support version 1.107
or higher), this enables trace of all processes and threads in the system. Scheduler events
from all tasks will be recorded.

Collect PMU counters — This allows you to choose which PMU (Performance
Monitoring Unit) counters Nsight Systems will sample. Enable specific counters when
interested in correlating cache misses to functions in your application.

2.1.3. Target Sampling Options

Target sampling behavior is somewhat different for Nsight Systems Workstation Edition
and Nsight Systems Embedded Platforms Edition.

Target Sampling Options for Workstation

= v Sample target process

Sampling rate: every 1 000 000 instructions per CPU
» v Collect call stacks of executing threads
Choose mades... | Current settings: use best backtracing algerithm.

Symbol locations... | No directories with symbol files.

When stripped libraries (e.g. *.so files) are used on the target, specify here directories with original

non-stripped libraries to get symbols resolved.

For best backtraces, specify the following compiler flags:
son x86_64: - fno-omit-frame-pointer -funwind-tables -g

Note that stripped binaries typically do not contain the debug information. Consider deploying
unstripped binaries.

* Target application
Mode: | Attach or launch ~ | Specify process launch options below

Command line with arguments: Edit arguments
-

Waorking directory:

Process name should be specified

» Environment variables
V| Include child processes

V| Trace fork before exec

ing in this interval relies on undefined behavior and might cause your applicatien to

Three different backtrace collections options are available when sampling CPU
instruction pointers. Backtraces can be generated using Intel (c) Last Branch Record
(LBR) registers. LBR backtraces generate minimal overhead but the backtraces have

www.nvidia.com
User Guide

v2022.2.1 | 89

Profiling from the GUI

limited depth. Backtraces can also be generated using DWARF debug data. DWARF
backtraces incur more overhead than LBR backtraces but have much better depth.
Finally, backtraces can be generated using frame pointers. Frame pointer backtraces
incur medium overhead and have good depth but only resolve frames in the portions
of the application and its libraries (including 3rd party libraries) that were compiled
with frame pointers enabled. Normally, frame pointers are disabled by default during
compilation.

By default, Nsight Systems will use Intel(c) LBRs if available and fall back to using dwarf
unwind if they are not. Choose modes... will allow you to override the default.

@ & cConfigure backktracing algorithm

Use Intel © Last Branch Record (LBR)
Use DWARF debug information

Use frame pointers

At least one of the options must be selected.

& & Cancel

The Include child processes switch controls whether API tracing is only for the
launched process, or for all existing and new child processes of the launched process. If
you are running your application through a script, for example a bash script, you need
to set this checkbox.

The Include child processes switch does not control sampling in this version of Nsight
Systems. The full process tree will be sampled regardless of this setting. This will be
tixed in a future version of the product.

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor after a certain number of events and collecting an instruction pointer (IP)/
backtrace sample if the processor is executing the profilee.

When sampling the CPU on a workstation target, Nsight Systems traces thread

context switches and infers thread state as either Running or Blocked. Note that

Blocked in the timeline indicates the thread may be Blocked (Interruptible) or Blocked
(Uninterruptible). Blocked (Uninterruptible) often occurs when a thread has transitioned
into the kernel and cannot be interrupted by a signal. Sampling can be enhanced with
OS runtime libraries tracing; see OS Runtime Libraries Trace for more information.

Target Sampling Options for Embedded Linux
Target sampling options
Sampling rate: | 10kHz -

=l Collect call stacks

www.nvidia.com
User Guide v2022.2.1 | 90

Profiling from the GUI

Currently Nsight Systems can only sample one process. Sampling here means that the
profilee will be stopped periodically, and backtraces of active threads will be recorded.

Most applications use stripped libraries. In this case, many symbols may stay
unresolved. If unstripped libraries exist, paths to them can be specified using the
Symbol locations... button. Symbol resolution happens on host, and therefore does not
affect performance of profiling on the target.

Additionally, debug versions of ELF files may be picked up from the target system. Refer
to Debug Versions of ELF Files for more information.

2.1.4. Hotkey Trace Start/Stop

Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic
window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

| Start |

| Start profiling manually
Start profiling after | 10.0 |3 | seconds
Lirnit profiling to 10.0 |3/ seconds

Hotkey {F12} Start/Stop
(not available in consecle apps)

The default hotkey is F12.

2.1.5. Launching and Attaching to Processes

Nsight Systems Embedded Platforms Edition can work with Linux-based devices in
three modes:

1. Attaching to a process by name
2. Attaching to a process by name, or launching a new process
3. Attaching to a process by its PID

The purpose of the configuration here is to define which process the profiler will attach
to for sampling and tracing. Additionally, the profiler can launch a process prior to
attaching to it, ensuring that all environment variables are set correctly to successfully
collect trace information.

In Attach only mode, the process is selected by its name and command line arguments,
as visible using the ps tool.

www.nvidia.com
User Guide v2022.2.1 | 91

Profiling from the GUI

Mode: | Attach only ~ | Launch your app before starting the profiler

Search criteria: Edit arguments

In Attach or launch mode, the process is to first search as if in the Attach only mode,
but if it is not found, the process is launched using the same path and command line
arguments. If NVTX, CUDA, or other trace settings are selected, the process will be
automatically launched with appropriate environment variables.

Note that in some cases, the capabilities of Nsight Systems are not sufficient to correctly
launch the application; for example, if certain environment variables have to be
corrected. In this case, the application has to be started manually and Nsight Systems
should be used in Attach only mode.

The Edit arguments... link will open an editor window, where every command line
argument is edited on a separate line. This is convenient when arguments contain spaces
or quotes.

To properly populate the Search criteria field based on a currently running process on
the target system, use the Select a process button on the right, which has ellipsis as the
caption. The list of processes is automatically refreshed upon opening.

Process

Mode: |Attach or launch ~ | Specify process launch options below

Command line with arguments: Edit arquments

Working directory:

Attach by PID mode should be used to connect to a specific process.

To choose one of the currently running processes on the target system, use the Select a
process button on the right.

2.2. Profiling Windows Targets from the GUI

Profiling on Windows devices is similar to the profiling on Linux devices. Please refer
to the Profiling Linux Targets from the GUI section for the detailed documentation and
connection information. The major differences on the platforms are listed below:

Remoting to a Windows Based Machine

To perform remote profiling to a target Windows based machines, install and configure
an OpenSSH Server on the target machine.

Hotkey Trace Start/Stop

Nsight Systems Workstation Edition can use hotkeys to control profiling. Press the
hotkey to start and/or stop a trace session from within the target application’s graphic

www.nvidia.com
User Guide v2022.2.1 | 92

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse
https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

Profiling from the GUI

window. This is useful when tracing games and graphic applications that use fullscreen
display. In these scenarios switching to Nsight Systems' UI would unnecessarily
introduce the window manager's footprint into the trace. To enable the use of Hotkey
check the Hotkey checkbox in the project settings page:

| Start |

| Start profiling manually
Start profiling after | 10.0 |5 | seconds
Limnit profiling to 100 || seconds

Hotkey {F12} Start/Stop
(not available in console apps)

The default hotkey is F12.

Changing the Default Hotkey Binding - A different hotkey binding can be configured
by setting the HotKeyIntValue configuration field in the config.ini file.

Set the decimal numeric identifier of the hotkey you would like to use for triggering
start/stop from the target app graphics window. The default value is 123 which
corresponds to 0x7B, or the F12 key.

Virtual key identifiers are detailed in MSDN's Virtual-Key Codes.

Note that you must convert the hexadecimal values detailed in this page to their decimal
counterpart before using them in the file. For example, to use the F1 key as a start/stop
trace hotkey, use the following settings in the config.ini file:

HotKeyIntValue=112

Target Sampling Options on Windows

* |/ Sample target process
Sampling rate: - 1kHz

¥ V Collect call stacks

Symbol locations (1)...| 1 directory with symbol files.
Specify here directories with debug info (*.pdb files) to get symbaols resolved.

For best backtraces, specify the compiler flag "do not omit frame-pointer™:

® on Visual C++: /Oy-

Nsight Systems can sample one process tree. Sampling here means interrupting each
processor periodically. The sampling rate is defined in the project settings and is either
100Hz, 1KHz (default value), 2Khz, 4KHz, or 8KHz.

www.nvidia.com
User Guide v2022.2.1 | 93

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

Profiling from the GUI

=) [Collect thread activity
=[] Collect call stacks

Symbol locations... Mo directories with symbol files.
Specify here directories with debug info (*.pdb files) to get symbols resolved.

For best backtraces, specify the compiler flag "do not omit frame-pointer":

e on Visual C++: /0y-

On Windows, Nsight Systems can collect thread activity of one process tree. Collecting
thread activity means that each thread context switch event is logged and (optionally) a
backtrace is collected at the point that the thread is scheduled back for execution. Thread
states are displayed on the timeline.

If it was collected, the thread backtrace is displayed when hovering over a region where
the thread execution is blocked.

Symbol Locations

Symbol resolution happens on host, and therefore does not affect performance of
profiling on the target.

Press the Symbol locations... button to open the Configure debug symbols location
dialog.

| @ Configure debug symbols locations

Specify symbeol locations te search for debug symbol files and unstripped libraries:

| | B |httpsizmsdl microsoft.com/download/symbols
CA\DebugSymbols

+ add path Faddserer | | A Remove [ox Cancel

Local symbols cache: | CAsymCache Change

Use this dialog to specify:

» Paths of PDB files
» Symbols servers
» The location of the local symbol cache

To use a symbol server:

1. Install Debugging Tools for Windows, a part of the Windows 10 SDK.
2. Add the symbol server URL using the Add Server button.

Information about Microsoft's public symbol server, which enables getting Windows
operating system related debug symbols can be found here.

www.nvidia.com
User Guide v2022.2.1 | 94

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/microsoft-public-symbols

Profiling from the GUI

2.3. Profiling QNX Targets from the GUI

Profiling on QNX devices is similar to the profiling on Linux devices. Please refer to the
Profiling Linux Targets from the GUI section for the detailed documentation. The major
differences on the platforms are listed below:

» Backtrace sampling is not supported. Instead backtraces are collected for long OS
runtime libraries calls. Please refer to the OS Runtime Libraries Trace section for the
detailed documentation.

» CUDA support is limited to CUDA 9.0+

» Filesystem on QNX device might be mounted read-only. In that case Nsight Systems
is not able to install target-side binaries, required to run the profiling session. Please
make sure that target filesystem is writable before connecting to QNX target. For
example, make sure the following command works:
echo XX > /xx && 1ls -1 /xx

www.nvidia.com
User Guide v2022.2.1 | 95

Chapter 3.
EXPORT FORMATS

3.1. SQLite Schema Reference

Nsight Systems has the ability to export SQLite database files from the .nsys-rep results
file. From the CLI, use nsys export. From the GUI, call File->Export. . ..

Note: The .nsys-rep report format is the only data format for Nsight Systems that should
be considered forward compatible. The SQLite schema can and will change in the future.

The schema for a concrete database can be obtained with the sqlite3 tool built-in
command . schema. The sqlite3 tool can be located in the Target or Host directory of
your Nsight Systems installation.

Note: Currently tables are created lazily, and therefore not every table described in the
documentation will be present in a particular database. This will change in a future
version of the product. If you want a full schema of all possible tables, use nsys export
--lazy=false during export phase.

Currently, a table is created for each data type in the exported database. Since usage
patterns for exported data may vary greatly and no default use cases have been
established, no indexes or extra constraints are created. Instead, refer to the SQLite
Examples section for a list of common recipes. This may change in a future version of the
product.

To check the version of your exported SQLite file, check the value of

EXPORT SCHEMA VERSION in the EXPORT META DATA table. The schema version is a
common three-value major/minor/micro version number. The first value, or major value,
indicates the overall format of the database, and is only changed if there is a major re-
write or re-factor of the entire database format. It is assumed that if the major version
changes, all scripts or queries will break. The middle, or minor, version is changed
anytime there is a more localized, but potentially breaking change, such as renaming an
existing column, or changing the type of an existing column. The last, or micro version
is changed any time there are additions, such as a new table or column, that should not
introduce any breaking change when used with well-written, best-practices queries.

www.nvidia.com
User Guide v2022.2.1 | 96

Export Formats

This is the schema as of the 2021.5 release, schema version 2.7.1.

CREATE TABLE StringIds (
—-— Consolidation of repetitive string values.

id INTEGER NOT NULL PRIMARY KEY, -- ID
reference value.

value TEXT NOT NULL -- String
value.

)
CREATE TABLE ThreadNames (

nameId INTEGER NOT NULL REFERENCES StringIds(id),
-- StringId of the thread name.

priority INTEGER, -
Priority of the thread.

globalTid INTEGER ==

Serialized GlobalId.
)
CREATE TABLE ProcessStreams (

globalPid INTEGER NOT NULL, ==
Serialized GlobalId.

filenameId INTEGER NOT NULL REFERENCES StringIds(id),
-- StringId of the file name.

contentId INTEGER NOT NULL REFERENCES StringIds (id) --

StringId of the stream content.
)i
CREATE TABLE TARGET INFO SYSTEM ENV (

globalvid INTEGER NOT NULL, ==
Serialized GlobalId.

devStateName TEXT NOT NULL, -— Device
state name.

name TEXT NOT NULL, -=
Property name.

nameEnum INTEGER NOT NULL, ==
Property enum value.

value TEXT NOT NULL ==

Property value.
)i
CREATE TABLE TARGET INFO SESSION START TIME (

utcEpochNs INTEGER, -- UTC
Epoch timestamp at start of the capture (ns).

utcTime TEXT, -- Start
of the capture in UTC.

localTime TEXT -- Start

of the capture in local time of target.
)i
CREATE TABLE ANALYSIS DETAILS (
—-— Details about the analysis session.

globalvid INTEGER NOT NULL, ==
Serialized GlobalId.

duration INTEGER NOT NULL, -— The
total time span of the entire trace (ns).

startTime INTEGER NOT NULL, == Trace
start timestamp in nanoseconds.

stopTime INTEGER NOT NULL -- Trace

stop timestamp in nanoseconds.
)i
CREATE TABLE TARGET INFO GPU (

vmId INTEGER NOT NULL, -=
Serialized GlobalId.

id INTEGER NOT NULL, -— Device
ID.

name TEXT, -— Device
name.

busLocation TEXT, -- PCI
bus location.

isDiscrete INTEGER, -- True
if discrete, false if integrated.

12CacheSize INTEGER, -— Size
of L2 cache (B).

totalMemory INTEGER, -- Total
amount of memory on the device (B).

memoryBandwidth INTEGER, -- Amount

of memorv trancsferred (R) .

Export Formats

3.2. SQLite Schema Event Values

Here are the set values stored in enums in the Nsight Systems SQLite schema

CUDA Event Class Values

0

- TRACE PROCESS EVENT CUDA RUNTIME

1 - TRACE PROCESS EVENT CUDA DRIVER

13

- TRACE PROCESS EVENT CUDA EGL DRIVER

TRACE PROCESS EVENT CUDNN
TRACE_PROCESS_EVENT CUBLAS
TRACE_PROCESS_EVENT_CUDNN_START

TRACE PROCESS EVENT CUDNN FINISH

TRACE PROCESS EVENT CUBLAS START
TRACE_PROCESS_EVENT CUBLAS FINISH
TRACE_PROCESS_EVENT_CUDABACKTRACE

TRACE PROCESS EVENT CUDA GRAPH NODE CREATION

See CUPTI documentation for detailed information on collected event and data types.

NVTX Event Type Values
33 NvtxCategory

34 NvtxMark

39 NvtxThread

59 NvtxPushPopRange
60 NvtxStartEndRange
75 NvtxDomainCreate
76 NvtxDomainDestroy

The difference between text and textld columns is that if an NVTX event message was
passed via call to nvtxDomainRegisterString function, then the message will be available
through textld field, otherwise the text field will contain the message if it was provided.

OpenGL Events

KHR event class values

62 - KhrDebugPushPopRange
63 - KhrDebugGpuPushPopRange

KHR source kind values

0x8249 - GL_DEBUG_SOURCE_THIRD PARTY
0x824A - GL_DEBUG_SOURCE APPLICATION

www.nvidia.com
User Guide v2022.2.1 | 98

https://docs.nvidia.com/cupti/Cupti/index.html

KHR type values

0x824C - GL_DEBUG_TYPE ERROR

0x824D - GL_DEBUG_TYPE DEPRECATED BEHAVIOR
0x824E - GL_DEBUG_TYPE UNDEFINED BEHAVIOR
0x824F - GL_DEBUG_TYPE PORTABILITY

0x8250 - GL_DEBUG_TYPE PERFORMANCE

0x8251 - GL_DEBUG_TYPE OTHER

0x8268 - GL_DEBUG_TYPE MARKER

0x8269 - GL_DEBUG_TYPE PUSH_GROUP

0x826A - GL_DEBUG_TYPE POP_GROUP

KHR severity values

0x826B - GL DEBUG SEVERITY NOTIFICATION

0x9146 - GL_DEBUG_SEVERITY HIGH
0x9147 - GL_DEBUG_SEVERITY MEDIUM
0x9148 - GL_DEBUG_SEVERITY LOW
OSRT Event Class Values

Export Formats

OS runtime libraries can be traced to gather information about low-level userspace APIs.
This traces the system call wrappers and thread synchronization interfaces exposed by
the C runtime and POSIX Threads (pthread) libraries. This does not perform a complete
runtime library API trace, but instead focuses on the functions that can take a long time
to execute, or could potentially cause your thread be unscheduled from the CPU while
waiting for an event to complete.

OSRT events may have callchains attached to them, depending on selected profiling
settings. In such cases, one can use callchainld column to select relevant callchains from
OSRT_CALLCHAINS table

OSRT event class values

27

- TRACE PROCESS EVENT OS RUNTIME

31 - TRACE PROCESS EVENT OS RUNTIME START
32 - TRACE PROCESS EVENT OS RUNTIME FINISH

DX12 Event Class Values

41 - TRACE PROCESS EVENT DX12 API

42 - TRACE PROCESS EVENT DX12 WORKLOAD

43 - TRACE PROCESS EVENT DX12 START

44 - TRACE PROCESS EVENT DX12 FINISH

52 - TRACE PROCESS EVENT DX12 DISPLAY

59 - TRACE PROCESS EVENT DX12 CREATE_OBJECT
PIX Event Class Values

65 - TRACE PROCESS EVENT DX12 DEBUG API

75 - TRACE PROCESS EVENT DX11 DEBUG API

www.nvidia.com
User Guide

v2022.2.1 1 99

Vulkan Event Class Values

53 - TRACE PROCESS_ EVENT VULKAN API

54 - TRACE PROCESS EVENT VULKAN WORKLOAD

55 - TRACE PROCESS_EVENT VULKAN_ START

56 - TRACE PROCESS_ EVENT VULKAN FINISH

60 - TRACE PROCESS EVENT VULKAN CREATE OBJECT
66 - TRACE PROCESS EVENT VULKAN DEBUG API

Vulkan Flags

VALID BIT = 0x00000001
CACHE_HIT BIT = 0x00000002
BASE_PIPELINE ACCELERATION BIT = 0x00000004

SLI Event Class Values

62 - TRACE PROCESS EVENT SLI
63 - TRACE PROCESS EVENT SLI START
64 - TRACE_PROCESS EVENT SLI_FINISH

SLI Transfer Info Values

- P2P_SKIPPED

- P2P_EARLY PUSH

- P2P_PUSH_FAILED
P2P_2WAY OR PULL

- P2P_PRESENT

- P2P_DX12 INIT PUSH ON WRITE

g W NP O
|

WDDM Event Values

www.nvidia.com
User Guide

Export Formats

v2022.2.1 | 100

VIDMM operation type values

O =
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
200
202
203
204
205
206
207
208
209
210
211
212

None

- RestoreSegments

- PurgeSegments

- CleanupPrimary

- AllocatePagingBufferResources
- FreePagingBufferResources

- ReportVidMmState

- RunApertureCoherencyTest

- RunUnmapToDummyPageTest

- DeferredCommand

- SuspendMemorySegmentAccess
- ResumeMemorySegmentAccess

- EvictAndFlush

- CommitVirtualAddressRange

- UncommitVirtualAddressRange

- DestroyVirtualAddressAllocator

- PagelInDevice

- MapContextAllocation
- InitPagingProcessVaSpace
- CloseAllocation

- ComplexLock

- PinAllocation

- FlushPendingGpuAccess
- UnpinAllocation

- MakeResident

- Evict

- LockInAperture

- InitContextAllocation
- ReclaimAllocation

- DiscardAllocation

- SetAllocationPriority

1000 - EvictSystemMemoryOfferList

Paging queue type values

w N = O
|

VIDMM PAGING QUEUE TYPE UMD

VIDMM PAGING QUEUE_TYPE Default
VIDMM PAGING QUEUE TYPE Evict
VIDMM PAGING QUEUE TYPE Reclaim

Packet type values

~No Ul WP O
|

DXGKETW_RENDER COMMAND BUFFER
DXGKETW DEFERRED COMMAND BUFFER
DXGKETW SYSTEM COMMAND BUFFER
DXGKETW_ MMIOFLIP COMMAND BUFFER
DXGKETW WAIT COMMAND BUFFER
DXGKETW SIGNAL COMMAND BUFFER
DXGKETW DEVICE COMMAND BUFFER
DXGKETW_SOFTWARE COMMAND BUFFER

www.nvidia.com
User Guide

Export Formats

v2022.2.1 | 101

Engine type values

O Jo Ul WP O
|

DXGK_ENGINE TYPE OTHER
DXGK_ENGINE TYPE 3D
DXGK_ENGINE TYPE VIDEO DECODE
DXGK_ENGINE_TYPE VIDEO ENCODE
DXGK_ENGINE TYPE VIDEO PROCESSING
DXGK_ENGINE TYPE SCENE ASSEMBLY
DXGK_ENGINE TYPE COPY
DXGK_ENGINE_TYPE OVERLAY
DXGK_ENGINE_TYPE CRYPTO

DMA interrupt type values

oSN
Il

DXGK_INTERRUPT DMA COMPLETED
DXGK_INTERRUPT DMA PREEMPTED
DXGK_INTERRUPT DMA FAULTED
DXGK_INTERRUPT DMA PAGE FAULTED

Queue type values

N
[

= Queue Packet

Dma Packet

= Paging Queue Packet

Driver Events

Load balance event type values

1 -
8 —
21

LoadBalanceEvent GPU
LoadBalanceEvent CPU

- LoadBalanceMasterEvent GPU

22 - LoadBalanceMasterEvent CPU

OpenMP Events

OpenMP event class values

78 - TRACE PROCESS EVENT OPENMP

79

- TRACE PROCESS EVENT OPENMP START
80 - TRACE PROCESS EVENT OPENMP FINISH

www.nvidia.com
User Guide

Export Formats

v2022.2.1 | 102

OpenMP event kind values

OPENMP_EVENT KIND TASK CREATE
OPENMP_EVENT KIND TASK SCHEDULE
OPENMP_EVENT KIND CANCEL
OPENMP_EVENT KIND MUTEX RELEASED
OPENMP_EVENT KIND LOCK_INIT
OPENMP_EVENT KIND LOCK DESTROY
OPENMP_EVENT KIND DISPATCH
OPENMP_EVENT KIND FLUSH
OPENMP_EVENT KIND THREAD
OPENMP_EVENT KIND PARALLEL
OPENMP_EVENT KIND SYNC REGION WAIT
OPENMP_EVENT KIND SYNC REGION
OPENMP_EVENT KIND TASK
OPENMP_EVENT KIND MASTER
OPENMP_EVENT KIND REDUCTION
OPENMP_EVENT KIND MUTEX WAIT
OPENMP_EVENT KIND CRITICAL SECTION
OPENMP_EVENT KIND WORKSHARE

OpenMP thread type values

SwWw N

OpenMP Initial Thread
OpenMP Worker Thread
OpenMP Internal Thread
Unknown

OpenMP sync region kind values

o Ul WN

Barrier

Implicit barrier

Explicit barrier
Implementation-dependent barrier
Taskwait

Taskgroup

OpenMP task kind values

1
2
3

Initial task
Implicit task
Explicit task

OpenMP prior task status values

~Nw N

Task completed

Task yielded to another task

Task was cancelled

Task was switched out for other reasons

www.nvidia.com
User Guide

Export Formats

v2022.2.1 | 103

Export Formats

OpenMP mutex kind values

- Waiting for lock

- Testing lock

- Waiting for nested lock

Tesing nested lock

- Waitng for entering critical section region
- Waiting for entering atomic region

- Waiting for entering ordered region

~N oUW
|

OpenMP critical section kind values

5 - Critical section region
6 - Atomic region
7 - Ordered region

OpenMP workshare kind values

- Loop region

- Sections region

- Single region (executor)
Single region (waiting)
- Workshare region

- Distrubute region

- Taskloop region

oUW
|

OpenMP dispatch kind values

1 - Iteration
2 - Section

3.3. Common SQLite Examples

Common Helper Commands
When utilizing sqlite3 command line tool, it’s helpful to have data printed as named

columns, this can be done with:

.mode column
.headers on

Default column width is determined by the data in the first row of results. If this doesn’t
work out well, you can specify widths manually.
.width 10 20 50

Obtaining Sample Report

CLI interface of Nsight Systems was used to profile radixSortThrust CUDA sample, then
the resulting .nsys-rep file was exported using the nsys export.

nsys profile --trace=cuda,osrt radixSortThrust
nsys export --type sqglite reportl.nsys-rep

www.nvidia.com
User Guide v2022.2.1 | 104

Serialized Process and Thread Identifiers

Export Formats

Nsight Systems stores identifiers where events originated in serialized form. For events
that have globalTid or globalPid fields exported, use the following code to extract

numeric TID and PID.

SELECT globalTid / 0x1000000 %

FROM TABLE NAME;

0x1000000 AS PID,

globalTid

0x1000000 AS TID

Note: globalTid field includes both TID and PID values, while globalPid only containes

the PID value.

Correlate CUDA Kernel Launches With CUDA API Kernel Launches

ALTER TABLE CUPTI ACTIVITY KIND RUNTIME ADD COLUMN name TEXT;

ALTER TABLE CUPTI ACTIVITY KIND RUNTIME ADD COLUMN kernelName TEXT;

UPDATE CUPTI ACTIVITY KIND RUNTIME SET kernelName

(SELECT value FROM StringIds

JOIN CUPTI ACTIVITY KIND KERNEL AS cuda gpu
ON cuda gpu.shortName =
AND CUPTI_ACTIVITY_KIND_RUNTIME.correlationld =

StringIds.id

UPDATE CUPTI ACTIVITY KIND RUNTIME SET name =

(SELECT value FROM StringIds WHERE nameId

cuda gpu.correlationId);

StringIds.id);

Select 10 longest CUDA API ranges that resulted in kernel execution.

SELECT name,

kernelName,

start,

end FROM CUPTI ACTIVITY KIND RUNTIME

WHERE kernelName IS NOT NULL ORDER BY end - start LIMIT 10;

Results:

cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000
cudaLaunchKernel v7000

kernelName

RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel
RadixSortScanBinsKernel

Remove Ranges Overlapping With Overhead

658863435
609755015
632683286
606495356
603114486
802729785
593381170
658759955
681549917
717812527

658868490
609760075
632688349
606500439
603119586
802734906
593386294
658765090
681555059
717817671

Use the this query to count CUDA API ranges overlapping with the overhead ones.

www.nvidia.com
User Guide

v2022.2.1 | 105

Export Formats

Replace "SELECT COUNT(*)" with "DELETE" to remove such ranges.

SELECT COUNT (*) FROM CUPTI ACTIVITY KIND RUNTIME WHERE rowid IN
(

SELECT cuda.rowid

FROM PROFILER OVERHEAD as overhead

INNER JOIN CUPTI ACTIVITY KIND RUNTIME as cuda ON

(cuda.start BETWEEN overhead.start and overhead.end)

OR (cuda.end BETWEEN overhead.start and overhead.end)

OR (cuda.start < overhead.start AND cuda.end > overhead.end)
)7

Results:

COUNT (*)

Find CUDA API Calls That Resulted in Original Graph Node Creation.

SELECT graph.graphNodeId, api.start, graph.start as graphStart, api.end,
api.globalTid, api.correlationId, api.globalTid,
(SELECT value FROM StringIds where api.nameld == id) as name
FROM CUPTI ACTIVITY KIND RUNTIME as api
JOIN
(
SELECT start, graphNodeId, globalTid from CUDA GRAPH EVENTS
GROUP BY graphNodeId
HAVING COUNT (originalGraphNodeId) = 0
) as graph
ON api.globalTid == graph.globalTid AND api.start < graph.start AND api.end >
graph.start
ORDER BY graphNodeId;

www.nvidia.com
User Guide v2022.2.1 | 106

Results:

graphNodeId end

globalTid

graphStart

1 584366518 584378040 584379102
281560221750233 cudaGraphAddMemcpyNode v10000

2 584379402 584382428 584383139
281560221750233 cudaGraphAddMemsetNode v10000
3 584390663 584395352 584396053
281560221750233 cudaGraphAddKernelNode v10000
4 584396314 584397857 584398438
281560221750233 cudaGraphAddMemsetNode v10000
5 584398759 584400311 584400812
281560221750233 cudaGraphAddKernelNode v10000
6 584401083 584403047 584403527
281560221750233 cudaGraphAddMemcpyNode v10000
7 584403928 584404920 584405491
281560221750233 cudaGraphAddHostNode v10000

29 632107852 632117921 632121407
281560221750233 cudaMemcpyAsync v3020

30 632122168 632125545 632127989
281560221750233 cudaMemsetAsync v3020

31 632131546 632133339 632135584
281560221750233 cudaMemsetAsync v3020

34 632162514 632167393 632169297
281560221750233 cudaMemcpyAsync v3020

35 632170068 632173334 632175388
281560221750233 cudaLaunchHostFunc v10000

Backtraces for OSRT Ranges

Export Formats

globalTid correlationId
281560221750233 109
281560221750233 110
281560221750233 111
281560221750233 112
281560221750233 113
281560221750233 114
281560221750233 115
281560221750233 144
281560221750233 145
281560221750233 147
281560221750233 151
281560221750233 152

Adding text columns makes results of the query below more human-readable.

ALTER TABLE OSRT API ADD COLUMN name TEXT;
UPDATE OSRT API SET name =
StringIds.id);

(SELECT value FROM StringIds WHERE OSRT API.nameld =

ALTER TABLE OSRT CALLCHAINS ADD COLUMN symbolName TEXT;

UPDATE OSRT CALLCHAINS SET symbolName =
symbol = StringIds.id);

(SELECT value FROM

StringIds WHERE

ALTER TABLE OSRT CALLCHAINS ADD COLUMN moduleName TEXT;

UPDATE OSRT CALLCHAINS SET moduleName =
module = Stringlds.id);

Print backtrace of the longest OSRT range

SELECT globalTid / 0x1000000 %

start, end, name, callchainId, stackDepth,

(SELECT value FROM

0x1000000 AS PID, globalTid %
symbolName,

StringIds WHERE

0x1000000 AS TID,
moduleName

FROM OSRT API LEFT JOIN OSRT CALLCHAINS ON callchainId == OSRT CALLCHAINS.id

WHERE OSRT API.rowid IN
LIMIT 1)
ORDER BY stackDepth LIMIT 10;

www.nvidia.com
User Guide

(SELECT rowid FROM OSRT API ORDER BY end - start DESC

v2022.2.1 | 107

Export Formats

Results:
PID TID start end name
callchainId stackDepth symbolName moduleName
19163 19176 360897690 860966851 pthread cond timedwait 88
0 pthread cond timedwait@GLIBC 2 /lib/x86 64-linux-gnu/
libpthread-2.27.s0
19163 19176 360897690 860966851 pthread cond timedwait 88
1 0x7fbc983b7227 /usr/1lib/x86 64-linux-gnu/
libcuda.so.418
19163 19176 360897690 860966851 pthread cond timedwait 88
2 0x7fbc9835d5c7 /usr/lib/x86 64-linux-gnu/
libcuda.so0.418
19163 19176 360897690 860966851 pthread cond timedwait 88
3 0x7fbc983b64a8 /usr/lib/x86_ 64-linux-gnu/
libcuda.so0.418
19163 19176 360897690 860966851 pthread cond timedwait 88
4 start thread /1ib/x86 64-linux-gnu/
libpthread-2.27.s0
19163 19176 360897690 860966851 pthread cond timedwait 88
5 __clone /1lib/x86 64-linux-gnu/

libc-2.27.s0

Profiled processes output streams

ALTER TABLE ProcessStreams ADD COLUMN filename TEXT;
UPDATE ProcessStreams SET filename = (SELECT value FROM Stringlds WHERE
ProcessStreams.filenameId = StringIds.id) ;

ALTER TABLE ProcessStreams ADD COLUMN content TEXT;

UPDATE ProcessStreams SET content = (SELECT value FROM StringIds WHERE
ProcessStreams.contentId = StringIlds.id);

Select all collected stdout and stderr streams.

select globalPid / 0x1000000 % 0x1000000 AS PID, filename, content from
ProcessStreams;

www.nvidia.com
User Guide v2022.2.1 | 108

Export Formats

Results:
PID filename content
19163 /tmp/nvidia/nsight systems/streams/pid 19163 stdout.log /home/

user name/NVIDIA CUDA-10.1 Samples/6 Advanced/radixSortThrust/radixSortThrust
Starting...

GPU Device 0: "Quadro P2000" with compute capability 6.1

Sorting 1048576 32-bit unsigned int keys and values

radixSortThrust, Throughput = 401.0872 MElements/s, Time = 0.00261 s, Size =
1048576 elements
Test passed

19163 /tmp/nvidia/nsight systems/streams/pid 19163 stderr.log

Thread Summary

Please note, that Nsight Systems applies additional logic during sampling events
processing to work around lost events. This means that the results of the below query
might differ slightly from the ones shown in “Analysis summary” tab.

Thread summary calculated using CPU cycles (when available).

SELECT
globalTid / 0x1000000 % 0x1000000 AS PID,
globalTid % 0x1000000 AS TID,
ROUND (100.0 * SUM(cpuCycles) /
(
SELECT SUM(cpuCycles) FROM COMPOSITE EVENTS
GROUP BY globalTid / 0x1000000000000 % 0x100
)y
2
) as CPU utilization,
(SELECT value FROM StringIds WHERE id =
(
SELECT nameId FROM ThreadNames
WHERE ThreadNames.globalTid = COMPOSITE EVENTS.globalTid
)
) as thread name
FROM COMPOSITE EVENTS
GROUP BY globalTid
ORDER BY CPU utilization DESC
LIMIT 10;

www.nvidia.com
User Guide v2022.2.1 | 109

Export Formats

Results:

PID TID CPU utilization thread name
19163 19163 98.4 radixSortThrust
19163 19168 1.35 CUPTI worker th
19163 19166 0.25 [NS]

Thread running time may be calculated using scheduling data, when PMU counter data
was not collected.

CREATE INDEX sched start ON SCHED EVENTS (start);

CREATE TABLE CPU_USAGE AS
SELECT
first.globalTid as globalTid,
(SELECT namelId FROM ThreadNames WHERE ThreadNames.globalTid =
first.globalTid) as nameld,
sum (second.start - first.start) as total duration,
count () as ranges count
FROM SCHED_ EVENTS as first
LEFT JOIN SCHED EVENTS as second
ON second.rowid =
(
SELECT rowid
FROM SCHED_EVENTS
WHERE start > first.start AND globalTid = first.globalTid
ORDER BY start ASC
LIMIT 1
)
WHERE first.isSchedIn != 0
GROUP BY first.globalTid
ORDER BY total_duration DESC;

SELECT
globalTid / 0x1000000 % 0x1000000 AS PID,
globalTid % 0x1000000 AS TID,
(SELECT value FROM StringIds where namelId == id) as thread name,
ROUND (100.0 * total duration / (SELECT SUM(total duration) FROM CPU USAGE),
2) as CPU utilization
FROM CPU_USAGE
ORDER BY CPU utilization DESC;

Results:

PID TID thread name CPU utilization
19163 19163 radixSortThrust 93.74

19163 19169 radixSortThrust 3.22

19163 19168 CUPTI worker th 2.46

19163 19166 [NS] 0.44

19163 19172 radixSortThrust 0.07

19163 19167 [NS Comms] 0.05

19163 19176 radixSortThrust 0.02

19163 19170 radixSortThrust 0.0

Function Table

These examples demonstrate how to calculate Flat and BottomUp (for top level only)
views statistics.

www.nvidia.com
User Guide v2022.2.1 | 110

Export Formats

To set up:

ALTER TABLE SAMPLING CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE SAMPLING CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
symbol = StringIds.id);

ALTER TABLE SAMPLING CALLCHAINS ADD COLUMN moduleName TEXT;
UPDATE SAMPLING CALLCHAINS SET moduleName = (SELECT value FROM StringIds WHERE
module = StringlIds.id);

To get flat view:

SELECT symbolName, moduleName, ROUND(100.0 * sum(cpuCycles) /

(SELECT SUM(cpuCycles) FROM COMPOSITE EVENTS), 2) AS flatTimePercentage
FROM SAMPLING CALLCHAINS
LEFT JOIN COMPOSITE EVENTS ON SAMPLING CALLCHAINS.id == COMPOSITE EVENTS.id
GROUP BY symbol, module
ORDER BY flatTimePercentage DESC
LIMIT 5;

To get BottomUp view (top level only):

SELECT symbolName, moduleName, ROUND(100.0 * sum(cpuCycles) /
(SELECT SUM(cpuCycles) FROM COMPOSITE EVENTS), 2) AS selfTimePercentage
FROM SAMPLING CALLCHAINS
LEFT JOIN COMPOSITE EVENTS ON SAMPLING_CALLCHAINS.id == COMPOSITE_EVENTS.id
WHERE stackDepth == 0
GROUP BY symbol, module
ORDER BY selfTimePercentage DESC
LIMIT 5;

Results:

symbolName moduleName flatTimePercentage
[Max depth] [Max depth] 99.92

thrust::zip /home/user 24.17

thrust::zip /home/user 24.17

thrust::det /home/user 24.17

thrust::det /home/user 24.17

symbolName moduleName selfTimePercentage
0x7fbc984982b6 /usr/lib/x86 64-linux-gnu/libcuda.so0.418.39 5
0x7fbc982d0010 /usr/lib/x86 64-linux-gnu/libcuda.so.418.39 2
thrust::iterat /home/user name/NVIDIA CUDA-10.1 Samples/6_ 2.23
thrust::iterat /home/user name/NVIDIA CUDA-10.1 Samples/6_ 1
void thrust::i /home/user name/NVIDIA CUDA-10.1 Samples/6 1

DX12 API Frame Duration Histogram

www.nvidia.com
User Guide v2022.2.1 | 111

Export Formats

The example demonstrates how to calculate DX12 CPU frames durartion and construct a
histogram out of it.

CREATE INDEX DX12 API ENDTS ON DX12 API (end);

CREATE TEMP VIEW DX127AP17FPS AS SELECT end AS start,
(SELECT end FROM DX12 API
WHERE end > outer.end AND namelId == (SELECT id FROM StringIds
WHERE value == "IDXGISwapChain::Present")
ORDER BY end ASC LIMIT 1) AS end
FROM DX12 API AS outer
WHERE nameId == (SELECT id FROM StringIds WHERE value ==
"IDXGISwapChain: :Present")
ORDER BY end;

Number of frames with a duration of [X, X + 1) milliseconds.

SELECT
CAST ((end - start) / 1000000.0 AS INT) AS duration ms,
count (*)

FROM DX12 API FPS
WHERE end IS NOT NULL
GROUP BY duration ms
ORDER BY duration ms;

Results:

duration ms count (*)

3 1

4 2

5 7

6 153
7 19
8 116
9 16
10 8
11 2
12 2
13 1
14 4
16 3
17 2
18 1

GPU Context Switch Events Enumeration

GPU context duration is between first BEGIN and a matching END event.

SELECT (CASE tag WHEN 8 THEN "BEGIN" WHEN 7 THEN "END" END) AS tag,
globalPid / 0x1000000 % 0x1000000 AS PID,
vmId, segNo, contextId, timestamp, gpuld FROM FECS EVENTS
WHERE tag in (7, 8) ORDER BY segNo LIMIT 10;

www.nvidia.com
User Guide v2022.2.1 | 112

Export Formats

Results:

tag PID vmId segNo contextId timestamp gpuld
Béégﬁ ______ 23371 0 0 1048578 56759171 0
BEGIN 23371 0 1 1048578 56927765 0
BEGIN 23371 0 3 1048578 63799379 0
END 23371 0 4 1048578 63918806 0
BEGIN 19397 0 5 1048577 64014692 0
BEGIN 19397 0 6 1048577 64250369 0
BEGIN 19397 0 8 1048577 1918310004 O
END 19397 0 9 1048577 1918521098 O
BEGIN 19397 0 10 1048577 2024164744 O
BEGIN 19397 0 11 1048577 2024358650 O

Resolve NVTX Category Name

The example demonstrates how to resolve NVTX category name for NVTX marks and
ranges.

WITH
event AS (
SELECT *
FROM NVTX EVENTS
WHERE eventType IN (34, 59, 60) -- mark, push/pop, start/end
)
category AS (
SELECT
category,
domainId,
text AS categoryName
FROM NVTX EVENTS
WHERE eventType == 33 -- new category
)
SELECT
start,
end,
globalTid,
eventType,
domainId,
category,
categoryName,
text
FROM event JOIN category USING (category, domainId)
ORDER BY start;

www.nvidia.com
User Guide v2022.2.1 | 113

Export Formats

Results:

start end globalTid eventType domainId category
categoryName text

18281150 18311960 281534938484214 59 0 1
FirstCategoryUnderDefault Push Pop Range A

18288187 18306674 281534938484214 59 0 2
SecondCategoryUnderDefaul Push Pop Range B

18294247 281534938484214 34 0 1
FirstCategoryUnderDefault Mark A

18300034 281534938484214 34 0 2
SecondCategoryUnderDefaul Mark B

18345546 18372595 281534938484214 60 1 1
FirstCategoryUnderMyDomai Start End Range

18352924 18378342 281534938484214 60 1 2
SecondCategoryUnderMyDoma Start End Range

18359634 281534938484214 34 1 1
FirstCategoryUnderMyDomai Mark A

18365448 281534938484214 34 1 2

SecondCategoryUnderMyDoma Mark B

Rename CUDA Kernels with NVTX

The example demonstrates how to map innermost NVTX push-pop range to a matching
CUDA kernel run.

ALTER TABLE CUPTI ACTIVITY KIND KERNEL ADD COLUMN nvtxRange TEXT;
CREATE INDEX nvtx start ON NVTX EVENTS (start);

UPDATE CUPTI ACTIVITY KIND KERNEL SET nvtxRange = (
SELECT NVTX EVENTS.text
FROM NVTX EVENTS JOIN CUPTI ACTIVITY KIND RUNTIME ON
NVTX EVENTS.eventType == 59 AND
NVTX EVENTS.globalTid == CUPTI ACTIVITY KIND RUNTIME.globalTid AND
NVTX EVENTS.start <= CUPTI ACTIVITY KIND RUNTIME.start AND
NVTX_EVENTS.end >= CUPTI_ACTIVITY_KIND_RUNTIME.end
WHERE
CUPTI ACTIVITY KIND KERNEL.correlationId ==
CUPTI ACTIVITY KIND RUNTIME.correlationId
ORDER BY NVTX EVENTS.start DESC LIMIT 1
)i

SELECT start, end, globalPid, StringIds.value as shortName, nvtxRange
FROM CUPTI_ACTIVITY_KIND_KERNEL JOIN StringIds ON shortName == id
ORDER BY start LIMIT 6;

Results:

start end globalPid shortName nvtxRange
526545376 526676256 72057700439031808 MatrixMulCUDA

526899648 527030368 72057700439031808 MatrixMulCUDA Add
527031648 527162272 72057700439031808 MatrixMulCUDA Add
527163584 527294176 72057700439031808 MatrixMulCUDA My Kernel
527296160 527426592 72057700439031808 MatrixMulCUDA My Range
527428096 527558656 72057700439031808 MatrixMulCUDA

www.nvidia.com
User Guide v2022.2.1 | 114

Export Formats

Select CUDA Calls With Backtraces

ALTER TABLE CUPTI ACTIVITY KIND RUNTIME ADD COLUMN name TEXT;
UPDATE CUPTI ACTIVITY KIND RUNTIME SET name = (SELECT value FROM StringIds WHERE
CUPTI ACTIVITY KIND RUNTIME.nameId = StringIds.id);

ALTER TABLE CUDA CALLCHAINS ADD COLUMN symbolName TEXT;
UPDATE CUDA CALLCHAINS SET symbolName = (SELECT value FROM StringIds WHERE
symbol = StringIds.id);

SELECT globalTid % 0x1000000 AS TID,
start, end, name, callchainId, stackDepth, symbolName
FROM CUDA_CALLCHAINS JOIN CUPTI_ACTIVITY_KIND_RUNTIME ON callchainId ==
CUDAﬁCALLCHAINS.id
ORDER BY callchainId, stackDepth LIMIT 11;

Results:

TID start end name callchainId stackDepth
symbolName

11928 168976467 169077826 cuMemAlloc v2 1 0
0x7f13c44f02ab

11928 168976467 169077826 cuMemAlloc v2 1 1
0x7f13c44f0b8f

11928 168976467 169077826 cuMemAlloc v2 1 2
0x7f13c44£3719

11928 168976467 169077826 cuMemAlloc v2 1 3
cuMemAlloc v2

11928 168976467 169077826 cuMemAlloc v2 1 4
cudart: :driver

11928 168976467 169077826 cuMemAlloc v2 1 5
cudart: :cudaAp

11928 168976467 169077826 cuMemAlloc v2 1 6
cudaMalloc

11928 168976467 169077826 cuMemAlloc v2 1 7
cudaError cuda

11928 168976467 169077826 cuMemAlloc v2 1 8 main
11928 168976467 169077826 cuMemAlloc v2 1 9
_ libc start m

11928 168976467 169077826 cuMemAlloc v2 1 10
_start

SLI Peer-to-Peer Query

The example demonstrates how to query SLI Peer-to-Peer events with resource size
greater than value and within a time range sorted by resource size descending.

SELECT *

FROM SLI_PZP

WHERE resourceSize < 98304 AND start > 1568063100 AND end < 1579468901
ORDER BY resourceSize DESC;

www.nvidia.com
User Guide v2022.2.1 | 115

Results:
start end eventClass globalTid gpu frameId
transferSkipped srcGpu dstGpu numSubResources resourceSize
subResourcelIdx smplWidth smplHeight smplDepth bytesPerElement
dxgiFormat logSurfaceNames transferInfo isEarlyPushManagedByNvApi
useAsyncP2pForResolve transferFuncName regimeName debugName bindType
1570351100 1570351101 62 72057698056667136 0 771
256 512 1 1048576 0
256 256 1 16 2
3 0 0
1570379300 1570379301 62 72057698056667136 O 771
256 512 1 1048576 0
64 64 64 4 31
3 0 0
1572316400 1572316401 62 72057698056667136 O 773
256 512 1 1048576 0
256 256 1 16 2
3 0 0
1572345400 1572345401 62 72057698056667136 0 773
256 512 1 1048576 0
64 64 64 4 31
3 0 0
1574734300 1574734301 62 72057698056667136 0 775
256 512 1 1048576 0
256 256 1 16 2
3 0 0
1574767200 1574767201 62 72057698056667136 O 775
256 512 1 1048576 0
64 64 64 4 31
3 0 0

Generic Events

Syscall usage histogram by PID:

SELECT json_extract (data,
FROM GENERIC EVENTS WHERE PID IS NOT NULL AND typeld
SELECT typeId FROM GENERIC_EVENT_TYPES
WHERE Jjson extract(data, '$.Name') = "raw syscalls:sys enter")

GROUP BY PID

ORDER BY total DESC

LIMIT 10;

www.nvidia.com

User Guide

(

Export Formats

'$.common_pid') AS PID, count(*) AS total

v2022.2.1 | 116

Export Formats

Results:

PID total
5551 32811
9680 3988
4328 1477
9564 1246
4376 1204
4377 1167
4357 656
4355 655
4356 640
4354 633

Fetching Generic Events in JSON Format

Text and JSON export modes don’t include generic events. Use the below queries
(without LIMIT clause) to extract JSON lines representation of generic events, types and
sources.

SELECT json insert('{}"',
'S.sourceld', sourceld,
'$S.data', json (data)

)

FROM GENERIC EVENT SOURCES LIMIT 2.8

SELECT json insert('{}',
'S.typeld', typeld,
'S.sourceld', sourceld,
'S.data', json (data)

)

FROM GENERICiEVENTiTYPES LIMIT 2;

SELECT json insert('{}',
'$S.rawTimestamp', rawTimestamp,
'S.timestamp', timestamp,
'S.typeld', typeld,

'S.data', json (data)
)
FROM GENERIC EVENTS LIMIT 28

www.nvidia.com
User Guide v2022.2.1 | 117

Export Formats

Results:

json_insert ('{}',
'S.sourceld', sourceld,
'$.data', json (data)

{"sourceId":72057602627862528, "data":
{"Name" :"FTrace", "TimeSource":"ClockMonotonicRaw", "SourceGroup" :"FTrace"}}
json_insert ('{}"',

'S.typeld', typeld,

'S.sourceld', sourceld,

'$S.data', json (data)

{"typeId":72057602627862547,"sourcelId":72057602627862528, "data":
{"Name":"raw syscalls:sys enter","Format":"\"NR $1d (%1x,

$1lx, %1lx, %$1x, %1x, %1x)\", REC->id, REC->args[0], REC-

>args[l], REC->args[2], REC->args[3], REC->args[4], REC-
>args[5]","Fields": [{"Name":"common pid","Prefix":"int",6 "Suffix":""},
{"Name":"id", "Prefix":"long","S
{"typeId":72057602627862670,"sourceId":72057602627862528, "data":
{"Name":"irqg:irg handler entry","Format":"\"irg=%d name=%s\", REC->irq,

__get str(name)","Fields":[{"Name":"common pid","Prefix":"int",6 "Suffix":""},
{"Name":"irg", "Prefix":"int","Suffix":""}, {"Name":"name", "Prefix":" data loc
char[]","Suffix":""}, {"Name":"common type",

json _insert ('{}"',
'S.rawTimestamp', rawTimestamp,
'S.timestamp', timestamp,
'S.typeld', typeld,
'$.data', json (data)

{"rawTimestamp":1183694330725221,"timestamp":6236683, "typeId":72057602627862670, "data":

{"common pid":"0","irqg":"66","name":"327696","common type":"142","common flags":"9","common p:
{"rawTimestamp":1183694333695687, "timestamp":9207149, "typeId":72057602627862670,"data":
{"common pid":"O0","irqg":"66", "name":"327696", "common type":"142","common flags":"9", "common p:

3.4. Arrow Format Description

The Arrow type exported file uses the IPC stream format to store the data in a file. The
tables can be read by opening the file as an arrow stream. For example one can use the
open_stream function from the arrow python package. For more information on the
interfaces that can be used to read an IPC stream file, please refer to the Apache Arrow
documentation [1, 2].

The name of each table is included in the schema metadata. Thus, while reading each
table, the user can extract the table title from the metadata. The table name metadata

www.nvidia.com
User Guide v2022.2.1 | 118

https://arrow.apache.org/docs/python/api/ipc.html
https://arrow.apache.org/docs/python/ipc.html

Export Formats

field has the key table_name. The titles of all the available tables can be found in
section SQLite Schema Reference.

3.5. JSON and Text Format Description

JSON and TXT export formats are generated by serializing buffered messages, each on
a new line. First, all collected events are processed. Then strings are serialized, followed
by stdout, stderr streams if any, followed by thread names.

Output layout:

{Event #1}
{Event #2}
ié&ent #N}
{Strings}

{Streams}
{Threads}

For easier grepping of JSON output, the --separate-strings switch may be used to
force manual splitting of strings, streams and thread names data.

Example line split: nsys export --export-json --separate-strings
sample.nsys-rep -- -

{"type":"String","id":"3720", "value":"Process 14944 was launched by the

profiler"}

{"type":"String","id":"3721","value" :"Profiling has started."}
{"type":"String","id":"3722","value" :"Profiler attached to the process."}
{"type":"String","id":"3723","value":"Profiling has stopped."}
{"type":"ThreadName", "globalTid":"72057844756653436", "nameId":"14", "priority":"10"}
{"type" :"ThreadName", "globalTid":"72057844756657940", "nameId":"15", "priority":"10"}
{"type":"ThreadName", "globalTid":"72057844756654400", "nameId":"24", "priority":"10"}

Compare with: nsys export --export-json sample.nsys-rep -- -

{"data":[" [Unknown]", " [Unknown kernel module]"," [Max depth]", " [Broken
backtraces]",
"[Called from
Javal]","OnxKernelTrace", "mm ", "task submit","class id","syncpt id",
"syncpt thresh","pid","tid","FTrace","[NSys]"," [NSys Comms]", "..." ,"Process
14944 was launched by the profiler","Profiling has started.","Profiler
attached
to the process.","Profiling has stopped."]}
{"data":[{"nameIdx":"14", "priority":"10","globalTid":"72057844756653436"},
{"nameIdx":"15", "priority":"10","globalTid":"72057844756657940"},
{"nameIdx":"24",
"priority":"10","globalTid":"72057844756654400"}]}

Note, that only last few lines are shown here for clarity and that carriage returns and
indents were added to avoid wrapping documentation.

www.nvidia.com
User Guide v2022.2.1 | 119

Chapter 4.
REPORT SCRIPTS

Report Scripts Shipped With Nsight Systems

The Nsight Systems development team created and maintains a set of report scripts for
some of the commonly requested reports. These scripts will be updated to adapt to any
changes in SQLite schema or internal data structures.

These scripts are located in the Nsight Systems package in the Target-<architecture>/
reports directory. The following standard reports are available:

apigpusum|[:base] -- CUDA APl & GPU Summary (CUDA
APl + kernels + memory ops)
Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this kernel
Instances: The number of executions of this object

Average : The average execution time of this kernel

Minimum : The smallest execution time of this kernel
Maximum : The largest execution time of this kernel

Category : The category of the operation

Operation : The name of the kernel

vV vV vV VvV VvV VvV Vv Vv

This report provides a summary of CUDA API calls, kernels and memory operations,
and their execution times. Note that the Time(%) column is calculated using a
summation of the Total Time column, and represents that API call's, kernel's, or memory
operation's percent of the execution time of the APIs, kernels and memory operations
listed, and not a percentage of the application wall or CPU execution time.

www.nvidia.com
User Guide v2022.2.1 | 120

Report Scripts

This report combines data from the cudaapisum, gpukernsum, and gpumemsizesum
reports. It is very similar to profile section of nvprof --dependency-analysis.

cudaapisum -- CUDA APl Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this function
Num Calls : The number of calls to this function

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

Name : The name of the function

vV Vv v v v v

This report provides a summary of CUDA API functions and their execution times. Note
that the Time(%) column is calculated using a summation of the Total Time column, and
represents that function's percent of the execution time of the functions listed, and not a
percentage of the application wall or CPU execution time.

cudaapitrace -- CUDA API Trace

Arguments - None
Output: All time values given in nanoseconds

Start : Timestamp when API call was made

Duration : Length of API calls

Name : API function name

Result : return value of API call

CorrlD : Correlation used to map to other CUDA calls
Pid : Process ID that made the call

Tid : Thread ID that made the call

T-Pri : Run priority of call thread

Thread Name : Name of thread that called API function

vV V. vV vV v v v v v

This report provides a trace record of CUDA API function calls and their execution
times.

gpukernsum[:base] -- CUDA GPU Kernel Summary

Arguments

» Dbase - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

» Time(%) : Percentage of Total Time

www.nvidia.com
User Guide v2022.2.1 | 121

Report Scripts

Total Time : The total time used by all executions of this kernel
Instances : The number of calls to this kernel

Average : The average execution time of this kernel

Minimum : The smallest execution time of this kernel
Maximum : The largest execution time of this kernel

Name : The name of the kernel

vV vV v v v VY

This report provides a summary of CUDA kernels and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that kernel's percent of the execution time of the kernels listed, and not a
percentage of the application wall or CPU execution time.

gpumemsizesum -- GPU Memory Operations Summary
(by Size)

Arguments - None
Output: All memory values given in KiB

Total : Total number of KiB utilized by this operation
Operations : Number of executions of this operation
Average : The average memory size of this operation
Minimum : The smallest memory size of this operation
Maximum : The largest memory size of this operation
Name : The name of the operation

vV vV v v v VY

This report provides a summary of GPU memory operations and the amount of memory
they utilize.

gpumemtimesum -- GPU Memory Operations Summary
(by Time)

Arguments - None
Output: All memory values given in KiB

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this operation
Operations: The number of operations of this type

Average : The average execution time of this operation

Minimum : The smallest execution time of this operation
Maximum : The largest execution time of this operation
Operation : The name of the memory operation

vV vV vV v v v VY

This report provides a summary of GPU memory operations and their execution times.
Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that operation's percent of the execution time of the operations
listed, and not a percentage of the application wall or CPU execution time.

www.nvidia.com
User Guide v2022.2.1 | 122

Report Scripts

gpusum|[:base] -- GPU Summary (kernels + memory
operations)

Arguments

» base - Optional argument, if given, will cause summary to be over the base name of
the kernel, rather than the templated name.

Output: All time values given in nanoseconds

» Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this kernel
Instances : The number of executions of this object

Average : The average execution time of this kernel

Minimum : The smallest execution time of this kernel
Maximum : The largest execution time of this kernel

Category : The category of the operation

Name : The name of the kernel

v

vV vV v v v VY

This report provides a summary of CUDA kernels and memory operations, and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that kernel's or memory operation's percent of the
execution time of the kernels and memory operations listed, and not a\ percentage of
the application wall or CPU execution time.

This report combines data from the gpukernsum and gpumemtimesum reports. This
report is very similar to output of the command nvprof --print-gpu-summary.

gputrace -- CUDA GPU Trace

Arguments - None
Output:

Start : Start time of trace event in seconds
Duration : Length of event in nanoseconds
Corrld : Correlation ID

GrdX, GrdY, GrdZ : Grid values

BIkX, BIKY, BIkZ : Block values

Reg/Trd : Registers per thread

StcSMem : Size of Static Shared Memory
DymSMem : Size of Dynamic Shared Memory
Bytes : Size of memory operation

Thru : Throughput in MB per Second
SrcMemKd : Memcpy source memory kind or memset memory kind
DstMemKd : Memcpy destination memory kind
Device : GPU device name and ID

Ctx : Context ID

vV V. v v v VvV vV v v vV vV v v Y

www.nvidia.com
User Guide v2022.2.1 | 123

Report Scripts

» Strm : Stream ID
» Name : Trace event name

This report displays a trace of CUDA kernels and memory operations. Items are sorted
by start time.

nvtxppsum -- NVTX Push/Pop Range Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all instances of this range
Instances : The number of instances of this range

Average : The average execution time of this range
Minimum : The smallest execution time of this range
Maximum : The largest execution time of this range

Range : The name of the range

vV Vv v v v v

This report provides a summary of NV Tools Extensions Push/Pop Ranges and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that range's percent of the execution time of the
ranges listed, and not a percentage of the application wall or CPU execution time.

openmpevtsum -- OpenMP Event Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of event type
Count : The number of event type

Average : The average execution time of event type

Minimum : The smallest execution time of event type
Maximum : The largest execution time of event type

Name : The name of the event

vV vV v v v v VY

This report provides a summary of OpenMP events and their execution times. Note that
the Time(%) column is calculated using a summation of the Total Time column, and
represents that event type's percent of the execution time of the events listed, and not a
percentage of the application wall or CPU execution time.

osrtsum -- OS Runtime Summary
Arguments - None
Output: All time values given in nanoseconds

» Time(%) : Percentage of Total Time

www.nvidia.com
User Guide v2022.2.1 | 124

Report Scripts

Total Time : The total time used by all executions of this function
Num Calls : The number of calls to this function

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

Name : The name of the function

vV vV v v v VY

This report provides a summary of operating system functions and their execution
times. Note that the Time(%) column is calculated using a summation of the Total Time
column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

vulkanmarkerssum -- Vulkan Range Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this function
Instances : The number of instances of this range

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

StdDev : The standard deviation of execution time of this range
Range : The name of the range

vV V. vV v v v v v

This report provides a summary of Vulkan debug markers on the CPU, and their
execution times. Note that the Time(%) column is calculated using a summation of the
Total Time column, and represents that function's percent of the execution time of the
functions listed, and not a percentage of the application wall or CPU execution time.

pixsum -- PIX Range Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this function
Instances : The number of instances of this range

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

StdDev : The standard deviation of execution time of this range
Range : The name of the range

vV VvV v v v v Y

This report provides a summary of PIX CPU debug markers, and their execution times.
Note that the Time(%) column is calculated using a summation of the Total Time

www.nvidia.com
User Guide v2022.2.1 | 125

Report Scripts

column, and represents that function's percent of the execution time of the functions
listed, and not a percentage of the application wall or CPU execution time.

khrdebugsum -- OpenGL KHR_debug Range Summary

Arguments - None
Output: All time values given in nanoseconds

Time(%) : Percentage of Total Time

Total Time : The total time used by all executions of this function
Instances : The number of instances of this range

Average : The average execution time of this function

Minimum : The smallest execution time of this function
Maximum : The largest execution time of this function

StdDev : The standard deviation of execution time of this range
Range : The name of the range

This report provides a summary of OpenGL KHR_debug CPU PUSH/POP debug
Ranges, and their execution times. Note that the Time(%) column is calculated using
a summation of the Total Time column, and represents that function's percent of the
execution time of the functions listed, and not a percentage of the application wall or
CPU execution time.

vV V. vV v v v v v

Report Formatters Shipped With Nsight Systems

The following formats are available in Nsight Systems

Column

Usage:

column|[:nohdr] [:nolimit] [:nofmt] [:<width>[:<width>]...]
Arguments

» nohdr : Do not display the header

» nolimit : Remove 100 character limit from auto-width columns Note: This can result
in extremely wide columns.

» nofmt : Do not reformat numbers.

» <width>... : Define the explicit width of one or more columns. If the value "." is
given, the column will auto-adjust. If a width of 0 is given, the column will not be

displayed.

The column formatter presents data in vertical text columns. It is primarily designed to
be a human-readable format for displaying data on a console display.

Text data will be left-justified, while numeric data will be right-justified. If the data
overflows the available column width, it will be marked with a "..." character, to indicate

www.nvidia.com
User Guide v2022.2.1 | 126

Report Scripts

the data values were clipped. Clipping always occurs on the right-hand side, even for
numeric data.

Numbers will be reformatted to make easier to visually scan and understand.

This includes adding thousands-separators. This process requires that the string
representation of the number is converted into its native representation (integer or
floating point) and then converted back into a string representation to print. This
conversion process attempts to preserve elements of number presentation, such as the
number of decimal places, or the use of scientific notation, but the conversion is not
always perfect (the number should always be the same, but the presentation may not
be). To disable the reformatting process, use the argument nofmt.

If no explicit width is given, the columns auto-adjust their width based off the header
size and the first 100 lines of data. This auto-adjustment is limited to a maximum
width of 100 characters. To allow larger auto-width columns, pass the initial argument
nolimit. If the first 100 lines do not calculate the correct column width, it is suggested
that explicit column widths be provided.

Table

Usage:
table[:nohdr] [:nolimit] [:nofmt] [:<width>[:<width>]...]
Arguments

» nohdr : Do not display the header

» nolimit : Remove 100 character limit from auto-width columns Note: This can result
in extremely wide columns.

» nofmt : Do not reformat numbers.

» <width>... : Define the explicit width of one or more columns. If the value "." is
given, the column will auto-adjust. If a width of 0 is given, the column will not be
displayed.

The table formatter presents data in vertical text columns inside text boxes. Other than
the lines between columns, it is identical to the column formatter.

Ccsv

Usage:

csv|[:nohdr]

Arguments

» nohdr : Do not display the header

The csv formatter outputs data as comma-separated values. This format is commonly
used for import into other data applications, such as spread-sheets and databases.

There are many different standards for CSV files. Most differences are in how escapes
are handled, meaning data values that contain a comma or space.

www.nvidia.com
User Guide v2022.2.1 | 127

Report Scripts

This CSV formatter will escape commas by surrounding the whole value in double-
quotes.

TSV

Usage:
tsv[:nohdr] [:esc]
Arguments

» nohdr : Do not display the header
> esc:escape tab characters, rather than removing them

The tsv formatter outputs data as tab-separated values. This format is sometimes used
for import into other data applications, such as spreadsheets and databases.

Most TSV import/export systems disallow the tab character in data values. The formatter
will normally replace any tab characters with a single space. If the esc argument has
been provided, any tab characters will be replaced with the literal characters "\t".

JSON

Usage:
json
Arguments: no arguments

The json formatter outputs data as an array of JSON objects. Each object represents one
line of data, and uses the column names as field labels. All objects have the same fields.
The formatter attempts to recognize numeric values, as well as JSON keywords, and

converts them. Empty values are passed as an empty string (and not nil, or as a missing
field).

At this time the formatter does not escape quotes, so if a data value includes double-
quotation marks, it will corrupt the JSON file.

HDoc

Usage:
hdoc[:title=<title>] [:css=<URL>]
Arguments:

> title : string for HTML document title
» ¢ss: URL of CSS document to include

The hdoc formatter generates a complete, verifiable (mostly), standalone HTML
document. It is designed to be opened in a web browser, or included in a larger
document via an <iframe>.

www.nvidia.com
User Guide v2022.2.1 | 128

Report Scripts

HTable

Usage:
htable
Arguments: no arguments

The htable formatter outputs a raw HTML <table> without any of the surrounding
HTML document. It is designed to be included into a larger HTML document. Although
most web browsers will open and display the document, it is better to use the hdoc
format for this type of use.

www.nvidia.com
User Guide v2022.2.1 | 129

Chapter 5.
MIGRATING FROM NVIDIA NVPROF

Using the Nsight Systems CLI nvprof Command

The nvprof command of the Nsight Systems CLI is intended to help former nvprof
users transition to nsys. Many nvprof switches are not supported by nsys, often because
they are now part of NVIDIA Nsight Compute.

The full nvprof documentation can be found at https://docs.nvidia.com/cuda/profiler-
users-guide.

The nvprof transition guide for Nsight Compute can be found at https://
docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide.

Any nvprof switch not listed below is not supported by the nsys nvprof command. No
additional nsys functionality is available through this command. New features will not
be added to this command in the future.

CLI nvprof Command Switch Options

After choosing the nvprof command switch, the following options are available. When
you are ready to move to using Nsight Systems CLI directly, see Command Line Options
documentation for the nsys switch(es) given below. Note that the nsys implementation
and output may vary from nvprof.

Usage.

nsys nvprof [options]

Switch Parameters (Default [nsys switch Switch Description

in Bold)
--annotate-mpi off, openmpi, mpich |--tracesmpi AND -- | Automatically
mpi-impl annotate MPI

calls with
NVTX markers.
Specity the MP1

www.nvidia.com
User Guide v2022.2.1 | 130

https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/cuda/profiler-users-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide

Migrating from NVIDIA nvprof

Switch

Parameters (Default
in Bold)

nsys switch

Switch Description

implementation
installed on

your machine.

Only OpenMPI

and MPICH
implementations are
supported.

driver,all

--cpu-thread-tracing |on, off --trace=osrt Collect information
about CPU thread
APT activity.

--profile-api-trace none, runtime, --trace=cuda Turn on/off CUDA

runtime and driver
API tracing. For
Nsight Systems
there is no separate
CUDA runtime

and CUDA driver
trace, so selecting
runtime or driver
is equivalent to
selecting all .

--profile-from-start

on, off

if off use --capture-
range=cudaProfilerA]

Enable/disable
pprofiling from
the start of the
application. If
disabled, the
application can use
{cu,cuda}Profiler{Stan
to turn on/off
profiling.

t,Stop}

-t,--timeout

<nanoseconds>
default=0

--duration=seconds

If greater than

0, stop the
collection and
kill the launched
application after
timeout seconds.
nvprof started
counting when the
CUDA driver is
initialized. nsys
starts counting

immediately.

www.nvidia.com
User Guide

v2022.2.1 | 131

Migrating from NVIDIA nvprof

Switch

Parameters (Default
in Bold)

nsys switch

Switch Description

--cpu-profiling

on, off

--sampling=cpu

Turn on/off CPU
profiling

--openacc-profiling

on, off

--trace=openacc to
turn on

Enable/disable
recording
information from
the OpenACC
profiling interface.
Note: OpenACC
profiling interface
depends on the
presence of the
OpenACC runtime.
For supported
runtimes, see
CUDA Trace section
of documentation

-0, --export-profile

<filename>

--output={filename}
and/or --
export=sqlite

Export named file
to be imported

or opened in the
Nsight Systems
GUL %q{ENV_VAR}
in string will be
replaced with

the set value of

the environment
variable. If not set
this is an error.

%h in the string is
replaced with the
system hostname.
%% in the string is
replaced with %.
%p in the string

is not supported
currently. Any other
character following
% is illegal. The
default is reportl,
with the number
incrementing to
avoid overwriting
files, in users
working directory.

www.nvidia.com
User Guide

v2022.2.1 | 132

Migrating from NVIDIA nvprof

Switch Parameters (Default | nsys switch Switch Description
in Bold)
-f, --force-overwrite --force- Force overwriting
overwrite=true all output files with

same name.

-h, --help --help Print Nsight
Systems CLI help

-V, --version --version Print Nsight
Systems CLI version
information

Next Steps

NVIDIA Visual Profiler (NVVP) and NVIDIA nvprof are deprecated. New GPUs and
features will not be supported by those tools. We encourage you to make the move to
Nsight Systems now. For additional information, suggestions, and rationale, see the blog
series in Other Resources.

www.nvidia.com
User Guide v2022.2.1 | 133

Chapter 6.
PROFILING IN A DOCKER ON LINUX

DEVICES

Collecting data within a Docker

The following information assumes the reader is knowledgeable regarding Docker
containers. For further information about Docker use in general, see the Docker
documentation.

Enable Docker Collection

When starting the Docker to perform a Nsight Systems collection, additional steps are
required to enable the perf_event_open system call. This is required in order to utilize
the Linux kernel’s perf subsystem which provides sampling information to Nsight
Systems.

There are three ways to enable the perf_event_open syscall. You can enable it by using
the --privileged=true switch, adding --cap-add=SYS_ADMIN switch to your docker
run command file, or you can enable it by setting the seccomp security profile if your
system meets the requirements.

Secure computing mode (seccomp) is a feature of the Linux kernel that can be used to
restrict an application's access. This feature is available only if the kernel is enabled with
seccomp support. To check for seccomp support:

$ grep CONFIG SECCOMP= /boot/config-$ (uname -r)

The official Docker documentation says:

"Seccomp profiles require seccomp 2.2.1 which is not available on Ubuntu 14.04,
Debian Wheezy, or Debian Jessie. To use seccomp on these distributions, you
must download the latest static Linux binaries (rather than packages) ."

Download the default seccomp profile file, default.json, relevant to your Docker version.
If perf_event open is already listed in the file as guarded by CAP_SYS_ADMIN, then
remove the perf_event_open line. Add the following lines under "syscalls" and save
the resulting file as default _with perf.json.

{

"name": "perf event open",
"action": "SCMP_ACT_ALLOW",
"argS " B []

by

www.nvidia.com
User Guide v2022.2.1 | 134

https://docs.docker.com
https://docs.docker.com

Profiling in a Docker on Linux Devices

Then you will be able to use the following switch when starting the Docker to apply the
new seccomp profile.

--security-opt seccomp=default with perf.json
Launch Docker Collection

Here is an example command that has been used to launch a Docker for testing with
Nsight Systems:

sudo nvidia-docker run --network=host --security-opt

seccomp=default with perf.json --rm -ti caffe-demo2 bash

There is a known issue where Docker collections terminate prematurely with older
versions of the driver and the CUDA Toolkit. If collection is ending unexpectedly, please
update to the latest versions.

After the Docker has been started, use the Nsight Systems CLI to launch a collection
within the Docker. The resulting .qdstrm file can be imported into the Nsight Systems
host like any other CLI result.

www.nvidia.com
User Guide v2022.2.1 | 135

Chapter 7.
DIRECT3D TRACE

Nsight Systems has the ability to trace both the Direct3D 11 API and the Direct3D 12 API
on Windows targets.

7.1. D3D11 API trace

Nsight Systems can capture information about Direct3D 11 API calls made by the
profiled process. This includes capturing the execution time of D3D11 API functions,
performance markers, and frame durations.

» CPUN2)

~ Threads (5)

PvEa ;

~ v [21384] - —_
—————————————————————————
Blocked State [|
DXGI API |
DX11 API _ JI J. bisgsmd lu.u.unix..xuw.u bl

DX11 Markers

Call to:
SIS 1D3D11DeviceContextdzDraw
3 threads hidden... - ;Dxlw;;;&ss
egins: 0. -
~ Frame duration (60 FPS) | Ends: 0.94106s (+ 100 ng)

¥ CPU frame duration

SLI Trace

Trace SLI queries and peer-to-peer transfers of D3D11 applications. Requires SLI
hardware and an active SLI profile definition in the NVIDIA console.

7.2. D3D12 API Trace

Direct3D 12 is a low-overhead 3D graphics and compute API for Microsoft Windows.
Information about Direct3D 12 can be found at the Direct3D 12 Programming Guide.

Nsight Systems can capture information about Direct3D 12 usage by the profiled
process. This includes capturing the execution time of D3D12 API functions,
corresponding workloads executed on the GPU, performance markers, and frame
durations.

www.nvidia.com
User Guide v2022.2.1 | 136

https://docs.microsoft.com/en-us/windows/desktop/direct3d12/directx-12-programming-guide

Direct3D Trace

~ Dx12

CommandListsCreation .~ [l (01, (D0 @D e K (.7 A P R
- GPU — L T T Ny oy a1
* Commend queve 1 Oy I S ERERAN R i S S e ==
APl 0 0 0 0
GPU Command List Markers i . | [ambie...| | Lights RlalRef) i - A0 I]
= Command Cueue 2 (Copy) III I l_ I] I 1 .I ' '

APl ()
GPU Synchronization | | | | | | ||| | ‘

The Command List Creation row displays time periods when command lists
were being created. This enables developers to improve their application’s multi-
threaded command list creation. Command list creation time period is measured
between the call to ID3D12GraphicsCommandList: :Reset and the call to
ID3D12GraphicsCommandList: :Close.

* Command Lists Creation

The GPU row shows a compressed view of the D3D12 queue activity, color-coded by the
queue type. Expanding it will show the individual queues and their corresponding API
calls.

v GRU [P TR TTOTE) R TT TR TETET Y T TR TR TN TP TT S PUT FOTT P PR P TTRPTTTRPTT TR TIR,

A Command Queue row is displayed for each D3D12 command queue created by the
profiled application. The row’s header displays the queue's running index and its type
(Direct, Compute, Copy).

P Command Queue 0 (Compute)

P Command Queue 1 (Direct)

The DX12 API Memory Ops row displays all API memory operations and non-persistent
resource mappings. Event ranges in the row are color-coded by the heap type they
belong to (Default, Readback, Upload, Custom, or CPU-Visible VRAM), with usage
warnings highlighted in yellow. A breakdown of the operations can be found by
expanding the row to show rows for each individual heap type.

www.nvidia.com
User Guide v2022.2.1 | 137

Direct3D Trace

The following operations and warnings are shown:

» Calls to ID3D12Device: :CreateCommittedResource,
ID3D12Deviced: :CreateCommittedResourcel, and
ID3D12Device8: :CreateCommittedResource2

» A warning will be reported if D3D12_HEAP_FLAG_CREATE NOT_ZEROED is not
set in the method's HeapFlags parameter
» Calls to ID3D12Device: :CreateHeap and ID3D12Deviced: :CreateHeapl

» A warning will be reported if D3D12_HEAP FLAG_CREATE NOT_ZEROED is not
set in the Flags field of the method's pDesc parameter
» Calls to ID3D12Resource: : ReadFromSubResource

» A warning will be reported if the read is to a
D3D12_CPU_PAGE_PROPERTY WRITE_COMBINE CPU page or from a
D3D12_HEAP TYPE_UPLOAD resource

» C(Calls to ID3D12Resource: :WriteToSubResource

» A warning will be reported if the write is from a
D3D12_CPU_PAGE PROPERTY WRITE BACK CPU page or to a
D3D12_ HEAP TYPE READBACK resource
» Calls to ID3D12Resource: :Map and ID3D12Resource: : Unmap will be matched
into [Map, Unmap] ranges for non-persistent mappings. If a mapping range is
nested, only the most external range (reference count = 1) will be shown.

> DX12 HW

¥ HW NVIDIA GeForce RTX 2080 > _________________"_¥ |

(m

D3D1 2Devic...] [1D3D12Device:CreateCommittedReso...

v DX12 APl Memory Ops ~ E]

Default Heap D3D1 2Devic...] [ID3D12DevicexCreateCommittedReso...

ID3D12Device:CreateCommittedResource

Begins: 19.1669s
Upload Heap ~ E] Ends: 19.1678s (+986.549 ps) @
Correlation ID: 364232
Thread [1864]
Heap type: Default
B Readback Heap WARNING: Committed ID3D12Resource object created with zeroing.

Add D3D12_HEAP_FLAG_CREATE_NOT_ZEROED to HeapFlags
» HW Command Queue 1 (Direct) to avoid overhead of zeroing.

The API row displays time periods where

ID3D12CommandQueue: : ExecuteCommandLists was called. The GPU Workload row
displays time periods where workloads were executed by the GPU. The workload’s type
(Graphics, Compute, Copy, etc.) is displayed on the bar representing the workload’s
GPU execution.

www.nvidia.com
User Guide v2022.2.1 | 138

Direct3D Trace

API ID3D1...
CPU Markers (Thread O:...|

GPU Queue Markers [Thread O: Iterate on the particle ...

In addition, you can see the PIX command queue CPU-side performance markers, GPU-
side performance markers and the GPU Command List performance markers, each in
their row.

CPU Markers [Render |

GPU Queue Markers |Render |

GPU CommandList Markers

Clicking on a GPU workload highlights the corresponding

ID3D12CommandQueue: :ExecuteCommandLists,

ID3D12GraphicsCommandList: :Reset and ID3D12GraphicsCommandList: :Close
API calls, and vice versa.

* GPU

» Command Queue 0 (Compute)

AP

CPU Markers Thread ...
GPU Queue Markers [Thread O: Iterate on the particle simulation |
Workload Compute workload

Detecting which CPU thread was blocked by a fence can be difficult in complex apps
that run tens of CPU threads. The timeline view displays the 3 operations involved:

» The CPU thread pushing a signal command and fence value into the command
queue. This is displayed on the DX12 Synchronization sub-row of the calling thread.

» The GPU executing that command, setting the fence value and signaling the fence.
This is displayed on the GPU Queue Synchronization sub-row.

» The CPU thread calling a Win32 wait API to block-wait until the fence is signaled.
This is displayed on the Thread's OS runtime libraries row.

Clicking one of these will highlight it and the corresponding other two calls.

www.nvidia.com
User Guide v2022.2.1 | 139

* Threads (8]
> |V [9504] -

Blocked State
05 runtime libraries
= DX12 API
Synchronization
Profiler overhead
7 threads hidden...
~ Frame duration (60 FPS)
¥ CPUframe duration
GPU frame duration
~ DX12

Command Lists Creation

~ GPU

* Command Queue 1 (Direct)

API

API

GPU Synchronization
VSYNC - Intel(R ()
VSYNC - Intel(R (1)

Direct3D Trace

wWin3... (Win32 Wait AP|

—

#33 [16,725 ms]] #34[16

#32 18,493 ms]

Fence Signal

Time: 0.557074s

www.nvidia.com

User Guide

v2022.2.1 | 140

Chapter 8.
WDDM QUEUES

The Windows Display Driver Model (WDDM) architecture uses queues to send work
packets from the CPU to the GPU. Each D3D device in each process is associated

with one or more contexts. Graphics, compute, and copy commands that the profiled
application uses are associated with a context, batched in a command buffer, and pushed
into the relevant queue associated with that context.

Nsight Systems can capture the state of these queues during the trace session.

Enabling the "Collect additional range of ETW events" option will also capture extended
DxgKrnl events from the Microsoft-Windows-DxgKrnl provider, such as context
status, allocations, sync wait, signal events, etc.

¥ WDDM (GeForce RTX 2080 Ti 1)

3D CPU Queue ffffdaB52163ac

Wait

3D GPU Queue ffffdag852163ade0 L

Copy CPU Queue ffffda8519202de -

Copy GPU Queue ffffda8519202de

A command buffer in a WDDM queues may have one the following types:

Render
Deferred
System
MMIOFlip
Wait
Signal
Device
Software

vV V. vV vV vV VvV Vv v

It may also be marked as a Present buffer, indicating that the application has finished
rendering and requests to display the source surface.

www.nvidia.com
User Guide v2022.2.1 | 141

WDDM Queues

See the Microsoft documentation for the WDDM architecture and the
DXGKETW_QUEUE_PACKET_TYPE enumeration.

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2022.2.1 | 142

Chapter 9.
WDDM HW SCHEDULER

When GPU Hardware Scheduling is enabled in Windows 10 or newer version, the
Windows Display Driver Model (WDDM) uses the DxgKrnl ETW provider to expose
report of NVIDIA GPUs' hardware scheduling context switches.

Nsight Systems can capture these context switch events, and display under the GPUs in
the timeline rows titted WDDM HW Scheduler - [HW Queue type]. The ranges under
each queue will show the process name and PID assoicated with the GPU work during
the time period.

The events will be captured if GPU Hardware Scheduling is enabled in the Windows
System Display settings, and "Collect WDDM Trace" is enabled in the Nsight Systems
Project Settings.

WDDM HW Scheduler - 30 A . ez o

www.nvidia.com
User Guide v2022.2.1 | 143

Chapter 10.
VULKAN API TRACE

10.1. Vulkan Overview

Vulkan is a low-overhead, cross-platform 3D graphics and compute API, targeting
a wide variety of devices from PCs to mobile phones and embedded platforms. The
Vulkan APl is defined by the Khronos Group. Information about Vulkan and the
Khronos Group can be found at the Khronos Vulkan Site.

Nsight Systems can capture information about Vulkan usage by the profiled process.
This includes capturing the execution time of Vulkan API functions, corresponding GPU
workloads, debug util labels, and frame durations. Vulkan profiling is supported on
both Windows and x86 Linux operating systems.

+770ms 775ms +780ms. +TB5ms +730ms. +795ms

Lo bt el . ddble

- Threads 26)

e e I [uerhcaesinonng]] [v eaeainrsing]] a

Wulkan AP1 kQueucPresentkHR ViQueucPresentkHR] —
- s - | i ' |

7 3 3 T

Bockad e P foavest L UserRequost 883 ol User Request D886 msl_____UserReques 3463 msl___Uscr ic]

s T e C M i llid - ok b,
= Frame duration (50 FP51
+ CPU frame duration Frame #105 [16,670 ms| Frame #106 [16.685 ms] | Frame,
+ GPU frame durstion fram.. Frame #105 (17055 Frame 106 (16,600 ms] i
- Volkan
-+ Command Bufers Creation

. T
- Quesen

0l 0] 0

Wodond T — —r — |

[T —
— | \

The Command Buffer Creation row displays time periods when command buffers were
being created. This enables developers to improve their application’s multi-threaded
command buffer creation. Command buffer creation time period is measured between
the call to vkBeginCommandBuffer and the call to vkEndCommandBuffer.

~ Vukan
- Command Buffers Creation

(Command bufer [Beginnd] (omman..|) Command bufter ieginndl ([J(CT) ()LL)

www.nvidia.com
User Guide v2022.2.1 | 144

https://www.khronos.org/vulkan/

Vulkan API Trace

A Queue row is displayed for each Vulkan queue created by the profiled application.
The API sub-row displays time periods where vkQueueSubmit was called. The GPU
Workload sub-row displays time periods where workloads were executed by the GPU.

vkQueueSubmit

o Y — = —
In addition, you can see Vulkan debug util labels on both the CPU and the GPU.

Vulkan API

Point Markers I

Markers i

Clicking on a GPU workload highlights the corresponding vkQueueSubmit call, and
vice versa.

~ Queue0
API

The Vulkan Memory Operations row contains an aggregation of all the Vulkan host-
side memory operations, such as host-blocking writes and reads or non-persistent map-
unmap ranges.

The row is separated into sub-rows by heap index and memory type - the tooltip for
each row and the ranges inside show the heap flags and the memory property flags.

¥ Vulkan APl Memory Ops [Non-persistent [Map,Unmap]] a

1: CPU:COHERENT|VISIBLE (L TR A LT)

Non-persistent [Map,Unmap] a
Begins: 4.35793s

Ends: 4.35871s (+774.959 ps)

0: GPU:LOCAL Correlation ID: 115062

Thread [41672]

CPU Upload Heap 1

Flags: HOST_VISIBLE | HOST_COHERENT

| KT CPU:CACHED|COHERENTIVISIBLE

1: CPU:COHERENT|VISIBLE

Vulkan Memory Type
Heap Index: 1 =
Heap Flags:

0: GPU:LOCA (None)

Memory Property Flags:

VK_MEMORY PROPERTY HOST_VISIBLE_BIT
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

B 1 cpucACH

www.nvidia.com
User Guide v2022.2.1 | 145

https://github.com/KhronosGroup/Vulkan-Docs/blob/master/appendices/VK_EXT_debug_utils.txt

Vulkan API Trace

10.2. Pipeline Creation Feedback

When tracing target application calls to Vulkan pipeline creation APIs, Nsight Systems
leverages the Pipeline Creation Feedback extension to collect more details about the
duration of individual pipeline creation stages.

See Pipeline Creation Feedback extension for details about this extension.

Vulkan pipeline creation feedback is available on NVIDIA driver release 435 or later.

35 +80ms +100ms +120ms +140ms +160ms +180ms +200ms +220/~

v CPU(12)

~ Threads (19)

- ¥ [20512] -

Blocked State

Vulkan API vkQueueWaitldle JI[vkCreateRayTracingPipelinesNy)i (.0

Markers

Profiler overhead

~ V| [26272] - -

Events View v

2 of 13 matches ‘pipaline]

= Name ~ Duration TD GPU Context Start = Call to:
150 vkCrestelmage 13.400 ps 20512 - - 2.436055 vkCreateRayTracingFipelinesNV
Vulkan API calls
151 vkAllocateMemory 182,100 ps 20512 - - 2.43696s Begins: 3.14915s
152 vkCreatelmage £.000 s 20512 - - 2437155 Ends: 3.213985 (+64.835 ms)
Flags: NONE
133 vkAllocateMemory 219,700 ps 20512 - - 2437135 Duration: 64.831 ms

Stage 1 Flags: NONE

134 vkBeginCommandBuffer 1100 ps 20512 - - 243738
Stage 1 Duration: 2379 ms
155 vkEndCommandBuffer 1.400 ps 20512 - - 2437385 Stage 2 Flags: NONE
Stage 2 Duration: 5.032 ms
7 - - vE
156 vkQueueSubmit 70.600 ps 20512 2.43739s Stage 3 Flags: NONE
157 vkQueueWaitldle T10.687 ms 20512 - - 2437475 Stage 3 Duration: 5.245 ms
Stage 4 Flags: NONE
158 vkCreateBuffer 1,100 ps 20512 - - 314818 Stage 4 Duration: 4,001 ms
159 vkAllocateMemory 5,400 ps 20512 - - 3.1482s Stage 3 Flags: NONE
Stage 5 Duration: 3.711 ms
160 vkCreateBuffer 400 ns 20512 - - 3.1482s Stage 6 Flags: NONE
161 viillocatehemory 800 ns 20512 - - 3.14821s Stage 6 Duration: 116.000 ps
Stage 7 Flags: NONE
162 vkCreateBuffer 300 ns 20512 - - 3.14827s Stage 7 Duration: 102.000 ps
163 viAllocateMemory 433,100 ps 20512 - - 3148285 Stage 8 Flags: NONE
Stage 8 Duration: 180.000 ps
164 vkCreateBuffer 600 ns 20512 - - 3.148765 Stage 9 Flags: NONE
165 vkAllocateMemory 1.300 ps 20512 - - 3.14876s Stage 9 Duration: 363.000 ps
Stage 10 Flags: NONE
166 vkCreateBuffer 300 ns 20512 - - 3.14876s Stage 10 Duration: 277.000 ps
VIcAIIo:atEMemory 500 ns 20512 3.148765 Stage 11 Flags: NONE
Stage 11 Duration: 817,000 ps
vkCreateBuffer 1,500 ps 20512 3.21398s | 5t29e 12 Duration: 463.000 s

10.3. Vulkan GPU Trace Notes

» Vulkan GPU trace is available only when tracing apps that use NVIDIA GPUs.

» The endings of Vulkan Command Buffers execution ranges on Compute and
Transfer queues may appear earlier on the timeline than their actual occurrence.

www.nvidia.com
User Guide v2022.2.1 | 146

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VkPipelineCreationFeedbackEXT

Chapter 11.
STUTTER ANALYSIS

Stutter Analysis Overview

Nsight Systems on Windows targets displays stutter analysis visualization aids for
profiled graphics applications that use either OpenGL, D3D11, D3D12 or Vulkan, as
detailed below in the following sections.

11.1. FPS Overview

The Frame Duration section displays frame durations on both the CPU and the GPU.

~ Frame duration (Target FPS: 30 Hz)| Showing 108 of 2113 CPU frames | avg 4.08ms | min 2.82ms | max 6.98ms | FPS 245.09 | 99%<6.64ms

b CPU fome durion AT TR

Gorce R 2060 T (LEEVEREEIREREREREEEEREEEEREEEEEEREEAEEER PR

The frame duration row displays live FPS statistics for the current timeline viewport.
Values shown are:

1. Number of CPU frames shown of the total number captured

2. Average, minimal, and maximal CPU frame time of the currently displayed time
range

3. Average FPS value for the currently displayed frames

4. The 99th percentile value of the frame lengths (such that only 1% of the frames in the
range are longer than this value).

The values will update automatically when scrolling, zooming or filtering the timeline
view.

v Frame duration (Target FPS: 30 Hz)| Showing 6 of 2113 CPU frames | avq 5.10ms | min 4.01ms | max 8.55ms | FPS 195.94 | 99%<8.39ms

~ CPU frame duration

Frame health

s
ceermar) (655 (D e e

www.nvidia.com
User Guide v2022.2.1 | 147

Stutter Analysis

The stutter row highlights frames that are significantly longer than the other frames in
their immediate vicinity.

The stutter row uses an algorithm that compares the duration of each frame to the
median duration of the surrounding 19 frames. Duration difference under 4 milliseconds
is never considered a stutter, to avoid cluttering the display with frames whose absolute
stutter is small and not noticeable to the user.

For example, if the stutter threshold is set at 20%:

1. Median duration is 10 ms. Frame with 13 ms time will not be reported (relative
difference >20%, absolute difference < 4 ms)

2. Median duration is 60 ms. Frame with 71 ms time will not be reported (relative
difference < 20%, absolute difference >4 ms)

3. Median duration is 60 ms. Frame with 80 ms is a stutter (relative difference > 20%,
absolute difference >4 ms, both conditions met)

OSC detection

The "19 frame window median" algorithm by itself may not work well with some cases
of "oscillation" (consecutive fast and slow frames), resulting in some false positives. The
median duration is not meaningful in cases of oscillation and can be misleading.

To address the issue and identify if oscillating frames, the following method is applied:

1. For every frame, calculate the median duration, 1st and 3rd quartiles of 19-frames
window.

2. Calculate the delta and ratio between 1st and 3rd quartiles.

3. If the 90th percentile of 3rd — 1st quartile delta array >4 ms AND the 90th percentile
of 3rd/1st quartile array > 1.2 (120%) then mark the results with "OSC" text.

Right-clicking the Frame Duration row caption lets you choose the target frame rate (30,
60, 90 or custom frames per second).

v Frame duration (60 EDSY
Target frame rate 30 FPS ——
» CPU frame du I
v Target frame rate 60 FPS
r GPU frame du

Target frame rate 90 FPS
* DX12

Customize FPS Display...
~ Command Lis i

Undo Zoom (1)

Swap Chain 0

Reset Zoom
v GPU # Pin row
v Command Queue 0 [Direci
AP

By clicking the Customize FPS Display option, a customization dialog pops up. In the
dialog, you can now define the frame duration threshold to customize the view of the
potentially problematic frames. In addition, you can define the threshold for the stutter
analysis frames.

www.nvidia.com
User Guide v2022.2.1 | 148

Stutter Analysis

@ Customize FPS display X

Frame Duration (ms)

Frames are colored according to their duration using these 2 thresholds:
Good < 16.67 (ms) < Borderline < 20.00 (ms) | < -

=59 FPS =50 FPS
Stutter (%)

Reflects how much a frame duration is longer than the median duration of the
surrounding 19 frames.

Only frames with duration of 4ms longer than the median are checked for stutter.

Only Borderline and Bad stutter frames appear on the timeline stutter row.

20% < Borderline < 50% < -
OK Cancel

Frame duration bars are color coded:

» Green, the frame duration is shorter than required by the target FPS ratio.
» Yellow, duration is slightly longer than required by the target FPS rate.
» Red, duration far exceeds that required to maintain the target FPS rate.

The CPU Frame Duration row displays the CPU frame duration measured between the
ends of consecutive frame boundary calls:

» The OpenGL frame boundaries are eglSwapBuffers/glXSwapBuffers/
SwapBuffers calls.

» The D3D11 and D3D12 frame boundaries are IDXGISwapChainX: : Present calls.
» The Vulkan frame boundaries are vkQueuePresentKHR calls.

The timing of the actual calls to the frame boundary calls can be seen in the blue bar at
the bottom of the CPU frame duration row

The GPU Frame Duration row displays the time measured between

» The start time of the first GPU workload execution of this frame.
» The start time of the first GPU workload execution of the next frame.

Reflex SDK

NVIDIA Reflex SDK is a series of NVAPI calls that allow applications to integrate the
Ultra Low Latency driver feature more directly into their game to further optimize
synchronization between simulation and rendering stages and lower the latency

between user input and final image rendering. For more details about Reflex SDK, see
Reflex SDK Site.

Nsight Systems will automatically capture NVAPI functions when either Direct3D 11,
Direct3D 12, or Vulkan API trace are enabled.

The Reflex SDK row displays timeline ranges for the following types of latency markers:

» RenderSubmit.
» Simulation.
» Present.

www.nvidia.com
User Guide v2022.2.1 | 149

https://developer.nvidia.com/reflex/

Stutter Analysis

» Driver.
» OS Render Queue.
» GPU Render.
Rende..| Render Submit-2210[16.653ms] | RenderSubmit-2211[16.653ms] | Render Submit- 2212
simulation - 22.., Simulation - 2211 [16.486 ms] Simulation - 2212 [16.837 ms] Simulatio
3 ez
Reflex SDK mark, -
opkmes < rRens) G
o Grene)
1 1 [|
* Frame duration (Target FPS: 60 Showj==F-ficzoniLs : 16.98ms | min 14.2dms | max 19.47ms | FPS53.88 | 9
Present - 2210
» CPU frame duration | #163 [14.239 ms] Begins: 2.70516s] | =185 [16.066 ms]
Ends: 2.70525s (+87.713 ps)
* WDDM (GeForce RTX 2080 SUP Rangeld: 6788
Thread: 20820
]
Events View >
Mame
& ~ Mame Start Duration TID
|:| 1 4 |:| Render Submit - 2047 -0.0054113s 10,839 ms 20820
02 [] Simulation - 2042 -0,005350965 10.815 ms 1604
0: [Driver - 2047 -0.001943145 8,090 ms 1604
I v] GpuRender - 2047 0.001501855 5340 ms 1604
07 » [] Rendler Submit - 2048 0.005432285 8.841 ms 20820
[e v [] Simulation - 2049 0.00549007s 9,952 ms 1604
0w v [] OsRender Queue - 2042 0.01064985 5483 ms 1604
|:| 13 4 |:| Render Submit - 2049 0.014279% 13.731 ms 20820

Performance Warnings row

This row shows performance warnings and common pitfalls that are automatically
detected based on the enabled capture types. Warnings are reported for:

» ETW performance warnings

» Vulkan calls to vkQueueSubmit and D3D12 calls to
ID3D12CommandQueue: : ExecuteCommandList that take a longer time to execute
than the total time of the GPU workloads they generated

» D3D12 Memory Operation warnings

» Usage of Vulkan API functions that may adversely affect performance

» Creation of a Vulkan device with memory zeroing, whether by physical device
default or manually

» Vulkan command buffer barrier which can be combined or removed, such as
subsequent barriers or read-to-read barriers

Warnings
www.nvidia.com
User Guide v2022.2.1 | 150

Stutter Analysis

11.2. Frame Health

The Frame Health row displays actions that took significantly a longer time during

the current frame, compared to the median time of the same actions executed during
the surrounding 19-frames. This is a great tool for detecting the reason for frame time
stuttering. Such actions may be: shader compilation, present, memory mapping, and
more. Nsight Systems measures the accumulated time of such actions in each frame.
For example: calculating the accumulated time of shader compilations in each frame
and comparing it to the accumulated time of shader compilations in the surrounding 19
frames.

Example of a Vulkan frame health row:

- Frame

0FPS)
rame #53 [16.... Frame #54 (20247 ms]
resent [11.709...| Buil.

11.3. GPU Memory Utilization

The Memory Utilization row displays the amount of used local GPU memory and the
commit limit for each GPU.

* Video Memory
- GPUT

= Memory Utilization - Local

- GPUD

* Memory Utilization - Local

Note that this is not the same as the CUDA kernel memory allocation graph, see CUDA
GPU Memory Graph for that functionality.

11.4. Vertical Synchronization

The VSYNC rows display when the monitor's vertical synchronizations occur.

VSYNC - iGPU (0)
VSYNC - dGPU 1 (0)

www.nvidia.com
User Guide v2022.2.1 | 151

Chapter 12.
OPENMP TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenMP events. This functionality is built on the OpenMP Tools Interface
(OMPT), full support is available only for runtime libraries supporting tools interface
defined in OpenMP 5.0 or greater.

As an example, LLVM OpenMP runtime library partially implements tools interface.
If you use PGI compiler <= 20.4 to build your OpenMP applications, add -mp=libomp
switch to use LLVM OpenMP runtime and enable OMPT based tracing. If you use
Clang, make sure the LLVM OpenMP runtime library you link to was compiled with
tools interface enabled.

* Collect OpenMP trace

OpenMP (Open Multi-Processing) is a set of compiler directives, library routines, and environment variables that can
be used to specify high-level parallelism in Fortran and C/C++ programs. NVIDIA Nsight Systems supports collecting
and visualizing OpenMP events and ranges on the timeline.

[4 FPallack TTenen msmmbe

Only a subset of the OMPT callbacks are processed:

ompt callback parallel begin

ompt callback parallel end

ompt callback sync region

ompt callback task create

ompt callback task schedule

ompt callback implicit task

ompt callback master

ompt callback reduction

ompt callback task create

ompt callback cancel

ompt callback mutex acquire, ompt callback mutex acquired
ompt callback mutex acquired, ompt callback mutex released
ompt callback mutex released

ompt callback work

ompt callback dispatch

ompt callback flush

The
raw
Note: OMPT
events
are

www.nvidia.com
User Guide v2022.2.1 | 152

OpenMP Trace

used

to
generate
ranges
indicating
the
runtime

of
OpenMP
operations
and
constructs.

Example screenshot:

» cPU2)

05 runtime lbraries
Paralll Region

implct Task.

e Gn CErD B o mw) © D e e mE O DO @ O e

) 6 Cammw @ @D) G

v 507 apentoe o | N

05 runtime libraries

v G) Ge e ([(e G e (e B G 0) () G 6l (D) (e 5D G 50 G

0) e e D CEe) 6) () G E) G CEED G O e D e 6 ED G G
V. 165051 operiep viorc - EERSEEEEEE———————————————————————.

05 runtime libraries
mplic Task

orenk? ‘o) Eamer [looRewen) B G T Ewmer) (@) (CEamer) (Copesen) (B (ke B Gwo) (CRame) o) B (ko B (GopReon) @) (o) EJ G

www.nvidia.com
User Guide v2022.2.1 | 153

Chapter 13.
OS RUNTIME LIBRARIES TRACE

On Linux, OS runtime libraries can be traced to gather information about low-level
userspace APIs. This traces the system call wrappers and thread synchronization
interfaces exposed by the C runtime and POSIX Threads (pthread) libraries. This

does not perform a complete runtime library API trace, but instead focuses on the
functions that can take a long time to execute, or could potentially cause your thread be
unscheduled from the CPU while waiting for an event to complete. OS runtime trace is
not available for Windows targets.

OS runtime tracing complements and enhances sampling information by:

1. Visualizing when the process is communicating with the hardware, controlling
resources, performing multi-threading synchronization or interacting with the
kernel scheduler.

2. Adding additional thread states by correlating how OS runtime libraries traces affect
the thread scheduling;:

» Waiting — the thread is not scheduled on a CPU, it is inside of an OS runtime
libraries trace and is believed to be waiting on the firmware to complete a
request.

» In OS runtime library function — the thread is scheduled on a CPU and inside
of an OS runtime libraries trace. If the trace represents a system call, the process
is likely running in kernel mode.

3. Collecting backtraces for long OS runtime libraries call. This provides a way to
gather blocked-state backtraces, allowing you to gain more context about why the
thread was blocked so long, yet avoiding unnecessary overhead for short events.

www.nvidia.com
User Guide v2022.2.1 | 154

OS Runtime Libraries Trace

%

recvmsg ioctl | i

m In OS runtime library function
Duration: 63.156 ps

. - . Call stack at 1.608s:
e (o o A R il R e
i ; o ’ libeuda.s0.390.470x7fe0ed4712164
libcuda sa.390.4

cudart:.cudaApiMalloct...)
smokeParticles (1 of 6 threads) 'cudaMalloc

'oid* thrust::cuda_cub::malloe <..> (...}
5) of data is shown due to applied filters -

Jle Name
‘localfeuda-9.1 X I smol
Tlib/x86_64-linux-gnu/libcuda.s0.390.47
lib/x86_64-linux-gnu/libecuda.s0.390.47
Tlib/x86_64-linux-gnu/libcuda.s0.390.47

(..
smokeParticlestvold* thrusti:cuda_cubi:get memory_buffer<...>(...)
[Max depth]|[Max depth]

To enable OS runtime libraries tracing from Nsight Systems:

CLI — Use the -t, --trace option with the osrt parameter. See Command Line
Options for more information.

GUI — Select the Collect OS runtime libraries trace checkbox.

=) Collect OS runtime libraries trace

V| Skip if shorter than | 1.000 +| microseconds

Userspace tracing of Operating System runtime libraries that provide interfaces to communicate with the
hardware or control resources such as threads and processes. This traces the system call wrappers and
thread synchronization interfaces exposed by the C runtime and POSIX Threads (pthread) libraries.

You can also use Skip if shorter than. This will skip calls shorter than the given
threshold. Enabling this option will improve performances as well as reduce noise on
the timeline. We strongly encourage you to skip OS runtime libraries call shorter than 1

us.

13.1. Locking a Resource

The functions listed below receive a special treatment. If the tool detects that the
resource is already acquired by another thread and will induce a blocking call, we
always trace it. Otherwise, it will never be traced.

pthread mutex lock

pthread rwlock rdlock

pthread rwlock wrlock

pthread spin lock

sem wait

Note that even if a call is determined as potentially blocking, there is a chance that it
may not actually block after a few cycles have elapsed. The call will still be traced in this
scenario.

13.2. Limitations

» Nsight Systems only traces syscall wrappers exposed by the C runtime. It is not able
to trace syscall invoked through assembly code.

www.nvidia.com
User Guide v2022.2.1 | 155

OS Runtime Libraries Trace

» Additional thread states, as well as backtrace collection on long calls, are only
enabled if sampling is turned on.

» Itis not possible to configure the depth and duration threshold when collecting
backtraces. Currently, only OS runtime libraries calls longer than 80 us will generate
a backtrace with a maximum of 24 frames. This limitation will be removed in a
future version of the product.

» Itis required to compile your application and libraries with the -funwind-tables
compiler flag in order for Nsight Systems to unwind the backtraces correctly.

13.3. OS Runtime Libraries Trace Filters

The OS runtime libraries tracing is limited to a select list of functions. It also depends on
the version of the C runtime linked to the application.

www.nvidia.com
User Guide v2022.2.1 | 156

OS Runtime Libraries Trace

13.4. OS Runtime Default Function List

Libc system call wrappers

accept
accept4
acct

alarm

arch prctl
bind

bpf

brk

chroot
clock nanosleep
connect
copy file range
creat
creat64
dup

dup?2

dup3

epoll ctl
epoll pwait
epoll wait
fallocate
fallocate64
fentl
fdatasync
flock

fork

fsync
ftruncate
futex
ioctl
ioperm
iopl

kill
killpg
listen
membarrier
mlock
mlock2
mlockall
mmap
mmap64
mount

move pages
mprotect
mg_notify
mg_open
mg_receive
mg_ send
mg_timedreceive
mg_ timedsend
mremap
msgctl
msgget
msgrcv
msgsnd
msync
munmap
nanosleep
nfsservctl
open
opentc4
openat
openat64
pause

pipe

pipe2
pivot root
poll

POSIX Threads

pthread barrier wait
pthread cancel
pthread cond broadcast
pthread cond signal
pthread cond timedwait
pthread cond wait
pthread create

pthread join

pthread kill

pthread mutex lock
pthread mutex timedlock
pthread mutex trylock
pthread rwlock rdlock
pthread rwlock timedrdlock
pthread rwlock timedwrlock
pthread rwlock tryrdlock
pthread rwlock trywrlock
pthread rwlock wrlock
pthread spin lock
pthread spin trylock
pthread timedjoin np
pthread tryjoin np
pthread yield

sem timedwait

sem trywait

sem wait

www.nvidia.com
User Guide

OS Runtime Libraries Trace

v2022.2.1 | 158

I/0

aio fsync

aio fsync64

aio suspend

alo suspend64
fclose
fcloseall
fflush

fflush unlocked
fgetc

fgetc unlocked
fgets

fgets unlocked
fgetwc

fgetwc unlocked
fgetws

fgetws unlocked
flockfile

fopen

fopeno64d

fputc

fputc unlocked
fputs

fputs unlocked
fputwc

fputwc unlocked
fputws

fputws unlocked
fread

fread unlocked
freopen
freopené64
ftrylockfile
fwrite

fwrite unlocked
getc

getc unlocked
getdelim
getline

getw

getwc
getwc_unlocked
lockf

lockfe4

mkfifo

mkfifoat

posix fallocate
posix fallocate64
putc

putc unlocked
putwc

putwc _unlocked

Miscellaneous

forkpty
popen

posix spawn
posix spawnp
sigwait
sigwaitinfo
sleep

system
usleep

www.nvidia.com
User Guide

OS Runtime Libraries Trace

v2022.2.1 | 159

Chapter 14.
NVTX TRACE

The NVIDIA Tools Extension Library (NVTX) is a powerful mechanism that allows
users to manually instrument their application. Nsight Systems can then collect the
information and present it on the timeline.

Nsight Systems supports version 3.0 of the NVTX specification.
The following features are supported:
» Domains

nvtxDomainCreate (), nvtxDomainDestroy ()

nvtxDomainRegisterString ()
» Push-pop ranges (nested ranges that start and end in the same thread).

nvtxRangePush (), nvtxRangePushEx ()
nvtxRangePop ()
nvtxDomainRangePushEx ()

nvtxDomainRangePop ()
» Start-end ranges (ranges that are global to the process and are not restricted to a
single thread)
nvtxRangeStart (), nvtxRangeStartEx()
nvtxRangeEnd ()

nvtxDomainRangeStartEx ()

nvtxDomainRangeEnd ()

» Marks
nvtxMark (), nvtxMarkEx ()
nvtxDomainMarkEx ()

» Thread names

nvtxNameOsThread ()
» Categories

nvtxNameCategory ()

nvtxDomainNameCategory ()

To learn more about specific features of NVTX, please refer to the NVTX header file:
nvToolsExt.h or the NVITX documentation.

www.nvidia.com
User Guide v2022.2.1 | 160

https://nvidia.github.io/NVTX/

NVTX Trace

To use NVTX in your application, follow these steps:

1.

Add #include "nvtx3/nvToolsExt.h" in your source code. The nvtx3 directory
is located in the Nsight Systems package in the Target-<architecture>/nvtx/include
directory and is available via github at http://github.com/NVIDIA/NVTX.

Add the following compiler flag: -1d1

Add calls to the NVTX API functions. For example, try adding

nvtxRangePush ("main") in the beginning of the main () function, and
nvtxRangePop () just before the return statement in the end.

For convenience in C++ code, consider adding a wrapper that implements RAII
(resource acquisition is initialization) pattern, which would guarantee that every
range gets closed.

In the project settings, select the Collect NVTX trace checkbox.

If you are on Linux on Tegra, if launching the application manually, the following
environment variables should be specified:

» For ARMvV7 processes:

NVTX INJECTION32 PATH=/opt/nvidia/nsight systems/libToolsInjection32.so
» For ARMv8 processes:

NVTX INJECTION64 PATH=/opt/nvidia/nsight systems/libToolsInjection64.so

In addition, by enabling the "Insert NVTX Marker hotkey" option it is possible to add
NVTX markers to a running non-console applications by pressing the F11 key. These will
appear in the report under the NVTX Domain named "HotKey markers".

Typically calls to NVTX functions can be left in the source code even if the application is
not being built for profiling purposes, since the overhead is very low when the profiler is
not attached.

NVTX is not intended to annotate very small pieces of code that are being called very
frequently. A good rule of thumb to use: if code being annotated usually takes less than
1 microsecond to execute, adding an NVTX range around this code should be done
carefully.

Range
annotations
should

be
matched
carefully.

If

many
ranges
Note: are

opened
but

not

closed,
Nsight
Systems
has

no
meaningful

www.nvidia.com
User Guide v2022.2.1 | 161

http://github.com/NVIDIA/NVTX

way
to

NVTX Trace

visualize

it.
A
rule

of
thumb
is

to

not
have
more
than

a
couple
dozen
ranges
open
at

any
point

in

time.
Nsight
Systems
does
not
support
reports
with
many

unclosed

ranges.

NVTX Domains and Categories

NVTX domains enable scoping of annotations. Unless specified differently, all events
and annotations are in the default domain. Additionally, categories can be used to group

events.

Nsight Systems gives the user the ability to include or exclude NVTX events from a
particular domain. This can be especially useful if you are profiling across multiple

libraries and are only interested in nvtx events from some of them.

www.nvidia.com
User Guide

v2022.2.1 | 162

NVTX Trace

- Collect NVTX trace

The NVIDIA Toels Extension SDK (NVTX) is a C-based API for marking events and ranges in your applications. NVIDIA Nsight Systems supports
collecting and visualizing of these events and ranges on the timeline,
Insert MVTX Marker using hotkey | F11 d

(not available in console apps)

- MNVTX domain filter

Select the filtering mode to (only) include er exclude the specified domains. Select the default domain and/or specify a comma-
separated list of NVTX domains. Commas in a domain name have to be escaped with '

Include ® Exclude

Default domain

This functionality is also available from the CLI See the CLI documentation for --nvtx-
domain-include and --nvtx-domain-exclude for more details.

Categories that are set in by the user will be recognized and displayed in the GUL

report198.nsys-rep X

= Timeline View - Qix /» 1 waming, 7 messages
s+ os +100ms +200ms +300ms +a00ms +500ms ~+600ms +700ms +B00ms |~
~ Threads (1)
~ [31484] NutxSimplev3
~ NvtxSimplev3 Domain 0
Start & End
~ Categories
~ Start-End Ranges [2]
simple_nvtxRar
Start & End
Push-Pop Ranges [3]
Normal Marks (1] |
Special Attribute Marks [4] (N
» Nvtxsimplev3 Domain 1
» Nvtxsimplev3 Domain 2
2613 -
‘ D
Events View -
~ Name Start Duration TID Category ~ | Description
I [l simple_nvtxMarker:nvtxDomainMarkEx 0.0151457s 31484 Normal Marks [1] simple_nvtxRangePushPop:nvtxDomainRang
ePushEx
12 1l simple_r tEnd:nutxD 0.0252634s 100107 ms 31484 Start-End Ranges [2] Begins: 0,255955¢
| 3 1 simple_nvtxRangestartend:Range 1 01254245 110253ms 31484 Start-End Ranges [2] %‘f;f R (410,121 ms)
1l simple_nvtxRangeStartend:Range 2 0.135585 110216ms 31484 start-End Ranges [2] CMEQWM: 3

_ T 02055 | 100121ms | 31804 | Fushrop nanges 3]

» [] simple_nvtxRangePushPop:Level 0

03662755 120351ms 31484 Push-Pap Ranges [3]
|] 8 [attributes_unversioned 0.4866675 31484 special Attribute Marks [4]
K} [l attributes_category:EX 0.496795s 31484 Special Attribute Marks [4]
lw10 [attributes_color:valid color 0.506931s 31484 Special Attribute Marks [4]
(88 [attributes_color:default color 0.517065 31484 Special Attribute Marks [4]
012 [attributes_color:colorType undefined 0.527205s 31484 Special Attribute Marks [4]
www.nvidia.com

User Guide

Category: Push-Pop Ranges

v2022.2.1 | 163

Chapter 15.
CUDA TRACE

Nsight Systems is capable of capturing information about CUDA execution in the
profiled process.

The following information can be collected and presented on the timeline in the report:

» CUDA API trace — trace of CUDA Runtime and CUDA Driver calls made by the
application.

» CUDA Runtime calls typically start with cuda prefix (e.g. cudaLaunch).
» CUDA Driver calls typically start with cu prefix (e.g. cuDeviceGetCount).

» CUDA workload trace — trace of activity happening on the GPU, which includes
memory operations (e.g., Host-to-Device memory copies) and kernel executions.
Within the threads that use the CUDA API, additional child rows will appear in the
timeline tree.

» On Nsight Systems Workstation Edition, cuDNN and cuBLAS API tracing and
OpenACC tracing.

~ Threads (3)
- [v] [14617] particles -

CUDA API S (o kemelagentl) (G, | (.. (DeuieRedisonl..) fadit.) @i

Near the bottom of the timeline row tree, the GPU node will appear and contain a
CUDA node. Within the CUDA node, each CUDA context used within the process will
be shown along with its corresponding CUDA streams. Steams will contain memory
operations and kernel launches on the GPU. Kernel launches are represented by blue,
while memory transfers are displayed in red.

www.nvidia.com
User Guide v2022.2.1 | 164

CUDA Trace

= Timeline View -

¥ CPU (6)

» Threads (3)
» iGPU (NVIDIA Tegra X2)
 CUDA (NVIDIA Tegra X2, 0000: fa—
w Default stream (7) Jr—
¥ Memory -
DtoA memcpy ™
~ Kernels (CadvectVelocity k| (00 | Cvecto DL [(Dregul.. veckor) [a.)
» regular_fft] 2 [] (regula—]
» vector_fit 7] (vecto..|] (vector ffit |
» advectVelocity_k (CadvectVelocity_k_)
b _ nv_static_45_ 32_spRea
» _nv_static_45_ 32 spRea 7] 7]
» diffuseProject k =
» _ nv_static_45_32_spRea (V] V]
p advectParticles_k .

1 kernel group(s) hidder

The easiest way to capture CUDA information is to launch the process from Nsight
Systems, and it will setup the environment for you. To do so, simply set up a normal
launch and select the Collect CUDA trace checkbox.

For Nsight Systems Workstation Edition this looks like:

= v Collect CUDA trace

| Flush data periodically 10.00 3| seconds
v| Skip some API calls
v | Collect GPU memary usage

| Collect UM CPU page faulth
| Collect UM GPU page fau\!iTraCk the CPU page faults that occur with Unified Memory.

Enabling this option may increase the overhead.

Collect cuDNN trace
Collect cuBLAS trace
Collect OpenACC trace

» Collect CUDA backtraces

For Nsight Systems Embedded Platforms Edition this looks like:

B Collect CUDA frace

[+] Flush data periodically | 10,00 2| seconds

Skip some API callz

Additional configuration parameters are available:

» Collect backtraces for API calls longer than X seconds - turns on collection
of CUDA API backtraces and sets the minimum time a CUDA API event must
take before its backtraces are collected. Setting this value too low can cause high
application overhead and seriously increase the size of your results file.

» Flush data periodically — specifies the period after which an attempt to
flush CUDA trace data will be made. Normally, in order to collect full CUDA
trace, the application needs to finalize the device used for CUDA work (call

www.nvidia.com
User Guide v2022.2.1 | 165

CUDA Trace

cudaDeviceReset (), and then let the application gracefully exit (as opposed to
crashing).

This option allows flushing CUDA trace data even before the device is finalized.
However, it might introduce additional overhead to a random CUDA Driver or
CUDA Runtime API call.

Skip some API calls — avoids tracing insignificant CUDA Runtime

API calls (namely, cudaConfigureCall (), cudaSetupArgument (),
cudaHostGetDevicePointers ()). Not tracing these functions allows Nsight
Systems to significantly reduce the profiling overhead, without losing any
interesting data. (See CUDA Trace Filters, below)

Collect GPU Memory Usage - collects information used to generate a graph of
CUDA allocated memory across time. Note that this will increase overhead. See
section on CUDA GPU Memory Allocation Graph below.

Collect Unified Memory CPU page faults - collects information on page faults that
occur when CPU code tries to access a memory page that resides on the device. See
section on Unified Memory CPU Page Faults in the Unified Memory Transfer
Trace documentation below.

Collect Unified Memory GPU page faults - collects information on page faults that
occur when GPU code tries to access a memory page that resides on the CPU. See
section on Unified Memory GPU Page Faults in the Unified Memory Transfer
Trace documentation below.

For Nsight Systems Workstation Edition, Collect cuDNN trace, Collect cuBLAS
trace, Collect OpenACC trace - selects which (if any) extra libraries that depend on
CUDA to trace.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version
15.7 or greater and not compiling statically. In order to differentiate constructs, a PGI
runtime of 16.1 or later is required. Note that Nsight Systems Workstation Edition
does not support the GCC implementation of OpenACC at this time.

For Nsight Systems Embedded Platforms Edition if desired, the target application
can be manually set up to collect CUDA trace. To capture information about CUDA
execution, the following requirements should be satisfied:

» The profiled process should be started with the specified environment variable,
depending on the architecture of the process:

» For ARMv?7 (32-bit) processes: CUDA_INJECTION32_ PATH, which should
point to the injection library:
/opt/nvidia/nsight systems/libToolsInjection32.so

» For ARMvS (64-bit) processes: CUDA_INJECTION64_PATH, which should
point to the injection library:
/opt/nvidia/nsight systems/libToolsInjection64.so

» If the application is started by Nsight Systems, all required environment
variables will be set automatically.

Please note that if your application crashes before all collected CUDA trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com

User Guide v2022.2.1 | 166

CUDA Trace

15.1. CUDA GPU Memory Allocation Graph

When the Collect GPU Memory Usage option is selected from the Collect CUDA trace
option set, Nsight Systems will track CUDA GPU memory allocations and deallocations
and present a graph of this information in the timeline. This is not the same as the GPU

memory graph generated during stutter analysis on the Windows target (see Stutter
Memory Trace)

Below, in the report on the left, memory is allocated and freed during the collection. In
the report on the right, memory is allocated, but not freed during the collection.

Project 1 X _report36.qdrep X
& Timeline View - O © 11 meszaces || [= Timelioe view - O © 11 messac
4s. m 4.55 5.5 -
~ Threads (1) Threads (1)
~ [31604] vectorAdd ~ [28554] vectorAdd_nofre
CUDA APL A O e CUDA APL b oo HHTTHTITHTRTTH TR T T TR AT

~ CUDA (GeForce RTX 2080, 000(
» 0.9% Kernels

~ CUDA (GeForce RTX 2080, 000(

» 0.9% Kernels

T ol D, oy e

> 99.1% Memory

Here is another example, where allocations are happening on multiple GPUs

report3z.qdrep X [CNECEEEY

£ Timeline View -

Oss 1s +50ms +100ms +150ms +200ms +300ms +3¢
~ Threads (1)
~ [30548] MonteCarloMutti
cun e N e] D T e () O T e @ 00 BB e [e e e e e e
f e &2
~ CUDA (GeForce RTX 2080, 000(
~ 100.0% Context 1
» [All Streams] 4] [Montec)
» 81.0% Stream 16 (Homtec)
> 19.0% Defoult stream (7) []
» 0.0% Unified memory
+ CUDA (TITAN X (Pascal), 0000:
» [All Streams] (HonteCarkoon
» 83.4% Stream 27 [FomteCarioOn..)
b 16.6% Default stream (18) (2]

temeny ege !

~ CUDA (TITAN X (Pascal), 0000:

i
» [All Streams]) (Fentecaio)
» 80.3% Stream 38 (MooteCato.)
» 19.7% Default stream (29) @

Memory usage

N .
lemory:
m Usage: 13.50 MiB

15.2. Unified Memory Transfer Trace

For Nsight Systems Workstation Edition, Unified Memory (also called Managed
Memory) transfer trace is enabled automatically in Nsight Systems when CUDA trace
is selected. It incurs no overhead in programs that do not perform any Unified Memory
transfers. Data is displayed in the Managed Memory area of the timeline:

www.nvidia.com
User Guide v2022.2.1 | 167

CUDA Trace

w CUDA {Quadro GV100, 0000:04:00.0)
w Context 2

w Default stream

~ Managed Memory 9 |
HtoD transfer
DtoH transfer
PtoP transfer Transter T P o o o | Transfer]

PtoP transfer Transfer 770,048

9,222 bytes from device 0

4

. Timings: [1.593s 1.593s) =
Bottom-Up View = | Process [5400] UvmMultidevice (1 of 9 threads) 159.776 ps

? Filter... | 84.24% (2,485 samples) of data is shown due to applied filters.

HtoD transfer indicates the CUDA kernel accessed managed memory that was residing
on the host, so the kernel execution paused and transferred the data to the device. Heavy
traffic here will incur performance penalties in CUDA kernels, so consider using manual
cudaMemcpy operations from pinned host memory instead.

PtoP transfer indicates the CUDA kernel accessed managed memory that was residing
on a different device, so the kernel execution paused and transferred the data to this
device. Heavy traffic here will incur performance penalties, so consider using manual
cudaMemcpyPeer operations to transfer from other devices' memory instead. The row
showing these events is for the destination device -- the source device is shown in the
tooltip for each transfer event.

DtoH transfer indicates the CPU accessed managed memory that was residing on a
CUDA device, so the CPU execution paused and transferred the data to system memory.
Heavy traffic here will incur performance penalties in CPU code, so consider using
manual cudaMemcpy operations from pinned host memory instead.

Some Unified Memory transfers are highlighted with red to indicate potential
performance issues:

Os = 4ms +254, 2ms +254,6ms =

~ CUDA (GeForce GT 710) I

* 74.6% Unified memory
* 100,0% Memaory |
52,0% HtoD transfer

III

43.09% DtoH transfer Begins: 0.254344<

Ends: 0.2545265 (+181.9017 ps)
HtoD transfer 2,097,152 bytes
Source memaory kind: Managed _
Destination memory kind: Managed
Migration cause: Coherence

b 19.4% Stream 18 Throughput: 11.5291 GiB/s

St : 5t 0
b 10.2% Stream 17 ream: stream =

* 25.4% Context 1

» [All Streams] [:]
F 54.8% Stream 15

O
B8l

Transfers with the following migration causes are highlighted:

» Coherence
Unified Memory migration occurred to guarantee data coherence. SMs (streaming
multiprocessors) stop until the migration completes.

» Eviction
Unified Memory migrated to the CPU because it was evicted to make room

for another block of memory on the GPU. This happens due to memory
overcommitment which is available on Linux with Compute Capability > 6.

www.nvidia.com
User Guide v2022.2.1 | 168

Unified Memory CPU Page Faults

CUDA Trace

The Unified Memory CPU page faults feature in Nsight Systems tracks the page faults
that occur when CPU code tries to access a memory page that resides on the device.

www.nvidia.com
User Guide

Note:

Collecting
Unified
Memory
CPU

page
faults
can
cause
overhead
of

up

to

70%

in
testing.
Please
use

this
functionality
only
when
needed.

v2022.2.1 | 169

CUDA Trace

Project 7 X reportl.qdrep % report‘j,qdrep

= Timeline View -
0Os | +343ms 343.153ms EOIS +343.4ms +343.6ms +343.8ms +344ms +344.2ms +344.4m
» CPU(12)
—— -
~ Threads (8)

I | | e | .

~ |¥] [7142] UvmVectorAdd -

0S runtime libraries

CUDA API 11} =

Profiler o ad

7 threads hidden. - e
~ CUDA HW (0000:02:00.0 - Gef .
+ B4.2% Context 1
~ 15.8% Unified memory
GPU Page Faults [Read @ 0x7f952a002000 I Read @ 0x7f952a010000 IWrIte @ (!x'l..‘]

CUDA UM CPU Page Faults N

UM CPU page fault
Virtual page's address: 0x7f952a040000
CPU instruction: UvmVectorAdd!

-

RunTest(...}
[
Events View -
* Name Start Description:
1 UM CPU page fault @ 0x7f952a000000 0.342992s UM CPU page fault
2 UM CPU fault @ 0x7f9523010000 0.343048: Virtual page's address: 0x7f952a000000
pagefeul @0K & il CPU instruction: UvmVectorAdd!RunTest(...)
3 UM CPU page fault @ 0x7f952a020000 0.343093s
4 UM CPU page fault @ 0x7f952a040000 0.343154s
5 UM CPU page fault @ 0x7f952a3080000 0.344261s
6 UM CPU page fault @ 0x7f952a090000 0.344409s
P UM CPU page fault @ 0x7f952a0a0000 0.344498s

Unified Memory GPU Page Faults

The Unified Memory GPU page faults feature in Nsight Systems tracks the page faults
that occur when GPU code tries to access a memory page that resides on the host.

Collecting
Unified
Memory
GPU

page
faults

can

cause
overhead
Note: of
up

to

70%

in

testing.
Please

use

this
functionality
only

www.nvidia.com
User Guide v2022.2.1 | 170

CUDA Trace

when
needed.

ct 7 X reportl.gdrep x [Ehhigs

| = Timeline View = =
0s ~ +343ms +343.2ms. +343.4ms +343.6ms +343.8ms +344ms +344.4ms +
» CPU(12)
——
= Threads (8)

~ V! [7142] UvmVectorAdd ~ el e

I I W | NN | NN
]
0S runtime libraries

Profiler overhead
7 threads hidden. =

~ CUDA HW (0000:02:00.0 - Gel

= w L__|
+ 84.2% Context 1
~ 15.8% Unified memory
GPU Page Faults . 3 Ox 200200 . - 0z
+ 100.0% Memory UM GPU page fault
- |Begins: 0.344129s .
CUDA UM CPU Page Faults ‘ ‘ | | |Ends: 0.344252s (+123.551 ps)
| virtual address: 0x7f952a080000
|Number of page faults: 7
Memory access type: Write
Ll
Events View -
[
~ Name Start Duration GPU Description:
ET Read @ 0x7f352a002000 0.343313s 457.661us | GPUO UM GPU page fault
z Read @ 0x7f9522010000 0.34377: 358.109 GPUO Bagins0 A1 70
0. 30X/ = Luid Ends: 0.3442525 (+123.551 pis)
Number of page faults: 7
Memory access type: Write
www.nvidia.com

User Guide v2022.2.1 | 171

15.3. CUDA Default Function

CUDA Runtime API

cudaBindSurfaceToArray
cudaBindTexture

cudaBindTexture2D
cudaBindTextureToArray
cudaBindTextureToMipmappedArray
cudaConfigureCall
cudaCreateSurfaceObject
cudaCreateTextureObject
cudaD3D10MapResources
cudaD3D10RegisterResource
cudaD3D10UnmapResources
cudaD3D10UnregisterResource
cudaD3D9MapResources
cudaD3D9MapVertexBuffer
cudaD3D9RegisterResource
cudaD3D9RegisterVertexBuffer
cudaD3D9UnmapResources
cudaD3D9UnmapVertexBuffer
cudaD3D9UnregisterResource
cudaD3D9UnregisterVertexBuffer
cudaDestroySurfaceObject
cudaDestroyTextureObject
cudaDeviceReset
cudaDeviceSynchronize
cudaEGLStreamConsumerAcquireFrame
cudaEGLStreamConsumerConnect
cudaEGLStreamConsumerConnectWithFlags
cudaEGLStreamConsumerDisconnect
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamConsumerReleaseFrame
cudaEGLStreamProducerConnect
cudaEGLStreamProducerDisconnect
cudaEGLStreamProducerReturnFrame
cudaEventCreate
cudaEventCreateFromEGLSync
cudaEventCreateWithFlags
cudaEventDestroy

cudaEventQuery

cudaEventRecord
cudaEventRecord ptsz
cudaEventSynchronize

cudaFree

cudaFreeArray

cudaFreeHost
cudaFreeMipmappedArray
cudaGLMapBufferObject
cudaGLMapBufferObjectAsync
cudaGLRegisterBufferObject
cudaGLUnmapBufferObject
cudaGLUnmapBufferObjectAsync
cudaGLUnregisterBufferObject
cudaGraphicsD3D10RegisterResource
cudaGraphicsD3Dl11RegisterResource
cudaGraphicsD3D9RegisterResource
cudaGraphicsEGLRegisterImage
cudaGraphicsGLRegisterBuffer
cudaGraphicsGLRegisterImage
cudaGraphicsMapResources
cudaGraphicsUnmapResources
cudaGraphicsUnregisterResource
cudaGraphicsVDPAURegisterOutputSurface
cudaGraphicsVDPAURegisterVideoSurface
cudaHostAlloc

cudaHostRegister
cudaHostUnregister

cudaLaunch
cudaLaunchCooperativeKernel
cudaLaunchCooperativeKernelMultiDevice

List for CLI

CUDA Trace

CUDA Primary API

cub64Array3DCreate
cub4ArrayCreate
cu64D3D9MapVertexBuffer
cu64GLMapBufferObject

cu64GLMapBufferObjectAsync

cu64MemAlloc
cu64MemAllocPitch
cu64MemFree
cu64MemGetInfo
cu64MemtHostAlloc
cu64Memcpy2D
cu64Memcpy2DAsync
cu64Memcpy2DUnaligned
cu64Memcpy3D
cu64Memcpy3DAsync
cu64MemcpyAtoD
cu64MemcpyDtoA
cu64MemcpyDtoD
cu64MemcpyDtoDAsync
cu64MemcpyDtoH
cu64MemcpyDtoHAsync
cu64MemcpyHtoD
cu64MemcpyHtoDAsync
cu64MemsetD16
cu64MemsetDl6Async
cu64MemsetD2D16
cu64MemsetD2D16Async
cu64MemsetD2D32
cu64MemsetD2D32Async
cu64MemsetD2D8
cu64MemsetD2D8Async
cu64MemsetD32
cu64MemsetD32Async
cu64MemsetD8
cu64MemsetD8Async
cuArray3DCreate
culArray3DCreate v2
cuArrayCreate
cuArrayCreate v2
cuArrayDestroy
cuBinaryFree
cuCompilePtx
cuCtxCreate
cuCtxCreate v2
cuCtxDestroy
cuCtxDestroy v2
cuCtxSynchronize
cuD3D10CtxCreate
cuD3D10CtxCreateOnDevice
cuD3D10CtxCreate v2
cuD3D10MapResources
cuD3D10RegisterResource
cuD3D10UnmapResources
cuD3D10UnregisterResource
cuD3Dl1CtxCreate
cuD3D11CtxCreateOnDevice
cuD3Dl1CtxCreate v2
cuD3D9CtxCreate
cuD3D9CtxCreateOnDevice
cuD3D9CtxCreate v2
cuD3D9MapResources
cuD3D9MapVertexBuffer
cuD3D9MapVertexBuffer v2
cuD3D9RegisterResource

cuD3D9RegisterVertexBuffer

cuD3D9%UnmapResources
cuD3D9UnmapVertexBuffer
cuD3D9UnregisterResource

cuD3D9UnregisterVertexBuffer
cuEGLStreamConsumerAcquireFrame
cuEGLStreamConsumerConnect
cuEGLStreamConsumerConnectWithFlags
cuEGLStreamConsumerDisconnect
c11FGT.CtreamConsiimerReleacseFrame

CUDA Trace

15.4. cuDNN Function List for X86 CLI

cuDNN API functions

cudnnActivationBackward
cudnnActivationBackward v3
cudnnActivationBackward v4
cudnnActivationForward
cudnnActivationForward v3
cudnnActivationForward v4
cudnnAddTensor
cudnnBatchNormalizationBackward
cudnnBatchNormalizationBackwardEx
cudnnBatchNormalizationForwardInference
cudnnBatchNormalizationForwardTraining
cudnnBatchNormalizationForwardTrainingEx
cudnnCTCLoss
cudnnConvolutionBackwardBias
cudnnConvolutionBackwardData
cudnnConvolutionBackwardFilter
cudnnConvolutionBiasActivationForward
cudnnConvolutionForward

cudnnCreate
cudnnCreateAlgorithmPerformance
cudnnDestroy
cudnnDestroyAlgorithmPerformance
cudnnDestroyPersistentRNNPlan
cudnnDivisiveNormalizationBackward
cudnnDivisiveNormalizationForward
cudnnDropoutBackward
cudnnDropoutForward
cudnnDropoutGetReserveSpaceSize
cudnnDropoutGetStatesSize
cudnnFindConvolutionBackwardDataAlgorithm
cudnnFindConvolutionBackwardDataAlgorithmEx
cudnnFindConvolutionBackwardFilterAlgorithm
cudnnFindConvolutionBackwardFilterAlgorithmEx
cudnnFindConvolutionForwardAlgorithm
cudnnFindConvolutionForwardAlgorithmEx
cudnnFindRNNBackwardDataAlgorithmEx
cudnnFindRNNBackwardWeightsAlgorithmEx
cudnnFindRNNForwardInferenceAlgorithmEx
cudnnFindRNNForwardTrainingAlgorithmEx
cudnnFusedOpsExecute

cudnnIm2Col
cudnnLRNCrossChannelBackward
cudnnLRNCrossChannelForward
cudnnMakeFusedOpsPlan
cudnnMultiHeadAttnBackwardData
cudnnMultiHeadAttnBackwardWeights
cudnnMultiHeadAttnForward

cudnnOpTensor

cudnnPoolingBackward
cudnnPoolingForward
cudnnRNNBackwardData
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeights
cudnnRNNBackwardWeightsEx
cudnnRNNForwardInference
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining
cudnnRNNForwardTrainingEx
cudnnReduceTensor
cudnnReorderFilterAndBias
cudnnRestoreAlgorithm
cudnnRestoreDropoutDescriptor
cudnnSaveAlgorithm

cudnnScaleTensor

cudnnSoftmaxBackward
cudnnSoftmaxForward
cudnnSpatialTfGridGeneratorBackward
cudnnSpatialTfGridGeneratorForward

CUDA Trace

CUDA Trace

www.nvidia.com
User Guide v2022.2.1 | 175

Chapter 16.
OPENACC TRACE

Nsight Systems for Linux x86_64 and Power targets is capable of capturing information
about OpenACC execution in the profiled process.

OpenACC versions 2.0, 2.5, and 2.6 are supported when using PGI runtime version 15.7
or later. In order to differentiate constructs (see tooltip below), a PGI runtime of 16.0 or
later is required. Note that Nsight Systems does not support the GCC implementation of
OpenACC at this time.

Under the CPU rows in the timeline tree, each thread that uses OpenACC will show
OpenACC trace information. You can click on a OpenACC API call to see correlation
with the underlying CUDA API calls (highlighted in teal):

_ 6.0 ’
| E Timeline view - Sl A waming 15 messages
os +401ms S4010Sms__sa01dms _+401.15ms FIESEEES 401o5ms ___401.3ms +40135ms +4014ms +401d5ms |~

» CPU(12)

~ Threads (7)

Eepeewwenn.]

05 runtime libraries

e
e
&) 0 Wait : matrichd B Wait: matrchul.c55
CUDA API 0 custreamsynchronize
Profiler overhead Call to cuMemcpyHtoDAsync
B Memory copies
6 threads hidden... = Begins: 0.40120s
~ CUDA (Quadro P60D) Ends: 0.401213s (+4.010 ps)
Retun value: 0
= 100.0% Kemels Correlation ID: 719
~ 100.0% matrisMulGPU_55_gpu

< v

If the OpenACC API results in GPU work, that will also be highlighted:

= Timeline View - Pl A\ 1 waming, 15 messoges
0 +d11.2ms +411.4ms +d11.6ms +d113ms +d17me +d172ms +d17.4ms <a1p6ms [+
b CPU(12)
L
~ Threads (7)

- s - N

05 runtime libraries

OpenACC

CUDA API

Profiler overhead

6 threads hidden... —e
~ CUDA (Quadro PE00) -
- 1000% Kernes 2 O e
- 1000% matrauGPU_35 90 B . ewMGRSe
——— e —— T
1 »
www.nvidia.com

User Guide v2022.2.1 | 176

OpenACC Trace

Hovering over a particular OpenACC construct will bring up a tooltip with details about
that construct:

Enter Data : openacc_app.cpp:29

Timings: [0.355s 0.374s) = 1B.626 ms I
Construct Kind: Data Construct
Async: -1

Async Map: 16

Source File: openacc_app.cpp

Func Name: openaccKernel(int, float, float*, float*)
Variable Name: =Unknown=

To capture OpenACC information from the Nsight Systems GUI, select the Collect
OpenACC trace checkbox under Collect CUDA trace configurations. Note that turning
on OpenACC tracing will also turn on CUDA tracing.

= v Collect CUDA trace
/| Flush data periodically 10.00 || seconds
v Skip some API calls
v| Collect GPU memory usage

| Collect UM CPU page faulth

v/ Collect UM GPU page faul Track the CPU page faults that occur with Unified Memory.
Enabling this option may increase the overhead.

Collect cuDNN trace
Collect cuBLAS trace
Collect OpenACC trace

» Collect CUDA backtraces

Please note that if your application crashes before all collected OpenACC trace data has
been copied out, some or all data might be lost and not present in the report.

www.nvidia.com
User Guide v2022.2.1 | 177

Chapter 17.
OPENGL TRACE

OpenGL and OpenGL ES APIs can be traced to assist in the analysis of CPU and GPU
interactions.

A few usage examples are:

1. Visualize how long eglSwapBuffers (or similar) is taking.

2. API trace can easily show correlations between thread state and graphics driver's
behavior, uncovering where the CPU may be waiting on the GPU.

3. Spot bubbles of opportunity on the GPU, where more GPU workload could be
created.

4. Use KHR_debug extension to trace GL events on both the CPU and GPU.

OpenGL trace feature in Nsight Systems consists of two different activities which will be
shown in the CPU rows for those threads

» CPU trace: interception of API calls that an application does to APIs (such as
OpenGL, OpenGL ES, EGL, GLX, WGL, etc.).

» GPU trace (or workload trace): trace of GPU workload (activity) triggered by use
of OpenGL or OpenGL ES. Since draw calls are executed back-to-back, the GPU
workload trace ranges include many OpenGL draw calls and operations in order to
optimize performance overhead, rather than tracing each individual operation.

To collect GPU trace, the glQueryCounter () function is used to measure how much
time batches of GPU workload take to complete.

=)' [collect Open6L trace
1= [CollectkHR_debug trace

[+ Enable GPU trace

[] Limit trace depth to level

www.nvidia.com
User Guide v2022.2.1 | 178

@ Choose functions X

Uncheck all Reset to default

Search criteria: Check all

| Search...

Functions

[Buffer

Clear

] Coler

Draw

[m] EGL

] Enable/Disable
] Framebuffer Objects
m] GLX

[Get

1 Program

] Tesxture

[UniformMatrix
] Unsorted

[Vertex

1 glUniform

1 giWindowPos

o

OpenGL Trace

Ranges defined by the KHR _debug calls are represented similarly to OpenGL API and
OpenGL GPU workload trace. GPU ranges in this case represent incremental draw cost.
They cannot fully account for GPUs that can execute multiple draw calls in parallel. In
this case, Nsight Systems will not show overlapping GPU ranges.

www.nvidia.com
User Guide

v2022.2.1 | 179

17.1. OpenGL Trace Using Command Line

OpenGL Trace

For general information on using the target CLI, see CLI Profiling on Linux. For the CLI,

the functions that are traced are set to the following list:

glWaitSync

glReadPixels

glReadnPixelsKHR

glReadnPixelsEXT

glReadnPixelsARB

glReadnPixels

glFlush

glFinishFenceNV

glFinish

glClientWaitSync
glClearTexSubImage
glClearTexImage

glClearStencil
glClearNamedFramebufferuiv
glClearNamedFramebufferiv
glClearNamedFramebufferfv
glClearNamedFramebufferfi
glClearNamedBufferSubDataEXT
glClearNamedBufferSubData
glClearNamedBufferDataEXT
glClearNamedBufferData
glClearIndex

glClearDepthx

glClearDepthf

glClearDepthdNV

glClearDepth

glClearColorx

glClearColorIuiEXT
glClearColorIiEXT

glClearColor

glClearBufferuiv
glClearBufferSubData
glClearBufferiv

glClearBufferfv

glClearBufferfi

glClearBufferData

glClearAccum

glClear

glDispatchComputeIndirect
glDispatchComputeGroupSizeARB
glDispatchCompute
glComputeStreamNV
glNamedFramebufferDrawBuffers
glNamedFramebufferDrawBuffer
glMultiDrawElementsIndirectEXT
glMultiDrawElementsIndirectCountARB
glMultiDrawElementsIndirectBindlessNV
glMultiDrawElementsIndirectBindlessCountNV
glMultiDrawElementsIndirectAMD
glMultiDrawElementsIndirect
glMultiDrawElementsEXT
glMultiDrawElementsBaseVertex
glMultiDrawElements
glMultiDrawArraysIndirectEXT
glMultiDrawArraysIndirectCountARB
glMultiDrawArraysIndirectBindlessNV
glMultiDrawArraysIndirectBindlessCountNV
glMultiDrawArraysIndirectAMD
glMultiDrawArraysIndirect
glMultiDrawArraysEXT
glMultiDrawArrays
glListDrawCommandsStatesClientNV
glFramebufferDrawBuffersEXT
glFramebufferDrawBuf ferEXT
glDrawTransformFeedbackStreamInstanced
glDrawTransformFeedbackStream
alDrawTransformFeedbackNV

OpenGL Trace

www.nvidia.com
User Guide v2022.2.1 | 181

Chapter 18.
CUSTOM ETW TRACE

Use the custom ETW trace feature to enable and collect any manifest-based ETW log.
The collected events are displayed on the timeline on dedicated rows for each event

type.

Custom ETW is available on Windows target machines.

€ Add provider >
Please enter the provider information:
MName: |MicrusoFt—Windows—Dwm—Core |
Guid: \9E9BBA3C-2E38-40CB-09F4-OE8281425164 |
Optional:
Buffer Size (KB): | |
Min Buffers: | |
Max Buffers: | |
Keyword: |0x80010000007FO03F |
Level: | TRACE_LEVEL_INFORMATION ~ |
Flags: | Select flags |
| ok || Concel |
* v Custom ETW Trace
N::::\’idus i“duaid me ::TI; Flags Buffer Size (KB) Min Buffers Max Buffers
Microsoft-Windows-Dwm-Core 9E9BBA3C-2E38... OxD 0 0 0 TRAC‘ — |
| oadd |
| Remove |
q] | I X

www.nvidia.com
User Guide v2022.2.1 | 182

Custom ETW Trace

os +800ms +200ms +400ms

* Microsoft-Windows-Dwm-Core
BIND_GDISPRITEBITMAP_FIRST TOKEN
CHANNELBATCHES_PROCESSED |l
COMMAND_PROCESSED_ONBEHALF |l
ENDFRAME DRAWLIST BATCH STATS ||
ENDFRAME_HW_DRAWLIST_CACHE_STATS ||
ENDFRAME_PRIMITIVE_GROUP_STATS ||
ENDFRAME TESSELLATED PRIMITIVES STATS |
ENDFRAME_WARP_DRAWLIST CACHE STATS |
ETWGUID_BITMAPCOPYEVENT
ETWGUID_COPYFRONTTOBACKBUFFERDELTAEVENT
ETWGUID_DIRTYREGIONEVENT

P —

| |
| I I I O O
ETWGUID_DWIMUPDATEWINDOW | ||| || EIWGUID_DIR:I'YRIIEGIIONI::VEI'IIT | | |
ETWGUID_OCCLUSIONEVENT | [l || | |mmeo0ssssis | |1
Event1D: 42
GDISPRITE_LOGICALSURFACE_ASSOCIATION I 0x0
MILEVENT_MEDIA_UCE_CHECKDEVICESTATE | 2230
MILEVENT_MEDIA_UCE PRECOMPUTEEVENT |
MILEVENT_MEDIA_UCE_PRESENTEVENT |
MILEVENT_MEDIA_UCE_RENDEREVENT |
PROCESS_ATTRIBUTION |
PROCESS_EXPRESSIONS |
RENDERTARGET_COUNTS |
RENDER_CVIPASS |
SCHEDULED COMPOSITION_REASON |
|
|
|
|

I I left : 1179.000000

| | top: 1040.000000
right : 1227.000000
bottom : 1080.000000

SCHEDULE_CLEAR_D2D_CACHES
SCHEDULE_DXGI_PRESENT_SUCCEEDED
SCHEDULE_FRAMEINFO
SCHEDULE_FRAME_WSYNCDEADLINES

To retain the .etl trace files captured, so that they can be viewed in other tools (e.g.
GPUView), change the "Save ETW log files in project folder" option under "Profile
Behavior" in Nsight Systems's global Options dialog. The .etl files will appear in the
same folder as the .nsys-rep file, accessible by right-clicking the report in the Project
Explorer and choosing "Show in Folder...". Data collected from each ETW provider will
appear in its own .etl file, and an additional .etl file named "Report XX-Merged-*.etl",
containing the events from all captured sources, will be created as well.

www.nvidia.com
User Guide v2022.2.1 | 183

Chapter 19.
GPU METRIC SAMPLING

Overview

GPU performance metrics sampling is intended to identify performance limiters in
applications using GPU for computations and graphics. It uses periodic sampling to
gather performance metrics and detailed timing statistics associated with different GPU
hardware units taking advantage of specialized hardware to capture this data in a single
pass with minimal overhead.

Note: GPU metrics sampling will give you precise device level information, but it does
not know which process or context is involved. GPU context switch trace provides less
precise information, but will give you process and context information.

20m + ol] +20mms 480 m #E0ms # 100ms
P P i P SR e A WS i - I P ey wir

= G (Al Craghics Device - SG00-57 0000}
= P Hetrics l—
GPC Clock Fregpuency

575 Lok Hequesty

GR Aathem

S Active
PoAM bt h -n-*-&munﬁu o R
P SH Wamp Derupaney] ..'.I Matrics:

] 4 B Vertex sy
Geomabry Warps In Flight: 0.0%
Vo OIRAM Ransdwidth i L kbl W Pingl Warps in Flight: 0,0%
o N Compute Warps In Flgiht: 17.7%

b PCle Batdmbanm — ey | Actian SM Unised Wadp Slets: 64,95

P {ALIE Graphics Devics - 000500001
PGP ATDD Geaphics Device - CODDGET 0000

-

G ALDD Graphics Device - D000:S000.0)
= FreCesses €3]
= [4ZEG] pythan

= CLIDA BN IALDS Grapsics Desace - DO00:E7:00 .35

These metrics provide an overview of GPU efficiency over time within compute,
graphics, and input/output (IO) activities such as:

www.nvidia.com
User Guide v2022.2.1 | 184

GPU Metric Sampling

» IO throughputs: PCle, NVLink, and GPU memory bandwidth
» SM utilization: SMs activity, tensor core activity, instructions issued, warp
occupancy, and unassigned warp slots

It is designed to help users answer the common questions:

» Ismy GPU idle?

» Ismy GPU full? Enough kernel grids size and streams? Are my SMs and warp slots
full?

» Am I using TensorCores?

» Is my instruction rate high?

» Am I possibly blocked on IO, or number of warps, etc

Nsight Systems GPU metric sampling is only available for Linux targets on x86-64 and
aarch64 and for Windows targets. It requires NVIDIA Turing architecture or newer.

Minimum required driver versions:

NVIDIA Turing architecture TU10x, TU11x - r440
NVIDIA Ampere architecture GA100 - r450

NVIDIA Ampere architecture GA100 MIG - r470 TRD1
NVIDIA Ampere architecture GA10x - r455

>
>
>
>

Note: Elevated permissions are required. On Linux use sudo to elevate privileges.
On Windows the user must run from an admin command prompt or accept the
UAC escalation dialog. See Permissions Issues and Performance Counters for more
information.

Launching GPU Metric Sampling from the CLI

GPU performance metrics sampling is controlled with 3 CLI switches:

» --gpu-metrics-device=[all,none,<index>] selects GPUs to sample (default is none)
» --gpu-metrics-set=[<index> or <alias>] selects metric set to use (default is the 1st
suitable from the list)

» --gpu-metrics-frequency=[10,200000] selects sampling frequency in Hz (default is
10000)

To profile with default options and sample GPU metrics on GPU #0:

Must have elevated permissions (see http://nv/ERR _NVGPUCTRPERM) or be root
(Linux) or administrator (Windows)
$ nsys profile --gpu-metrics-device=0 ./my-app

To list the available GPUs, use:

$ nsys profile --gpu-metrics-device=help
Possible --gpu-metrics-device values are:
0: Quadro GV100 [0000:17:00.0]
1: GeForce RTX 2070 SUPER [0000:65:00.0]
all: Select all supported GPUs
none: Disable GPU metrics [Default]

www.nvidia.com
User Guide v2022.2.1 | 185

https://developer.nvidia.com/nvidia-development-tools-solutions-err_nvgpuctrperm-permission-issue-performance-counters

GPU Metric Sampling

By default the first metric set which supports the selected GPU is used. But you can
manually select another metric set from the list. To see available metric sets use:

$ nsys profile --gpu-metrics-set=help
Possible --gpu-metrics-set values are:

[0] [tulOx] General Metrics for NVIDIA TUl0x (any frequency)

[1] [tullx] General Metrics for NVIDIA TUllx (any frequency)

[2] [gal00] General Metrics for NVIDIA GA100 (any frequency)

[3] [galOlx] General Metrics for NVIDIA GAlOx (any frequency)

[4] [tulOx-gfxt] Graphics Throughput Metrics for NVIDIA TUl0x (frequency
>= 10kHz)

[5] [galOx-gfxt] Graphics Throughput Metrics for NVIDIA GA1l0x (frequency
>= 10kHz)

[6] [galOx-gfxact] Graphics Async Compute Triage Metrics for NVIDIA GAl0x
(frequency >= 10kHz)

By default metrics sampling frequency is set to 10 kHz. But you can manually set it
from 10 Hz to 200 kHz using

--gpu-metrics-frequency=<value>

Launching GPU Metric Sampling from the GUI

For commands to launch GPU metric sampling from the CLI with examples, see the CLI
documentation.

When launching analysis in Nsight Systems, select Collect GPU Metrics.

* v Collect GPU metrics

Sampling rate ————————ale————— 10 kHz
GPUs: All supported -

Metric set: [gallx] Msight Systems Metrics for NVIDIA Ampere GA10x v

Select the GPUs dropdown to pick which GPUs you wish to sample.

Select the Metric set: dropdown to choose which available metric set you would like to
sample.

» v Collect CUD"

» W Collect GPU

Sampling rate:
GPUs:
Metric set: [gallk] Msight Systems Metrics for NVIDIA Ampere GA10x
[gallx-nvlink] Msight Systems Metrics for NVIDIA Ampere GA10x with MVLink
* Collect NVT,

Note that metric sets for GPUs that are not being sampled will be greyed out.

Sampling frequency

Sampling frequency can be selected from the range of 10 Hz - 200 kHz. The default value
is 10 kHz.

www.nvidia.com
User Guide v2022.2.1 | 186

GPU Metric Sampling

The maximum sampling frequency without buffer overflow events depends on GPU
(SM count), GPU load intensity, and overall system load. The bigger the chip and the
higher the load, the lower the maximum sampling frequency without buffer overflow
errors. If you need higher frequency, you can increase it until you get "Buffer overflow"
message in the Diagnostics Summary report page. If you observe buffer overflow ranges
on timeline, lower the sampling frequency.

Each metric set has a recommended sampling frequency range in its description. These
ranges are approximate. If you observe Inconsistent Data ranges on timeline, please
try closer to the recommended frequency.

Available Metrics

» GPC Clock Frequency - gpc__cycles_elapsed.avg.per_second

The average GPC clock frequency in hertz. In public documentation the GPC clock
may be called the "Application" clock, "Graphic" clock, "Base" clock, or "Boost" clock.

Note: The collection mechanism for GPC can result in a small fluctuation between
samples.
» SYS Clock Frequency - sys__cycles_elapsed.avg.per_second

The average SYS clock frequency in hertz. The GPU front end (command processor),
copy engines, and the performance monitor run at the SYS clock. On Turing and
NVIDIA GA100 GPUs the GPU metrics sampling frequency is based upon a period
of SYS clocks (not time) so samples per second will vary with SYS clock. On NVIDIA
GA10x GPUs the GPU metrics sampling rate is based upon a fixed frequency clock.
The maximum sampling rate scales linearly with the SYS clock.

» GRActive-gr__cycles_active.sum.pct of peak sustained elapsed

The percentage of cycles the graphics/compute engine is active. The graphics/
compute engine is active if there is any work in the graphics pipe or if the compute
pipe is processing work.
GA100 MIG - MIG is not yet supported. This counter will report the activity of the
primary GR engine.
» Sync Compute In Flight -
gr__dispatch_cycles_active queue_sync.avg.pct_of peak sustained elapsed

The percentage of cycles with synchronous compute in flight.

CUDA: CUDA will only report synchronous queue in the case of MPS configured
with 64 sub-context. Synchronous refers to work submitted in VEID=0.

Graphics: This will be true if any compute work submitted from the direct queue is
in flight.
» Async Compute in Flight -
gr__dispatch_cycles_active queue_async.avg.pct of peak sustained elapsed

The percentage of cycles with asynchronous compute in flight.

www.nvidia.com
User Guide v2022.2.1 | 187

GPU Metric Sampling

CUDA: CUDA will only report all compute work as asynchronous. The one
exception is if MPS is configured and all 64 sub-context are in use. 1 sub-context
(VEID=0) will report as synchronous.

Graphics: This will be true if any compute work submitted from a compute queue is
in flight.
» Draw Started - fe draw_count.avg.pct_of peak_sustained_elapsed

The ratio of draw calls issued to the graphics pipe to the maximum sustained rate of
the graphics pipe.

Note:The percentage will always be very low as the front end can issue draw calls
significantly faster than the pipe can execute the draw call. The rendering of this row
will be changed to help indicate when draw calls are being issued.

» Dispatch Started -
gr__dispatch count.avg.pct of peak sustained elapsed

The ratio of compute grid launches (dispatches) to the compute pipe to the
maximum sustained rate of the compute pipe.

Note: The percentage will always be very low as the front end can issue grid
launches significantly faster than the pipe can execute the draw call. The rendering
of this row will be changed to help indicate when grid launches are being issued.
» Vertex/Tess/Geometry Warps in Flight -
tpc___warps_active_shader vtg realtime.avg.pct_of peak sustained elapsed

The ratio of active vertex, geometry, tessellation, and meshlet shader warps resident
on the SMs to the maximum number of warps per SM as a percentage.
» Pixel Warps in Flight -

tpc__warps_active_shader ps realtime.avg.pct of peak sustained elapsed

The ratio of active pixel/fragment shader warps resident on the SMs to the
maximum number of warps per SM as a percentage.
» Compute Warps in Flight -

tpc__warps_active_shader cs realtime.avg.pct of peak sustained elapsed

The ratio of active compute shader warps resident on the SMs to the maximum
number of warps per SM as a percentage.
» Active SM Unused Warp Slots -

tpc___warps_inactive sm _active realtime.avg.pct of peak sustained elapsed

The ratio of inactive warp slots on the SMs to the maximum number of warps per
SM as a percentage. This is an indication of how many more warps may fit on the
SMs if occupancy is not limited by a resource such as max warps of a shader type,
shared memory, registers per thread, or thread blocks per SM.

» Idle SM Unused Warp Slots -

tpc__warps_inactive sm_idle realtime.avg.pct of peak sustained elapsed

The ratio of inactive warps slots due to idle SMs to the the maximum number of
warps per SM as a percentage.

This is an indicator that the current workload on the SM is not sufficient to put work
on all SMs. This can be due to:

www.nvidia.com
User Guide v2022.2.1 | 188

GPU Metric Sampling

» CPU starving the GPU
» current work is too small to saturate the GPU
» current work is trailing off but blocking next work
» SM Active-sm__cycles_active.avg.pct_of peak sustained elapsed

The ratio of cycles SMs had at least 1 warp in flight (allocated on SM) to the number
of cycles as a percentage. A value of 0 indicates all SMs were idle (no warps in
flight). A value of 50% can indicate some gradient between all SMs active 50% of the
sample period or 50% of SMs active 100% of the sample period.

» SMIssue -

sm__inst_executed realtime.avg.pct of peak sustained elapsed

The ratio of cycles that SM sub-partitions (warp schedulers) issued an instruction to
the number of cycles in the sample period as a percentage.
» Tensor Active -
sm__pipe_ tensor_cycles_active realtime.avg.pct_of peak sustained elapsed

The ratio of cycles the SM tensor pipes were active issuing tensor instructions to the
number of cycles in the sample period as a percentage.

TU102/4/6: This metric is not available on TU10x for periodic sampling. Please see
Tensor Active/FP16 Active.
» Tensor Active / FP16 Active -
sm_pipe shared cycles_active realtime.avg.pct of peak sustained elapsed

TU102/4/6 only

The ratio of cycles the SM tensor pipes or FP16x2 pipes were active issuing tensor
instructions to the number of cycles in the sample period as a percentage.

» VRAM Bandwidth -
dram throughput.avg.pct of peak sustained elapsed

The ratio of cycles the GPU device memory controllers were actively performing
read or write operations to the number of cycles in the sample period as a
percentage.

» NVLINK bytes received -
nvlrx bytes.avg.pct of peak sustained elapsed

The ratio of bytes received on the NVLINK interface to the maximum number of
bytes receivable in the sample period as a percentage. This value includes protocol
overhead.

» NVLINK bytes transmitted -
nvltx bytes.avg.pct of peak sustained elapsed

The ratio of bytes transmitted on the NVLINK interface to the maximum number
of bytes transmittable in the sample period as a percentage. This value includes
protocol overhead.

» PCle Read Throughput -
pcie read bytes.avg.pct of peak sustained elapsed

The ratio of bytes received on the PCle interface to the maximum number of bytes
receivable in the sample period as a percentage. The theoretical value is calculated

www.nvidia.com
User Guide v2022.2.1 | 189

GPU Metric Sampling

based upon the PCle generation and number of lanes. This value includes protocol
overhead.

» PCle Write Throughput -
pcie_write bytes.avg.pct of peak sustained elapsed

The ratio of bytes received on the PCle interface to the maximum number of bytes

receivable in the sample period as a percentage. The theoretical value is calculated
based upon the PCle generation and number of lanes. This value includes protocol
overhead.

Exporting and Querying Data

It is possible to access the metric values for automated processing using the Nsight
Systems CLI export capabilities.

An example that extracts values of "SM Active":

$ nsys export -t sglite report.nsys-rep
$ sglite3 report.sqglite "SELECT rawTimestamp, CAST (JSON EXTRACT (data, 'S.
\"SM Active\"') as INTEGER) as value FROM GENERIC EVENTS WHERE value != 0 LIMIT
lO"

30927703980
309301295]99
309325583199
309349776199
30937387260
309397872119
3094218401100
3094460001100
3094700961100
309494161199

An overview of the contents of the data stored in each event (JSON):

$ sglite3 report.sqglite "SELECT data FROM GENERIC EVENTS LIMIT 1"
{

"Unallocated Warps in Active SM": "0",
"Compute Warps In Flight": "52",

"Pixel Warps In Flight": "0",
"Vertex\/Tess\/Geometry Warps In Flight": "0",
"Total SM Occupancy": "52",

"GR Active (GE\/CE)": "100",

"Sync Compute In Flight": "0",

"Async Compute In Flight": "98",

"NVLINK bytes received": "0",

"NVLINK bytes transmitted": "0",

"PCIe Rx Throughput": "0",

"PCIe Tx Throughput": "1",

"DRAM Read Throughput": "0",

"DRAM Write Throughput": "O0",

"Tensor Active \/ FP16 Active": "0O",

"SM Issue": "10",

"SM Active": "52"

}

Values are integer percentages (0..100)

www.nvidia.com
User Guide v2022.2.1 | 190

GPU Metric Sampling

Limitations

» If metrics sets with NVLink are used but the links are not active, they may appear as
fully utilized.

» Only one tool that subscribes to these counters can be used at a time, therefore,
Nsight Systems GPU metric sampling cannot be used at the same time as the
following tools:

» Nsight Graphics
» Nsight Compute
» DCGM (Data Center GPU Manager)

Use the following command:

» dcgmi profile --pause
» dcgmi profile --resume

Or APL

» dcgmProfPause
» dcgmProfResume
» Non-NVIDIA products which use:

» CUPTI sampling used directly in the application. CUPTI trace is okay
(although it will block Nsight Systems CUDA trace)
» DCGM library

» Nsight Systems limits the amount of memory that can be used to store GPU metrics
sampling data. Analysis with higher sampling rates or on GPUs with more SMs has
a risk of filling these buffers. This will lead to gaps with long samples on timeline.
If you select that area on the timeline you will see that the counters will pause and
remain at a steady state for a while. Future releases will reduce the frequency of this
happening and better present these periods.

www.nvidia.com
User Guide v2022.2.1 | 191

Chapter 20.
NVIDIA VIDEO CODEC SDK TRACE

Nsight Systems for x86 Linux and Windows targets can trace calls from the NV Video
Codec SDK. This software trace can be launched from the GUI or using the --trace
nvvideo from the CLI

» Collect GPU metrics

= Collect NV Video trace

Trace NVIDIA Video Encoder APls.

» Collect NVTX trace

On the timeline, calls on the CPU to the NV Encoder API and NV Decoder API will be
shown.

= Threads (9)

~ [172685] AppTransPerf I SRR R R T . | | | i 1 |
0 runtime libraries 0 N VARG A0 110 R Co-JNEA| [Coon oo Y "pon T ot QX =T S

TransProc [1.619 5]

NVT IZB IDE... [D...|p...| DEC_Decode 3.938 ms] UDEC_Decude[Z.TB...I_I DEC_Decode 3.850ms]_| |
cuDA API P |) o Nastean. |]| Jesste]
weeovusterst D T £ 8 W TN T T
Profiler overhead

www.nvidia.com

User Guide v2022.2.1 | 192

NVIDIA Video Codec SDK Trace

20.1. NV Encoder API Functions Traced by Default

NvEncodeAPICreatelInstance
nvEncOpenEncodeSession
nvEncGetEncodeGUIDCount
nvEncGetEncodeGUIDs

nvEncGetEncodeProfileGUIDCount

nvEncGetEncodeProfileGUIDs
nvEncGetInputFormatCount
nvEncGetInputFormats
nvEncGetEncodeCaps
nvEncGetEncodePresetCount
nvEncGetEncodePresetGUIDs
nvEncGetEncodePresetConfig
nvEncGetEncodePresetConfigEx
nvEncInitializeEncoder
nvEncCreateInputBuffer
nvEncDestroyInputBuffer
nvEncCreateBitstreamBuffer
nvEncDestroyBitstreamBuffer
nvEncEncodePicture
nvEncLockBitstream
nvEncUnlockBitstream
nvEncLockInputBuffer
nvEncUnlockInputBuffer
nvEncGetEncodeStats
nvEndGetSequenceParams
nvEncRegisterAsyncEvent
nvEncUnregisterAsyncEvent
nvEncMapInputResource
nvEncUnmapInputResource
nvEncDestroyEncoder
nvEncInvalidateRefFrames
nvEncOpenEncodeSessionEx
nvEncRegisterResource
nvEncUnregisterResource
nvEncReconfigureEncoder
nvEncCreateMVBuffer
nvEncDestroyMVBuffer
nvEncRunMotionEstimationOnly
nvEncGetLastErrorString
nvEncSetIOCudaStreams
nvEncGetSequenceParamEx

www.nvidia.com
User Guide

v2022.2.1 | 193

NVIDIA Video Codec SDK Trace

20.2. NV Decoder API Functions Traced by Default

cuvidCreateVideoSource
cuvidCreateVideoSourceW
cuvidDestroyVideoSource
cuvidSetVideoSourceState
cudaVideoState

cuvidGetSourceVideoFormat
cuvidGetSourceAudioFormat

cuvidCreateVideoParser
cuvidParseVideoData
cuvidDestroyVideoParser
cuvidCreateDecoder
cuvidDestroyDecoder
cuvidDecodePicture
cuvidGetDecodeStatus
cuvidReconfigureDecoder
cuvidMapVideoFrame
cuvidUnmapVideoFrame
cuvidMapVideoFrame64
cuvidUnmapVideoFrame64
cuvidCtxLockCreate
cuvidCtxLockDestroy
cuvidCtxLock
cuvidCtxUnlock

www.nvidia.com
User Guide

v2022.2.1 | 194

NVIDIA Video Codec SDK Trace

20.3. NV JPEG API Functions Traced by Default

nvjpegBufferDeviceCreate
nvjpegBufferDeviceDestroy
nvjpegBufferDeviceRetrieve
nvijpegBufferPinnedCreate
nvjpegBufferPinnedDestroy
nvjpegBufferPinnedRetrieve
nvijpegCreate

nvijpegCreateEx

nvjpegCreateSimple

nvjpegDecode

nvjpegDecodeBatched
nvijpegDecodeBatchedEx
nvjpegDecodeBatchedInitialize
nvjpegDecodeBatchedPreAllocate
nvijpegDecodeBatchedSupported
nvijpegDecodeBatchedSupportedEx
nvjpegDecodedpeg
nvjpegDecodedpegbDevice
nvjpegDecodeJpegHost
nvijpegDecodedpegTransferToDevice
nvjpegDecodeParamsCreate
nvjpegDecodeParamsDestroy
nvjpegDecodeParamsSetAllowCMYK
nvijpegDecodeParamsSetOutputFormat
nvjpegDecodeParamsSetROI
nvjpegDecodeParamsSetScaleFactor
nvjpegDecoderCreate
nvijpegDecoderDestroy
nvjpegDecoderdpegSupported
nvjpegDecoderStateCreate
nvijpegDestroy
nvijpegEncodeGetBufferSize
nvjpegEncodeImage
nvjpegEncodeRetrieveBitstream
nvjpegEncodeRetrieveBitstreamDevice
nvijpegEncoderParamsCopyHuffmanTables
nvjpegEncoderParamsCopyMetadata
nvjpegEncoderParamsCopyQuantizationTables
nvjpegEncoderParamsCreate
nvijpegEncoderParamsDestroy
nvjpegEncoderParamsSetEncoding
nvjpegEncoderParamsSetOptimizedHuffman
nvjpegEncoderParamsSetQuality
nvijpegEncoderParamsSetSamplingFactors
nvjpegEncoderStateCreate
nvjpegEncoderStateDestroy
nvjpegEncodeYUV, (nvjpegHandle t handle
nvijpegGetCudartProperty
nvjpegGetDeviceMemoryPadding
nvjpegGetImageInfo
nvjpegGetPinnedMemoryPadding
nvijpegGetProperty
nvjpegJdpegStateCreate
nvjpegdpegStateDestroy
nvijpegdpegStreamCreate
nvijpegdpegStreambDestroy
nvjpegdpegStreamGetChromaSubsampling
nvjpegdpegStreamGetComponentDimensions
nvjpegdpegStreamGetComponentsNum
nvijpegdpegStreamGetFrameDimensions
nvjpegdpegStreamGetJpegEncoding
nvijpegdpegStreamParse
nvjpegdpegStreamParseHeader
nvijpegSetDeviceMemoryPadding
nvjpegSetPinnedMemoryPadding
nvjpegStateAttachDeviceBuffer
nvjpegStateAttachPinnedBuffer

Chapter 21.
NETWORK COMMUNICATION PROFILING

Nsight Systems can be used to profiles several popular network communication
protocols. To enable this, please select the Communication profiling options dropdown.

< =

<

Then select the libraries you would like to trace:

User Guide v2022.2.1 | 196

Network Communication Profiling

v Communication profiling options (MPI, SHMEM, UCX)
Trace API calls into communication libraries.
- MPI

Select the MPI implementation used by the target application to trace a default set of MPI calls. If no MPI implementation is
selected, NVIDIA Nsight Systems tries to automatically detect it based on the dynamic linker's search path. If this fails, Open
MPI is used. If the application uses another MPI implementation, see the documentation for additional setup required to trace
MPIL. Note that NVTX tracing will also be enabled on selecting MPI tracing.

v| Open MPI

MPICH and its derivatives

v OpenSHMEM

OpenSHMEM is a library interface specification for parallel programming in the Partitioned Global Address Space (PGAS).
NVIDIA Msight Systems supports collecting and visualizing a default set of OpenSHMEM API calls. Note that selecting
OpenSHMEM also enables NVTX tracing.

- UCX

UCX is an open-source communication framework which acts as a common library and API for several higher level
communication libraries, e.g. for Open MPI, MPICH and NCCL. Note that selecting UCX also enables NVTX tracing.

Skip stage tracking of UCP non-blocking communication

21.1. MPI API Trace

For Linux x86_64 and Power targets, Nsight Systems is capable of capturing information
about the MPI APIs executed in the profiled process. It has built-in API trace support
only for the OpenMPI and MPICH implementations of MPI and only for a default list of
synchronous APIs.

* Collect MPI trace

Select the MPI implementation used by the target application to trace a default set of synchronous MPI calls. If the
application uses a different MPI implementation, see the documentation for additional setup required to trace MPI. Note
that NVTX tracing will also be enabled on selecting MPI tracing.

e, OpenMPI
MPICH and its derivatives

¥ Collect NVTX trace

If you require more control over the list of traced APIs or if you are using a different
MPI implementation, see github nvtx pmpi wrappers. You can use this documentation
to generate a shared object to wrap a list of synchronous MPI APIs with NVTX using
the MPI profiling interface (PMPI). If you set your LD_PRELOAD environment variable
to the path of that object, Nsight Systems will capture and report the MPI API trace
information when NVTX tracing is enabled.

www.nvidia.com
User Guide v2022.2.1 | 197

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers

Project 8 X laplace2d_O.qdrep %

= Timeline View -
e +755ms +756ms
» CPU(12)
= Threads (10}
~ ¥/ [3394] MPIRank 0 ~ ! ! ! — —
I L I | I

Network Communication Profiling

+757ms +758ms +759ms

2~ 1x

+760ms +761ms

[BE] messages

+762ms |[*

MPI MPI_Sendrecv [52.485 ms] |MP[Sendrecv [1.341 ...
||_| (... [culpcopenme - :

CUDA APl cuMemHaostRegister

9 threads hidden... ==cit
~ CUDA (MPI Rank 0)
~ 88.2% Stream 15
b 96.9% Kernels
b 3.1% Memory
= 10.2% Stream 16
~ 100.0% Kernels
~ 100.0% main_123 gpu
100.0% main_123_gpu
~ 1.6% Stream 17
b 100.0% Memory
NVTX (MPI)
~ <0.1% Stream 20
+ 100.0% Memory LY
NVTX (MPI)

4,800

MPI Communication Parameters

TR

. -
| —— —
1 I . -
. —— —

Nsight Systems can now get additional information about MPI communication
parameters. For this initial release, the parameters are only visible in the mouseover
tooltips or in the eventlog. This means that the data is only available via the GUI. Future
versions of the tool will export this information into the SQLite data files for postrun

analysis.

In order to fully interpret MPI communications, data for all ranks associated with a
communication operation must be loaded into Nsight Systems.

Here is an example of MPI_COMM_WORLD data. This does not require any additional
team data, since local rank is the same as global rank.

(Screenshot shows communication parameters for an MPI_Bcast call on rank 3)

www.nvidia.com
User Guide

v2022.2.1 | 198

Network Communication Profiling

Events View =
' Name -
Name Description:
(] mPLnit MPI_Bcast
I:I MPI_Recv Begins: 0,164935s

Ends: 0,165045s (+109,210 ps)

| MPI_Bcast Thread: 1342434

Bytes sent: 0
I:I MPI_Bcast Bytes received: 4

[] MP1_Recv Root: 0
MPI_COMM_WORLD

|:| MPI_Finalize

When only part of an MPI communication is loaded into Nsight Systems the following
information is available.

» Right-hand screenshot shows a reused communicator handle (last number
increased).

» Encoding: MPI_COMM][*team size*]*global-group-root-rank*.*group-ID*

Events View | | Events View il
Name - 1 Name -)
~ Name Start “ | Description: # ~* Name Start ! Description:
IE [] MPL Beast 0,06235 | MPI_send s [] MPL_Bcast 0,06235 | MPLSend
Begins: 0,0626275 Begins: 0,06272675
4 MPLSend 0,0626 4 MPLSend 0,06262 :
i weL Ends: 0,06262885 (+1,771 is) 0 (] mPsen Ends: 0,0627285 (+1,314 ps)
s [] MPLBeast 0,06262 | Thread: 978418 s [] MPL Beast 0,06262 | Thread: 978418
Tag: 42 Tag: 42
Os [mPLsend 0.06272 | Bics sent: 4 I_ § MPLsend QLIZZE | Bytes sent: 4
07 [mP1 Beast 0,06272 | Destination: 1 0 [] MPL_Bcast 0,06272 || Destination: 1
MPL_COMM[2]1.0 MPI_COMM[2]1.1
Os [MPLFinalize 0,06272 s [MPLFinalize 006272

. » . b

When all reports are loaded into Nsight Systems:

» World rank is shown in addition to group-local rank "(world rank X)"

» Encoding: MPI_COMM][*team size*]{rank0, rankl, ...}

» At most 8 ranks are shown (the numbers represent world ranks, the position in the
list is the group-local rank)

| Events View | Events View z
Name = 4 Name o A
Name * Description: # ~ Name = Description:
[] MPL1nit MPI_Recv 1K [MPLnit MPL_send
Begins: 0,16549s Begins: 0,165609s
MPI_Recv
[mer Ends: 0,165492s (+1,837 pis) 02 (I mPr_Recy Ends: 0,1656125 (+2,577 s)
[MPL_Beast Thread: 1047429 1E [] mPL_Bcast Thread: 1047429
Tag: 42 Tag: 48
(] mpLBcast Bytes received: 4 04+ (] mPr_Beast Bytes sent: 4

| MP1L_Recy Source: 0 (world rank 2) Os [MP1_Recv Destination: 7 (world rank 2)
MPI_COMMI[2]{2, 3} = MPLCOMM[10}{9, 8,7, 6,5, 4,3, 2, .}
[] MPLsend _ N mP1_send

R = i [~ -
{ » [¥

NVTX tracing is automatically enabled when MPI trace is turned on.

www.nvidia.com
User Guide v2022.2.1 | 199

21.2. OpenSHMEM Library Trace

Network Communication Profiling

If OpenSHMEM library trace is selected Nsight Systems will trace the subset of
OpenSHMEM API functions that are most likely be involved in performance
bottlenecks. To keep overhead low Nsight Systems does not trace all functions.

OpenSHMEM 1.5 Functions Not Traced

shmem my pe

shmem n pes

shmem global exit

shmem pe accessible

shmem addr accessible

shmem ctx {create,destroy,get team}
shmem global exit

shmem info get {version,name}

shmem {my pe,n pes,pe accessible,ptr}
shmem query thread

shmem team {create ctx,destroy}

shmem team get config

shmem team {my pe,n pes,translate pe}
shmem team split {2d,strided}

shmem test*

21.3. UCX Library Trace

If UCX library trace is selected Nsight Systems will trace the subset of functions of the
UCX protocol layer UCP that are most likely be involved in performance bottlenecks. To
keep overhead low Nsight Systems does not trace all functions.

www.nvidia.com
User Guide

v2022.2.1 | 200

Network Communication Profiling

UCX functions traced:

ucp am send nb[x]

ucp am recv_data nbx

ucp am data release

ucp_ atomic {add{32,64},cswap{32,64},fadd{32,64},swap{32,64}}
ucp_atomic {post, fetch nb,op nbx}

ucp_ cleanup

ucp config {modify,read, release}

ucp disconnect nb

ucp_dt {create generic,destroy}

ucp ep {create,destroy,modify nb,close nbx}
ucp ep flush[{ nb, nbx}]

ucp listener {create,destroy,query,reject}
ucp mem {advise,map,unmap, query}

ucp_ {put,get}[nbi]

ucp {put,get} nb[x]

ucp_request {alloc,cancel,is completed}

ucp rkey {buffer release,destroy,pack,ptr}
ucp stream data release

ucp stream recv {data nb,request test}

ucp stream {send,recv} nb([x]

ucp stream worker poll

ucp tag msg recv nb[x]

ucp tag probe nb

ucp tag {send, recv} nbr

ucp_tag {send,recv} nb([x]

ucp tag recv request test

ucp tag send sync nb[x]

ucp _worker {create,destroy,get address,get efd,arm, fence,wait,signal,wait mem}
ucp worker flush[{ nb, nbx}]

ucp worker set am {handler,recv_handler}

UCX Functions Not Traced:

ucp_config print

ucp_conn_request query

ucp_context {query,print info}

ucp get version[string]

ucp_ep {close nb,print info,rkey unpack}

ucp_mem print info

ucp request {check status, test, free,release}

ucp worker {progress,query,release address,print info}

Additional API functions from other UCX layers may be added in a future version of the
product.

21.4. NVIDIA NVSHMEM and NCCL Trace

The NVIDIA network communication libraries NVSHMEM and NCCL have been
instrumented using NVTX annotations. To enable tracing these libraries in Nsight
Systems, turn on NVTX tracing in the GUI or CLI. To enable the NVTX instrumentation
of the NVSHMEM library, make sure that the environment variable NVSHMEM NVTX is set
properly, e.g. NVSHMEM NVTX=common.

www.nvidia.com
User Guide v2022.2.1 | 201

Network Communication Profiling

21.5. NIC Metric Sampling

This feature is experimental.
Overview

NVIDIA ConnectX smart network interface cards (smart NICs) offer advanced hardware
offloads and accelerations for network operations. Viewing smart NICs metrics, on
Nsight Systems timeline, enables developers to better understand their application’s
network usage. Developers can use this information to optimize the application’s
performance.

Examples

» TheBytes sent/msec and the Bytes received/msec metrics enables identifying
idle and busy NIC times.

» Developers may shift network operations from busy to idle times to reduce
network congestion and latency.

» Developers can use idle NIC times to send additional data without reducing
application performance.

» CNPs (congestion notification packets) received/sent metrics may explain network
latencies. A developer seeing the time periods when the network was congested
may rewrite his algorithm to avoid the observed congestions.

» Comparing the ratio between bytes sent and packets sent can give developers a hint
about the average packet size their application is using. The larger the packet size,
the higher the practical bandwidth.

www.nvidia.com
User Guide v2022.2.1 | 202

Network Communication Profiling

= Timeline View =

v 11.2s 11.4s EEWEE 11.6s 11.8s 12s 12.2s 12.4s

» NIC-0

~ NIC-1
Metrics:
Bytes received: 2,544,728 Bytes/msec
Bytes sent: 2,445,771 Bytes/msec
M CNPs received: 0 Packets/msec
M CNPs sent: 0 Packets/msec

Bytes received
Packets received
Bytes sent
Packets sent
CNPs received

CNPs sent

Available Metrics

Bytes sent - Number of bytes sent through all NIC ports.

Packets sent - Number of packets sent through all NIC ports.

Bytes received - Number of bytes received by all NIC ports.

Packets received - Number of packets received by all NIC ports.

CNPs sent - Number of congestion notification packets sent by the NIC.

CNPs received - Number of congestion notification packets received and handled
by the NIC.

vV vV v v v VY

Collecting NIC Metrics Using the Command Line

To collect NIC performance metric, using Nsight Systems CLI, add the --nic-metrics
command line switch:

nsys profile --nic-metrics my app
System Requirements
NIC metrics collection is supported on:

» NVIDIA ConnectX 3 boards or newer

» Linux x86_64 machines, having minimum Linux kernel 4.12 and minimum
MLNX_OFED 4.1.

Limitations

» Nsight Systems 2021.5.1 only supports Infiniband metrics.
» NIC metrics collection can only be enabled using Nsight Systems CLIL

www.nvidia.com
User Guide v2022.2.1 | 203

Chapter 22.
READING YOUR REPORT IN GUI

22.1. Generating a New Report

Users can generate a new report by stopping a profiling session. If a profiling session has
been canceled, a report will not be generated, and all collected data will be discarded.

A new .nsys-rep file will be created and put into the same directory as the project file
(.qdproj).

22.2. Opening an Existing Report

An existing .nsys-rep file can be opened using File > Open....

22.3. Sharing a Report File

Report files (. nsys-rep) are self-contained and can be shared with other users of
Nsight Systems. The only requirement is that the same or newer version of Nsight
Systems is always used to open report files.

Project files (. gdproj) are currently not shareable, since they contain full paths to the
report files.

To quickly navigate to the directory containing the report file, right click on it in the
Project Explorer, and choose Show in folder... in the context menu.

22.4. Report Tab

While generating a new report or loading an existing one, a new tab will be created. The
most important parts of the report tab are:

» View selector — Allows switching between Analysis Summary, Timeline View,
Diagnostics Summary, and Symbol Resolution Logs views.

www.nvidia.com
User Guide v2022.2.1 | 204

Reading Your Report in GUI

E Timeline View =

21 Analysis Summary

= Timeline View

. Diagnostics Summary
| Symbol Resolution Logs

» Timeline — This is where all charts are displayed.
» Function table — Located below the timeline, it displays statistical information
about functions in the target application in multiple ways.

Additionally, the following controls are available:

» Zoom slider — Allows you to vertically zoom the charts on the timeline.

22.5. Analysis Summary View

This view shows a summary of the profiling session. In particular, it is useful to review
the project configuration used to generate this report. Information from this view can be
selected and copied using the mouse cursor.

22.6. Timeline View

The timeline view consists of two main controls: the timeline at the top, and a bottom
pane that contains the events view and the function table. In some cases, when sampling
of a process has not been enabled, the function table might be empty and hidden.

The bottom view selector sets the view that is displayed in the bottom pane.

Bottom-Up View :

22.6.1. Timeline

Timeline is a versatile control that contains a tree-like hierarchy on the left, and
corresponding charts on the right.

Contents of the hierarchy depend on the project settings used to collect the report. For
example, if a certain feature has not been enabled, corresponding rows will not be show
on the timeline.

To generate a timeline screenshot without opening the full GUI, use the command
nsys-ui.exe --screenshot filename.nsys-rep
To display trace events in the Events View right-click a timeline row and select the

“Show in Events View” command. The events of the selected row and all of its sub-rows
will be displayed in the Events View.

www.nvidia.com
User Guide v2022.2.1 | 205

Reading Your Report in GUI

If a timeline row has been selected for display in the Events View then double-clicking
a timeline item on that row will automatically scroll the content of the Events View to
make the corresponding Events View item visible and select it.

Row Height

Several of the rows in the timeline use height as a way to model the percent utilization
of resources. This gives the user insight into what is going on even when the timeline is
zoomed all the way out.

= Timeline View &
26z 27z 30s
~ CUDA HW (Tesla V100-5XM2-16GE -
[I aww | el
~ [All Streams] < — 0 0 I A0
T b I T] ol il [
¥ 99.9% Kernels o ML . DSOS . el LN . . . o
b 9.4% nchwToNhwoKernel corqpute[}ffsetsl(ernel
o . TR | Begins: 28.4445¢
> 8.1% darad_engine I L Llne hial Ends: 28.4445s (+1.472 pis)
b 8.1% FEigenMetakernel] : : grid: <<<7, 1, 122> [
- . - . I block: <<<128, 1, 155>
b 7.7%bn_bw_1C11 kernel nev WL] = Static Shared Memory: 0 bytes
Dynamic Shared Memory: 0 bytes
b 5.5% bn_fw_tr_1C11_kernel y .
n-m— —EneL L= “~| Registers Per Thread: 16
85 kernel groups hidder — Local Memary Per Thread: 0 bytes
Local Mernory Total: 207,093,760 bytes
0.1% Memory Shared Memory Bank Size: 4 B
b A1 4B Chramem 7S 1 | &l] w Ll T Launched from thread: 168
bl Latency: —39.657 ps
- Correlation 1D: 1791043
Events View M Stream: Stream 126

In this picture you see that for kernel occupation there is a colored bar of variable height.

Nsight Systems calculates the average occupancy for the period of time represented by
particular pixel width of screen. It then uses that average to set the top of the colored
section. So, for instance, if 25% of that timeslice the kernel is active, the bar goes 25% of
the distance to the top of the row.

In order to make the difference clear, if the percentage of the row height is non-zero, but
would be represented by less than one vertical pixel, Nsight Systems displays it as one
pixel high. The gray height represents the maximum usage in that time range.

This row height coding is used in the CPU utilization, thread and process occupancy,
kernel occupancy, and memory transfer activity rows.

22.6.2. Events View

The Events View provides a tabular display of the trace events. The view contents can be
searched and sorted.

Double-clicking an item in the Events View automatically focuses the Timeline View on
the corresponding timeline item.

API calls, GPU executions, and debug markers that occurred within the boundaries of a
debug marker are displayed nested to that debug marker. Multiple levels of nesting are
supported.

Events view recognizes these types of debug markers:

www.nvidia.com
User Guide v2022.2.1 | 206

Reading Your Report in GUI

» NVTX
» Vulkan VK_EXT_debug_marker markers, VK_EXT_debug_utils labels
» PIX events and markers
» OpenGL KHR_debug markers
£ Mame ™ Duration TD GPU Context Start “ Call to: ID3D12C 0 -ExecuteC ILists
£ ID3012GraphicsCommandList:Reset 13300ps | 2002 | - - 0.0016661s W DX12 APl calls
Begins: 0.00208%2s

I« = || SceneRender 352100 ps | 2092 | - - 0.0017093s Ends: 0.00215s (+ 69,800 ps)
W+ v [RenderLightShadows 1.900 ps 092 | - . 000172075 Correlation IDs: [30507, 30507)
[l 1[FE) b ZPrePass 20.300ps | 2092 - - 0.0017286s

W42 b | Generate 5540 121700 ps | 2092 | - - 0.0018155s

[+ | Render Shadow Map 9100ps | 2092 | - - 0.00194455

[E] b I Raytrace 63.600ps | 2092 | - - 0.0019903s

I 64 Marker End - 2002 | - - 0.0020614s

63 ID3012GraphicsCommandList:Close 12400 ps 2002 | - - 0.0020733s

ID3D12CommandQueue:ExecuteCommandlists | 63800ps | 2022 |- |- | 0.o020sgas
&7 ntdIl.dil!0x7ff9adTF3ba - 2002 | - - 0.0021694s
63 ID3012GraphicsCommandList:Reset 10300 ps 2002 | - - 0.0021988s
[v] PostEffects 61.300ps | 2092 | - - 0.00222585
75 ID3D12GraphicsCommandList:Close T00 ps 2092 | - - 0.0022964s
76 ID3D12CommandQueue:ExecuteCommandLists 33.300 ps 2082 - - 0.0023048s
i ntdll.dll|0xTff9a47ff3bd - 2002 | - - 0.0023465s |+

You can copy and paste from the events view by highlighting rows, using Shift or Ctrl
to enable multi-select. Right clicking on the selection will give you a copy option.

| Events View b |
MName g
“ Name Start Duration TID b
4 fopen 0.347611s 5921 ps 178685
5 felose 0.347628s 1.724 ps 178685
6 opentd 0.347636s 11.507 ps 178685

8 ioctl 0.3476525 3176 ps 178685

Highlight Selected on Timeline WEbiln
Show Current on Timeline 13476755 1122 ps
13

ioctl 0.347707s 6.141 ps 178685
14 ioctl 0.347713s 16.040 ps 178685

Pasting into text gives you a tab separated view:

www.nvidia.com
User Guide v2022.2.1 | 207

| *Untitled - Notepad — O *
File Edit Format View Help

Name Start Duration TID

fentl @.347649s 1.882 ps 178685

open B.347656s 8.b686 ps 178685

read B.347666s 3.647 ps 178685

ioctl B8.347675s 1.122 ps 178685

ioctl @.347678s 27.541 ps 178685

Reading Your Report in GUI

Ln &, Col 33 100% Windows (CRLF) UTF-28

Pasting into spreadsheet properly copies into rows and columns:

A E C D
1 |Name Start Duration TID
2 |fentl 0.347649s 1.002 ps 178685
3 |open 0.3476565 8.686 ps 178685
4 |read 0.3476665 3.647 s 178685
5 |ioctl 0.347675s 1.122 ps 178685
& |ioctl 0.347678s 27.541 ps 1?'8685.
T

22.6.3. Function Table Modes

Top-Down View -

Bottom-Up View
Flat View

The function table can work in three modes:

>

Top-Down View — In this mode, expanding top-level functions provides
information about the callee functions. One of the top-level functions is typically the
main function of your application, or another entry point defined by the runtime
libraries.

Bottom-Up View — This is a reverse of the Top-Down view. On the top level,

there are functions directly hit by the sampling profiler. To explore all possible call
chains leading to these functions, you need to expand the subtrees of the top-level
functions.

Flat View — This view enumerates all functions ever observed by the profiler, even
if they have never been directly hit, but just appeared somewhere on the call stack.
This view typically provides a high-level overview of which parts of the code are
CPU-intensive.

www.nvidia.com
User Guide v2022.2.1 | 208

Reading Your Report in GUI

Each of the views helps understand particular performance issues of the application
being profiled. For example:

>

When trying to find specific bottleneck functions that can be optimized, the Bottom-

Up view should be used. Typically, the top few functions should be examined.
Expand them to understand in which contexts they are being used.

To navigate the call tree of the application and while generally searching for

algorithms and parts of the code that consume unexpectedly large amount of CPU
time, the Top-Down view should be used.

To quickly assess which parts of the application, or high level parts of an algorithm,

consume significant amount of CPU time, use the Flat view.

The Top-Down and Bottom-Up views have Self and Total columns, while the Flat view
has a Flat column. It is important to understand the meaning of each of the columns:

>

Top

»

»

Flat

»

-Down view

Self column denotes the relative amount of time spent executing instructions of
this particular function.

Total column shows how much time has been spent executing this function,
including all other functions called from this one. Total values of sibling rows
sum up to the Total value of the parent row, or 100% for the top-level rows.

Bottom-Up view

Self column for top-level rows, as in the Top-Down view, shows how much time
has been spent directly in this function. Self times of all top-level rows add up to
100%.

Self column for children rows breaks down the value of the parent row based on
the various call chains leading to that function. Self times of sibling rows add up
to the value of the parent row.

view

Flat column shows how much time this function has been anywhere on the
call stack. Values in this column do not add up or have other significant
relationships.

If

low-
impact
functions
have
been
filtered
out,
values
may

not

add

up
correctly
to

100%,

or

Note:

www.nvidia.com

User Guide

v2022.2.1 | 209

Reading Your Report in GUI

to

the
value

of

the
parent
row.
This
filtering
can

be
disabled.

Contents of the symbols table is tightly related to the timeline. Users can apply and
modify filters on the timeline, and they will affect which information is displayed in

the symbols table:

» Per-thread filtering — Each thread that has sampling information associated with it
has a checkbox next to it on the timeline. Only threads with selected checkboxes are

represented in the symbols table.

» Time filtering — A time filter can be setup on the timeline by pressing the left
mouse button, dragging over a region of interest on the timeline, and then choosing
Filter by selection in the dropdown menu. In this case, only sampling information
collected during the selected time range will be used to build the symbols table.

www.nvidia.com
User Guide

Note:

f

[00

ittle
ampling

Hata

s

being

Ised

[0

build

the

ymbols

fable

for

bxample,

when

the

ampling

Fate

s

ronfigured

[0

be

ow,

hnd

i}
hort

beriod

Df

[ime
s

Ised

v2022.2.1 | 210

Reading Your Report in GUI

for

[ime-
based
Filtering),
Lhe
humbers
n

Lhe
ymbols
fable
might

hot

be
representative
Dr
hccurate
n

ome
Cases.

22.6.4. Filter Dialog

J Filter ot
&

Collapse unresolved lines
Show stack trace in tooltip
Hide functions with CPU usage below |0,50%; S

Mumber of digits after the decdmal point 2 =

» Collapse unresolved lines is useful if some of the binary code does not have
symbols. In this case, subtrees that consist of only unresolved symbols get collapsed
in the Top-Down view, since they provide very little useful information.

» Hide functions with CPU usage below X% is useful for large applications, where
the sampling profiler hits lots of function just a few times. To filter out the "long
tail," which is typically not important for CPU performance bottleneck analysis, this
checkbox should be selected.

22.7. Diagnostics Summary View

This view shows important messages. Some of them were generated during the profiling
session, while some were added while processing and analyzing data in the report.
Messages can be one of the following types:

» Informational messages

www.nvidia.com
User Guide v2022.2.1 | 211

Reading Your Report in GUI

» Warnings
» Errors

To draw attention to important diagnostics messages, a summary line is displayed on
the timeline view in the top right corner:

,ﬂ, 11 warnings, 8 messages

Information from this view can be selected and copied using the mouse cursor.

22.8. Symbol Resolution Logs View

This view shows all messages related to the process of resolving symbols. It might be
useful to debug issues when some of the symbol names in the symbols table of the

timeline view are unresolved.

www.nvidia.com

User Guide v2022.2.1 | 212

Chapter 23.
ADDING REPORT TO THE TIMELINE

Starting with 2021.3, Nsight Systems can load multiple report files into a single timeline.
This is a BETA feature and will be improved in the future releases. Please let us know
about your experience on the forums or through Help > Send Feedback... in the main
menu.

To load multiple report files into a single timeline, first start by opening a report as usual
— using File > Open... from the main menu, or double clicking on a report in the Project
Explorer window. Then additional report files can be loaded into the same timeline
using one of the methods:

» File > Add Report (beta)... in the main menu, and select another report file that you
want to open

» Right click on the report in the project explorer window, and click Add Report
(beta)

B mpi-barriers-0.qdrep [2 reports]

B mpi-barriers-2.qdrep Open Report

Export...

Show in Folder...
Resolve Symbols...
&K Remove Report -

23.1. Time Synchronization

When multiple reports are loaded into a single timeline, timestamps between them need
to be adjusted, such that events that happened at the same time appear to be aligned.

www.nvidia.com
User Guide v2022.2.1 | 213

Adding Report to the Timeline

Nsight Systems can automatically adjust timestamps based on UTC time recorded
around the collection start time. This method is used by default when other more
precise methods are not available. This time can be seen as UTC time at t=0 in the
Analysis Summary page of the report file. Refer to your OS documentation to learn how
to sync the software clock using the Network Time Protocol (NTP). NTP-based time
synchronization is not very precise, with the typical errors on the scale of one to tens of
milliseconds.

Reports collected on the same physical machine can use synchronization based on
Timestamp Counter (TSC) values. These are platform-specific counters, typically
accessed in user space applications using the RDTSC instruction on x86_64 architecture,
or by reading the CNTVCT register on Arm64. Their values converted to nanoseconds
can be seen as TSC value at t=0 in the Analysis Summary page of the report file.
Reports synchronized using TSC values can be aligned with nanoseconds-level
precision.

TSC-based time synchronization is activated automatically, when Nsight Systems
detects that reports come from same target and that the same TSC value corresponds
to very close UTC times. Targets are considered to be the same when either explicitly
set environment variables NSYS_HW_1ID are the same for both reports or when target
hostnames are the same and NSYS_HW_1ID is not set for either target. The difference
between UTC and TSC time offsets must be below 1 second to choose TSC-based time
synchronization.

To find out which synchronization method was used, navigate to the Analysis Summary
tab of an added report and check the Report alignment source property of a target.
Note, that the first report won't have this parameter.

Target

Target name 9al630ecdd6a

Local time at t=0 2021-07-02T12:01:57.3107
UTC time at t=0 2021-07-02T12:01:57.310Z
TSC value at t=0 1041856117291223

Report alignment source T5C

Target

Target name 9e2247e584el

Local time at t=0 2021-07-02T12:01:57.3112
UTC time at t=0 2021-07-02T12:01:57.3112
TSC value at t=0 1041856118165144

Report alignment source UTC

www.nvidia.com
User Guide v2022.2.1 | 214

Adding Report to the Timeline

When loading multiple reports into a single timeline, it is always advisable to first
check that time synchronization looks correct, by zooming into synchronization or
communication events that are expected to be aligned.

23.2. Timeline Hierarchy

When reports are added to the same timeline Nsight Systems will automatically

line them up by timestamps as described above. If you want Nsight Systems to also
recognize matching process or hardware information, you will need to set environment
variables NSYS SYSTEM ID and NSYS_HW_ID as shown below at the time of report
collection (such as when using "nsys profile ..." command).

When loading a pair of given report files into the same timeline, they will be merged in
one of the following configurations:

» Different hardware — is used when reports are coming from different physical
machines, and no hardware resources are shared in these reports. This mode is
used when neither NSYS_HW_ID or NSYS_SYSTEM 1ID is set and target hostnames
are different or absent, and can be additionally signalled by specifying different
NSYS_HW_ID values.

» Different systems, same hardware — is used when reports are collected on different
virtual machines (VMs) or containers on the same physical machine. To activate this
mode, specify the same value of NSYS_HW_ID when collecting the reports.

» Same system — is used when reports are collected within the same operating
system (or container) environment. In this mode a process identifier (PID) 100
will refer to the same process in both reports. To manually activate this mode,
specify the same value of NSYS_SYSTEM ID when collecting the reports. This
mode is automatically selected when target hostnames are the same and neither
NSYS_HW_ID or NSYS_SYSTEM ID is provided.

The following diagrams demonstrate typical cases:

www.nvidia.com
User Guide v2022.2.1 | 215

Adding Report to the Timeline

Hardware Hardware Hardware

0s 0s 0S (Windows) 08 (Linux)
0, e,
N b nsys — . nsys — .

nsys — nsys —
gdrep .qdrep
.qdrep Aqdrep

MSYS_HW_ID=4A NSYS_HW_ID=A

Fig 1. Different hardware (default mode)

Fig 2. Same hardware, different systems (VMs)

Hardware
0S (Linux) Hardware
Container 0s
o L, o oy
qdrep -qdrep drep Jqdrep
NSYS_HW_ID=A NSYS_HW_ID=A NSYS_SYSTEM_ID=A NSYS_SYSTEM_ID=A

Fig 3. Same hardware, different systems Fig 4. Same system

(host and container)

23.3. Example: MPI

A typical scenario is when a computing job is run using one of the MPI
implementations. Each instance of the app can be profiled separately, resulting in
multiple report files. For example:

Run MPI job without the profiler:

mpirun <MPI-options> ./myApp

Run MPI job and profile each instance of the application:

mpirun <MPI-options> nsys profile -o report-%p <nsys-options>./myApp

When each MPI rank runs on a different node, the command above works fine, since the
default pairing mode (different hardware) will be used.

When all MPI ranks run the localhost only, use this command (value "A" was chosen
arbitrarily, it can be any non-empty string):

NSYS SYSTEM ID=A mpirun <MPI-options> nsys profile -o report-3%p
<nsys-options> ./myApp

For convenience, the MPI rank can be encoded into the report filename. Specifics depend
on the MPI implementation. For Open MP]I, use the following command to create report
files based on the global rank value:

www.nvidia.com

User Guide v2022.2.1 | 216

Adding Report to the Timeline

mpirun <MPI-options> nsys profile -o 'report-
$q{OMPI_COMM WORLD_ RANK}' <nsys-options> ./myApp

For MPICH, use the following command:

mpirun <MPI-options> nsys profile -o 'report-%gq{PMI_RANK}' <nsys-
options> ./myApp

23.4. Limitations

» Only report files collected with Nsight Systems version 2021.3 and newer are fully
supported.

» Sequential reports collected in a single CLI profiling session cannot be loaded into a
single timeline yet.

www.nvidia.com
User Guide v2022.2.1 | 217

Chapter 24.
USING NSIGHT SYSTEMS EXPERT SYSTEM

The Nsight Systems expert system is a feature aimed at automatic detection of
performance optimization opportunities in an application's profile. It uses a set of
predefined rules to determine if the application has known bad patterns.

Using Expert System from the CLI

usage:
nsys [global-options] analyze [options]
[nsys-rep-or-sqglite-file]

If a .nsys-rep file is given as the input file and there is no .sqlite file with the same name
in the same directory, it will be generated.

Note: The Expert System view in the GUI will give you the equivalent command line.

Using Expert System from the GUI

The Expert System View can be found in the same drop-down as the Events View. If
there is no .sqlite file with the same name as the .nsys-rep file in the same directory, it
will be generated.

The Expert System View has the following components:

Drop-down to select the rule to be run

Rule description and advice summary

CLI command that will give the same result

Table containing results of running the rule

Settings button that allows users to specify the rule’s arguments

SAN

www.nvidia.com
User Guide v2022.2.1 | 218

Expert System View ~

AsyncMemcpy with Pageable Memory ~ || Duration

The following APIs use PAGEABLE memory which
causes asynchronaus CUDA memcpy operations
to block and be executed synchronously. This
leads to low GPU utilization.,

Suggestion: If applicable, use PINNED memory
instear

CLI command:
nsys analyze - async-memcpy-pageable fhome/
ItiRule.sqlit

+ Start

3.841 ms
3.303 ms
3.292 ms
3.259 ms
2.417 ms
2.403 ms
2.390 ms
2.200 ms
1.883 ms
1.823 ms
1.822 ms
1.804 ms
1.796 ms
1776 ms
1.768 ms
1.737 ms

6.60844s
9.06323s
1152125
4.15083s
16.42695
13.9794s
21.32255
18.8738s
6.60654s

9.061ds
13.9776s
1151945
4.149025
16.42515
21.3207s

18.8725

Device
Device
Device
Device
Device
Device
Device
Device

Pageable

Pageable

Pageable

Pageable

Pageable

Pageable

Pageable

Pageable

Pageable
Pageable
Pageable
Pageable
Pageable
Pageable
Pageable
Pageable
Device
Device
Device
Device
Device
Device
Device

Device

16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB
16.00 MiB

Using Nsight Systems Expert System

Device ID
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558
48558

@ uvo W e N e e N e W N e

N me e R MW N ® M e e A W

@ settings
API Name

35 cudaMemcpyAsync_v3020
50 cudaMemcpyAsync_v3020
65 cudaMemcpyAsync_v3020
20 cudaMemcpyAsync_v3020
95 cudaMemcpyAsync_v3020
80 cudaMemcpyAsync_v3020
125 cudaMemcpyAsync_v3020
110 cudaMemcpyAsync_v3020
35 cudaMemcpyAsync_v3020
50 cudaMemcpyAsync_v3020
80 cudaMemcpyAsync_v3020
65 cudaMemcpyAsync_v3020
20 cudaMemcpyAsync_v3020
95 cudaMemcpyAsync_v3020
125 cudaMemcpyAsync_v3020
110 cudaMemcpyAsync_v3020

A context menu is available to correlate the table entry with the timeline. The options are
the same as the Events View:

» Highlight selected on timeline (double-click)
» Show current on timeline (ctrl+double-click)

The highlighting is not supported for rules that do not return an event but rather an
arbitrary time range (e.g. GPU utilization rules).

The CLI and GUI share the same rule scripts and messages. There might be some
formatting differences between the output table in GUI and CLIL.

Expert System Rules

Rules are scripts that run on the SQLite DB output from Nsight Systems to find common

improvable usage patterns.

Each rule has an advice summary with explanation of the problem found and

suggestions to address it. Only the top 50 results are displayed by default.

There are currently six rules in the expert system. They are described below. Additional

rules will be made available in a future version of Nsight Systems.

CUDA Synchronous Operation Rules

Asynchronous memcpy with pageable memory

This rule identifies asynchronous memory transfers that end up becoming synchronous
if the memory is pageable. This rule is not applicable for Nsight Systems Embedded

Platforms Edition

Suggestion: If applicable, use pinned memory instead

www.nvidia.com
User Guide

v2022.2.1 | 219

Using Nsight Systems Expert System

B Timeline View

R
€5 runtime libraries pitvcsd 1, jech

bONVTX
CUDH AP cugaiemigyapne -]

= CUDA (Quadm GVI0C — — = ————— w
= Stream 26
F Kemels
B Mgmorny

b Steeam 25

= Sueam 23 - — —

b Kemels
= Memafy - — —
Memsst 5 o o=

HiaD memopy
DioH memepsy

k " amesmii Begins 2598864
Stream 19 Ends: 2598864 {+ 1184 ps)

: Do memcpy Memepy B
Stream 2T Source memorny kind: (3
Stream 17 Destination memary kil Pageable)
. Throughput: 675676 Mi
St 21
hehinind ‘_ Coarelation ID: 237265

Synchronous Memcpy

N

This rule identifies synchronous memory transfers that block the host.
Suggestion: Use cudaMemcpy*Async APIs instead.

Synchronous Memset

This rule identifies synchronous memset operations that block the host.
Suggestion: Use cudaMemset*Async APIs instead.

Synchronization APIs

This rule identifies synchronization APIs that block the host until all issued CUDA calls
are complete.

Suggestions: Avoid excessive use of synchronization. Use asynchronous CUDA event
calls, such as cudaStreamWaitEvent and cudaEventSynchronize, to prevent host
synchronization.

GPU Low Utilization Rules

Nsight Systems determines GPU utilization based on API trace data in the collection.
Current rules consider CUDA, Vulkan, DX12, and OpenGL API use of the GPU.

GPU Starvation

This rule identifies time ranges where a GPU is idle for longer than 500ms. The
threshold is adjustable.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

www.nvidia.com
User Guide v2022.2.1 | 220

Using Nsight Systems Expert System

» For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device.

» GPU gaps that cannot be addressed by the user are excluded. This includes:

» Profiling overhead in the middle of a GPU gap.
» The initial gap in the report that is seen before the first GPU operation.
» The final gap that is seen after the last GPU operation.

GPU Low Utilization
This rule identifies time regions with low utilization.

Suggestions: Use CPU sampling data, OS Runtime blocked state backtraces, and/or OS
Runtime APIs related to thread synchronization to understand if a sluggish or blocked
CPU is causing the gaps. Add NVTX annotations to CPU code to understand the reason
behind the gaps.

Notes:

» For each process, each GPU is examined, and gaps are found within the time range
that starts with the beginning of the first GPU operation on that device and ends
with the end of the last GPU operation on that device. This time range is then
divided into equal chunks, and the GPU utilization is calculated for each chunk. The
utilization includes all GPU operations as well as profiling overheads that the user
cannot address.

» The utilization refers to the "time" utilization and not the "resource" utilization.

This rule attempts to find time gaps when the GPU is or isn't being used, but does
not take into account how many GPU resources are being used. Therefore, a single
running memcpy is considered the same amount of "utilization" as a huge kernel
that takes over all the cores. If multiple operations run concurrently in the same
chunk, their utilization will be added up and may exceed 100%.

» Chunks with an in-use percentage less than the threshold value are displayed.

If consecutive chunks have a low in-use percentage, the individual chunks are
coalesced into a single display record, keeping the weighted average of percentages.
This is why returned chunks may have different durations.

www.nvidia.com
User Guide v2022.2.1 | 221

Chapter 25.
IMPORT NVTXT

ImportNvtxt is an utility which allows conversion of a NVTXT file to a Nsight Systems
report file (*.nsys-rep) or to merge it with an existing report file.

Note: NvtxtImport supports custom TimeBase values. Only these values are supported:

» Manual — timestamps are set using absolute values.
» Relative — timestamps are set using relative values with regards to report file
which is being merged with nvtxt file.

» ClockMonotonicRaw — timestamps values in nvtxt file are considered to be
gathered on the same target as the report file which is to be merged with nvtxt using
clock_gettime (CLOCK_MONOTONIC RAW, ...) call

» CNTVCT — timestamps values in nvtxt file are considered to be gathered on the
same target as the report file which is to be merged with nvtxt using CNTVCT
values.

You can get usage info via help message:
Print help message:

-h [--help]

Show information about report file:
--cmd info -i [--input] arg

Create report file from existing nvtxt file:

-—-cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode] mode name
mode args] [--target <Hw:Vm>] [--update report time]

Merge nvtxt file to existing report file:

--cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m [--mode]
mode name mode args] [--target <Hw:Vm>] [--update report time]

Modes description:
» lerp - Insert with linear interpolation
--mode lerp --ns a arg --ns b arg [--nvtxt a arg --nvtxt b arg]

» lin - insert with linear equation

--mode lin --ns _a arg --freq arg [--nvtxt a arg]

Modes' parameters:

www.nvidia.com
User Guide v2022.2.1 | 222

https://docs.nvidia.com/gameworks/index.html#gameworkslibrary/nvtx/analysis_nvtxt_file_extension.htm

Import NVTXT

ns_a - a nanoseconds value

ns_b - a nanoseconds value (greater than ns_a)

nvtxt_a - an nvtxt file's time unit value corresponding to ns_a nanoseconds
nvtxt_b - an nvtxt file's time unit value corresponding to ns_b nanoseconds

freq - the nvtxt file's timer frequency

--target <Hw:Vm> - specify target id, e.g. --target 0:1

--update_report_time - prolong report's profiling session time while merging if
needed. Without this option all events outside the profiling session time window
will be skipped during merging.

vV Vv v v v Y

Commands

Info

To find out report's start and end time use info command.
Usage:

ImportNvtxt --cmd info -i [--input] arg

Example:

ImportNvtxt info Report.nsys-rep
Analysis start (ns) 83501026500000
Analysis end (ns) 83506375000000

Create
You can create a report file using existing NVTXT with create command.

Usage:

ImportNvtxt --cmd create -n [--nvtxt] arg -o [--output] arg [-m [--mode]
mode name mode args]

Available modes are:

» lerp — insert with linear interpolation.
» lin — insert with linear equation.

Usage for lerp mode is:

--mode lerp --ns a arg --ns b arg [--nvtxt a arg --nvtxt b arg]
with:

ns_a — a nanoseconds value.

ns_b — ananoseconds value (greater than ns_a).

nvtxt_a — annvtxt file's time unit value corresponding to ns_a nanoseconds.
nvtxt b — annvtxt file's time unit value corresponding to ns_b nanoseconds.

vV vV v Vv

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:

--mode lin --ns_a arg --freq arg [--nvtxt a arg]

with:

www.nvidia.com
User Guide v2022.2.1 | 223

Import NVTXT

» ns_a — ananoseconds value.
» freq — the nvtxt file's timer frequency.
» nvtxt a — annvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Examples:

ImportNvtxt --cmd create -n Sample.nvtxt -o Report.nsys-rep

The output will be a new generated report file which can be opened and viewed by
Nsight Systems.

Merge

To merge NVTXT file with an existing report file use merge command.

Usage:

ImportNvtxt --cmd merge -i [--input] arg -n [--nvtxt] arg -o [--output] arg [-m

[--mode] mode name mode args]
Available modes are:

» lerp — insert with linear interpolation.
» lin — insert with linear equation.

Usage for lerp mode is:

--mode lerp --ns _a arg --ns_b arg [--nvtxt a arg --nvtxt b arg]
with:

ns_a — a nanoseconds value.

ns_b — a nanoseconds value (greater than ns_a).

nvtxt_a — annvtxt file's time unit value corresponding to ns_a nanoseconds.
nvtxt b — an nvtxt file's time unit value corresponding to ns_b nanoseconds.

vV v v VY

If nvtxt_a and nvtxt_b are not specified, they are respectively set to nvtxt file's
minimum and maximum time value.

Usage for lin mode is:

--mode lin --ns_a arg --freq arg [--nvtxt a arg]
with:

> ns_a — ananoseconds value.

» freq — the nvtxt file's timer frequency.
» nvtxt a — annvtxt file's time unit value corresponding to ns_a nanoseconds.

If nvtxt_a is not specified, it is set to nvtxt file's minimum time value.

Time values in <filename.nvtxt> are assumed to be nanoseconds if no mode
specified.

Example

ImportNvtxt --cmd merge -i Report.nsys-rep -n Sample.nvtxt -o NewReport.nsys-rep

www.nvidia.com
User Guide v2022.2.1 | 224

Chapter 26.
VISUAL STUDIO INTEGRATION

NVIDIA Nsight Integration is a Visual Studio extension that allows you to access the
power of Nsight Systems from within Visual Studio.

When Nsight Systems is installed along with NVIDIA Nsight Integration, Nsight
Systems activities will appear under the NVIDIA Nsight menu in the Visual Studio
menu bar. These activities launch Nsight Systems with the current project settings and
executable.

n File Edit View Project Build Debug Test Analyze Tools | Extensions | Window Help Search (Ctrl+Q) el MyApp

. e cr}
fe-olg e Ml -0 -] oy - e L o e vl e
Msight Nsight Systems 2020.1.1 4

Windows »
Start Graphics Debugging

Start CUDA Debugging (Mext-Gen)

Start CUDA Debugging (Legacy)

Start Performance Analysis...

B E&38

Enable CUDA Memory Checker
Clear Baselines

Capture for Live Analysis
Capture Mext Frame
Resume from Capture
Export as C++ Capture
Profile Current Event
Profile Frame

Dynamic Shader Editing 1>

Options...
Help »

Selecting the "Trace" command will launch Nsight Systems, create a new Nsight Systems
project and apply settings from the current Visual Studio project:

» Target application path
» Command line parameters
» Working folder

If the "Trace" command has already been used with this Visual Studio project then
Nsight Systems will load the respective Nsight Systems project and any previously
captured trace sessions will be available for review using the Nsight Systems project
explorer tree.

www.nvidia.com
User Guide v2022.2.1 | 225

Visual Studio Integration

For more information about using Nsight Systems from within Visual Studio, please
visit

» NVIDIA Nsight Integration Overview

» NVIDIA Nsight Integration User Guide

www.nvidia.com
User Guide v2022.2.1 | 226

https:/developer.nvidia.com/nsight-tools-visual-studio-integration
https:/docs.nvidia.com/nsight-vs-integration/index.html

Chapter 27.
TROUBLESHOOTING

27.1. General Troubleshooting

Profiling

If the profiler behaves unexpectedly during the profiling session, or the profiling session
fails to start, try the following steps:

» Close the host application.
» Restart the target device.
» Start the host application and connect to the target device.

Nsight Systems uses a settings file (NWWIDIA Nsight Systems.ini)on the hostto
store information about loaded projects, report files, window layout configuration,

etc. Location of the settings file is described in the Help # About dialog. Deleting the
settings file will restore Nsight Systems to a fresh state, but all projects and reports will
disappear from the Project Explorer.

Environment Variables

By default, Nsight Systems writes temporary files to /tmp directory. If you are using

a system that does not allow writing to /tmp or where the /tmp directory has limited
storage you can use the TMPDIR environment variable to set a different location. An
example:

TMPDIR=/testdata ./bin/nsys profile -t cuda matrixMul

Environment variable control support for Windows target trace is not available, but
there is a quick workaround:

» Create a batch file that sets the env vars and launches your application.

» Set Nsight Systems to launch the batch file as its target, i.e. set the project settings
target path to the path of batch file.

» Start the trace. Nsight Systems will launch the batch file in a new cmd instance and
trace any child process it launches. In fact, it will trace the whole process tree whose
root is the cmd running your batch file.

www.nvidia.com
User Guide v2022.2.1 | 227

Troubleshooting

WebGL Testing

Nsight Systems cannot profile using the default Chrome launch command. To profile
WebGL please follow the following command structure:

“C:\Program Files (x86)\Google\Chrome\Application\chrome.exe”
--inprocess—-gpu --no-sandbox --disable-gpu-watchdog --use-angle=gl
https://webglsamples.org/aquarium/aquarium.html

Common Issues with QNX Targets

» Make sure that tracelogger utility is available and can be run on the target.

» Make sure that /tmp directory is accessible and supports sub-directories.

» When switching between Nsight Systems versions, processes related to the previous
version, including profiled applications forked by the daemon, must be killed before
the new version is used. If you experience issues after switching between Nsight
Systems versions, try rebooting the target.

27.2. CLI Troubleshooting

If you have collected a report file using the CLI and the report will not open in the GUI,
check to see that your GUI version is the same or greater than the CLI version you used.
If it is not, download a new version of the Nsight Systems GUI and you will be able to
load and visualize your report.

This situation occurs most frequently when you update Nsight Systems using a CLI only
package, such as the package available from the NVIDIA HPC SDK.

27.3. Launch Processes in Stopped State

In many cases, it is important to profile an application from the very beginning of its

execution. When launching processes, Nsight Systems takes care of it by making sure
that the profiling session is fully initialized before making the exec () system call on
Linux.

If the process launch capabilities of Nsight Systems are not sufficient, the application
should be launched manually, and the profiler should be configured to attach to the
already launched process. One approach would be to call sleep () somewhere early in
the application code, which would provide time for the user to attach to the process in
Nsight Systems Embedded Platforms Edition, but there are two other more convenient
mechanisms that can be used on Linux, without the need to recompile the application.
(Note that the rest of this section is only applicable to Linux-based target devices.)

Both mechanisms ensure that between the time the process is created (and therefore its
PID is known) and the time any of the application's code is called, the process is stopped
and waits for a signal to be delivered before continuing.

www.nvidia.com
User Guide v2022.2.1 | 228

Troubleshooting

LD_PRELOAD

The first mechanism uses LD_PRELOAD environment variable. It only works with
dynamically linked binaries, since static binaries do not invoke the runtime linker, and
therefore are not affected by the LD_PRELOAD environment variable.

» For ARMv7 binaries, preload
/opt/nvidia/nsight systems/libLauncher32.so
» Otherwise if running from host, preload
/opt/nvidia/nsight systems/libLauncheré64.so
» Otherwise if running from CLI, preload

[installation_directory]/libLauncher64.so

The most common way to do that is to specify the environment variable as part of the
process launch command, for example:

$ LD PRELOAD=/opt/nvidia/nsight systems/libLauncher64.so ./my-aarch64-binary --
arguments

When loaded, this library will send itself a SIGSTOP signal, which is equivalent to typing
Ctrl+z in the terminal. The process is now a background job, and you can use standard
commands like jobs, £g and bg to control them. Use jobs -1 to see the PID of the
launched process.

When attaching to a stopped process, Nsight Systems will send SIGCONT signal, which is
equivalent to using the bg command.

Launcher

The second mechanism can be used with any binary. Use
[installation_directory]/launcher to launch your application, for example:

$ /opt/nvidia/nsight systems/launcher ./my-binary --arguments

The process will be launched, daemonized, and wait for SIGUSR1 signal. After attaching
to the process with Nsight Systems, the user needs to manually resume execution of the
process from command line:

$ pkill -USR1 launcher

Note

hat
bkill
ill

end

he

ignal

o

ANy
brocess
ith

he
matching
hame.

f
hat

Note:

www.nvidia.com
User Guide v2022.2.1 | 229

Troubleshooting

S
hot
Hesirable,
Ise

kill

o

end

t
o
h
pecific
brocess.
[he
tandard
butput

hnd

Prror
treams
hre
edirected
o

fop /
stdout <PID>. t:
hnd

Fmp/
stderr <PID>. t:

The launcher mechanism is more complex and less automated than the LD_PRELOAD
option, but gives more control to the user.

27.4. GUI Troubleshooting

If opening the Nsight Systems Linux GUI fails with one of the following errors, you may
be missing some required libraries:

This application failed to start because it could not find or load the Qt
platform plugin "xcb" in "". Available platform plugins are: xcb. Reinstalling
the application may fix this problem.

or

error while loading shared libraries: [library name]: cannot open shared object
file: No such file or directory

Ubuntu 18.04/20.04 and CentOS 7/8 with root privileges

» Launch the following command, which will install all the required libraries in
system directories:
[installation path]/host-linux-x64/Scripts/install-dependencies.sh

» Launch the Linux GUI as usual.

www.nvidia.com
User Guide v2022.2.1 | 230

Troubleshooting

Ubuntu 18.04/20.04 and CentOS 7/8 without root
privileges

» Choose the directory where dependencies will be installed (dependencies_path).
This directory should be writeable for the current user.

» Launch the following command (if it has already been run, move to the next step),
which will install all the required libraries in [dependencies_path]:

[installation path]/host-linux-x64/Scripts/install-dependencies-without-
root.sh [dependencies path]

» Further, use the following command to launch the Linux GUI:

source [installation path]/host-linux-x64/Scripts/setup-dependencies-
environment.sh [dependencies path] && [installation path]/host-linux-x64/
nsys-ui

Other platforms, or if the previous steps did not help

Launch Nsight Systems using the following command line to determine which libraries
are missing and install them.
$ QT DEBUG PLUGINS=1 ./nsys-ui

If the workload does not run when launched via Nsight Systems or the timeline is
empty, check the stderr.log and stdout.log (click on drop-down menu showing Timeline
View and click on Files) to see the errors encountered by the app.

Project 1 report10.qdrep [

q Jmpjnvidia/system_profiler fstreams/pid_22138_stderr.log I

—_—
e T Lo cuent TS e PO fziled. Error—Operation not supported
E:TSPInjection: Branch stack sampling is not supported on this device.

27.5. Symbol Resolution

If stack trace information is missing symbols and you have a symbol file, you can
manually re-resolve using the ResolveSymbols utility. This can be done by right-clicking
the report file in the Project Explorer window and selecting "Resolve Symbols...".

Alternatively, you can find the utility as a separate executable in the
[installation_path]\Host directory. This utility works with ELF format files, with
Windows PDB directories and symbol servers, or with files where each line is in the
format <start><length><name>.

Short Long Argument Description
-h --help Help message
providing

information about
available options.

www.nvidia.com
User Guide v2022.2.1 | 231

Troubleshooting

Long

Argument

Description

--process-list

Print global process
IDs list

--sym-file

filename

Path to symbol file

--base-addr

address

If set then <start>
in symbol file is
treated as relative
address starting
from this base
address

--global-pid

Which process in
the report should
be resolved. May be
omitted if there is
only one process in
the report.

--force

This option forces
use of a given
symbol file.

--report

filename

Path to the report
with unresolved
symbols.

-0

--output

filename

Path and name of
the output file. If
it is omitted then
"resolved" suffix
is added to the
original filename.

--directories

directory paths

List of symbol folder
paths, separated

by semi-colon
characters. Available
only on Windows.

--Servers

server URLs

List of symbol
servers that uses

the same format as
_NT_SYMBOL_PATH
environment
variable, i.e.
srv*<LocalStore>}
Available only on
Windows.

www.nvidia.com
User Guide

v2022.2.1 | 232

<SymbolServ

Troubleshooting

Short Long Argument Description
-n --ignore-nt-sym- Ignore the
path symbol locations

stored in the
_NT_SYMBOL_PATH
environment
variable. Available
only on Windows.

Broken Backtraces on Tegra

In Nsight Systems Embedded Platforms Edition, in the symbols table there is a special
entry called Broken backtraces. This entry is used to denote the point in the call chain
where the unwinding algorithms used by Nsight Systems could not determine what is
the next (caller) function.

Broken backtraces happen because there is no information related to the current function
that the unwinding algorithms can use. In the Top-Down view, these functions are
immediate children of the Broken backtraces row.

One can eliminate broken backtraces by modifying the build system to provide at
least one kind of unwind information. The types of unwind information, used by the
algorithms in Nsight Systems, include the following:

For ARMvV7 binaries:

» DWAREF information in ELF sections: .debug_frame, . zdebug_frame, .eh_frame,
.eh_frame_ hdr. This information is the most precise. . zdebug_£rame is a
compressed version of .debug_frame, so at most one of them is typically present.
.eh_frame hdr is a companion section for .eh_frame and might be absent.

Compiler flag: -g.

» Exception handling information in EHABI format provided in .ARM. exidx and
.ARM. extab ELF sections. . ARM. extab might be absent if all information is
compact enough to be encoded into .ARM. exidx.

Compiler flag: -funwind-tables.
» Frame pointers (built into the . text section).

Compiler flag: -fno-omit-frame-pointer.
For Aarch64 binaries:

» DWAREF information in ELF sections: .debug_frame, . zdebug frame, .eh frame,
.eh_frame hdr. See additional comments above.

Compiler flag: -g.
» Frame pointers (built into the . text section).

Compiler flag: -fno-omit-frame-pointer.

www.nvidia.com
User Guide v2022.2.1 | 233

Troubleshooting

The following ELF sections should be considered empty if they have size of 4 bytes:
.debug_frame, .eh_frame, .ARM.exidx. In this case, these sections only contain
termination records and no useful information.

For GCC, use the following compiler invocation to see which compiler flags are enabled
in your toolchain by default (for example, to check if -funwind-tables is enabled by
default):

$ gcc -Q —--help=common

For GCC and Clang, add -### to the compiler invocation command to see which
compiler flags are actually being used.

Since EHABI and DWARF information is compiled on per-unit basis (every . cpp or
.c file, as well as every static library, can be built with or without this information),
presence of the ELF sections does not guarantee that every function has necessary
unwind information.

Frame pointers are required by the Aarch64 Procedure Call Standard. Adding frame
pointers slows down execution time, but in most cases the difference is negligible.

Debug Versions of ELF Files

Often, after a binary is built, especially if it is built with debug information (-g compiler
tlag), it gets stripped before deploying or installing. In this case, ELF sections that
contain useful information, such as non-export function names or unwind information,
can get stripped as well.

One solution is to deploy or install the original unstripped library instead of the stripped
one, but in many cases this would be inconvenient. Nsight Systems can use missing
information from alternative locations.

For target devices with Ubuntu, see Debug Symbol Packages. These packages typically
install debug ELF files with /usr/1ib/debug prefix. Nsight Systems can find debug
libraries there, and if it matches the original library (e.g., the built-in Buildib is the
same), it will be picked up and used to provide symbol names and unwind information.

Many packages have debug companions in the same repository and can be directly
installed with APT (apt-get). Look for packages with the -dbg suffix. For other
packages, refer to the Debug Symbol Packages wiki page on how to add the debs
package repository. After setting up the repository and running apt-get update, look for
packages with -dbgsym suffix.

To verify that a debug version of a library has been picked up and downloaded from the
target device, look in the Module Summary section of Analysis Summary:

Module summary

Module name Address CPU time

[kernel_kallsyms] 53.46%

Mibfaarch64-linux-gnu/libc-2.23.50
Jusr/libidebug/lib/aarchBd-inwx-gnu/libe-2.23.s0

0x7£7ebad000-0xTETecda000 26.04%

www.nvidia.com
User Guide v2022.2.1 | 234

https://wiki.ubuntu.com/Debug_Symbol_packages
https://wiki.ubuntu.com/Debug_Symbol_packages

Troubleshooting

27.6. Logging

To enable logging on the host, refer to this config file:
host-linux-x64/nvlog.config.template

When reporting any bugs please include the build version number as described in the
Help # About dialog. If possible, attach log files and report (.nsys-rep) files, as they
already contain necessary version information.

Verbose Logging on Linux Targets

Verbose logging is available when connecting to a Linux-based device from the GUI on
the host. This extra debug information is not available when launching via the command
line. Nsight Systems installs its executable and library files into the following directory:
/opt/nvidia/nsight systems/

To enable verbose logging on the target device, when launched from the host, follow
these steps:

1. Close the host application.

2. Restart the target device.

3. Place nvlog.config from host directory to the /opt/nvidia/nsight_systems
directory on target.

4. From SSH console, launch the following command:
sudo /opt/nvidia/nsight systems/nsys --daemon --debug

5. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsys.log

in the directory where nsys command was launched.

Please note that in some cases, debug logging can significantly slow down the profiler.

Verbose Logging on Windows Targets

Verbose logging is available when connecting to a Windows-based device from the GUI
on the host. Nsight Systems installs its executable and library files into the following
directory by default:

C:\Program Files\NVIDIA Corporation\Nsight Systems 2022.2

To enable verbose logging on the target device, when launched from the host, follow
these steps:

1. Close the host application.
2. Terminate the nsys process.

3. Place nvlog.config from host directory next to Nsight Systems Windows agent on
the target device

www.nvidia.com
User Guide v2022.2.1 | 235

Troubleshooting

» Local Windows target:

C:\Program Files\NVIDIA Corporation\Nsight Systems 2022.2\target-
windows-x64

» Remote Windows target:

C:\Users\<user name>\AppData\Local\Temp\nvidia\nsight systems
4. Start the host application and connect to the target device.

Logs on the target devices are collected into this file (if enabled):
nsight-sys.log

in the same directory as Nsight Systems Windows agent.

Please note that in some cases debug logging can significantly slow down the profiler.

www.nvidia.com
User Guide v2022.2.1 | 236

Chapter 28.
OTHER RESOURCES

Looking for information to help you use Nsight Systems the most effectively? Here are
some more resources you might want to review:

Feature Videos

Short videos, only a minute or two, to introduce new features.

OpenMP Trace Feature Spotlight

Command Line Sessions Video Spotlight

Direct3D11 Feature Spotlight

Vulkan Trace

Statistics Driven Profiling

Analyzing NCCL Usage with NVDIA Nsight Systems

vV Vv v v VY

Blog Posts

NVIDIA developer blogs, these are longer form, technical pieces written by tool and
domain experts.

2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM
2019 - Migrating to NVIDIA Nsight Tools from NVVP and nvprof

2019 - Transitioning to Nsight Systems from NVIDIA Visual Profiler / nvprof

2019 - NVIDIA Nsight Systems Add Vulkan Support

2019 - TensorFlow Performance Logging Plugin nvtx-plugins-tf Goes Public

2020 - NVIDIA Nsight Systems in Containers and the Cloud

2020 - Understanding the Visualization of Overhead and Latency in Nsight Systems
2021 - Optimizing DX12 Resource Uploads to the GPU Using CPU-Visible VRAM

vV V. vV vV VvV VvV Vv Vv

Training Seminars
2018 NCSA Blue Waters Webinar - Introduction to NVIDIA Nsight Systems

www.nvidia.com
User Guide v2022.2.1 | 237

https://youtu.be/ZeuM2k_hrq0
https://youtu.be/r2ewwd4d0vc
https://youtu.be/DUhzjyBr-wg
https://youtu.be/witzRF-wu8M
https://www.youtube.com/watch?v=fyhPFTF75tk
https://www.youtube.com/embed/bda5Er27jqo
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof/
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof/
https://devblogs.nvidia.com/nvidia-nsight-systems-adds-vulkan-support/
https://devblogs.nvidia.com/tensorflow-performance-logging-plugin-nvtx-plugins-tf-public/
https://developer.nvidia.com/blog/nvidia-nsight-systems-containers-cloud/
https://developer.nvidia.com/blog/understanding-the-visualization-of-overhead-and-latency-in-nsight-systems/
https://developer.nvidia.com/blog/optimizing-dx12-resource-uploads-to-the-gpu-using-cpu-visible-vram/
https://www.youtube.com/watch?v=WA8C48FJi3c

Other Resources

Conference Presentations

>

GTC 2020 - Rebalancing the Load: Profile-Guided Optimization of the NAMD
Molecular Dynamics Program for Modern GPUs using Nsight Systems

GTC 2020 - Scaling the Transformer Model Implementation in PyTorch Across
Multiple Nodes

GTC 2019 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics
Simulation Program

GTC 2019 - Optimizing Facebook AI Workloads for NVIDIA GPUs

GTC 2018 - Optimizing HPC Simulation and Visualization Codes Using NVIDIA
Nsight Systems

GTC 2018 - Israel - Boost DNN Training Performance using NVIDIA Tools
Siggraph 2018 - Taming the Beast; Using NVIDIA Tools to Unlock Hidden GPU
Performance

For More Support

To file a bug report or to ask a question on the Nsight Systems forums, you will need to
register with the NVIDIA Developer Program. See the FAQ. You do not need to register
to read the forums.

After that, you can access Nsight Systems Forums and the NVIDIA Bug Tracking
System.

To submit feedback directly from the GUI, go to Help->Send Feedback and fill out the
form. Enter your email address if you would like to hear back from the Nsight Systems
team.

www.nvidia.com
User Guide v2022.2.1 | 238

https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21547
https://developer.nvidia.com/gtc/2020/video/s21351
https://developer.nvidia.com/gtc/2020/video/s21351
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9503-using+nsight+tools+to+optimize+the+namd+molecular+dynamics+simulation+program
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s9866-optimizing+facebook+ai+workloads+for+nvidia+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s8718-optimizing+hpc+simulation+and+visualization+codes+using+the+nvidia+nsight+systems
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=sil8105-boost+dnn+training+performance+using+nvidia+tools
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
http://on-demand.gputechconf.com/siggraph/2018/video/sig1805-aurelio-reis-yaki-tebeka-taming-the-beast.html
https://www.nvidia.com/en-us/account/faq/
https://forums.developer.nvidia.com/c/development-tools/nsight-systems/116
https://developer.nvidia.com/nvidia_bug/add
https://developer.nvidia.com/nvidia_bug/add

www.nvidia.com
User Guide

> NVIDIA Nsight Systems

Feedback for NVIDIA Nsight Systems
Feature Suggestion
Comments:

Please enter your feedback here.

» ¥ Include System Info
» || Include Screenshots

» Attach Additional Files:
Contact Information:

Name: Email:

Xcorce

Other Resources

v2022.2.1 | 239

	Table of Contents
	Profiling from the CLI
	1.1. Installing the CLI on Your Target
	1.2. Command Line Options
	1.2.1. CLI Global Options

	1.3. CLI Command Switches
	1.3.1. CLI Profile Command Switch Options
	1.3.2. CLI Start Command Switch Options
	1.3.3. CLI Stop Command Switch Options
	1.3.4. CLI Cancel Command Switch Options
	1.3.5. CLI Launch Command Switch Options
	1.3.6. CLI Shutdown Command Switch Options
	1.3.7. CLI Export Command Switch Options
	1.3.8. CLI Stats Command Switch Options
	1.3.9. CLI Analyze Command Switch Options
	1.3.10. CLI Status Command Switch Options
	1.3.11. CLI Sessions Command Switch Subcommands

	1.4. Example Single Command Lines
	1.5. Example Interactive CLI Command Sequences
	1.6. Example Stats Command Sequences
	1.7. Example Output from --stats Option
	1.8. Importing and Viewing Command Line Results Files
	1.9. Using the CLI to Analyze MPI Codes
	1.9.1. Tracing MPI API calls
	1.9.2. Using the CLI to Profile Applications Launched with mpirun

	Profiling from the GUI
	2.1. Profiling Linux Targets from the GUI
	2.1.1. Connecting to the Target Device
	2.1.2. System-Wide Profiling Options
	2.1.2.1. Linux x86_64
	2.1.2.2. Linux for Tegra

	2.1.3. Target Sampling Options
	Target Sampling Options for Workstation
	Target Sampling Options for Embedded Linux

	2.1.4. Hotkey Trace Start/Stop
	2.1.5. Launching and Attaching to Processes

	2.2. Profiling Windows Targets from the GUI
	Remoting to a Windows Based Machine
	Hotkey Trace Start/Stop
	Target Sampling Options on Windows
	Symbol Locations

	2.3. Profiling QNX Targets from the GUI

	Export Formats
	3.1. SQLite Schema Reference
	3.2. SQLite Schema Event Values
	3.3. Common SQLite Examples
	3.4. Arrow Format Description
	3.5. JSON and Text Format Description

	Report Scripts
	Report Scripts Shipped With Nsight Systems
	apigpusum[:base] -- CUDA API & GPU Summary (CUDA API + kernels + memory ops)
	cudaapisum -- CUDA API Summary
	cudaapitrace -- CUDA API Trace
	gpukernsum[:base] -- CUDA GPU Kernel Summary
	gpumemsizesum -- GPU Memory Operations Summary (by Size)
	gpumemtimesum -- GPU Memory Operations Summary (by Time)
	gpusum[:base] -- GPU Summary (kernels + memory operations)
	gputrace -- CUDA GPU Trace
	nvtxppsum -- NVTX Push/Pop Range Summary
	openmpevtsum -- OpenMP Event Summary
	osrtsum -- OS Runtime Summary
	vulkanmarkerssum -- Vulkan Range Summary
	pixsum -- PIX Range Summary
	khrdebugsum -- OpenGL KHR_debug Range Summary

	Report Formatters Shipped With Nsight Systems
	Column
	Table
	CSV
	TSV
	JSON
	HDoc
	HTable

	Migrating from NVIDIA nvprof
	Using the Nsight Systems CLI nvprof Command
	CLI nvprof Command Switch Options
	Next Steps

	Profiling in a Docker on Linux Devices
	Direct3D Trace
	7.1. D3D11 API trace
	7.2. D3D12 API Trace

	WDDM Queues
	WDDM HW Scheduler
	Vulkan API Trace
	10.1. Vulkan Overview
	10.2. Pipeline Creation Feedback
	10.3. Vulkan GPU Trace Notes

	Stutter Analysis
	11.1. FPS Overview
	11.2. Frame Health
	11.3. GPU Memory Utilization
	11.4. Vertical Synchronization

	OpenMP Trace
	OS Runtime Libraries Trace
	13.1. Locking a Resource
	13.2. Limitations
	13.3. OS Runtime Libraries Trace Filters
	13.4. OS Runtime Default Function List

	NVTX Trace
	CUDA Trace
	15.1. CUDA GPU Memory Allocation Graph
	15.2. Unified Memory Transfer Trace
	Unified Memory CPU Page Faults
	Unified Memory GPU Page Faults

	15.3. CUDA Default Function List for CLI
	15.4. cuDNN Function List for X86 CLI

	OpenACC Trace
	OpenGL Trace
	17.1. OpenGL Trace Using Command Line

	Custom ETW Trace
	GPU Metric Sampling
	Overview
	Launching GPU Metric Sampling from the CLI
	Launching GPU Metric Sampling from the GUI
	Sampling frequency
	Available Metrics
	Exporting and Querying Data
	Limitations

	NVIDIA Video Codec SDK Trace
	20.1. NV Encoder API Functions Traced by Default
	20.2. NV Decoder API Functions Traced by Default
	20.3. NV JPEG API Functions Traced by Default

	Network Communication Profiling
	21.1. MPI API Trace
	21.2. OpenSHMEM Library Trace
	21.3. UCX Library Trace
	21.4. NVIDIA NVSHMEM and NCCL Trace
	21.5. NIC Metric Sampling

	Reading Your Report in GUI
	22.1. Generating a New Report
	22.2. Opening an Existing Report
	22.3. Sharing a Report File
	22.4. Report Tab
	22.5. Analysis Summary View
	22.6. Timeline View
	22.6.1. Timeline
	Row Height

	22.6.2. Events View
	22.6.3. Function Table Modes
	22.6.4. Filter Dialog

	22.7. Diagnostics Summary View
	22.8. Symbol Resolution Logs View

	Adding Report to the Timeline
	23.1. Time Synchronization
	23.2. Timeline Hierarchy
	23.3. Example: MPI
	23.4. Limitations

	Using Nsight Systems Expert System
	Using Expert System from the CLI
	Using Expert System from the GUI
	Expert System Rules
	CUDA Synchronous Operation Rules
	GPU Low Utilization Rules

	Import NVTXT
	Commands

	Visual Studio Integration
	Troubleshooting
	27.1. General Troubleshooting
	27.2. CLI Troubleshooting
	27.3. Launch Processes in Stopped State
	LD_PRELOAD
	Launcher

	27.4. GUI Troubleshooting
	Ubuntu 18.04/20.04 and CentOS 7/8 with root privileges
	Ubuntu 18.04/20.04 and CentOS 7/8 without root privileges
	Other platforms, or if the previous steps did not help

	27.5. Symbol Resolution
	Broken Backtraces on Tegra
	Debug Versions of ELF Files

	27.6. Logging
	Verbose Logging on Linux Targets
	Verbose Logging on Windows Targets

	Other Resources
	Feature Videos
	Blog Posts
	Training Seminars
	Conference Presentations
	For More Support

