
1

TECHNICAL OVERVIEW

VIDEO BENCHMARK
ASSUMPTIONS

2

TABLE OF CONTENTS

1. Motivation

2. Hardware Platform

3. Presets

4. Content

5. Latency Tolerant and Latency Sensitive Encoding

6. Encoding

7. Evaluation of Results

3

Motivation
Anyone familiar with video encoding knows that different encoders employ different strategies for achieving the bitrate

vs quality targets. Depending on the platform specifics, optimization strategies may differ significantly. This causes

peculiarities in the behavior of the encoder output and makes it difficult to perform exact apples-to-apples comparison

between two encoders.

Comparison of x264 with NVENC encoding has similar challenges. In this document, we provide details about the

assumptions made to effectively compare x264 with NVENC.

Hardware Platform
The following table summarizes the details of hardware used in our benchmarking setup.

Table 1 - Details of hardware platforms used

System

Config
L4

libAOM-

AV1
A10 T4 x264, x265

CPU
Dual Intel(R) Xeon(R) Gold-

6140 @ 2.30GHz
Dual Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz

GPU L4 (AD104) N/A A10 (GA102) T4 (TU104) N/A

RAM 385 GiB 128GiB

FFmpeg

version
6 4.4

NVIDIA

Driver
520.65 (or latest) N/A 495.29 495.29 N/A

Presets
To ensure best scalability when using FFmpeg, we incorporated NVENC encoding presets p1 (fastest) through p7

(highest quality) into FFmpeg. Details on these new presets are available in a dedicated blog post. Moreover, NVENC

quality has been largely improved allowing users to get more than twice the number of simultaneous encode sessions

per NVENC on Turing and Ampere GPUs compared to previous generations, while maintaining similar encoding

quality. The table below explains how to compare GPU and CPU for similar bitrate gains.

https://developer.nvidia.com/blog/introducing-video-codec-sdk-10-presets/

4

Table 2 - Appropriate presets to compare for similar bandwidth gains

HW ARCH

CODEC

Preset to compare for similar quality in

Low Latency / Latency Sensitive

scenarios

Preset to compare for similar quality in

HQ / Latency Tolerant scenarios

CPU

x264/x265
Faster Medium

Turing/Ampere/Ada

H.264/HEVC/AV1
p1 p4

To maximize encoding performance, NVENC should be fed with enough encoding work or load to the GPU.

Therefore, it is recommended to run multiple encoding/decoding sessions simultaneously (8 at minimum). GeForce

gaming cards support up to 5 concurrent encoding sessions while this number is unlimited on professional GPUs.

NVIDIA Video Codec SDK includes sample applications named AppEncode, AppDecode and AppTranscode1toN

which allow you to measure performance on your GPU. You will need to use a raw video source for encode stored

on SSD or RAM disk (many utility software options can be found on the web to set up a RAM disk).

Alternatively, you can use FFmpeg with NVIDIA video hardware acceleration to perform the testing (details below).

Content
Our encoding benchmark uses a large variety of video content from the following types of video footage:

1. Natural video - high motion (e.g., sports) and movie-type

2. Game captures - high motion and high texture

3. Synthetic content (e.g., animated movies)

4. Amateur video content (e.g., videos shot using camcorder)

5. Video conferencing

Latency Tolerant and Latency Sensitive Encoding
There are two types of use-cases for which video encoding benchmark is executed-

1. Latency-tolerant or high-quality: Used in applications such as video archiving, streaming with high latency

(> 0.5 seconds), video storage, web videos, video streaming (e.g. Netflix). This type of encoding typically has

no restrictions on the encoding tools that can be used, subject to the complexity constraints. Features such

as B-frames, look-ahead can be used.

2. Latency-sensitive or low-latency: Used in latency-sensitive applications such as cloud gaming, game-

streaming, game broadcasting. These applications cannot tolerate latency more than a couple of frames.

Encoding tools such as B-frames, look-ahead cannot be used in this type of encoding. This type of encoding

also puts strict cap on frame-by-frame bit budget and expects strict HRD compliance at small VBV buffer

size.

Nvidia provides benchmarks in both above use-cases.

https://developer.nvidia.com/nvidia-video-codec-sdk/download

5

Encoding
Each video from the library is encoded at 4 or 5 different bitrates, depending on the resolution, using libx264/libx265

and NVENC options within FFmpeg. For latency-sensitive benchmark, we compare faster CPU preset with NVENC’s

p1 preset for Turing, Ampere and Ada. For latency-tolerant benchmark, we compare medium CPU preset with

NVENC’s p4 preset for Turing, Ampere and Ada.

Table 3 - Latency-tolerant H.264, HEVC encoding parameters

Operating point Codec FFmpeg command line parameters

Latency-tolerant

NVENC H.264, HEVC
preset p4 (Ampere,
Turing GPUs)

-c:v $NVENC

-preset p4

-tune hq

-b:v BITRATE

-profile:v CODEC_PROFILE

-temporal-aq 1

-rc-lookahead 20

-vsync 0

NVENC H.264, HEVC
preset p4 (Ada
GPUs)

-c:v $NVENC -no-scenecut 1 -g 250

-preset $PRESET -tune hq -

b:v BITRATE -profile:v

CODEC_PROFILE -b_ref_mode 2 -

b_adapt 0 -temporal-aq 1 -rc-

lookahead 20 FRAME_LIMIT -vsync

passthrough

libx264 medium -c:v libx264

-preset medium

-b:v BITRATE

-tune psnr

-threads LIBXTHREADS1

-vsync 0

libx265 medium -c:v libx265

-preset medium

-b:v BITRATE

-bf 2

-tune psnr

-threads LIBXTHREADS1

-vsync 0

1 LIBXTHREADS is 1 for 720p, 2 for 1080p and 4 for 2160p.

6

Table 4 - Latency-sensitive H.264,HEVC encoding parameters

Operating point Codec FFmpeg command line parameters

Latency-sensitive

NVENC H.264, HEVC
preset p1 (Ampere and
Turing GPUs)

-c:v $NVENC

-preset p1

-rc cbr -tune ll -multipass 0

-b:v BITRATE

-bufsize BITRATE/FRATE

-profile:v CODEC_PROFILE

-g 999999

-vsync 0

NVENC H.264, HEVC
preset p1 (Ada GPUs)

-c:v $NVENC -preset $PRESET -rc
cbr -tune ll -multipass 0 -b:v

BITRATE -bufsize BITRATE/FRATE -

profile:v CODEC_PROFILE -g 999999

FRAME_LIMIT -vsync passthrough

libx264 faster -c:v libx264

-preset faster

-b:v BITRATE

-bufsize BITRATE/FRATE

-maxrate BITRATE

-minrate BITRATE

-g 999999

-x264opts no-sliced-threads:no-

psy=1:aq-mode=0

-tune zerolatency

-threads LIBXTHREADS1

-vsync 0

libx265 faster -c:v libx265 -preset faster
-b:v BITRATE -bufsize

BITRATE/FRATE -maxrate BITRATE -

minrate BITRATE -g 999999 -tune

zerolatency -x265-params no-

sliced-threads=1:psy-rd=0.0:no-

psy=1:aq-mode=0 -threads

LIBXTHREADS -vsync passthrough

1 LIBXTHREADS is 1 for 720p, 2 for 1080p and 4 for 2160p.

7

Table 5 - Latency-tolerant AV1 encoding parameters

Table 6 - Latency-sensitive AV1 encoding parameters

1 LIBXTHREADS is 1 for 720p, 2 for 1080p and 4 for 2160p.

Operating point Codec FFmpeg command line parameters

 Latency-tolerant

NVENC AV1, preset p4
(Ada GPUs)

-c:v $NVENC -no-scenecut 1 -g 250

-preset $PRESET -tune hq -

b:v BITRATE -profile:v

CODEC_PROFILE -b_ref_mode 2 -

b_adapt 0 -temporal-aq 1 -rc-

lookahead 20 FRAME_LIMIT -vsync

passthrough

libaom – AV1 -c:v libaom-av1 -cpu-used 8 -b:v

BITRATE -threads 8 -g 250 -

keyint_min 250

Operating point Codec FFmpeg command line parameters

Latency-sensitive

NVENC AV1, preset p1
(Ada GPUs)

-c:v $NVENC -preset $PRESET -rc

cbr -tune ll -multipass 0 -b:v

BITRATE -bufsize BITRATE/FRATE -

profile:v CODEC_PROFILE -g 999999

FRAME_LIMIT -vsync passthrough

libaom – AV1 -c:v libaom-av1 -cpu-used 8 -b:v

BITRATE -threads LIBXTHREADS -

bufsize BITRATE/FRATE -g 999999 -

usage 1

8

Evaluation of Results
After encoding each video, metrics such as PSNR, SSIM, output bitrate and encoding performance are measured.

To measure encoding performance, we measure the time taken to encode all frames at the application level. If

multiple files are being encoded in parallel, then the aggregate number of frames in all parallel encoded videos are

used to compute performance in frames/second. While evaluating the encoded video bitstreams, we consider the

bitrate actually generated by the encoder (and not the target bitrate specified on the command line). We have

observed that in certain cases, an encoder may generate bitstream at bitrate different (sometimes significantly

different) from the target bitrate specified on the command line. Using the actual generated bitrate is, therefore,

preferable when evaluating the encoded video bitstreams.

In addition to these, the videos are visually inspected to confirm that there are no distortions or unexpected artifacts.

The rate-distortion characteristics of each encoded video are analyzed using PSNR and SSIM and we calculate

metrics such BD-BR %(PSNR) and BD-BR%(SSIM) for each video (BD = Bjontegaard metric). These metrics are

used to generate charts such as those shown at http://developer.nvidia.com/nvidia-video-codec-sdk.

© 2020 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, DGX POD, DGX SuperPOD, NGC, NGC-Ready, EGX, Clara,
CUDA, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. All other
trademarks and copyrights are the property of their respective owners. Aug20

http://developer.nvidia.com/nvidia-video-codec-sdk

