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Fig. 1. Two complex scenes ray traced with direct lighting from many dynamic lights. (Left) A still from the Zero Day video [Winkelmann 2015] with 11,000
dynamic emissive triangles. (Right) A view of one ride in an Amusement Park scene containing 3.4 million dynamic emissive triangles. Both images show three
methods running in equal time on a modern GPU, from left to right: Moreau et al. [2019]’s efficient light-sampling BVH, our new unbiased estimator, and our
new biased estimator. The Zero Day image is rendered in 15 ms and Amusement Park in 50 ms, both at 1920 × 1080 resolution. Zero Day ©beeple, Pirate Ship
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Efficiently rendering direct lighting from millions of dynamic light sources

using Monte Carlo integration remains a challenging problem, even for

off-line rendering systems. We introduce a new algorithm—ReSTIR—that

renders such lighting interactively, at high quality, and without needing to

maintain complex data structures. We repeatedly resample a set of candidate
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light samples and apply further spatial and temporal resampling to leverage

information from relevant nearby samples. We derive an unbiased Monte

Carlo estimator for this approach, and show that it achieves equal-error

6×-60× faster than state-of-the-art methods. A biased estimator reduces

noise further and is 35×-65× faster, at the cost of some energy loss. We

implemented our approach on the GPU, rendering complex scenes containing

up to 3.4 million dynamic, emissive triangles in under 50ms per frame while

tracing at most 8 rays per pixel.
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Fig. 2. While existing denoisers (e.g., Chaitanya et al. [2017]; NVIDIA Research [2017]; Schied et al. [2018]) vastly improve image quality at a given sampling
rate, they cannot reconstruct features that are missing from their input samples. Our work improves the sampling quality at a given computation budget,
enabling existing denoisers to produce better results. Here we show Moreau et al. [2019]’s light BVH, our unbiased (Section 4) and biased (Section 3) methods
with and without the OptiX denoiser [NVIDIA Research 2017]. The Amusement Park’s carousel image is rendered in 42ms at 1920 × 1080 resolution (without
denoising) with 3.4 million animated lights. Carousel ©carousel_world

1 INTRODUCTION
In recent years, Monte Carlo path tracing has been widely adopted

for offline rendering [Christensen and Jarosz 2016; Fascione et al.

2017] and is seeing increasing use in real-time applications [Schied

2019] with the arrival of specialized hardware support for ray inter-

section tests [Parker et al. 2010; Wyman et al. 2018]. Even in offline

rendering, without the constraints of real-time, direct lighting with

many emissive objects remains challenging; it’s not feasible to trace

shadow rays to all of the lights, and finding the lights that con-

tribute most at a given point depends on each light’s visibility to

that point, the distribution of the scattering function (BSDF or phase

function) at the point, and the light source’s power and emissive

characteristics.

Real-time rendering adds even more challenges: the scenes to

be rendered are dynamic and the renderer generally has no future

knowledge of how the scene will change, as that may be affected

by user interaction. Furthermore, only a few rays can currently

be traced at each pixel, so finding important lights is even more

critical, yet there is a limited amount of time to build and update

data structures to aid light sampling [Moreau et al. 2019]. This is

true even for the restricted case of direct lighting at the first camera

vertex, which we consider in this paper.

These constraints have spurred research in denoising and recon-

structing images from noisy low-sample-per-pixel rendered images.

While great strides have been made in this area in both offline [Vo-

gels et al. 2018] and real-time [Schied et al. 2018] rendering, a limited

amount of processing time is available for real-time denoisers since

time spent filtering takes away from the available frame time. De-

noising is particularly challenging with low sample-count images;

as shown in Fig. 2, improving the quality of samples provided to a

denoiser can significantly increase its effectiveness.

We introduce a method to sample one-bounce direct lighting from

many lights that is suited to real-time ray tracing with fully dynamic

scenes (see Fig. 1). Our approach builds on resampled importance

sampling (RIS) [Talbot 2005], a technique for taking a set of samples

that are from one distribution and selecting a weighted subset of

them using another distribution that better matches the function

being integrated. Unlike prior applications of RIS, we use a small

fixed-size data structure—a “reservoir” that only stores accepted

samples—and an associated sampling algorithm (used frequently in

non-graphics applications [Efraimidis and Spirakis 2006]) to help

achieve stable, real-time performance.

Given the reservoir, our approach does not use any data struc-

tures more complicated than fixed-size arrays, yet it stochastically,

progressively, and hierarchically improves each pixel’s direct light

sampling PDF by reusing statistics from temporal and spatial neigh-

bors. In contrast to modern real-time denoising algorithms that

reuse pixel colors across temporal and spatial neighborhoods, our

reuse informs the sampling probabilities used within the renderer,

which in turn makes an unbiased algorithm possible. Our unbiased

mode can be modified to be biased, which further reduces noise

at the cost of some over-darkening near geometric discontinuities.

We demonstrate our algorithms running interactively on a single

GPU with scenes that have thousands to millions of dynamic lights,

obtaining one to two orders of magnitude speedup for the same

error compared to state-of-the-art methods implemented on the

same hardware.

We cover the mathematical preliminaries of the techniques we

build upon in Section 2 before describing our work in the subsequent

sections. We discuss related work in Section 7, for better context

when comparing with our results.

2 PRELIMINARIES
The reflected radiance L of a point y in direction ®ω due to direct

lighting is given by an integral over all light emitting surfaces A:

L(y,ω) =

∫
A
ρ(y,−→yx↔ ®ω)Le (x→y)G(x↔y)V (x↔y) dAx , (1)

for BSDF ρ, emitted radiance Le , mutual visibility V between x and

y, and a geometry termG containing inverse squared distance and

cosine terms. By dropping the viewing direction ®ω and shading point
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y for brevity and denoting differential area as dx , this simplifies to

L =

∫
A
f (x) dx, where f (x) ≡ ρ(x)Le (x)G(x)V (x). (2)

Importance Sampling (IS). Standard Monte Carlo importance sam-

pling (IS) estimates an integral by choosing N samples xi from a

source PDF p(xi ) and computing:

⟨L⟩N
is
=

1

N

N∑
i=1

f (xi )

p(xi )
≈ L. (3)

IS remains unbiased if p(x) is positive whenever f (x) is non-zero,
and ideally p(x) is correlated with f (x) to reduce variance.

Multiple Importance Sampling (MIS). In practice, directly sampling

proportional to f (x) is infeasible, in part due to the visibility factor

V (x). However, we can often draw samples proportional to individ-

ual terms in the integrand (e.g., the BSDF ρ or the emissive surfaces

Le ). GivenM such candidate sampling strategies ps , MIS [Veach and

Guibas 1995b] draws Ns samples from each strategy s and combines

them into a single weighted estimator:

⟨L⟩M ,N
mis

=

M∑
s=1

1

Ns

Ns∑
i=1

ws (xi )
f (xi )

ps (xi )
. (4)

As long as the weightsws form a partition of unity

∑M
s=1

ws (x) = 1,

MIS remains unbiased. The balance heuristic, ws (x) =
Nsps (x )∑
j Njpj (x )

,

is a popular and provably good choice [Veach and Guibas 1995b]

for non-negative weights [Kondapaneni et al. 2019], and is equiva-

lent to sampling from the mixture distribution of theM individual

strategies.

2.1 Resampled Importance Sampling (RIS)
An alternative to sampling from a linear combination of shading

terms using MIS is to sample approximately proportional to the

product of some of the terms. Resampled importance sampling [Tal-

bot et al. 2005] achieves this by generatingM ≥ 1 candidate samples

x = {x1, . . . , xM } from a source distribution p that is sub-optimal,

but easy to sample from (e.g., p ∝ Le ). It then randomly chooses

an index z ∈ {1, . . . ,M} from this pool of candidates with discrete

probabilities

p(z | x) =
w(xz )∑M
i=1

w(xi )
with w(x) =

p̂(x)

p(x)
, (5)

driven by a desired target PDF p̂(x), for which no practical sampling

algorithm may exist (e.g., p̂ ∝ ρ · Le ·G). (Note we use ‘w’ for the

RIS weights, to distinguish from MIS weights ‘w ’.) A sample y ≡ xz
is selected and used in the 1-sample RIS estimator:

⟨L⟩1,M
ris
=

f (y)

p̂(y)
·
©­« 1

M

M∑
j=1

w(x j )
ª®¬ . (6)

Intuitively, the estimator uses y as if it were drawn from p̂ and then

uses the parenthesized factor to correct for the fact that the true

distribution of y only approximates p̂.

Repeating RIS multiple times and averaging the results yields an

N -sample RIS estimator:

⟨L⟩N ,M
ris

=
1

N

N∑
i=1

©­« f (yi )p̂(yi )
·
©­« 1

M

M∑
j=1

w(xi j )
ª®¬ª®¬ . (7)

RIS is unbiased as long as M,N ≥ 1 and the functions p and p̂ are

positive wherever f is non-zero. While M and N can be chosen

freely, there exists an optimal ratio of M to N determined by the

variance and relative cost of p̂ and f [Talbot et al. 2005]. In practice,

determining this ratio a-priori can be challenging, and the optimal

number of candidate samplesM per sample yi may be determined

empirically instead. From now on, we will assume N = 1 for sim-

plicity; our estimators can be trivially extended to the N > 1 case

by averaging N independent executions, each with M independent

candidate samples.

Generally, each pixel q in the image will have its own unique

integrand fq and corresponding target PDF p̂q ; we denote this de-
pendence with a subscript from here on. We show pseudo-code for

RIS in Alg. 1.

Algorithm 1: Resampled importance sampling.

Input :M , q: number of candidates to generate (M ≥ 1) for pixel q.
Output :Sample y and the sum of RIS weights

∑M
i=1

w(xi )

1 // Generate proposals x = {x1, . . . , xM }

2 x← ∅
3 w← ∅
4 wsum ← 0

5 for i ← 1 to M do
6 generate xi ∼ p
7 x← x ∪ {xi }
8 wi ← p̂q (xi )/p(xi )
9 wsum ← wsum +wi

10 w← w ∪ {wi }

11 // Select from candidates x
12 Compute normalized CDF C from w
13 draw random index z ∈ [0,M ) using C to sample ∝ wz

14 y ← xz
15 return y , wsum

Combining RIS with MIS. Above we assumed a single source PDF

p, but many problems have several reasonable sampling techniques

(e.g., BSDF or light sampling). As long as p is positive anywhere p̂ is

positive, the distribution ofy approaches p̂ asM →∞ [Talbot 2005].

However, the shape of the source PDF p influences both the effective

PDF of y and the speed it converges to p̂. In practice, when a target

PDF p̂ is the product of two functions (e.g., lighting × BSDF), the

effective PDF of y will vary depending on which function proposals

are drawn from (lighting or BSDF).

Luckily, Talbot [2005] showed how to leverage multiple compet-

ing techniques using MIS within RIS to reduce variance: generate

the pool of proposals using MIS and use the effective MIS (mixture)

PDF as the source PDF in the rest of the RIS procedure.

Unfortunately, the cost of this form of MIS increases quadrat-

ically with the number of techniques (since weights need to be
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Algorithm 2: Weighted reservoir sampling.

1 class Reservoir
2 y ← 0 // The output sample

3 wsum ← 0 // The sum of weights

4 M ← 0 // The number of samples seen so far

5 function update(xi , wi )

6 wsum ← wsum +wi

7 M ← M + 1

8 if rand() < (wi /wsum) then
9 y ← xi

10 function reservoirSampling(S)

11 Reservoir r
12 for i ← 1 to M do
13 r .update(S[i],weight(S[i]))
14 return r

evaluated for each proposal and each such weight needs to consider

all proposal PDFs). This is not a problem when MIS is used with

just two techniques (e.g., lighting and BSDF), but it quickly becomes

intractable as the number of strategies increases.

We use RIS in a way that increases the number of candidates dra-

matically through spatial and temporal reuse, each using different

source PDFs and integration domains. We rederive RIS in this more

general setting in Section 4, and introduce a new MIS approach that

is computationally tractable.

2.2 Weighted Reservoir Sampling
Weighted reservoir sampling (WRS) [Chao 1982] is a family of algo-

rithms for sampling N random elements from a stream {x1, x2, x3,

. . . , xM } in a single pass over the data. Each element has an associ-

ated weight w(xi ) such that xi should be selected with probability

Pi =
w(xi )∑M
j=1

w(x j )
. (8)

Reservoir sampling processes each element exactly once, and only

the N items in the reservoir must remain in memory. The stream

lengthM need not be known in advance.

Reservoir sampling algorithms are classified based on whether

element xi may appear multiple times in the output set, i.e. if sam-

ples are chosen with or without replacement. Literature has mostly

focused on sampling without replacement, as it is a fundamentally

more difficult problem. Fortunately, we want independent selec-

tions xi for Monte Carlo integration, so we only consider weighted

reservoir sampling with replacement below.

Reservoir sampling processes elements of an input stream in order,

storing a reservoir ofN samples. At any point in the stream, reservoir

sampling maintains the invariant that samples in the reservoir are

drawn from the desired distribution (over all elements processed

thus far). When the stream ends, the reservoir is returned. In the

following, we focus on the case whereN = 1, i.e. where the reservoir

consists of one sample.

When processing a new stream element, the reservoir is updated

so as to maintain the invariant, which is that afterm samples have

been processed, sample xi occurs in the reservoir with probability

RIS, pixel
i-1

RIS, pixel
i

RIS, pixel
i+1

Spatial
RIS over
adjacent

pixels

Random samples
(from p(x))

Selected samples
used for shading

Talbot-style RIS

Spatial
RIS over
adjacent

pixels

RIS, pixel
i-1

RIS, pixel
i

RIS, pixel
i+1

Temporal RIS

Temporal RIS

Temporal RIS

Samples reused from last frame

Fig. 3. (Left) Talbot et al. [2005] RIS selects a few samples from a larger pool
of randomly-selected candidates. (Center) RIS can be viewed as an abstract
building block selecting a subset of its inputs. Combining blocks in sequence
can reuse (and amortize costs of generating) the random input candidates
over multiple pixels. (Right) Samples can also be reused temporally, giving
an effective sample count (M in Eq. (7)) that grows based on the spatial and
temporal filter sizes.

w(xi )/
∑m
j=1

w(x j ). The update rule stochastically replaces xi in the

reservoir with the next sample xm+1, with probability

w(xm+1)∑m+1

j=1
w(x j )

, (9)

which ensures that xm+1 appears in the reservoir with the desired

frequency. Thus, any previous sample xi is in the reservoir with

probability

w(xi )∑m
j=1

w(x j )

(
1 −

w(xm+1)∑m+1

j=1
w(x j )

)
=

w(xi )∑m+1

j=1
w(x j )

, (10)

which also maintains the invariant.

This algorithm was introduced by Chao [1982], and is outlined

in Alg. 2. It only stores the sample in the reservoir and a running

sum of weights, making it very efficient.

3 STREAMING RIS WITH SPATIOTEMPORAL REUSE
RIS and WRS form the foundation of our algorithm, and together

allow us to process random candidates in a streaming fashion while

keeping our algorithm and data structures extremely simple (Sec-

tion 3.1). Given such a streaming algorithm, we show how a property

of WRS allows us to do spatiotemporal resampling to efficiently com-

bine and reuse candidates from neighboring pixels and even past

frames (Section 3.2). Doing so increases our effective sample count

by orders of magnitude (see Fig. 3) with little added computation.

Unfortunately, the naive approach to spatiotemporal resampling

is biased, as different pixels select samples based on different BRDFs

and surface orientations. This leads to energy loss near geometric

discontinuities in images, similar to problems typical in post-process

filtering. In Section 4, we show how to generalize RIS and use anMIS

reweighting of the varying sample PDFs to maintain unbiasedness.

3.1 Streaming RIS using reservoir sampling
It is straightforward to apply the WRS algorithm to RIS to transform

it into a streaming algorithm, by updating the reservoir with sequen-

tially generated candidates xi and corresponding weights (Alg. 3). In
Figure 4, we show an image from our GPU implementation of stream-

ing RIS for direct lighting in a complex scene with 23,000 emissive

triangles. We generate samples uniformly over the area of emitters

and use the unshadowed path contribution p̂(x) = ρ(x)Le (x)G(x)

ACM Trans. Graph., Vol. 39, No. 4, Article 148. Publication date: July 2020.
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Fig. 4. Streaming RIS quality improves with increased M (candidates) and
N (samples for shading). Here we show the effect of increasing M in the
multi-room Subway scene with 23,000 textured emissive triangles. Tracing 8
shadow rays costs 6ms; selecting those samples costs (left to right) 1.0, 2.5,
10.1, 42, and 168 ms. Moreau et al. [2019]’s total cost is 48ms when shooting
8 rays, comparable to M = 1024, but with quality comparable to M = 256.
Subway ©silvertm

Algorithm 3: Streaming RIS using weighted reservoir sampling.

1 foreach pixel q ∈ Image do
2 Image[q]← shadePixel(RIS(q), q)

3 function RIS(q)
4 Reservoir r
5 for i ← 1 to M do
6 generate xi ∼ p
7 r .update(xi , p̂q (xi )/p(xi ))

8 r .W = 1

p̂q (r .y)

(
1

r .M r .wsum

)
// Equation (6)

9 return r

10 function shadePixel(Reservoir r , q)
11 return fq (r .y) · r .W

as the target distribution, only tracing shadow rays for the N surviv-

ing RIS samples. We compare streaming RIS with varying candidate

counts M to a reference as well as to a state-of-the-art real-time

light BVH [Moreau et al. 2019] using an equal number of rays per

pixel.

Surprisingly, asM increases, streaming RIS beats even a state-of-

the-art light sampling technique, without preprocessing or relying

on a complex data structure. However, good results require large

values ofM . While Alg. 3 makes the storage requirements constant

(from O(M)), computation remains linear inM .

3.2 Spatiotemporal Reuse
The approach described in Section 3.1 independently generates can-

didates at each pixel q and resamples them using a target PDF p̂q .
A key observation is that significant correlation generally exists

between target PDFs in neighboring pixels. For example, if using un-

shadowed illumination (p̂(x) = ρ(x)Le (x)G(x)), then spatial prox-

imity often leads to the geometry and BSDF factors being similar

at adjacent pixels. A naive way to leverage correlations between

Fig. 5. Starting fromm = 32 candidates generated by streaming RIS (left),
we iteratively apply our spatial reuse operation, gathering k = 5 neighbors
at each step. The number of repeated applications increase from left to
right with 1, 2 and 4 iterations respectively. The image quality increases
dramatically without much added cost. Subway ©silvertm

“similar” pixels would be to generate (and store) per-pixel candidate

samples and their weights and to use a second pass to reuse compu-

tation performed at neighboring pixels by combining each pixel’s

candidates with its neighbors’. Because weight computations occur

in the first pass, reuse of neighbors’ candidates are computationally

cheaper than generating an equivalent number of new candidates.

(This is similar to Bekaert et al. [2002]’s reuse, though they retrace

visibility rays for reused candidates.)

Unfortunately this approach is impractical, as it requires storage
for each reused candidate. However, we can circumvent the storage

requirements using a key property of reservoir sampling, which

allows us to combine multiple reservoirs without requiring access

to their input streams.

A reservoir’s state contains both the currently selected sample

y and the sum of weights wsum of all candidates seen thus far. To

combine two reservoirs, we treat each reservoir’s y as a fresh sam-

ple with weight wsum, and feed it as input to a new reservoir. The

result is mathematically equivalent to having performed reservoir

sampling on the two reservoirs’ combined input streams. However,

crucially this operation only requires constant time and avoids stor-

ing (or retrieving) elements of either input stream, needing only

access to each reservoir’s current state. Input streams of an arbitrary

number of reservoirs can be combined this way: Alg. 4 shows pseu-

docode to combine the input streams of k reservoirs; it runs inO(k)
time. To account for the fact that samples from the neighboring

pixel q′ are resampled following a different target distribution p̂q′ ,
we reweight the samples with the factor p̂q (r .y)/p̂q′(r .y) to account
for areas that were over- or undersampled at the neighbor compared

to the current pixel. The resulting term p̂q (r .y)/p̂q′(r .y) · r .wsum

can be written more succinctly as p̂q (r .y) · r .W · r .M using the term

already computed in Alg. 3, line 8.

Spatial Reuse. This property of reservoir sampling makes possible

a practical algorithm for reusing computation in RIS. We first gener-

ateM candidates for every pixel q using RIS(q) (Alg. 3) and store the
resulting reservoirs in an image-sized buffer. In a second step, each

pixel selects k of its neighbors and combines their reservoirs with its

ACM Trans. Graph., Vol. 39, No. 4, Article 148. Publication date: July 2020.
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Algorithm 4: Combining the streams of multiple reservoirs.

Input :Reservoirs ri to combine.

Output :A combined reservoir equivalent to the concatenated input

streams of r1, . . . , rk .

1 function combineReservoirs(q, r1, r2, . . . , rk )
2 Reservoir s
3 foreach r ∈ {r1, . . . , rk } do
4 s .update(r .y, p̂q (r .y) · r .W · r .M )
5 s .M ← r1 .M + r2 .M + . . . + rk .M

6 s .W = 1

p̂q (s .y)

(
1

s .M s .wsum

)
// Equation (6)

7 return s

Fig. 6. Compared to one iteration of spatial reuse alone (left,M = 4, k = 5),
adding candidates from previous frames to candidates from the current
frame can greatly increase the image quality of streaming RIS (right, after
20 frames) with little added computational cost. Subway ©silvertm

own using Alg. 4. Per pixel costs are O(k +M), but each pixel effec-
tively sees k ·M candidates. Crucially, spatial reuse can be repeated,
using the outputs of the prior reuse pass as input. Performing n
iterations requires O(nk +M) computation, but effectively yields

knM candidates per pixel, assuming distinct neighboring pixels are

used at each step.

Figure 5 shows spatial reuse in the Subway scene. Each iteration

requires little additional computation, but dramatically increases

image quality. The benefit is not indefinite; eventually, iterative

reuse incorporates all candidates from nearby pixels and image

quality stops improving.

Temporal Reuse. Images are often not rendered in isolation but

are part of an animated sequence. In this case, the prior frame can

provide additional candidates for reuse. After rendering a frame,

we store each pixel’s final reservoir for reuse in the next frame. If

we render frames sequentially and feed forward their reservoirs,

a frame combines candidates not just with those of the previous

frame, but all previous frames in the sequence, which dramatically

improves image quality. Figure 6 again shows the Subway scene,

comparing spatial-only and spatiotemporal reuse.

Visibility Reuse. Unfortunately, even with an unlimited number of

candidates, RIS cannot achieve noise-free renderings. Although the

distribution of samples approaches the target PDF p̂ asM approaches

Algorithm 5: Our algorithm for RIS with spatiotemporal reuse.

Input : Image sized buffer containing the previous frame’s reservoirs

Output :The current frame’s reservoirs

1 function reservoirReuse(prevFrameReservoirs)

2 reservoirs← new Array[ImageSize]

3 // Generate initial candidates

4 foreach pixel q ∈ Image do
5 reservoirs[q]← RIS(q) // Alg. 3

6 // Evaluate visibility for initial candidates

7 foreach pixel q ∈ Image do
8 if shadowed(reservoirs[q].y) then
9 reservoirs[q].W ← 0

10 // Temporal reuse

11 foreach pixel q ∈ Image do
12 q′ ← pickTemporalNeighbor(q)
13 reservoirs[q]← combineReservoirs(q, reservoirs[q],
14 prevFrameReservoirs[q′]) // Alg. 4

15 // Spatial reuse

16 for iteration i ← 1 to n do
17 foreach pixel q ∈ Image do
18 Q ← pickSpatialNeighbors(q)
19 R← {reservoirs[q′] | q′ ∈ Q }
20 reservoirs[q]← combineReservoirs(q, reservoirs[q], R)

21 // Compute pixel color

22 foreach pixel q ∈ Image do
23 Image[q]← shadePixel(reservoirs[q], q) // Alg. 3

24 return reservoirs

infinity, p̂ does not sample the integrand f perfectly. In practice, p̂ is

usually set to the unshadowed path contribution, meaning that asM
grows large, noise due to visibility starts to dominate. Unfortunately,

visibility noise can be severe in large scenes. To solve this issue, we

also perform visibility reuse. Before performing spatial or temporal

reuse, we evaluate visibility of the selected sample y for each pixel’s

reservoir. If y is occluded, we discard the reservoir. This means that

occluded samples will not propagate to neighboring pixels, and if

visibility is locally coherent, the final sample produced by spatial

resampling is likely to be unoccluded.

Alg. 5 provides pseudocode for our complete algorithm. We first

generate and resample fromM independent per-pixel light candi-

dates. The selected samples from this step are tested for visibility,

and occluded samples discarded. We then combine the selected

samples in each pixel’s reservoir with the prior frame’s output,

determined using backprojection. We perform n rounds of spatial

reuse to leverage information from a pixel’s neighbors. Finally, we

shade the image and forward the final reservoirs to the next frame.

4 (ELIMINATING) BIAS IN MULTI-DISTRIBUTION RIS
In the previous section, we introduced a practical algorithm to reuse

computation, spatially and temporally, that dramatically improves

the quality of RIS with low overhead. However, we ignored one

important detail: Each pixel uses a different integration domain and

target distribution, and reusing candidates from adjacent pixels can
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potentially introduce bias. This is because the PDF of samples after

resampling varies from pixel to pixel due to the different target

distributions. Standard RIS is not designed to accomodate mixing

candidate samples from different PDFs as we do during reuse, and

ignoring this fact can lead to noise and bias.

The rest of this section is structured as follows: In Section 4.1–

Section 4.3, we rederive and do a theoretical analysis of RIS in the

presence of candidates generated from different PDFs, and reveal the

source of this bias as well as a simple solution to retain unbiasedness.

Readers less interested in theory can skip directly to Section 4.4, in

which we detail the practical changes to our algorithm needed to

accomodate our theory.

4.1 Analyzing the RIS Weight
To illustrate the source of bias in RIS, we begin by regrouping Eq. (6)

as follows:

⟨L⟩1,M
ris
= f (y) ·

©­« 1

p̂(y)

1

M

M∑
j=1

w(x j )
ª®¬ = f (y)W (x, z), (11)

whereW is the stochastic weight for the generated sample y ≡ xz :

W (x, z) =
1

p̂(xz )

[
1

M

M∑
i=1

wi (xi )

]
. (12)

What is the role ofW ? Normally, Monte Carlo estimators take on the

form f (y)/p(y). We do not know p(y)—in fact, we later show that

we cannot compute it in closed form—andW (x, z) takes its place in
Eq. (11). We can therefore guess thatW (x, z) must take on the role

of the reciprocal PDF 1/p(y). However,W (x, z) is a random variable:

For a given output sample y there are many {x, z} that could have

produced it, and which set of values (and therefore, which value for

W (x, z)) is returned by RIS is random.

In order for Eq. (6) to be unbiased, the expected value ofW (x, z)
should be equal to 1/p(y). In the following sections, we show that

this is not always the case when combining samples from neighbor-

ing pixels, which is the source of bias.

Explanation of Reweighting Factor. In Alg. 4, samples from neigh-

bors are assigned the weight p̂q (r .y) ·r .W ·r .M . We gave an intuitive

justification of this weight in Section 3.2, but this term now has a

straightforward explanation: p̂q (r .y) · r .W simply represents the

standard RIS weight of p̂q (r .y)/p(r .y), except that we do not know

the exact PDF p(r .y) and use the estimate of the inverse PDF, r .W
(Eq. (12)), instead. As r .y represents the result of combining mul-

tiple samples, the weight is additionally scaled by the number of

candidates r .M that produced r .y.

4.2 Biased RIS
We will now derive the effective PDF p(y) of samples produced by

RIS. Standard RIS [Talbot et al. 2005] (Section 2.1) assumes that all

candidate samples are produced by the same pdf p. We instead now

allow each sample xi in x to come from a potentially different source

PDF pi (xi ). The joint PDF of these proposals is simply the product

of their PDFs:

p(x) =

[ M∏
i=1

pi (xi )

]
. (13)

In the second stage of the RIS algorithm, we pick a discrete index

z ∈ {1, . . . ,M}, but with selection probabilities and weights now

driven by these candidate-specific PDFs (cf. Eq. (5)):

p(z | x) =
wz (xz )∑M
i=1

wi (xi )
where wi (x) =

p̂(x)

pi (x)
. (14)

Since we have p(x) and p(z | x), we can easily write down the joint

PDF of the candidates x and selected index z as the product:

p(x, z) = p(x) p(z | x) =

[ M∏
i=1

pi (xi )

]
wz (xz )∑M
i=1

wi (xi )
. (15)

So what is p(y)? For a fixed output sample y, there are potentially
many configurations of x and z that could lead to y being returned

by RIS. For example, we could have x1 = y and z = 1 and all other

x2, . . . , xM chosen freely. We could also have x2 = y and z = 2, and

so forth. Of course, y can only be produced by techniques for which

pi (y) > 0. Let’s gather these techniques into a set

Z (y) = {i | 1 ≤ i ≤ M ∧ pi (y) > 0} . (16)

To obtain the total PDF of an output sampley, we simplymarginalize

the joint PDF (15) over all configurations that could lead to this y:

p(y) =
∑

i ∈Z (y)

∫
· · ·

∫
︸    ︷︷    ︸
M−1 times

p(xi→y , i) dx1 . . . dxM︸        ︷︷        ︸
M−1 times

. (17)

where xi→y = {x1, . . . , xi−1,y, xi+1, . . . , xM } is shorthand for the

set of candidates with the ith candidate fixed to y. The integration
is only over theM − 1 candidates that are not fixed.

Expected RIS Weight. With the PDF of RIS defined, we can now

showwhen the expected value of the RIS weightW (x, z) is the PDF’s
reciprocal. To compute this value, we need to take a conditional

expectation: Given that the output sample is y, what is the average
weight? We can do this by taking the expectation ofW (x, z) only
over those values of x and z for which xz = y, and divide by p(y):
the probability density of the event xz = y. This gives

E
xz=y
[W (x, z)] =

∑
i ∈Z (y)

∫
· · ·

∫
W (xi→y , i)p(xi→y , i) dx1 . . . dxM

p(y)
, (18)

where xi→y
and the integration bounds are the same as in Eq. (17).

In Appendix A we prove that this expression simplifies to:

E
xz=y
[W (x, z)] =

1

p(y)

|Z (y)|

M
, (19)

which shows two things: If all candidate PDFs are non-zerowherever

the target function is non-zero, then |Z (y)| = M , and the RIS weight

becomes an unbiased estimator of the inverse RIS PDF. If, however,

some of the PDFs are zero for part of the integrand, then
|Z (y) |
M < 1,

and the inverse PDF is consistently underestimated. This means the

expected value is biased to be darker than the true integral.
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Candidate PDF partially zero Candidate PDF near-zero

0.0 0.2 0.4 0.6 0.8 1.0

(a) Biased RIS

0.0 0.2 0.4 0.6 0.8 1.0

(b) Naive unbiased RIS

0.0 0.2 0.4 0.6 0.8 1.0

(c) Naive unbiased RIS

0.0 0.2 0.4 0.6 0.8 1.0

p2(x ) partially zero p2(x ) partially near-zero

(d) Unbiased RIS with MIS

M=2 M=4 M=10 M=20 1/f(x)

Fig. 7. We show results of RIS for sampling a simple linear target PDF, p̂(x ) = 2 − 2x . Candidates are produced from a constant PDF (p1(x ) = 1) and a step
function (p2(x ) = 2H (1/2 − x )). We show the inverse PDF of samples produced by RIS, both estimated from the histogram of output samples (dark, thick
lines; this is the ground truth), and estimated by the RIS weight (pale lines). The traditional RIS weight (a) is biased where one or more of the PDFs are zero
(right half of graph), and the RIS weight (pale lines) does not match the actual distribution of samples (dark lines). Naive unbiased RIS (b) fixes the bias by
dividing by the number of non-zero candidate PDFs rather than M , but this strategy leads to an extremely noisy RIS weight (c) when a candidate PDF is
near-zero rather than zero (p2(x ) ∝ max(2H (1/2 − x ), 10

−4)). Our MISed version of the RIS weight (d) is unbiased and robust against small candidate PDFs.

A 1D Example. To demonstrate this, consider the following two

candidate PDFs: p1(x) = 1 and p2(x) = 2H (1/2 − x), where H (x)
is the Heaviside step function. The PDFs are illustrated below:

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

In Fig. 7(a), we used these two candidate PDFs to sample a linear

ramp, p̂(x) = 2− 2x , with half the candidates generated from p1 and

the others from p2, for increasing values ofM . We visualized 1/p(y),
measured in two different ways: once, by plotting the reciprocal
of the histogram of sample locations (solid, dark curves; this is the

ground truth), and once as the average of the RIS weight at each

location (pale, transparent curves). The curves do not match, but if

standard RIS were truly an estimator of the inverse PDF they should.

4.3 Unbiased RIS
We now show that this bias can be eliminated by modifying the RIS

weight: Instead of multiplying by the factor 1/M , we can choose

some (yet unspecified) weightm(xz ):

W (x, z) =
1

p̂(xz )

[
m(xz )

M∑
i=1

wi (xi )

]
. (20)

Repeating the derivation of the expected value ofW shows that

E
xz=y
[W (x, z)] =

1

p(y)

∑
i ∈Z (y)

m(xi ), (21)

indicating an unbiased estimator just requires

∑
i ∈Z (y)m(xi ) = 1.

Naive approach. There are infinitely many ways to choosem(x).
The easiest way is to use uniform weights and simply setm(xz ) =
1/|Z (xz )|. That is, instead of dividing by M (the number of candi-

dates), we divide by the number of candidates with non-zero PDFs

at that location, creating an unbiased RIS estimator (see Fig. 7(b)).

This fixes the bias problem; but, this estimator of the inverse

PDF can have problems. Consider a candidate PDF close to, but

not exactly, zero such as p2(x) ∝ max(H (1/2 − x), 10
−4). As the

candidate PDF is never zero, even the original RIS estimator will be

unbiased. However, the estimator of the inverse RIS PDF becomes

extremely noisy, as shown in Fig. 7(c).

Combining with Multiple Importance Sampling. Luckily, we are
able to choose any weightsm(xz ) that sum to 1, for instance:

m(xz ) =
pz (xz )∑M
i=1

pi (xz )
, (22)

i.e., the balance heuristic of the candidate PDFs. This solves both

bias and noise issues when combining many candidate PDFs using

RIS, as shown in Fig. 7(d).

Comparison to Talbot et al. [2005]. Talbot et al. propose a differ-
ent solution for using multiple candidate PDFs in RIS. Where we

use wi (x) = p̂(x)/pi (x) (Eq. (14)) as the weight, Talbot et al. use

wi (x) = p̂(x)/
∑
pi (x). By replacing the individual PDFs by a single

average PDF, Talbot forgo noise and bias issues that arise when

mixing multiple candidate PDFs. In addition, if the sum of candidate

PDFs is closer to the target distribution than the individual PDFs,

then Talbot et al.’s approach may further reduce noise compared

to ours. However, there is a crucial difference between the two ap-

proaches: Talbot et al. evaluate all PDFs for each candidate sample;

if each candidate sample uses a different PDF, then the cost of their

approach is O(M2) PDF evaluations. In contrast, our approach eval-

uates only one PDF for each candidate, and all PDFs only once more

when computing the final MIS weight (Eq. (22)), equivalent to a cost

of O(M). This is especially crucial in our case, in which evaluating
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Algorithm 6: Unbiased combination of multiple reservoirs.

Input :Reservoirs ri and the pixels qi they originated from.

Output :An unbiased combination of the input reservoirs.

1 function combineReservoirsUnbiased(q, r1, r2, . . . , rk , q1, . . . , qk )
2 Reservoir s
3 foreach r ∈ {r1, . . . , rk } do
4 s .update(r .y, p̂q (r .y) · r .W · r .M )
5 s .M ← r1 .M + r2 .M + . . . + rk .M

6 Z ← 0

7 foreach qi ∈ {q1, . . . , qk } do
8 if p̂qi (s .y) > 0 then
9 Z ← Z + ri .M

10 m ← 1/Z

11 s .W = 1

p̂q (s .y)
(m · s .wsum) // Equation (20)

12 return s

the PDF may involve tracing a ray; the quadratic cost of Talbot et
al.’s approach then makes it completely infeasible in this use case,

whereas the linear cost of our approach offers unbiasedness at af-

fordable cost. In the supplemental material, we offer more detailed

discussion and empirical comparison between the two approaches

to further demonstrate this point.

4.4 A Practical Algorithm for Unbiased Reuse
We can now apply our bias correction to our algorithm for sam-

ple reuse (Alg. 5). The bias is introduced when combining multiple

reservoirs (Alg. 4): a pixel q gathers reservoirs ri from its neighbor-

ing pixels, each of which contributes a sample ri .y; however, the
PDF of this sample may be zero where the integrand at q is not. For

example, candidates that lie below the hemisphere are normally dis-

carded. However, neighboring pixels may have differently oriented

surface normals, and may discard samples that would have non-zero

contribution at q. Similarly, our algorithm discards samples that are

occluded after the first round of resampling (effectively setting the

PDF to zero); however, a sample occluded at one pixel may be visible

at its neighbor, and discarding it causes bias.

Each sample ri .y is the result of resampling, and we do not know

its true PDF (since Equation (17) cannot be evaluated in closed

form). However, as long as we know an approximate form of this

PDF that is zero whenever the real PDF is zero, we can use it instead

to compute an unbiased weight. For pixel qi , we use p̂qi (x) as an
approximation to the real PDF of samples at qi , as it is zero wherever
the true PDF is. If visibility reuse is employed, we additionally check

if x is occluded at qi , and set the PDF to zero if it is (as such samples

are discarded).

We give pseudocode for our unbiased reservoir combination (with

uniform weights) in Alg. 6; the MIS version is analogous. Unfortu-

nately, the unbiased version can be significantly more expensive: if

we employ visibility reuse, then p̂qi includes visibility, and evaluat-

ing it requires tracing an additional shadow ray. E.g. in spatial reuse,

this means tracing k additional rays (one per neighboring pixel).

Because of this, we implemented both biased and unbiased forms

of our algorithm. The biased algorithm introduces darkening when-

ever neighbors (temporally or spatially) have different occlusion or

surface orientation. This bias can be partially avoided by choosing

neighbors carefully, which we describe in the next section. Where

the remaining bias is still unacceptable, our unbiased algorithm may

be used, at the cost of tracing additional rays.

5 DESIGN AND IMPLEMENTATION CHOICES
We implemented both biased and unbiased variants of our algorithm

in a GPU-based real-time rendering system. We have made various

design choices to improve robustness and performance, as well

as to limit the impact of bias, which we detail in this section. We

also specify the parameters used in our implementation. In general

our unbiased algorithm is computationally more expensive, and we

choose different parameters for our biased and unbiased variants

such that they have approximately equal cost.

Candidate Generation. We sample M = 32 initial candidates by

importance sampling emissive triangles based on their power, and

then uniformly generate a point x on the selected triangle (i.e.

p(x) ∝ Le (x)). If an environment map is present in the scene, 25%

of candidates are instead generated by importance sampling the

environment map. Importance sampling for both triangles and en-

vironment map locations is accelerated using an alias table [Walker

1974]. We also experimented with pregenerating a list of VPLs on

emissive triangles. Doing so yields higher performance at the cost

of some visual artifacts, and may be an option for real-time appli-

cations with limited render-times. It would also be possible to use

higher quality samples as initial candidates—such as those produced

by the data structure of Moreau et al. [2019]—but this proved to

significantly increase runtime in our preliminary tests.

Target PDF. At each resampling step in our algorithm, we weight

samples based on a target PDF. We use the unshadowed path con-

tribution p̂ ∝ ρ · Le · G as the target PDF at each pixel. We use a

unified material model for all geometry in the scene, consisting of a

dielectric GGX microfacet layer atop a diffuse Lambertian substrate.

If more sophisticated material models are used and evaluating the

BRDF for each candidate is too expensive, approximations to the

BRDF may be used.

Neighbor selection. For spatial reuse, we found that determinis-

tically selected neighbors (e.g. in a small box around the current

pixel) lead to distracting artifacts, and we instead sample k = 5

(k = 3 for our unbiased algorithm) random points in a 30-pixel

radius around the current pixel, sampled from a low-discrepancy

sequence. As an alternative, using a hierarchical À-Trous sampling

scheme [Dammertz et al. 2010; Schied et al. 2017] also produced

promising results, at the cost of some artifacts, and may be interest-

ing for future work. For temporal reuse, we compute motion vectors

to project the current pixel’s position into the previous frame, and

use the pixel there for temporal reuse.

For our biased algorithm, reusing candidates from neighboring

pixels with substantially different geometry/material leads to in-

creased bias, and we use a simple heuristic to reject such pixels: we

compare the difference in camera distance, and the angle between

normals of the current pixel to the neighboring pixel, and reject

the neighbor if either exceed some threshold (10% of current pixels

depth and 25
◦
, respectively). This strategy is similar to those used in
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selective blurs for real-time denoising, and we found it to substan-

tially reduce bias. We use n = 2 (n = 1 for our unbiased algorithm)

spatial reuse passes.

Evaluated Sample Count. Our Alg. 5 assumes N = 1, i.e. a single

sample is evaluated at the end of the frame. For higher sample counts,

the algorithm can simply be repeated and the results averaged. For

our unbiased algorithm, we use N = 1 for interactive frame-rates;

our biased algorithm uses N = 4 instead, i.e. we store four reservoirs

at each pixel. For non-interactive render times, we simply average

images of independent executions of our algorithm.

Reservoir storage and temporal weighting. At each pixel, we only

store the information of the pixel’s reservoir: The selected sample y,
the number of candidatesM that contributed to the pixel, and the

probabilistic weightW . For N > 1, we store multiple samples y and

weightsW at each pixel to accomodate multiple reservoirs. With

temporal reuse, the number of candidates M contributing to the

pixel can in theory grow unbounded, as each frame always combines

its reservoir with the previous frame’s. This causes (potentially stale)

temporal samples to be weighted disproportionately high during

resampling. To fix this, we simply clamp the previous frame’s M
to at most 20× of the current frame’s reservoir’s M , which both

stops unbounded growth ofM and bounds the influence of temporal

information.

6 RESULTS
We protoyped our method in the open-source Falcor rendering

framework [Benty et al. 2019] in order to be able to apply hardware-

accelerated ray tracing.We call our algorithm Reservoir-based Spatio-
Temporal Importance Resampling, or ReSTIR for short. We tested

our technique on various scenes containing thousands to millions

of emissive triangles. Renderings and timings were obtained on a

GeForce RTX 2080 Ti GPU, except for the Amusement Park scene,

which required use of a Titan RTX due to high memory require-

ments.

The render times that we report include the cost of sample gener-

ation, ray tracing and shading. We do not include G-buffer raster-

ization cost, as this is shared between all rendering methods (and

averages 1-2ms). We report image errors of each method compared

to an unbiased reference rendered at high sample count. Errors are

reported as Relative Mean Absolute Error (RMAE), which we found

less sensitive to isolated outliers than mean squared error (MSE).

For methods using temporal reuse, our figures show the final

frame in a 20 frame animation involving fast camera movement.

This avoids the lower quality expected during any warm up period

without providing any artificial advantage by temporally super-

sampling a single view. Each frame in the sequence uses the same

computation budget as the final frame.

Figure 1 and Figure 9 show equal-time comparisons of our biased

and unbiased spatiotemporal reuse versus a state-of-the-art real-

time light sampling technique [Moreau et al. 2019]. Our technique

has substantially lower error than Moreau et al.’s BVH-based ap-

proach. We found that the light BVH generally under-performs even

our streaming RIS algorithm (without reuse); in all further results

we use streaming RIS as the baseline for comparisons.

Our supplementary video shows real-time captures of the ani-

mated Amusement Park, Subway, Bistro, and Zero Day scenes

with equal-time comparisons between various combinations of uni-

form sampling, Moreau et al. [2019]’s approach, our biased and

unbiased methods, and offline-rendered reference animations.

Figure 8 compares the biased and unbiased versions of our spa-

tiotemporal reuse with RIS [Talbot et al. 2005] at equal time. To allow

for a fair baseline comparison, we compare against our streaming

version of RIS, as we found it consistently faster (20%-30% speedup)

than non-streaming implementations. Our methods employing spa-

tial and temporal reuse significantly outperform RIS without reuse,

both visually and in terms of error. In some scenes (e.g. Subway),

the baseline image is barely recognizable, but our spatiotemporal

reuse image is nearly converged. In all scenes, our biased method

has considerably less variance, at the cost of some energy loss and

image darkening. The energy loss is most pronounced in regions

with difficult lighting, e.g. shadow boundaries, sharp highlights and

complex geometry such as trees.

Figure 11 shows how the RMAE evolves with increased render

time for six different methods: sampling lights according to power

and then applying MIS [Veach and Guibas 1995b] with BRDF and

area-weighted sampling; Moreau et al. [2019]’s light BVH; streaming

RIS, as well as three versions of our algorithms: biased and unbi-

ased spatiotemporal reuse, as well as biased spatial reuse without

temporal reuse. The last variant makes it possible to evaluate our

algorithm for still images. In all scenes, our biased spatiotemporal

reuse has the lowest error at interactive render times, usually by a

significant margin. However, as render time increases, the error due

to bias dominates, so our unbiased spatiotemporal reuse eventually

exhibits lower error (usually at around 1 s). In most scenes, biased

spatial reuse also offers competitive performance without relying

on knowledge from prior frames. The lack of temporal history also

limits bias propagation, and at longer render times this method can

overtake biased spatiotemporal reuse due to reduced bias. In all

scenes, we significantly outperform prior work.

To demonstrate the performance of our method at non-interactive

render times, we compare streaming RIS and our methods on the

Amusement Park scene at 1 s render time in Figure 10. Even at

comparatively high render times, we still significantly outperform

the baseline. Our biased spatiotemporal reuse is nearly noise-free,

but the bias is apparent; if problematic, unbiased spatiotemporal

reuse offers similar performance with slightly higher variance.

7 RELATED WORK
Awide range of prior approaches have addressed light sampling and

sample reuse in rendering or have developed mathematical tools

related to our work.

Many-light sampling. Direct lighting alone can be challenging,

especially in scenes with large collections of complex emitters. Ward

[1994] and Shirley et al. [1996] pioneered this area, classifying lights

as ‘important’ and ‘unimportant’ based on their expected contribu-

tions. Renderers targeting scenes with many emitters today extend

this idea by using light hierarchies [Estevez and Kulla 2018; Yuksel

2019] to importance sample from many lights in sub-linear time.

Recent work demonstrates hierarchies can be effective for real-time
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Fig. 8. Comparison of roughly equal-time renderings of a streaming implementation of Talbot et al. [2005] with our biased and unbiased spatiotemporal
sample reuse. A converged reference is also shown for comparison. Bistro has 20,638 emissive triangles and an environment map, Burger Restaurant has
7,517 textured emissive triangles and a mostly-occluded environment map, Subway has 23,452 textured emissive triangles, and Zero Day animation has 10,973
dynamic emissive triangles. Bistro ©Amazon Lumberyard, Burger Restaurant ©Astuff, Subway ©silvertm, Zero Day ©beeple
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Fig. 9. An equal render time comparison of Moreau et al. [2019]’s light sampling scheme to our biased and unbiased sample reuse. Note our significant quality
improvement, despite a simpler algorithm that requires no data structure updates for dynamic lights (not reported as part of their cost). The Bistro scene has
20,638 emissive triangles. Bistro ©Amazon Lumberyard

A
m
u
s
e
m
e
n
t
P
a
r
k

[Talbot 2005][Talbot 2005]

[Talbot 2005][Talbot 2005]

Time: 1019.5msTime: 1019.5ms

RMAE: 0.58RMAE: 0.58

ReSTIR (unbiased)ReSTIR (unbiased)

ReSTIR (unbiased)ReSTIR (unbiased)

Time: 978.2msTime: 978.2ms

RMAE: 0.18RMAE: 0.18

ReSTIR (biased)ReSTIR (biased)

ReSTIR (biased)ReSTIR (biased)

Time: 996.7msTime: 996.7ms

RMAE: 0.18RMAE: 0.18

ReferenceReference

ReferenceReference

Fig. 10. An equal time comparison given a longer 1 s compute budget. We compare a streaming implementation of Talbot et al. [2005] with our biased and
unbiased spatiotemporal sample reuse. Our Amusement Park scene has 3.4 million dynamic emissive triangles. Carousel ©carousel_world

rendering [Moreau et al. 2019], but because real-time renderers trace

many fewer rays, the cost to construct and maintain these hierar-

chies is higher relative to the time spent rendering. Concurrent work

by Lin and Yuksel [2020] uses a lower quality acceleration structure

to lower the cost of maintaining the hierarchy, but still require data

structure traversal and, in contrast to us, do not incorporate the

BRDF. Our approach eliminates the cost of maintaining complex

data structures and generates higher-quality light samples than light

hierarchies by accounting for both the BSDF and lights’ visibility.

Various other methods also adaptively construct PDFs for sam-

pling direct lighting as part of rendering. Donikian et al. [2006]

construct aggregate PDFs over fixed image blocks for light sampling

in a progressive renderer. Their approach requires many rays to be

traced in each pixel in order to find accurate PDFs. More recently,

Vévoda et al. [2018] applied Bayesian online regression to create

optimal light clusters. Their approach requires a prebuilt hierar-

chical Lightcut [Walter et al. 2005], which complicates application

in scenes with dynamic lights. Neither of these accounts for the

BSDF in the light sample. Related to these techniques are path guid-

ing approaches [Hey and Purgathofer 2002; Jensen 1995; Müller

et al. 2017; Vorba et al. 2014] that learn sampling PDFs for general

illumination and can also be applied to direct lighting. None of

these techniques have been shown to scale to real-time rates at low

per-pixel sampling densities.

In interactive contexts, tiled shading [Olsson and Assarsson 2011]

creates per-tile groups of important lights and accumulates per-

pixel contributions only from these sources. While widely used

commercially, these methods aim to reduce the number of lights

affecting each pixel rather than efficiently aggregating all lighting.

This biases the result, typically limiting each light’s contribution

to a limited area, though some stochastic variants [Tokuyoshi and

Harada 2016] alleviate this bias.

Exploiting path reuse and spatial correlation. Reusing information

between light-carrying paths has a long history in rendering. Al-

gorithms based on virtual point lights (VPLs) generate numerous

point-source emitters that approximate the illumination in an envi-

ronment and then sample from them according to their expected

contributions [Dachsbacher et al. 2014; Davidovič et al. 2010; Keller

1997; Ou and Pellacini 2011; Sbert et al. 2004; Segovia et al. 2006;

Walter et al. 2006, 2005]. If sampled naively, VPLs require many rays

per pixel for high-quality results. Alternatively, the cost of main-

taining data structures for accurately sampling VPLs is challenging

at real-time frame rates.

Another family of algorithms that reuse paths cache the incident

illumination and interpolate it at nearby points; this approach is
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Fig. 11. The evolution of error (relative mean absolute error) in our scenes over render time. We compare Veach and Guibas-style MIS with lights sampled
according to power, Moreau et al.’s light BVH, a streaming implementation of Talbot et al.’s RIS, and three variants of our algorithm: Biased and unbiased
spatiotemporal and visibility reuse; as well as a biased form of spatial and visibility reuse, with no reliance on temporal information.

taken by both photon mapping [Deng et al. 2019; Jarosz et al. 2011,

2008b; Jensen 1996, 2001] and (ir)radiance caching [Jarosz et al.

2008a, 2012, 2008c; Křivánek et al. 2006, 2005; Schwarzhaupt et al.

2012; Ward and Heckbert 1992; Ward et al. 1988]. Those algorithms

work well for slowly-changing illumination but struggle with rapid

changes in visibility, as is often present with direct illumination.

Bidirectional path tracing reuses entire light carrying paths; early

variants connected single vertices on pairs of camera and light sub-

paths, reusing their prefixes [Lafortune and Willems 1993; Veach

and Guibas 1995a]. More recently, reusing paths enabled efficiency

improvements and allows judicious choices of path connections

[Chaitanya et al. 2018; Pajot et al. 2011; Popov et al. 2015; Tokuyoshi

and Harada 2019]. Closely related is work on reusing paths in uni-

directional light transport algorithms, where previously-sampled

paths are stored and then connected to new paths [Bauszat et al.

2017; Bekaert et al. 2002; Castro et al. 2008; Xu and Sbert 2007].

Although these techniques can provide improved efficiency, a visi-

bility ray must be traced each time a path is reused; in contrast, our

method is able to reuse many more samples because it only traces

rays for a small number of them.

Markov Chain Monte Carlo (MCMC) light transport algorithms

[Cline et al. 2005; Hachisuka et al. 2014; Kelemen et al. 2002; Lai

et al. 2007; Li et al. 2015; Otsu et al. 2018; Veach and Guibas 1997]

reuse paths by maintaining one or more light-carrying paths and

perturbing them so the distribution of weighted paths approximates

the equilibrium radiance distribution in the scene. Efficiency is im-

proved because these methods locally explore the space of valid

light carrying paths. While often very effective at sampling challeng-

ing light-carrying paths, these algorithms require many samples

per pixel before convergence and are often out-performed by tradi-

tional Monte Carlo techniques for typical light transport [Bitterli

and Jarosz 2019]. Further, they suffer structured image artifacts due

to correlation between samples.

All path reuse algorithms make trade-offs between efficiency

gains and pixel correlations caused by path reuse. When reusing a

path too often, artifacts can appear in rendered images. In general,

the human visual system is more forgiving of high-frequency noise

rather than structured artifacts [Cook 1986]. This has motivated

work to distribute error as blue-noise across the image [Georgiev

and Fajardo 2016; Heitz and Belcour 2019; Heitz et al. 2019]. While

we exploit spatial correlation and extensive sample reuse across

the image, our renderings contain high-frequency noise typical of

uncorrelated Monte Carlo.

Resampling. Resampled importance sampling has various appli-

cations in rendering [Burke et al. 2004, 2005; Rubin 1987; Talbot

2005; Talbot et al. 2005]. Also related are sequential Monte Carlo

(SMC) methods, where existing samples are perturbed and randomly

accepted to approach a desired distribution [Ghosh et al. 2006; Pego-

raro et al. 2008]. We build on RIS, transforming it into a streaming

algorithm amenable to GPU implementation; ensuring it remains

an unbiased estimator when sampling from different distributions;

enabling spatiotemporal sample reuse; and incorporating MIS.

Ratio & weighted estimators. Resampling techniques, including

our method, are related to ratio estimators, which were originally

used for sample surveys dating back to at least the 1950s. Similar

estimators were independently developed in the Monte Carlo liter-

ature under the name weighted uniform sampling (WUS) [Powell
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and Swann 1966], and applied to random walk problems by Spanier

[1979] and Spanier and Maize [1994]. These were introduced to

graphics by Bekaert et al. [2000] under the name weighted impor-
tance sampling (WIS) and later reintroduced by Stachowiak [2015]

and Heitz et al. [2018] as ratio estimators. We detail WUS, WIS, and

ratio estimators in Appendix B, but in essence, all three reduce vari-

ance by weighting (or taking a ratio of) each Monte Carlo sample

with a chosen distribution correlated with the integrand.

In contrast, importance sampling (3), requires not only evaluat-

ing/weighting by the distribution, but also generating samples from

this distribution. In their basic form, ratio estimators are biased,

but are often preferred because they can result in lower variance

while remaining consistent. Considerable work exists on making

these estimators fully unbiased [Handscomb 1964; Hartley and Ross

1954; Mickey 1959; Rao and Beegle 1967; Worthley 1967], but to

our knowledge, this topic has not yet been explored in graphics. In

Appendix B we prove that WUS and WIS are just special cases of

ratio estimators and that RIS [Talbot et al. 2005] can be viewed as a

way to make these estimators unbiased.

(Weighted) reservoir sampling. Implementations of resampling-

based sampling algorithms, such as RIS, typically require storing

all candidate samples until one or more is selected. This is memory

intensive, often prohibitively so for highly-parallel architectures

such as GPUs. This challenge has been present for decades, in a

variety of contexts. Generally, streaming algorithms often need

stochastic selection from a list of unknown length. Reservoir sam-

pling [Chao 1982; Vitter 1985] emerged in the early 1980s as a way

to randomly select data stored on tape drives without random ac-

cess, rewinding to reread, or storing it all in memory. Weighted

variants allow selecting items with varying probability and have

been applied in many domains (e.g., networking), with continuing

research seeking to improve algorithmic complexity and statistical

properties (e.g., Efraimidis [2015]; Efraimidis and Spirakis [2006]).

While mostly unknown in graphics, the algorithm has recently been

reinvented for stochastic order-independent transparency [Wyman

2016] and lighting from a hierarchy of VPLs [Lin and Yuksel 2019].

We use reservoir sampling in our streaming RIS algorithm, enabling

a high-performance GPU implementation.

Denoising/reconstruction. Denoising and reconstruction frequently
leverage path or sample reuse. While some approaches reconstruct

from high-dimensional samples [Hachisuka et al. 2008; Lehtinen

et al. 2011, 2012], most collapse these to 2D and rely on traditional

image denoising filters, such as NL-means [Buades et al. 2005] or

bilateral [Tomasi and Manduchi 1998], guided by auxiliary buffers

to disambiguate MC noise from image features, often through some

regression approach [Bitterli et al. 2016; Hachisuka et al. 2008; Kalan-

tari et al. 2015; Lehtinen et al. 2011, 2013; Moon et al. 2014, 2015,

2016; Rousselle et al. 2016, 2011, 2012, 2013]. Zwicker et al. [2015]’s

recent survey covers these in greater depth. Denoising has in large

part enabled the transition to offline path tracing in movies [Chris-

tensen and Jarosz 2016] due to its ability to short-circuit the slow

convergence tails of MC.

Work on interactive MC denoising has accelerated recently, ex-

ploringmulti-scale [Dammertz et al. 2010], deep learning [Chaitanya

et al. 2017; NVIDIA Research 2017], guided [Bauszat et al. 2011; He

et al. 2010] spatio-temporal [Schied et al. 2017, 2018], and blockwise-

regression filters [Koskela et al. 2019], in addition to sequences of

filters [Mara et al. 2017]. These approaches are largely orthogonal to

our work and can be applied to improve the output of our technique

when not enough samples are taken for convergence (see Fig. 2).

8 CONCLUSION
We have introduced a new Monte Carlo approach to direct lighting

based on a generalization of resampled importance sampling. It

allows unbiased spatial and temporal reuse of nearby samples and

leads to an evenmore efficient biased variant. Our algorithm delivers

one to two orders of magnitude reduction in error compared to pre-

vious approaches while also requiring only simple image-space data

structures. We have shown that it is suitable for high-performance

GPU implementation, leading to real-time rendering of scenes with

thousands and millions of dynamic light sources.

One way to view our technique is that we have shown that filter-

ing and denoising need not remain a post-process that is performed

once rendering completes—effectively, we have moved denoising

into the core of the renderer and filter PDFs rather than colors. We

see this as an important insight to spur future development of de-

noising algorithms, which have thus far remained specialized (and

often carefully hand-tuned) postprocesses. It may also be worth-

while to develop new post-process denoising approaches that are

adapted to the characteristics of the output of our algorithm or make

use of unique features that it can provide, such as the individual

candidate visibility values.

8.1 Limitations and Future Work
Similar to other algorithms relying on sample reuse, our method

relies on exploiting correlations between pixels to improve image

quality. When such opportunities are not available—e.g. near disoc-

clusions, lighting discontinuities, high geometric complexity, fast

moving lights—the quality of our method degrades and the noise

reduction compared to the input samples is modest. While we gen-

erally saw our method performing better than prior work even in

such challenging cases, making our method more robust to cases

in which reuse is not possible is a fruitful direction for future work.

Unlike post-processing methods such as denoising, our method still

has the opportunity to trace additional samples, and it would be

interesting to explore metrics that determine where our method

fails, and allocate additional samples to those regions.

Themain data structure of our algorithm consists of image buffers.

While this makes our method fast, simple and memory efficient,

it limits the use of our method to operations on the first vertex of

the camera path (i.e. the primary hit point), and it cannot be easily

extended to direct lighting or global illumination beyond the first

hit. While direct lighting at the primary hit is an important problem

in interactive applications, extending our algorithm beyond screen-

space is an important area for future work. Of particular interest is

applying our spatial and temporal resampling algorithm to a world-

space data structure; algorithms such as path space hashing [Binder

et al. 2019] may be useful in this context. Another possibility is to

consider the combination of our resampling approach with path
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reuse algorithms such as those developed Bekaert et al. [2002] and

subsequent researchers.

Finally, although our GPU implementation targets interactive ren-

dering, our algorithm applies equally to offline rendering. Temporal

information may be unavailable when rendering a single still or

parallelizing a sequence of frames over many computers, though

additional rounds of spatial resampling with some visibility checks

performed along the way would presumably give samples of similar

quality to our spatiotemporal reuse. Furthermore, the granularity at

which reservoirs are maintained merits investigation: pixel granular-

ity is likely to be sub-optimal with complex geometry when image

samples for a pixel intersect parts of the scene that are far away

from each other, but the granularity of individual image samples

may have a prohibitive memory cost. Clustering approaches that

strike a balance between these two considerations may be effective.
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A EXPECTED RIS WEIGHT
Expanding Eq. (18) yields (the weight sums in the numerator and denominator cancel)

1

p(y)

∑
i∈Z (y)

∫
· · ·

∫
1

p̂(xi )

[
����∑M

j=1
wj (x j )

M

] [
wi (xi )

����∑M
j=1

wj (x j )

] [
M∏
j=1

pj (x j )

]
dx1 . . . dxM .

(23)

Pulling all terms that do not depend on the integration variables outside, gives:

=
1

p(y)

∑
i∈Z (y)

pi (xi )
p̂(xi )

wi (xi )
M

∫
· · ·

∫ ∏
xj ∈x\xi

pj (x j )dx1 . . . dxM︸                                        ︷︷                                        ︸
1

. (24)

The remaining integral of all candidate PDFs (except xi , which is fixed to be y), is
simply 1. We can now simplify and use that wi (x ) = p̂(x )/pi (x ):

=
1

p(y)

∑
i∈Z (y)

pi (xi )
p̂(xi )

wi (xi )
M

=
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p(y)

∑
i∈Z (y)

1

M
=
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p(y)
|Z (y) |
M

. (25)

B WEIGHTED, RATIO AND RESAMPLING ESTIMATORS
In contrast to importance sampling (3), which draws samples from some source PDF

p , weighted uniform sampling (WUS) [Powell and Swann 1966] draws the samples xi
uniformly, and computes:

⟨L⟩N
wus
=

N∑
i=1

f (xi )

/
N∑
i=1

p̂(xi ) ≈ F , (26)

where p̂(x ) is a normalized PDF ideally correlated with f (but note that the samples

xi are generated uniformly).

Weighted importance sampling (WIS) [Bekaert et al. 2000] combines IS and WUS:

⟨L⟩N
wis
=

N∑
i=1

f (xi )
p̂(xi )

wi , with wi =
w (xi )∑N
j=1

w (x j )
, w (x ) =

p̂(x )
p(x )

(27)

=

N∑
i=1

f (xi )
p(xi )

/
N∑
i=1

p̂(xi )
p(xi )

≈ F , (28)

where the samples are drawn from a source PDF p(xi ) that is easy to sample from (but

only needs to be known up to a constant factor), and the target PDF p̂(x ) can be a PDF

for which no practical sampling algorithm exists as long as it is properly normalised.

Weighted uniform sampling corresponds to the case where p is the constant PDF.

Equation (27) is biased for finite values of N , but it is consistent, meaning that as

N →∞, the bias and variance go to zero.

In ratio estimation [Hartley and Ross 1954; Heitz et al. 2018], the goal is to estimate

the expected value Ȳ of a random variable Y by leveraging a positively correlated

random variable Z whose expectation Z̄ is known. The classic, biased, ratio estimator

drawns N sample pairs (yi , zi ) and computes:

⟨Ȳ ⟩N
rat
= Z̄

N∑
i=1

yi

/
N∑
i=1

zi ≈ Ȳ (29)

Equivalence of ratio estimation and WIS. If we define the random variables Y =
f (x )/p(x ) and Z = p̂(x )/p(x ), then WIS (28) can be written as

⟨L⟩N
wis
=

N∑
i=1

yi

/
N∑
i=1

zi , (30)

which is equivalent to the ratio estimator (29) since p̂ is assumed normalized in WIS:

Z̄ =
∫
D

p̂(x )
p(x )

p(x ) dx =
∫
D
p̂(x ) dx = 1. (31)

Relation of RIS to WIS. In WIS (27), consider either setting N = 1, or for N >
1 probabilistically evaluating only a single summand by selecting a single sample

y ∈ {x1, . . . , xN } with probabilities dictated bywi . The resulting one-sample WIS

estimator becomes remarkably similar to RIS (6), which we restate for convenience:

⟨L⟩1
wis
=
f (y)
p̂(y)

, whereas ⟨L⟩1,M
ris
=
f (y)
p̂(y)

·

(
1

M

M∑
j=1

w(x j )

)
. (32)

Comparing these two estimators, we see that WIS is simply RIS without the average-of-

weights term ⟨w ⟩M ≡ 1

M
∑M
j=1

w (x j ) = 1

M
∑M
j=1

p̂(xj )/p(xj ). This is just an unbiased

MC estimator of the target distribution’s normalization factor in Eq. (31). Since we

know that RIS (6) is unbiased, we know this factor acts as a bias-correction term.

In essence, by evaluating f (y)/p̂(y), RIS first forms a standard MC estimator (3) as if

y came from the target distribution p̂ . For finiteM , however, y is only approximately

distributed with p̂ . RIS then uses ⟨w ⟩M to correct for this approximate distribution

and normalization of p̂ , and, critically, it does so using samples x j that are correlated
with f (y)/p̂(y). This correlated renormalization in RIS can be seen as a way to make

WIS unbiased.
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