

Coupling the Atmosphere and the Ocean in a Deep Learning Earth System Model

DALE DURRAN, NATHANIEL CRESSWELL-CLAY, MATTHIAS KARLBAUER, ANDY LIU, ZAC ESPINOSA, RAÚL MORENO, THORSTEN KURTH

19 MARCH 2024

EBERHARD KARLS VFRSIIA TÜBINGEN

HOW BIG SHOULD A DEEP LEARNING WEATHER PREDICTION MODEL BE?

- How many predictable degrees of freedom does the atmosphere have?
 - The number must decrease with increasing forecast lead time.
- How do we predict them?
 - than in NWP.

Bridging the Compute Divide

DGX Station: four A100 GPUs 2021

Model ECMWF IFS (S2S) GraphCast SFNO AIFS Pangu Weather DLWP-HPX DLOM-HPX

DURRAN

With DLWP we can choose prognostic variables (& spatial resolution) for completely different reasons

OUR PARSIMONIOUS CNN MODEL USING 2D SPHERICAL SHELLS

- Atmosphere
 - 8/9 prognostic variables
 - To ocean:
 - Z1000, 10-m wind speed,
 - OLR
- Ocean
 - 1 prognostic field
 - To atmosphere
 - SST
- Prescribed fields
 - TOA solar radiation
 - Land-sea mask
 - Topographic height
 - No latitude or longitude!

3 x 3 stencil

- HEALPix 64 mesh atmosphere-only model
 - 110 km grid spacing
- HEALPix 32: coupled model
 - Common in astronomy
 - Among first use in atmospheric science
 - East-to-the-Right mesh

HIERARCHIAL EQUAL AREA ISOLATITUDE PIXELIZATION

- 12 equal-area faces
- Divide into 2ⁿ pixels along each edge
- Pixels equally spaced along latitude lines
- The "right" way to do quads on the sphere
- "East to the right" mesh

WHY IS THE HEALPIX MESH SO MUCH BETTER?

Cube Sphere

DURRAN

HEALPix

"EAST IS TO THE RIGHT"

MODEL ARCHITECTURE

- Inverted channel depth
- Recurrence in the latent space
- Dilation give large receptive field

A ConvNet for the 2020s

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 11976-11986

"We demonstrate that a standard ConvNet model can achieve the same level of scalability as hierarchical vision Transformers while being much simpler in design."

CNB ConvNeXt Block

- Concatentation
- → Data flow
- → 3 x 3 Convolution & GELU
- → 1 x 1 Convolution & GELU
- → 1 x 1 Convolution
- → 2 x 2 Average pooling
- → 2 x 2 Transpose conv (stride=2)

TIME STEPPING

DURRAN

 $J = J_1 + J_2$ Loss function is the sum of the MSE over 24 hrs

PHYSICAL INTERPRETATION OF MULTI-DAY LOSS FUNCTIONS: **ENSEMBLES VS SINGLE STATES**

- Al forecast models with long multi-day loss functions train toward an ensemble forecast
 - GraphCast (Lam et al., 2022): 3-day loss; FengWu (Chen et al., 2023) 10-day loss!

• DLWP (Weyn et al., 2021 shown) and IFS show difference between single run and Monte-Carlo ensemble

Brenowitz et al., 2024 A Practical Probabilistic Benchmark for AI Weather Models

AVOIDING PARAMETERIZED PHYSICS

DURRAN

NVIDIA GTC: MARCH 2024

ECMWF Parameterized Processes

9

SURFACE TEMPERATURES WITHOUT A BOUNDARY-LAYER PARAMETERIZATION

- 2-m temperature
- 2 paired sites
 - Amazon & ocean
 - Australia & ocean
- 4-day forecast
 - Initialized March 12, 2018 at 00 UTC

2-M TEMPERATURE FORECASTS (8 POINTS PER DAY)

DURRAN

- Little temperature variation over oceans (land-sea mask)
- Larger diurnal variations over Australia than the Amazon
 - Total column water vapor?
 - No geo-specific NN weights (CNN is translation invariant)
 - No lat-lon input data

CLOUD AND PRECIPITATION PROCESSES: UNDERLYING PHYSICS

Rain without ice processes

DURRAN

WSM6 PARAMETERIZATION OF CLOUD AND PRECIPITATION PROCESSES IN NWP

DURRAN

Snow accreting rain

$$P \operatorname{sacr}[\operatorname{kgkg}^{-1}\operatorname{s}^{-1}] = \pi^{2} E_{SR} n_{0R} n_{0S} \left(\frac{\rho_{W}}{\rho} \right)$$
$$\times |V_{S} - V_{R}| \left(\frac{5}{\lambda_{R}^{6} \lambda_{S}} + \frac{2}{\lambda_{R}^{5} \lambda_{S}^{2}} + \frac{0.5}{\lambda_{R}^{4} \lambda_{S}^{3}} \right),$$

Snow size distribution

Intercept parameter

$$n_{0S}$$
 (m⁻⁴) = 2 × 10⁶ exp[0.12(T_0 -

Slope parameter

$$\lambda_{s} = (\pi \rho_{s} n_{0s} / \rho q_{s})^{1/4}$$

Hong and Lim, 2006

CAN WE DETERMINE PRECIPITATION FROM OTHER PHYSICAL FIELDS?

- Not a microphysics emulator
 - WSM6 uses T(z), $q_v(z)$, $q_c(z)$, $q_i(z)$, $q_r(z)$, $q_s(z)$, **q**_g(z), ...
- Determine precipitation from the model fields
 - Prognostic fields
 - T_{2m}, T₈₅₀
 - Z1000, Z500, Z250, (Z300-Z700)
 - 10 wind speed
 - Total-column water vapor
 - Specified fields
 - Surface elevation
 - Land-sea mask •
 - Top of atmosphere solar

PRECIPITATION DIAGNOSIS FROM OBSERVABLE FIELDS

- 55 km grid spacing (HEALPix 128)
- No
 - Microphysics
 - Convective parameterization
 - Resolved convection

6-h Precipitation: 12 UTC 22 January 2018

Diagnosed

ERA5 0.5°

BASIC DEEP LEARNING EARTH-SYSTEM MODEL

Couple the atmosphere and the ocean.

DURRAN

ATMOSPHERE-OCEAN COUPLING: TIME SCALES

Z₅₀₀, Z₁₀₀₀

DURRAN

Forecasted: 0 days

SST

ATMOSPHERE-OCEAN COUPLING: ARCHITECTURE

DURRAN

1-YEAR ROLLOUT: ATMOSPHERE ONLY (1460 STEPS)

Zonally averaged 500 hPa height; 3-d mean

ERA5

1-YEAR ROLLOUT: ATMOSPHERE ONLY

Zonally averaged 500 hPa height; 3-d mean

DURRAN

GraphCast Earth2MIP

SFNO Earth2MIP

100-YEAR ROLLOUT: COUPLED ATMOSPHERE-OCEAN

Forecast 2017-2116

DURRAN

99-YEAR ROLLOUT: JANUARY CYCLONE

500-hPa height, SLP 220 km HPX 32 1°×1° ERA5 example

530

550

Z₅₀₀ (dkm)

570

590

DURRAN

NVIDIA GTC: MARCH 2024

490

510

2015-2016 EL NIÑO FORECAST

Training loss: 8-day RMSE

DURRAN

MAY 1ST ROLLOUT: BEST ENSEMBLE MEMBER

September 2015 Averaged SST Anomalies

DURRAN

SST ANOMALIES, 100-YEAR ROLLOUT: NIÑO 3.4 INDEX

- No Drift!
- Approximately correct period
- Amplitude too low (220 km cell spacing)

SST ANOMALIES REGRESSED ON NIÑO 3.4 INDEX

- 100-year rollout
- Includes OLR forcing
- R=0.88

DURRAN

OLR ANOMALIES REGRESSED ON NIÑO 3.4 INDEX

- 100-year rollout
- Includes OLR forcing
- R=0.74

Satellite data, not ERA5

DURRAN

NOVEL SATELLITE DATA FOR DL EARTH SYSTEM MODEL

Normalized differential vegetation index

Satellite remote sensing is the future!

DURRAN

2012 Great Plains drought

CONCLUSIONS

- **Deep learning weather prediction models** •
 - Can sidestep parameterizations crucial for NWP
 - Yield stable 1-year rollouts at 3-h time resolution with minimal drift
- Coupling to a deep learning ocean model
 - Stabilizes iterative rollouts to at least 100 years
 - Removes drift and improves climatology
 - Captures many features of El Niño/ENSO
 - Further improved by adding OLR field from satellite observations

and the second

- Suggests optimism for expanding to a full earth-system model Parsimonious DLWP model trains for 4 A100s in 3.5 days •

HEALPIX DLWP REFERENCE

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Advancing Parsimonious Deep Learning Weather **Prediction using the HEALPix Mesh**

Matthias Karlbauer¹, Nathaniel Cresswell-Clay², Dale R. Durran², Raul A. Moreno², Thorsten Kurth³, Boris Bonev³, Noah Brenowitz⁴, and Martin V. $Butz^1$

¹Neuro-Cognitive Modeling Group, Department of Computer Science, University of Tübingen, Tübingen, Germany ²Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA ³NVIDIA Switzerland AG, Zürich, Switzerland ⁴NVIDIA Corporation, Seattle, USA

essopenarchive.org/doi/full/10.22541/essoar.169603505.58030377

DURRAN