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Chapter 1.
WHAT IS TENSORRT?

The core of TensorRT " is a C++ library that facilitates high performance inference on
NVIDIA graphics processing units (GPUs). It is designed to work in a complementary
fashion with training frameworks such as TensorFlow, Caffe, PyTorch, MXNet, etc. It
focuses specifically on running an already trained network quickly and efficiently on a
GPU for the purpose of generating a result (a process that is referred to in various places
as scoring, detecting, regression, or inference).

Some training frameworks such as TensorFlow have integrated TensorRT so that it can
be used to accelerate inference within the framework. Alternatively, TensorRT can be
used as a library within a user application. It includes parsers for importing existing
models from Caffe, ONNX, or TensorFlow, and C++ and Python APIs for building
models programmatically.

ﬁ.

Trained TensorRT TensorRT
Neural Obtimi Runtime
Network ptimizer _

e Engine

Figure 1 TensorRT is a high performance neural network inference
optimizer and runtime engine for production deployment.

TensorRT optimizes the network by combining layers and optimizing kernel selection
for improved latency, throughput, power efficiency and memory consumption. If the
application specifies, it will additionally optimize the network to run in lower precision,
further increasing performance and reducing memory requirements.
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The following figure shows TensorRT defined as part high-performance inference
optimizer and part runtime engine. It can take in neural networks trained on these
popular frameworks, optimize the neural network computation, generate a light-
weight runtime engine (which is the only thing you need to deploy to your production
environment), and it will then maximize the throughput, latency, and performance on
these GPU platforms.

FRAMEWORKS GPU PLATFORMS
Caffe?

TensorRT

NVIDIA DLA

theano

TESLA V100

Figure 2 TensorRT is a programmable inference accelerator.

The TensorRT API includes implementations for the most common deep learning layers.
For more information about the layers, see TensorRT Layers. You can also use the C++
Plugin API or Python Plugin API to provide implementations for infrequently used or
more innovative layers that are not supported out-of-the-box by TensorRT.

1.1. Benefits Of TensorRT

After the neural network is trained, TensorRT enables the network to be compressed,
optimized and deployed as a runtime without the overhead of a framework.

TensorRT combines layers, optimizes kernel selection, and also performs normalization
and conversion to optimized matrix math depending on the specified precision (FP32,
FP16 or INTS) for improved latency, throughput, and efficiency.

For deep learning inference, there are 5 critical factors that are used to measure software:
Throughput
The volume of output within a given period. Often measured in inferences/second
or samples/second, per-server throughput is critical to cost-effective scaling in data
centers.
Efficiency
Amount of throughput delivered per unit-power, often expressed as performance/
watt. Efficiency is another key factor to cost effective data center scaling, since servers,
server racks and entire data centers must operate within fixed power budgets.

www.nvidia.com
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Latency
Time to execute an inference, usually measured in milliseconds. Low latency is
critical to delivering rapidly growing, real-time inference-based services.

Accuracy
A trained neural network’s ability to deliver the correct answer. For image
classification based usages, the critical metric is expressed as a top-5 or top-1
percentage.

Memory usage
The host and device memory that need to be reserved to do inference on a network
depends on the algorithms used. This constrains what networks and what
combinations of networks can run on a given inference platform. This is particularly
important for systems where multiple networks are needed and memory resources
are limited - such as cascading multi-class detection networks used in intelligent
video analytics and multi-camera, multi-network autonomous driving systems.

Alternatives to using TensorRT include:

» Using the training framework itself to perform inference.
»  Writing a custom application that is designed specifically to execute the network
using low level libraries and math operations.

Using the training framework to perform inference is easy, but tends to result in much
lower performance on a given GPU than would be possible with an optimized solution
like TensorRT. Training frameworks tend to implement more general purpose code
which stress generality and when they are optimized the optimizations tend to focus on
efficient training.

Higher efficiency can be obtained by writing a custom application just to execute

a neural network, however it can be quite labor intensive and require quite a bit

of specialized knowledge to reach a high level of performance on a modern GPU.
Furthermore, optimizations that work on one GPU may not translate fully to other GPUs
in the same family and each generation of GPU may introduce new capabilities that can
only be leveraged by writing new code.

TensorRT solves these problems by combining an API with a high level of abstraction
from the specific hardware details and an implementation which is developed and
optimized specifically for high throughput, low latency, and low device memory
footprint inference.

1.1.1. Who Can Benefit From TensorRT

TensorRT is intended for use by engineers who are responsible for building features and
applications based on new or existing deep learning models or deploying models into
production environments. These deployments might be into servers in a datacenter or
cloud, in an embedded device, robot or vehicle, or application software which will run
on users workstations.

TensorRT has been used successfully across a wide range of scenarios, including:
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Robots
Companies sell robots using TensorRT to run various kinds of computer vision
models to autonomously guide an unmanned aerial system flying in dynamic
environments.
Autonomous Vehicles
TensorRT is used to power computer vision in the NVIDIA Drive products.
Scientific and Technical Computing
A popular technical computing package embeds TensorRT to enable high throughput
execution of neural network models.
Deep Learning Training and Deployment Frameworks
TensorRT is included in several popular Deep Learning Frameworks including
TensorFlow and MXNet. For TensorFlow and MXNet container release notes, see
TensorFlow Release Notes and MXNet Release Notes.
Video Analytics
TensorRT is used in NVIDIA’s DeepStream product to power sophisticated video
analytics solutions both at the edge with 1 - 16 camera feeds and in the datacenter
where hundreds or even thousands of video feeds might come together.
Automatic Speech Recognition
TensorRT is used to power speech recognition on a small tabletop/desktop device.
A limited vocabulary is supported on the device with a larger vocabulary speech
recognition system available in the cloud.

1.2. Where Does TensorRT Fit?

Generally, the workflow for developing and deploying a deep learning model goes
through three phases.

» Phase 1 is training
» Phase 2 is developing a deployment solution, and
» Phase 3 is the deployment of that solution

Phase 1: Training

During the training phase, the data scientists and developers will start with a statement
of the problem they want to solve and decide on the precise inputs, outputs and loss
function they will use. They will also collect, curate, augment, and probably label the
training, test and validation data sets. Then they will design the structure of the network
and train the model. During training, they will monitor the learning process which may
provide feedback which will cause them to revise the loss function, acquire or augment
the training data. At the end of this process, they will validate the model performance

and save the trained model. Training and validation is usually done using DGX-1 ,
Titan, or Tesla datacenter GPUs.

TensorRT is generally not used during any part of the training phase.
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Phase 2: Developing A Deployment Solution

During the second phase, the data scientists and developers will start with the trained
model and create and validate a deployment solution using this trained model. Breaking
this phase down into steps, you get:

1.

Think about how the neural network functions within the larger system of which it
is a part of and design and implement an appropriate solution. The range of systems
that might incorporate neural networks are tremendously diverse. Examples
include:

»

»

the autonomous driving system in a vehicle

a video security system on a public venue or corporate campus
the speech interface to a consumer device

an industrial production line automated quality assurance system
an online retail system providing product recommendations, or

a consumer web service offering entertaining filters users can apply to uploaded
images.

Determine what your priorities are. Given the diversity of different systems that
you could implement, there are a lot of things that may need to be considered for
designing and implementing the deployment architecture.

>

>

»

Do you have a single network or many networks? For example, Are you
developing a feature or system that is based on a single network (face detection),
or will your system be comprised of a mixture or cascade of different models,

or perhaps a more general facility that serves up a collection model that may be
provided by the end user?

What device or compute element will you use to run the network? CPU, GPU,
other, or a mixture? If the model is going to run on a GPU, is it a single type of
GPU, or do you need to design an application that can run on a variety of GPUs?
How is data going to get to the models? What is the data pipeline? Is the data
coming in from a camera or sensor, from a series of files, or being uploaded over
a network connection?

What pre-processing will be done? What format will the data come in? If it is an
image does it need to be cropped, rotated? If it is text what character set is it and
are all characters allowed as inputs to the model? Are there any special tokens?
What latency and throughput requirements will you have?

Will you be able to batch together multiple requests?

Will you need multiple instances of a single network to achieve the required
overall system throughput and latency?

What will you do with the output of the network?

What post processing steps are needed?

TensorRT provides a fast, modular, compact, robust, reliable inference engine that
can support the inference needs within the deployment architecture.
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2. After the data scientists and developers define the architecture of their inference
solution, by which they determine what their priorities are, they then build an
inference engine from the saved network using TensorRT. There are a number
of ways to do this depending on the training framework used and the network
architecture. Generally, this means you need to take the saved neural network and
parse it from its saved format into TensorRT using the ONNX parser (see Figure 3),
Caffe parser, or TensorFlow/UFF parser.

ONNX Workflow V1

ONNX & Model

Import

cotez  CNTK  cnatmer |

BYTHRCH .;met

Framework
Integration

TensorRT Runtime

-e

L]
‘ N /
| m - P
" 1ATLAB Optimizer .

Tensorf]

-

Network

Definition API

Custom

Framework

Figure 3 ONNX Workflow V1

3. After the network is being parsed, you'll need to consider optimization options
-- batch size, workspace size and mixed precision. These options are chosen and
specified as part of the TensorRT build step where you actually build an optimized
inference engine based on your network. Subsequent sections of this guide provide
detailed instructions and numerous examples on this part of the workflow, parsing
your model into TensorRT and choosing the optimization parameters (see Figure 4).
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Layer & Tensor Fusion

Precision Calibration iz Kernel Auto-Tuning

e~ |

"': P ———— ...-“-— .

N ] gy,

. o
Trained Neural oo Optimized

Network Inference

Dynamic Tensor Multi-Stream Engine
Memory Execution

Figure 4 TensorRT optimizes trained neural network models to
produce a deployment-ready runtime inference engine.

4. After you've created an inference engine using TensorRT, you'll want to validate
that it reproduces the results of the model as measured during the training process.
If you have chosen FP32 or FP16 it should match the results quite closely. If you
have chosen INTS there may be a small gap between the accuracy achieved during
training and the inference accuracy.

5. Write out the inference engine in a serialized format. This is also called a plan file.

Phase 3: Deploying A Solution

The TensorRT library will be linked into the deployment application which will call
into the library when it wants an inference result. To initialize the inference engine, the
application will first deserialize the model from the plan file into an inference engine.

TensorRT is usually used asynchronously, therefore, when the input data arrives,
the program calls an enqueue function with the input buffer and the buffer in which
TensorRT should put the result.

1.3. How Does TensorRT Work?

To optimize your model for inference, TensorRT takes your network definition,

performs optimizations including platform specific optimizations, and generates the
inference engine. This process is referred to as the build phase. The build phase can take
considerable time, especially when running on embedded platforms. Therefore, a typical
application will build an engine once, and then serialize it as a plan file for later use.

The generated plan files are not portable across platforms or TensorRT versions. Plans
are specific to the exact GPU model they were built on (in addition to platforms and
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the TensorRT version) and must be re-targeted to the specific GPU in case you want to
run them on a different GPU.

The build phase performs the following optimizations on the layer graph:

» Elimination of layers whose outputs are not used

» Fusion of convolution, bias and ReLU operations

» Aggregation of operations with sufficiently similar parameters and the same source
tensor (for example, the 1x1 convolutions in GoogleNet v5’s inception module)

» Merging of concatenation layers by directing layer outputs to the correct eventual
destination.

The builder also modifies the precision of weights if necessary. When generating
networks in 8-bit integer precision, it uses a process called calibration to determine the
dynamic range of intermediate activations, and hence the appropriate scaling factors for
quantization.

In addition, the build phase also runs layers on dummy data to select the fastest from its
kernel catalog, and performs weight pre-formatting and memory optimization where
appropriate.

For more information, see Working With Mixed Precision.

1.4. What Capabilities Does TensorRT Provide?

TensorRT enables developers to import, calibrate, generate, and deploy optimized
networks. Networks can be imported directly from Caffe, or from other frameworks via
the UFF or ONNX formats. They may also be created programmatically by instantiating
individual layers and setting parameters and weights directly.

Users can also run custom layers through TensorRT using the Plugin interface. The
graphsurgeon utility provides the ability to map TensorFlow nodes to custom layers in
TensorRT, thus enabling inference for many TensorFlow networks with TensorRT.

TensorRT provides a C++ implementation on all supported platforms, and a Python
implementation on x86, aarch64, and ppcé64le.

The key interfaces in the TensorRT core library are:

Network Definition
The Network Definition interface provides methods for the application to specify
the definition of a network. Input and output tensors can be specified, layers can
be added, and there is an interface for configuring each supported layer type. As
well as layer types, such as convolutional and recurrent layers, and a Plugin layer
type allows the application to implement functionality not natively supported
by TensorRT. For more information about the Network Definition, see Network
Definition API.

Builder
The Builder interface allows creation of an optimized engine from a network
definition. It allows the application to specify the maximum batch and workspace
size, the minimum acceptable level of precision, timing iteration counts for
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autotuning, and an interface for quantizing networks to run in 8-bit precision. For
more information about the Builder, see Builder API.

Engine
The Engine interface allows the application to execute inference. It supports
synchronous and asynchronous execution, profiling, and enumeration and querying
of the bindings for the engine inputs and outputs. A single engine can have multiple
execution contexts, allowing a single set of trained parameters to be used for the
simultaneous execution of multiple batches. For more information about the Engine,
see Execution APL

TensorRT provides parsers for importing trained networks to create network definitions:
Caffe Parser
This parser can be used to parse a Caffe network created in BVLC Caffe or NVCaffe
0.16. It also provides the ability to register a plugin factory for custom layers. For
more details on the C++ Caffe Parser, see NvCaffeParser or the Python Caffe Parser.

UFF Parser
This parser can be used to parse a network in UFF format. It also provides the ability

to register a plugin factory and pass field attributes for custom layers. For more
details on the C++ UFF Parser, see NvUffParser or the Python UFF Parser.

ONNX Parser
This parser can be used to parse an ONNX model. For more details on the C++ ONNX
Parser, see NVONNXParser or the Python ONNX Parser.

Restriction Since the ONNX format is quickly developing, you may encounter
a version mismatch between the model version and the parser version. The
ONNX Parser shipped with TensorRT 5.1.x supports ONNX IR (Intermediate
Representation) version 0.0.3, opset version 9.

1.5. How Do | Get TensorRT?

For step-by-step instructions on how to install TensorRT, see the TensorRT Installation
Guide.
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Chapter 2.
WORKING WITH TENSORRT USING THE C+

+ API

The following sections highlight the TensorRT user goals and tasks that you can perform
using the C++ API. Further details are provided in the Samples Support Guide and are
linked to below where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

» Creating a TensorRT network definition from your model

» Invoking the TensorRT builder to create an optimized runtime engine from the
network

» Serializing and deserializing the engine so that it can be rapidly recreated at runtime

» Feeding the engine with data to perform inference

C++ API vs Python API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The C++ API should be used in any performance critical scenarios, as well as
in situations where safety is important, for example, like in automotive.

The main benefit of the Python API is that data preprocessing and postprocessing is easy
to use because you're able to use a variety of libraries like NumPy and SciPy. For more
information about the Python API, see Using The Python APL

2.1. Instantiating TensorRT Objects in C++

In order to run inference, you need to use the IExecutionContext object. In order to
create an object of type IExecutionContext, you first need to create an object of type
ICudaEngine (the engine).

The engine can be created in one of two ways:
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» via the network definition from the user model. In this case, the engine can be
optionally serialized and saved for later use.

» by reading the serialized engine from the disk. In this case, the performance is better,
since the steps of parsing the model and creating intermediate objects are bypassed.

An object of type ILogger needs to be created globally. It is used as an argument to
various methods of TensorRT API. A simple example demonstrating the creation of the
logger is shown here:

class Logger : public ILogger
{

void log(Severity severity, const char* msg) override

{
// suppress info-level messages
if (severity != Severity: :kINFO)
std: :cout << msg << std::endl;

}
} glogger;

A global TensorRT API method called createInferBuilder (gLogger) is used to
create an object of type IBuilder as shown in Figure 5. For more information, see
IBuilder class reference.

[ iLogger< }—( iBuilder ‘

Figure 5 Creating IBuilder with iLogger as the input argument

A method called createNetwork defined for iBuilder is used to create an object of type
iNetworkDefinition as shown in Figure 6.

Builder  createNetwork() | iNetworkDefinition

Figure 6 createNetwork () is used to create the network

One of the available parsers is created (Caffe, ONNX, or UFF) using the INetwork
definition as the input:

» ONNX: auto parser = nvonnxparser::createParser (*network,
glogger) ;

» Caffe: auto parser = nvcaffeparserl::createCaffeParser() ;

» UFF: auto parser = nvuffparser::createUffParser() ;

A method called parse () from the object of type iParser is called to read the model
file and populate the TensorRT network Figure 7.

‘ iParser |parse() [mﬁ —-‘mm

Figure 7 Parsing the model file
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A method called buildCudaEngine () of IBuilder is called to create an object of
ICudaEngine type as shown in Figure 8:

Figure 8 Creating the TensorRT engine

The engine can be optionally serialized and dumped into the file.

Figure 9 Creating the TensorRT engine

The execution context is used to perform inference.

Figure 10 Creating an execution context

If the serialized engine is preserved and saved to a file, you can bypass most of the steps
described above.

A global TensorRT API method called createInferRuntime (gLogger) is used to
create an object of type IRuntime as shown in Figure 11:

Figure 11 Creating TensorRT runtime

For more information about the TensorRT runtime, see IRuntime class reference. The
engine is created by calling the runtime method deserializeCudaEngine ().

The rest of the inference is identical for those two usage models.

Even though it is possible to avoid creating the CUDA context, (the default context will
be created for you), it is not advisable. It is recommended to create and configure the
CUDA context before creating a runtime or builder object.

The builder or runtime will be created with the GPU context associated with the creating
thread. Although a default context will be created if it does not already exist, it is
advisable to create and configure the CUDA context before creating a runtime or builder
object.
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2.2. Creating A Network Definition In C++

The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, which supports serialized models in the following formats:

» https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#mnist_sample (both BVLC and NVCaffe)

» https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#onnx_mnist_sample

» https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#mnist_uff_sample (used for TensorFlow)

An alternative is to define the model directly using the TensorRT API. This requires you
to make a small number of API calls to define each layer in the network graph, and to
implement your own import mechanism for the model’s trained parameters.

In either case, you will explicitly need to tell TensorRT which tensors are required as
outputs of inference. Tensors which are not marked as outputs are considered to be
transient values that may be optimized away by the builder. There is no restriction on
the number of output tensors, however, marking a tensor as an output may prohibit
some optimizations on that tensor. Inputs and output tensors must also be given names
(using ITensor: : setName () ). At inference time, you will supply the engine with an
array of pointers to input and output buffers. In order to determine in which order the
engine expects these pointers, you can query using the tensor names.

An important aspect of a TensorRT network definition is that it contains pointers to
model weights, which are copied into the optimized engine by the builder. If a network
was created via a parser, the parser will own the memory occupied by the weights, and
so the parser object should not be deleted until after the builder has run.

2.2.1. Creating A Network Definition From Scratch Using
The C++ API

Instead of using a parser, you can also define the network directly to TensorRT via the
network definition API. This scenario assumes that the per-layer weights are ready in
host memory to pass to TensorRT during the network creation.

In the following example, we will create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers. To see the code in totality,
refer to https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#mnistapi_sample located in the /usr/src/tensorrt/samples/
sampleMNISTAPI directory.

1. Create the builder and the network:

IBuilder* builder = createInferBuilder (glLogger) ;
INetworkDefinition* network = builder->createNetwork() ;
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Add the Input layer to the network, with the input dimensions. A network can have
multiple inputs, although in this sample there is only one:

auto data = network->addInput (INPUT BLOB_NAME, dt, Dims3{1l, INPUT H,
INPUT W});

Add the Convolution layer with hidden layer input nodes, strides and weights for
filter and bias. In order to retrieve the tensor reference from the layer, we can use:

auto convl = network->addConvolution (*data->getOutput(0), 20, DimsHW{5, 5},
weightMap["convlfilter"], weightMap|["convlbias"]) ;
convl->setStride (DimsHW{1l, 1});

Weights passed to TensorRT layers are in host memory.

Add the Pooling layer:

auto pooll = network->addPooling(*convl->getOutput(0), PoolingType: :kMAX,
DimsHW{2, 2});
pooll->setStride (DimsHW{2, 2});

Add the FullyConnected and Activation layers:

auto ipl = network->addFullyConnected (*pooll->getOutput(0), 500,
weightMap["iplfilter"], weightMap["iplbias"]) ;

auto relul = network->addActivation (*ipl->getOutput (0),
ActivationType: :kRELU) ;

Add the SoftMax layer to calculate the final probabilities and set it as the output:

auto prob = network->addSoftMax (*relul->getOutput(0)) ;
prob->getOutput (0) ->setName (OUTPUT_BLOB_NAME) ;

Mark the output:

network->markOutput (*prob->getOutput (0)) ;

2.2.2. Importing A Model Using A Parser In C++

To import a model using the C++ Parser API, you will need to perform the following
high-level steps:

1.

3.

Create the TensorRT builder and network.

IBuilder* builder = createlInferBuilder (gLogger) ;
nvinferl: :INetworkDefinition* network = builder->createNetwork() ;

For an example on how to create the logger, see Instantiating TensorRT Objects in C
++,
Create the TensorRT parser for the specific format.
ONNX
auto parser = nvonnxparser::createParser (*network, glogger) ;
UFF
auto parser = nvuffparser::createUffParser();
Caffe
auto parser = nvcaffeparserl::createCaffeParser() ;
Use the parser to parse the imported model and populate the network.
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parser->parse (args) ;

The specific args depend on what format parser is used. For more information,
refer to the parsers documented in the TensorRT API.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs.

2.2.3. Importing A Caffe Model Using The C++ Parser API

The following steps illustrate how to import a Caffe model using the C++ Parser API.
For more information, see https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-
support-guide/index.html#mnist_sample.

1. Create the builder and network:

IBuilder* builder = createlInferBuilder (glLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

2. Create the Caffe parser:

ICaffeParser* parser = createCaffeParser()

3. Parse the imported model:

const IBlobNameToTensor* blobNameToTensor = parser->parse ("deploy file" ,
"modelFile", *network, DataType: :kFLOAT) ;

This populates the TensorRT network from the Caffe model. The final argument
instructs the parser to generate a network whose weights are 32-bit floats. Using
DataType: : kHALF would generate a model with 16-bit weights instead.

In addition to populating the network definition, the parser returns a dictionary that
maps from Caffe blob names to TensorRT tensors. Unlike Caffe, a TensorRT network
definition has no notion of in-place operation. When an Caffe model uses an in-place
operation, the TensorRT tensor returned in the dictionary corresponds to the last
write to that blob. For example, if a convolution writes to a blob and is followed by
an in-place ReLU, that blob’s name will map to the TensorRT tensor which is the
output of the ReLLU.

4. Specify the outputs of the network:

for (auto& s : outputs)
network->markOutput (*blobNameToTensor->find(s.c_str()));

2.2.4. Importing A TensorFlow Model Using The C++ UFF
Parser API

For new projects, it’s recommended to use the TensorFlow-TensorRT integration as
a method for converting your TensorFlow network to use TensorRT for inference. For
integration instructions, see Integrating TensorFlow With TensorRT and its Release
Notes.
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Importing from the TensorFlow framework requires you to convert the TensorFlow
model into intermediate format UFF (Universal Framework Format). For more
information about the conversion, see Converting A Frozen Graph To UFF.

The following steps illustrate how to import a TensorFlow model using the C++
Parser API. For more information about the UFF import, see https://docs.nvidia.com/
deeplearning/sdk/tensorrt-sample-support-guide/index.html#mnist_uff_sample.

1.

Create the builder and network:

IBuilder* builder = createInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

Create the UFF parser:

IUFFParser* parser = createUffParser();
Declare the network inputs and outputs to the UFF parser:
parser->registerInput ("Input 0", DimsCHW(1l, 28, 28), UffInputOrder: :kNCHW) ;

parser->registerOutput ("Binary 3");

TensorRT expects the input tensor be in CHW order. When importing from
TensorFlow, ensure that the input tensor is in the required order, and if not,
convert it to CHW.

Parse the imported model to populate the network:

parser->parse (uffFile, *network, nvinferl::DataType: :kFLOAT) ;

2.2.5. Importing An ONNX Model Using The C++ Parser
API

Restriction Since the ONNX format is quickly developing, you may encounter a

version mismatch between the model version and the parser version. The ONNX Parser
shipped with TensorRT 5.1.x supports ONNX IR (Intermediate Representation) version
0.0.3, opset version 9.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the
changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this

case, check whether the latest version of TensorRT released to GitHub, onnx-
tensorrt, supports the required version. The supported version is defined by the
BACKEND_OPSET_VERSION variable in onnx_trt backend.cpp. Download and build
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the latest version of ONNX TensorRT Parser from the GitHub. The instructions for
building can be found here: TensorRT backend for ONNX.

The following steps illustrate how to import an ONNX model using the C++ Parser
API. For more information about the ONNX import, see https://docs.nvidia.com/
deeplearning/sdk/tensorrt-sample-support-guide/index.html#onnx_mnist_sample.

1. Create the builder and network.

IBuilder* builder = createlInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

2. Create the ONNX parser.

nvonnxparser: : IONNXParser* parser =
nvonnxparser: :createONNXParser (*network, glLogger) ;

3. Ingest the model:

parser->parseFromFile (onnx filename,
ILogger: :Severity: : kWARNING) ;

2.3. Building An Engine In C++

The next step is to invoke the TensorRT builder to create an optimized runtime. One

of the functions of the builder is to search through its catalog of CUDA kernels for the
fastest implementation available, and thus it is necessary use the same GPU for building
as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as the
precision at which the network should run, and autotuning parameters such as how
many times TensorRT should time each kernel when ascertaining which is fastest (more
iterations leads to longer runtimes, but less susceptibility to noise.) You can also query
the builder to find out what reduced precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

» The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

» Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

1. Build the engine using the builder object:

builder->setMaxBatchSize (maxBatchSize) ;
builder->setMaxWorkspaceSize (1 << 20);
ICudaEngine* engine = builder->buildCudaEngine (*network) ;
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When the engine is built, TensorRT makes copies of the weights.
2. Dispense with the network, builder, and parser if using one.

parser->destroy () ;
network->destroy () ;
builder->destroy() ;

2.4, Serializing A Model In C++

To serialize, you are transforming the engine into a format to store and use at a later time
for inference. To use for inference, you would simply deserialize the engine. Serializing
and deserializing are optional. Since creating an engine from the Network Definition can
be time consuming, you could avoid rebuilding the engine every time the application
reruns by serializing it once and deserializing it while inferencing. Therefore, after the
engine is built, users typically want to serialize it for later use.

Building can take some time, so once the engine is built, you will typically want to
serialize it for later use. It is not absolutely necessary to serialize and deserialize a model
before using it for inference — if desirable, the engine object can be used for inference
directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

1. Run the builder as a prior offline step and then serialize:

IHostMemory *serializedModel = engine->serialize();
// store model to disk

// <.>
serializedModel->destroy () ;

2. Create a runtime object to deserialize:

IRuntime* runtime = createInferRuntime (gLogger) ;
ICudaEngine* engine = runtime->deserializeCudaEngine (modelData, modelSize,
nullptr) ;

The final argument is a plugin layer factory for applications using custom layers. For
more information, see Extending TensorRT With Custom Layers.

2.5. Performing Inference In C++

The following steps illustrate how to perform inference in C++ now that you have an
engine.
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1. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

IExecutionContext *context = engine->createExecutionContext() ;

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.

2. Use the input and output blob names to get the corresponding input and output
index:

int inputIndex = engine->getBindingIndex (INPUT BLOB_NAME) ;
int outputIndex = engine->getBindingIndex (OUTPUT_BLOB_NAME) ;

3. Using these indices, set up a buffer array pointing to the input and output buffers on
the GPU:

void* buffers[2];
buffers[inputIndex] = inputbuffer;
buffers[outputIndex] = outputBuffer;

4. TensorRT execution is typically asynchronous, so enqueue the kernels on a CUDA
stream:

context->enqueue (batchSize, buffers, stream, nullptr);

It is common to enqueue asynchronous memcpy () before and after the kernels to
move data from the GPU if it is not already there. The final argument to enqueue ()
is an optional CUDA event which will be signaled when the input buffers have been
consumed and their memory may be safely reused.

To determine when the kernels (and possibly memcpy () ) are complete, use standard
CUDA synchronization mechanisms such as events, or waiting on the stream.

2.6. Memory Management In C++

TensorRT provides two mechanisms to allow the application more control over device
memory.

By default, when creating an IExecutionContext, persistent device

memory is allocated to hold activation data. To avoid this allocation, call
createExecutionContextWithoutDeviceMemory. It is then the application’s
responsibility to call IExecutionContext: : setDeviceMemory () to provide the
required memory to run the network. The size of the memory block is returned by
ICudaEngine: :getDeviceMemorySize ().

In addition, the application can supply a custom allocator for use during build
and runtime by implementing the IGpuAllocator interface. Once the interface is
implemented, call

setGpuAllocator (&allocator) ;
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on the IBuilder or IRuntime interfaces. All device memory will then allocated and
freed through this interface.

2.7. Refitting An Engine

TensorRT can refit an engine with new weights, without having to rebuild it. The engine
must be built as “refittable”. Because of the way the engine is optimized, if you change
some weights, you may have to supply some other weights too. The interface can tell
you what additional weights need to be supplied.

1. Request a refittable engine before building it:

builder->setRefittable (true) ;
builder->buildCudaEngine (network) ;

2. Create a refitter object:

ICudaEngine* engine

IRefitter* refitter createInferRefitter (*engine,glogger)

3. Update the weights that you want to update. For example, to update the kernel
weights for a convolution layer named “MyLayer”:

Weights newWeights = ...;
refitter->setWeights ("MyLayer" ,WeightsRole: : kKERNEL,
newWeights) ;

The new weights should have the same count as the original weights used to build
the engine.

setWeights returns false if something went wrong, such as a wrong layer name or
role, or a change in the weights count.

4. Find out what other weights must be supplied. This typically requires two calls to
IRefitter: :getMissing, first to get the number of Weights objects that must be
supplied, and second to get their layers and roles.

const int n = refitter->getMissing (0, nullptr, nullptr);

std: :vector<const char*> layerNames (n) ;

std: :vector<WeightsRole> weightsRoles (n) ;

refitter->getMissing(n, layerNames.data(),
weightsRoles.data()) ;

5. Supply the missing weights, in any order:
for (int i = 0; i < n; ++i)

refitter->setWeights (layerNames[i], weightsRoles[i],
Weights{...}):

Supplying only the missing weights will not generate a need for any more weights.
Supplying any additional weights may trigger the need for yet more weights.
6. Update the engine with all the weights that are provided:

bool success = refitter->refitCudaEngine() ;
assert (success) ;
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If success is false, check the log for a diagnostic, perhaps about weights that are
still missing.
7. Destroy the refitter:

refitter->destroy() ;

The updated engine behaves is if it had been built from a network updated with the new
weights.

To see all refittable weights in an engine, use refitter->getall (...); similarly to how
getMissing was used in step 3.
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Chapter 3.
USING THE PYTHON API

The following sections highlight the TensorRT user goals and tasks that you can perform
using the Python API. These sections focus on using the Python API without any
frameworks. Further details are provided in the Samples Support Guide and are linked
to below where appropriate.

The assumption is that you are starting with a trained model. This chapter will cover the
following necessary steps in using TensorRT:

» Creating a TensorRT network definition from your model

» Invoking the TensorRT builder to create an optimized runtime engine from the
network

» Serializing and deserializing the engine so that it can be rapidly recreated at runtime

» Feeding the engine with data to perform inference

Python API vs C++ API

In essence, the C++ API and the Python API should be close to identical in supporting
your needs. The main benefit of the Python API is that data preprocessing and
postprocessing is easy to use because you're able to use a variety of libraries like NumPy
and SciPy.

The C++ API should be used in situations where safety is important, for example, like in
automotive. For more information about the C++ API, see Working With TensorRT Using
The C++ APL

For more information about how to optimize performance using Python, see How Do I
Optimize My Python Performance? from the Best Practices guide.

3.1. Importing TensorRT Into Python

1. Import TensorRT:

import tensorrt as trt
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2. Implement a logging interface through which TensorRT reports errors, warnings,
and informational messages. The following code shows how to implement the
logging interface. In this case, we have suppressed informational messages, and
report only warnings and errors. There is a simple logger included in the TensorRT
Python bindings.

TRT_LOGGER = trt.Logger (trt.Logger.WARNING)

3.2. Creating A Network Definition In Python

The first step in performing inference with TensorRT is to create a TensorRT network
from your model. The easiest way to achieve this is to import the model using the
TensorRT parser library, (see Importing A Model Using A Parser In Python, Importing
From Caffe Using Python, Importing From TensorFlow Using Python, and Importing
From ONNX Using Python), which supports serialized models in the following formats:

» Caffe (both BVLC and NVCaffe)
» ONNX1.0and 1.1, and
» UFF (used for TensorFlow)

An alternative is to define the model directly using the TensorRT Network API, (see
Creating A Network Definition From Scratch Using The Python API). This requires you
to make a small number of API calls to define each layer in the network graph, and to
implement your own import mechanism for the model’s trained parameters.

TensorRT Support Matrix

u The TensorRT Python API is not available for all platforms. For more information, see

3.2.1. Creating A Network Definition From Scratch Using
The Python API

When creating a network, you must first define the engine and create a builder object
for inference. The Python API is used to create a network and engine from the Network
APIs. The network definition reference is used to add various layers to the network.
For more information about using the Python API to create a network and engine,

see the https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#network_api_pytorch_mnist sample.

The following code illustrates how to create a simple network with Input, Convolution,
Pooling, FullyConnected, Activation and SoftMax layers.

# Create the builder and network

with trt.Builder (TRT _LOGGER) as builder, builder.create_ network() as network:

# Configure the network layers based on the weights provided. In this case, the
weights are imported from a pytorch model.

# Add an input layer. The name is a string, dtype is a TensorRT dtype, and the
shape can be provided as either a list or tuple.

input tensor = network.add input(name=INPUT NAME, dtype=trt.float32,
shape=INPUT_ SHAPE)
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# Add a convolution layer

convl w = weights['convl.weight'].numpy ()

convl b = weights['convl.bias'] .numpy ()

convl = network.add convolution (input=input_tensor, num output maps=20,
kernel_ shape=(5, 5), kernel=convl w, bias=convl_b)

convl.stride = (1, 1)

pooll = network.add pooling(input=convl.get_output(0),
type=trt.PoolingType.MAX, window_size=(2, 2))

pooll.stride = (2, 2)

conv2_w = weights['conv2.weight'].numpy ()

conv2 b = weights['conv2.bias'].numpy ()

conv2 = network.add convolution(pooll.get output(0), 50, (5, 5), conv2 w,
conv2_b)

conv2.stride = (1, 1)

pool2 = network.add pooling(conv2.get output(0), trt.PoolingType.MAX, (2, 2))
pool2.stride = (2, 2)

fcl w = weights['fcl.weight'] .numpy ()

fcl b = weights['fcl.bias'].numpy ()

fcl = network.add fully connected(input=pool2.get output(0), num_outputs=500,
kernel=fcl w, bias=fcl_b)

relul = network.add activation(fcl.get_ output(0), trt.ActivationType.RELU)

fc2 w = weights['£fc2.weight'] .numpy ()

fc2 b = weights['fc2.bias'] .numpy ()

fc2 = network.add fully connected(relul.get_output(0), OUTPUT SIZE, fc2_w,
fc2 b)

fc2.get_output (0) .name =OUTPUT_ NAME
network.mark output(fc2.get output(0))

3.2.2. Importing A Model Using A Parser In Python

To import a model using a parser, you will need to perform the following high-level
steps:

1. Create the TensorRT builder and network.
2. Create the TensorRT parser for the specific format.
3. Use the parser to parse the imported model and populate the network.

For examples regarding each of these steps and sample code, see Importing From Caffe
Using Python, Importing From TensorFlow Using Python, and Importing From ONNX
Using Python.

The builder must be created before the network because it serves as a factory for the
network. Different parsers have different mechanisms for marking network outputs. For
more information, see the UFF Parser API, Caffe Parser API, and ONNX Parser API.

3.2.3. Importing From Caffe Using Python

The following steps illustrate how to import a Caffe model directly using the CaffeParser
and the Python API. Refer to the https://docs.nvidia.com/deeplearning/sdk/tensorrt-
sample-support-guide/index.html#introductory_parser_samples_resnet50 sample for
more information.
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Import TensorRT.

import tensorrt as trt

Define the data type. In this example, we will use float32.

datatype = trt.float32

Additionally, define some paths. Change the following paths to reflect where you
placed the model included with the samples:

deploy file = 'data/mnist/mnist.prototxt’
model file = 'data/mnist/mnist.caffemodel’

Create the builder, network, and parser:

with trt.Builder (TRT _LOGGER) as builder, builder.create network() as
network, trt.CaffeParser() as parser:

model tensors = parser.parse (deploy=deploy file, model=model file,
network=network, dtype=datatype)

The parser returns the model_tensors, which is a table containing the mapping
from tensor names to ITensor objects.

3.2.4. Importing From TensorFlow Using Python

The following steps illustrate how to import a TensorFlow model directly using the
UffParser and the Python API. This sample can be found in the <site-packages>/
tensorrt/samples/python/end_to_end tensorflow_mnist directory. For more

information, see the https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-
guide/index.html#end_to_end_tensorflow_mnist Python sample.

1.

Import TensorRT:

import tensorrt as trt

Create a frozen TensorFlow model for the tensorflow model. The instructions on
freezing a TensorFlow model into a stream can be found in Freezing A TensorFlow
Graph.

Use the UFF converter to convert a frozen tensorflow model to a UFF file.
Typically, this is as simple as:

convert-to-uff frozen inference_graph.pb

Depending on how you installed TensorRT, the convert-to-uff utility might not
be installed in your system path. In this case, invoke the underlying Python script
directly. It should be located in the bin directory of the UFF module; for example,
~/.local/lib/python2.7/site-packages/uff/bin/convert to_uff.py.

To find the location of the UFF module, run the python -¢ “import uff;
print (uff. path )” command.

Alternatively, you can use the UFF Parser APl and convert the TensorFlow
GraphDef directly.

Define some paths. Change the following paths to reflect where you placed the
model that is included with the samples:
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model file = '/data/mnist/mnist.uff’
5. Create the builder, network, and parser:

with builder = trt.Builder (TRT_LOGGER) as builder, builder.create network()
as network, trt.UffParser() as parser:
parser.register_input("Placeholder", (1, 28, 28))
parser.register output("fc2/Relu")
parser.parse (model file, network)

3.2.5. Importing From ONNX Using Python

The following steps illustrate how to import an ONNX model directly
using the OnnxParser and the Python APIL For more information, see the
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#introductory_parser_samples_resnet50 Python sample.

Restriction

Since the ONNX format is quickly developing, you may encounter a version mismatch
between the model version and the parser version. The ONNX Parser shipped with
TensorRT 5.1.x supports ONNX IR (Intermediate Representation) version 0.0.3, opset
version 9.

In general, the newer version of the ONNX Parser is designed to be backward
compatible, therefore, encountering a model file produced by an earlier version of
ONNX exporter should not cause a problem. There could be some exceptions when the
changes were not backward compatible. In this case, convert the earlier ONNX model
file into a later supported version. For more information on this subject, see ONNX
Model Opset Version Converter.

It is also possible that the user model was generated by an exporting tool supporting
later opsets than supported by the ONNX parser shipped with TensorRT. In this case,
check whether the latest version of TensorRT released to GitHub, onnx-tensorrt,
supports the required version. For more information, see https://docs.nvidia.com/
deeplearning/sdk/tensorrt-sample-support-guide/index.html#yolov3_onnx.

The supported version is defined by the BACKEND OPSET_ VERSIONvariable in

onnx trt backend.cpp. Download and build the latest version of ONNX TensorRT
Parser from the GitHub. The instructions for building can be found here: TensorRT
backend for ONNX.

1. Import TensorRT:

import tensorrt as trt

2. Create the build, network, and parser:

with builder = trt.Builder (TRT_LOGGER) as builder, builder.create network()
as network, trt.OnnxParser (network, TRT_LOGGER) as parser:
with open(model path, 'rb') as model:
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parser.parse (model.read())

3.2.6. Importing From PyTorch And Other Frameworks

Using TensorRT with PyTorch (or any other framework with NumPy compatible
weights) involves replicating the network architecture using the TensorRT AP, (see
Creating A Network Definition From Scratch Using The Python API), and then copying
the weights from PyTorch. For more information, see Working With PyTorch And Other
Frameworks.

On Ubuntu 14.04 and CentOS, loading the torch module and TensorRT at the same
time may cause segmentation faults.

To perform inference, follow the instructions outlined in Performing Inference In
Python.

3.3. Building An Engine In Python

One of the functions of the builder is to search through its catalog of CUDA kernels
for the fastest implementation available, and thus it is necessary use the same GPU for
building as that on which the optimized engine will run.

The builder has many properties that you can set in order to control such things as

the precision at which the network should run, and autotuning parameters such as
how many times TensorRT should time each kernel when ascertaining which is fastest
(more iterations leads to longer runtimes, but less susceptibility to noise.) You can also
query the builder to find out what mixed precision types are natively supported by the
hardware.

Two particularly important properties are the maximum batch size and the maximum
workspace size.

» The maximum batch size specifies the batch size for which TensorRT will optimize.
At runtime, a smaller batch size may be chosen.

» Layer algorithms often require temporary workspace. This parameter limits the
maximum size that any layer in the network can use. If insufficient scratch is
provided, it is possible that TensorRT may not be able to find an implementation for
a given layer.

For more information about building an engine in Python, see the https://
docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#introductory_parser_samples_resnet50 sample.

1. Build the engine using the builder object:

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.1.5 | 27


https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples_resnet50
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples_resnet50
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/index.html#introductory_parser_samples_resnet50

Using The Python API

builder.max_batch_size = max batch size

builder.max_workspace size = 1 << 20 # This determines the amount of memory
available to the builder when building an optimized engine and should
generally be set as high as possible.

with trt.Builder (TRT_LOGGER) as builder:

with builder.build cuda_ engine (network) as engine:

# Do inference here.

When the engine is built, TensorRT makes copies of the weights.

2. Perform inference. To perform inference, follow the instructions outlined in
Performing Inference In Python.

3.4. Serializing A Model In Python

When you serialize, you are transforming the engine into a format to store and use at a
later time for inference. To use for inference, you would simply deserialize the engine.
Serializing and deserializing are optional. Since creating an engine from the Network
Definition can be time consuming, you could avoid rebuilding the engine every time the
application reruns by serializing it once and deserializing it while inferencing. Therefore,
after the engine is built, users typically want to serialize it for later use.

From here onwards, you can either serialize the engine or you can use the engine
directly for inference. Serializing and deserializing a model is an optional step before
using it for inference - if desirable, the engine object can be used for inference directly.

Serialized engines are not portable across platforms or TensorRT versions. Engines are
specific to the exact GPU model they were built on (in addition to platforms and the
TensorRT version).

1. Serialize the model to a modelstream:

serialized engine = engine.serialize()
2. Deserialize modelstream to perform inference. Deserializing requires creation of a
runtime object:

with trt.Runtime (TRT_LOGGER) as runtime:
engine = runtime.deserialize cuda_engine(serialized_engine)

The final argument is a plugin layer factory for applications using custom layers, and
is optional otherwise. More details can be found in Extending TensorRT With Custom
Layers.

It is also possible to save a serialized engine to a file, and read it back from the file:
1. Serialize the engine and write to a file:
with open (“sample.engine”, “wb”) as f:

f.write(engine.serialize())

2. Read the engine from the file and deserialize:
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with open(“sample.engine”, “rb”) as £, trt.Runtime (TRT_LOGGER) as runtime:
engine = runtime.deserialize cuda_engine(f.read())

3.5. Performing Inference In Python

The following steps illustrate how to perform inference in Python, now that you have an
engine.

1. Allocate some host and device buffers for inputs and outputs:

# Determine dimensions and create page-locked memory buffers (i.e. won't be
swapped to disk) to hold host inputs/outputs.

h_input = cuda.pagelocked empty(engine.get binding_ shape (0) .volume(),
dtype=np.float32)

h_output = cuda.pagelocked empty(engine.get binding shape(l) .volume(),
dtype=np.float32)

# Allocate device memory for inputs and outputs.

d_input = cuda.mem_alloc(h_input.nbytes)

d_output = cuda.mem _alloc (h_output.nbytes)

# Create a stream in which to copy inputs/outputs and run inference.

stream = cuda.Stream()

2. Create some space to store intermediate activation values. Since the engine holds the
network definition and trained parameters, additional space is necessary. These are
held in an execution context:

with engine.create_execution_context() as context:
# Transfer input data to the GPU.
cuda.memcpy htod _async(d_input, h_input, stream)
# Run inference.
context.execute_async (bindings=[int(d_input), int(d_output)],
stream handle=stream.handle)
# Transfer predictions back from the GPU.
cuda.memcpy dtoh_async(h_output, d_output, stream)
# Synchronize the stream
stream. synchronize ()
# Return the host output.

return h_output

An engine can have multiple execution contexts, allowing one set of weights to
be used for multiple overlapping inference tasks. For example, you can process
images in parallel CUDA streams using one engine and one context per stream.
Each context will be created on the same GPU as the engine.
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Chapter 4.
EXTENDING TENSORRT WITH CUSTOM

LAYERS

TensorRT supports many types of layers and its functionality is continually extended;
however, there may be cases in which the layers supported do not cater to the

specific needs of a model. In this case, users can extend TensorRT functionalities by
implementing custom layers using the IPluginV2Ext class for the C++ and Python APL
Custom layers, often referred to as plugins, are implemented and instantiated by an
application, and their lifetime must span their use within a TensorRT engine.

4.1. Adding Custom Layers Using The C++ API

A custom layer is implemented by extending the IP1luginV2Ext and IPluginCreator

classes.

IPluginV2Ext
IPluginV2 is the base class you should implement for your plugins. It includes
versioning support and helps enable custom layers that support other data formats
besides NCHW and single precision.

IPluginCreator
IPluginCreator is a creator class for custom layers using which, users can get
plugin name, version and plugin field parameters. It also provides methods to create
the plugin object during network build phase and deserialize it during inference.

In previous versions of TensorRT, you implemented IP1uginVv2 for custom layers.
While this API is still supported, we highly encourage you to move to IPluginV2Ext
to be able to use all the new plugin functionalities.

TensorRT also provides the ability to register a plugin by calling

REGISTER TENSORRT_ PLUGIN (pluginCreator) which statically registers the Plugin
Creator to the Plugin Registry. During runtime, the Plugin Registry can be queried using
the extern function getPluginRegistry () . The Plugin Registry stores a pointer to

all the registered Plugin Creators and can be used to look up a specific Plugin Creator
based on the plugin name and version. TensorRT library contains plugins that can be
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loaded into your application. The version of all these plugins is set to 1. The names of
these plugins are:

RPROI_TRT
Normalize TRT
PriorBox TRT
GridAnchor_ TRT
NMS_TRT
LReLU_TRT
Reorg TRT
Region_TRT
Clip TRT

vV Vv v vV v v v v

To use TensorRT registered plugins in your application, the 1ibnvinfer plugin.so
library must be loaded and all plugins must be registered. This can be done by calling
initLibNvInferPlugins (void* logger, const char* libNamespace) () in
your application code.

If you have your own plugin library, you can include a similar entry point to register
all plugins in the registry under a unique namespace. This ensures there are no plugin
name collisions during build time across different plugin libraries.

For more information about these plugins, see the NvInferPlugin.h File reference.

Using the Plugin Creator, the IPluginCreator: :createPlugin () function can be
called which returns a plugin object of type IP1uginV2. This object can be added to the
TensorRT network using addPluginV2 () which creates and adds a layer to a network,
and then binds the layer to the given plugin. The method also returns a pointer to the
layer (of type IPluginV2Layer), which can be used to access the layer or the plugin
itself (via getPlugin()).

For example, to add a plugin layer to your network with plugin name set to
pluginName and version set to pluginVersion, you can issue the following;:

//Use the extern function getPluginRegistry to access the global TensorRT Plugin
Registry
auto creator = getPluginRegistry () ->getPluginCreator (pluginName, pluginVersion) ;
const PluginFieldCollection* pluginFC = creator->getFieldNames () ;
//populate the field parameters (say layerFields) for the plugin layer
PluginFieldCollection *pluginData = parseAndFillFields (pluginFC, layerFields)
//create the plugin object using the layerName and the plugin meta data
IPluginV2 *pluginObj = creator->createPlugin(layerName, pluginData) ;
//add the plugin to the TensorRT network using the network API
auto layer = network.addPluginV2 (&inputs[0], int(inputs.size()), pluginObj) ;
(build rest of the network and serialize engine)
pluginObj->destroy() // Destroy the plugin object
(destroy network, engine, builder)
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. (free allocated pluginData)

pluginData should allocate the PluginField entries on the heap before passing to
createPlugin.

The createPlugin method above will create a new plugin object on the heap and
return the pointer to it. Ensure you destroy the pluginObj, as shown above, to avoid
a memory leak.

During serialization, the TensorRT engine will internally store the plugin type,

plugin version and namespace (if it exists) for all IPluginV2 type plugins. During
deserialization, this information is looked up by the TensorRT engine to find the Plugin
Creator from the Plugin Registry. This enables the TensorRT engine to internally call
the IPluginCreator: :deserializePlugin () method. The plugin object created
during deserialization will be destroyed internally by the TensorRT engine by calling
IPluginV2: :destroy () method.

In previous versions of TensorRT, you had to implement the

nvinferl: :IPluginFactory class to call the createPlugin method during
deserialization. This is no longer necessary for plugins registered with TensorRT and
added using addPluginV2.

4.1.1. Example 1: Adding A Custom Layer Using C++ For
Caffe

To add a custom layer in C++, implement the IP1luginExt class. For Caffe

based networks, if using the TensorRT Caffe Parser, you will also implement the
nvcaffeparserl: : IPluginFactoryExt (for plugins of type IPluginExt) and
nvinferl: :IPluginFactory classes. For more information, see Using Custom Layers
When Importing A Model From A Framework.

The following sample code adds a new plugin called FooPlugin:

class FooPlugin : public IPluginExt
{

...implement all class methods for your plugin

};

class MyPluginFactory : public nvinferl::IPluginFactory, public
nvcaffeparserl: :IPluginFactoryExt

{

..implement all factory methods for your plugin
};
If you are using plugins registered with the TensorRT plugin registry of type
IPluginV2, then you do not need to implement the nvinferl: : IPluginFactory
class. However, you do need to implement the nvcaffeparserl: :IPluginFactoryV2
and IPluginCreator classes instead and register them.

class FooPlugin : public IPluginV2
{

...implement all class methods for your plugin

};
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class FooPluginFactory : public nvcaffeparserl::IPluginFactoryV2
{

virtual nvinferl::IPluginV2* createPlugin(...)

{

...create and return plugin object of type FooPlugin

}

bool isPlugin(const char* name)

{

...check if layer name corresponds to plugin

}
}

class FooPluginCreator : public IPluginCreator

{

...implement all creator methods here
}i
REGISTER TENSORRT_ PLUGIN (FooPluginCreator) ;

The following samples illustrate how to add a custom plugin layer using C++ for Caffe
networks:

» https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#plugin_sample has a user implemented plugin

» https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#fasterrcnn_sample uses plugins registered with the TensorRT Plugin
Registry

4.1.2. Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++

In order to run TensorFlow networks with TensorRT, you must first convert it to the UFF
format.

The following steps add a custom plugin layer in C++ for TensorFlow networks:

1. Implement the IPluginV2 and IPluginCreator classes as shown in Example 1:
Adding A Custom Layer Using C++ For Caffe.

2. Map the TensorFlow operation to the plugin operation. You can use graphsurgeon
for this. For example, refer to the following code snippet to map the TensorFlow
Relu6 operation to a plugin:

import graphsurgeon as gs

my relu6 = gs.create plugin node (name="MyRelu6”, op="Clip TRT”, clipMin=0.0,
clipMax=6.0)

Namespace_plugin map = { “tf_relu6” : my relu6 }

def preprocess(dynamic_graph) :

dynamic_graph.collapse namespaces (namespace plugin_map)

In the above code, t£_relué is the name of the Relu6 node in the TensorFlow

graph. It maps the tf_relu6 node to a custom plugin node with operation

“Clip_TRT” which is the name of the plugin to be used. Save the code above to a file

called config.py. If the plugin layer expects parameters, they should be passed in

as arguments to gs.create_plugin node. In this case, clipMin and clipMax are

the parameters expected by the clip plugin.
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3. Call the UFF converter with the preprocess -p flag set:

convert-to-uff frozen inference_graph.pb -p config.py -t

This will generate a UFF file with the TensorFlow operations replaced by TensorRT
plugin nodes.

4. Run the pre-processed and converted UFF file with TensorRT using the UFF parser.
For details, see Using Custom Layers When Importing A Model From A Framework.

The https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#uffssd_sample sample illustrates how to add a custom layer that

is not supported in UFF using C++. See config.py in the sample folder for a
demonstration of how to pre-process the graph.

4.2. Adding Custom Layers Using The Python API

Although the C++ APl is the preferred language to implement custom layers; due to
easily accessing libraries like CUDA and cuDNN, you can also work with custom layers
in a Python applications.

You can use the C++ API to create a custom layer, package the layer using pybind11
in Python, then load the plugin into a Python application. For more information, see
Creating A Network Definition In Python.

The same custom layer implementation can be used for both C++ and Python. For more
information, see the https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-
guide/index.html#fc_plugin_caffe_mnist Python sample located in the /usr/src/
tensorrt/samples/fc_plugin_caffe mnist/ directory.

4.2.1. Example 1: Adding A Custom Layer to a TensorRT
Network Using Python

Custom layers can be added to any TensorRT network in Python using plugin nodes.
The Python API has a function called add_plugin_v2 which enables you to add a
plugin node to a network. The following example illustrates this. It creates a simple
TensorRT network and adds a Leaky ReLU plugin node by looking up TensorRT Plugin
Registry.

import tensorrt as trt
import numpy as np

TRT_LOGGER = trt.Logger ()

trt.init_libnvinfer plugins (TRT_LOGGER, '')
PLUGIN_CREATORS = trt.get plugin_ registry() .plugin_creator_ list

def get trt plugin(plugin_name):
plugin = None
for plugin_creator in PLUGIN_ CREATORS:
if plugin_creator.name == plugin name:
lrelu slope field = trt.PluginField("neg_slope", np.array([0.1],
dtype=np.float32), trt.PluginFieldType.FLOAT32)
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field collection =
trt.PluginFieldCollection([lrelu_slope field])
pPlugin = plugin_creator.create_plugin(name=plugin_ name,
field collection=field collection)
return plugin

def main():
with trt.Builder (TRT_LOGGER) as builder, builder.create_network() as

network:
builder.max workspace_ size = 2**20
input_layer = network.add input(name="input layer", dtype=trt.float32,

shape=(1, 1))

lrelu = network.add plugin_v2 (inputs=[input_layer],

plugin=get_ trt plugin("LReLU_TRT"))
lrelu.get output(0) .name = "outputs"
network.mark output(lrelu.get output(0))

4.2.2. Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using Python

TensorFlow networks can be converted to UFF format and run with TensorRT using
the Python interface. In order to do this, we make use of the graphsurgeon API. If you

are writing your own plugin, you need to implement it in C++ by implementing the
IPluginExt and IPluginCreator classes as shown in Example 1: Adding A Custom
Layer Using C++ For Caffe.

The following steps illustrate how you can use the UFF Parser to run custom layers
using plugin nodes registered with the TensorRT Plugin Registry.

1. Register the TensorRT plugins by calling
trt.init libnvinfer plugins (TRT_LOGGER, '') (or load the .so file where
you have registered your own plugin).

2. Prepare the network and check the TensorFlow output:

tf sess = tf.InteractiveSession()

tf _input tf.placeholder (tf.float32, name="placeholder")

tf lrelu tf.nn.leaky relu(tf_input, alpha=lrelu alpha, name="tf lrelu")
tf result = tf_sess.run(tf lrelu, feed dict={tf_ input: lrelu args})
tf_sess.close()

3. Prepare the namespace mappings. The op name LReLU_TRT corresponds to the
Leaky ReLU plugin shipped with TensorRT.

trt_lrelu = gs.create_plugin_node (name="trt lrelu", op="LReLU TRT",
negSlope=lrelu_alpha)
namespace_plugin map = {
"tf lrelu": trt_lrelu
}

4. Transform the TensorFlow graph using graphsurgeon and save to UFF:

dynamic_graph = gs.DynamicGraph (tf_lrelu.graph)
dynamic_graph.collapse namespaces (namespace plugin_map)

5. Run the UFF parser and compare results with TensorFlow:
uff model = uff.from tensorflow(dynamic_graph.as_graph def(), ["trt lrelu"],

output_filename=model path, text=True)
parser = trt.UffParser ()
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parser.register_input("placeholder", [lrelu_args.size])
parser.register output("trt lrelu")
parser.parse (model path, trt network)

For more information, see the https://docs.nvidia.com/deeplearning/sdk/tensorrt-
sample-support-guide/index.html#uff_custom_plugin sample.

4.3. Using Custom Layers When Importing A Model
From A Framework

TensorRT parsers use the layer operation field to identity if a particular layer in the
network is a TensorRT supported operation.

TensorFlow

Compared to previous releases of TensorRT, there are several changes with how custom
layers in TensorFlow can be run with the TensorRT UFF parser. For TensorFlow models,
use the UFF converter to convert your graph to a UFF file. In this process, if the network
contains plugin layers it is also necessary to map the operation field of those layers to
the corresponding registered plugin names in TensorRT. These plugins can either be
plugins shipped with TensorRT or custom plugins that you have written. The plugin
field names in the network should also match the fields expected by the plugin. This can
be done using graphsurgeon, as explained in Preprocessing A TensorFlow Graph Using
the Graph Surgeon API and as demonstrated in sampleUffSSD by using a config file
with the UFF converter.

The UFF Parser will look up the Plugin Registry for every unsupported operation.

If it finds a match with any of the registered plugin names, the parser will parse the
plugin field parameters from the input network and create a plugin object using them.
This object is then added to the network. In previous versions of TensorRT, you had to
implement the nvuffparser: : IPluginFactoryExt and manually pass the plugin
parameters to the createPlugin (. ..) function. Although this flow can still be
exercised, it is no longer necessary with the new additions to the Plugin API. For more
information, see:

» IPluginV2Ext and IPluginCreator in the C++ API
» IPluginV2Ext and IPluginCreator in the Python API

Caffe

For Caffe models, use the nvcaffeparserl: :IPluginFactoryV2 class. The
setPluginFactoryV2 method of the parser sets the factory in the parser to enable
custom layers. While parsing a model description, for each layer, the parser invokes
isPluginV2 to check with the factory if the layer name corresponds to a custom layer; if
it does, the parser instantiates the plugin invoking createPlugin with the name of the
layer (so that the factory can instantiate the corresponding plugin), a Weights array, and
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the number of weights as arguments. There is no restriction on the number of plugins
that a single factory can support if they are associated with different layer names.

For the Caffe parser, if setPluginFactoryV2 and IPluginFactoryV2 are used,
the plugin object created during deserialization will be internally destroyed by the
engine by calling IPluginExt: :destroy (). You are only responsible for destroying
the plugin object created during network creation step as shown in Adding Custom
Layers Using The C++ API.

The samplePlugin sample illustrates how to extend
nvcaffeparserl: : IPluginFactoryExt to use custom layers, while sampleUffSSD
uses the UFF Parser to use custom layers.

For the Python usage of custom layers with TensorRT, refer to the https://
docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#fc_plugin_caffe_mnist sample for Caffe networks, and the
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#uff custom_plugin and https://docs.nvidia.com/deeplearning/sdk/tensorrt-
sample-support-guide/index.html#uff_ssd samples for UFF networks.

4.3.1. Example 1: Adding A Custom Layer To A
TensorFlow Model

In order to run a TensorFlow network with TensorRT, you must first convert it to the
UFF format. During the conversion process, custom layers can be marked as plugin
nodes using the graphsurgeon utility.

The UFF converter then converts the processed graph to the UFF format which is then
run by the UFF Parser. The plugin nodes are then added to the TensorRT network by the
UFF Parser.

For details using the C++ API, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++.

For details using the Python API, see Example 2: Adding A Custom Layer That Is
Not Supported In UFF Using Python. Additionally, the https://docs.nvidia.com/
deeplearning/sdk/tensorrt-sample-support-guide/index.html#uff_ssd Python sample
demonstrates an end-to-end workflow in Python for running TensorFlow object
detection networks using TensorRT.

4.4. Plugin APl Description

All new plugins should implement both the IP1uginV2Ext and

IPluginCreator classes. In addition, new plugins should also call the
REGISTER_TENSORRT PLUGIN(...) macro to register the plugin with the TensorRT
Plugin Registry or create an init function equivalent to initLibNvInferPlugins ().
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4.4.1. Migrating Plugins From TensorRT 5.x.x To
TensorRT 5.1.x

In order to use the most recent Plugin layer features, your custom plugin should
implement the IPluginV2Ext interface. The new features are as follows:

virtual nvinferl::DataType getOutputDataType (int index, const
nvinferl: :DataType* inputTypes, int nbInputs) const = 0;

virtual bool isOutputBroadcastAcrossBatch(int outputIndex, const bool*
inputIsBroadcasted, int nbInputs) const = 0;

virtual bool canBroadcastInputAcrossBatch(int inputIndex) const = 0;

virtual void configurePlugin(const Dims* inputDims, int nbInputs, const Dims*
outputDims,

int nbOutputs, const DataType* inputTypes, const DataType*
outputTypes, const bool* inputIsBroadcast, const bool* outputlIsBroadcast,
PluginFormat floatFormat, int maxBatchSize) = 0;

For the simplest migration, follow these guidelines:

> getOutputDataType can return the type of the input (from inputTypes) or
DataType: : kFLOAT if the layer has no inputs.

» isOutputBroadcastAcrossBatch can return false if the plugin does not support
output broadcast.

» canBroadcastInputAcrossBatch can return false if the plugin cannot handle
broadcasted inputs.

» configurePlugin can mimic the behavior of configureWithFormat.

See the API description in IPluginV2 API Description for details about the API.

4.4.2. 1P1uginVv2 API Description

The following section describes the functions of the IP1uginVv2 class.

To connect a plugin layer to neighboring layers and setup input and output data
structures, the builder checks for the number of outputs and their dimensions by calling
the following plugins methods:
getNbOutputs
Used to specify the number of output tensors.
getOutputDimensions
Used to specify the dimensions of an output as a function of the input dimensions.
supportsFormat
Used to check if a plugin supports a given data format.
getOutputDataType
Used to get the data type of the output at a given index. The returned data type must
have a format that is supported by the plugin.

Plugin layers can support four data formats and layouts, for example:
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> NCHW single (FP32), half precision (FP16) and integer (INT32) tensors
» NC/2HW2 and NHWC8 half precision (FP16) tensors

The formats are enumerated by PluginFormatType.

Plugins that do not compute all data in place and need memory space in addition to
input and output tensors can specify the additional memory requirements with the
getWorkspaceSize method, which is called by the builder to determine and pre-
allocate scratch space.

During both build and inference time, the plugin layer is configured and executed,
possibly multiple times. At build time, to discover optimal configurations, the layer is
configured, initialized, executed, and terminated. Once the optimal format is selected
for a plugin, the plugin is once again configured, and then it will be initialized once
and executed as many times as needed for the lifetime of the inference application,
and finally terminated when the engine is destroyed. These steps are controlled by the
builder and the engine using the following plugin methods:
configurePlugin
Communicates the number of inputs and outputs, dimensions and datatypes of all
inputs and outputs, broadcast information for all inputs and outputs, the chosen
plugin format, and maximum batch size. At this point, the plugin sets up its internal
state, and select the most appropriate algorithm and data structures for the given
configuration.
initialize
The configuration is known at this time and the inference engine is being created, so
the plugin can set up its internal data structures and prepare for execution.
enqueue
Encapsulates the actual algorithm and kernel calls of the plugin, and provides the
runtime batch size, pointers to input, output, and scratch space, and the CUDA
stream to be used for kernel execution.
terminate
The engine context is destroyed and all the resources held by the plugin should be
released.
clone
This is called every time a new builder, network or engine is created which includes
this plugin layer. It should return a new plugin object with the correct parameters.
destroy
Used to destroy the plugin object and/or other memory allocated each time a new
plugin object is created. It is called whenever the builder or network or engine is
destroyed.
set/getPluginNamespace
This method is used to set the library namespace that this plugin object belongs to
(default can be ""). All plugin objects from the same plugin library should have the
same namespace.

IPluginV2Ext supports plugins that can handle broadcast inputs and outputs. The
following methods need to be implemented for this feature:
canBroadcastInputAcrossBatch
This method is called for each input whose tensor is semantically broadcast across a
batch. If canBroadcastInputAcrossBatch returns true (meaning the plugin can
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support broadcast), TensorRT will not replicate the input tensor. There will be a single

copy that the plugin should share across the batch. If it returns false, TensorRT will

replicate the input tensor so that it appears like a non-broadcasted tensor.
isOutputBroadcastAcrossBatch

This is called for each output index. The plugin should return true the output at the

given index is broadcast across batch.

4.4.3. IPluginCreator API Description

The following methods in the IP1luginCreator class are used to find and create the
appropriate plugin from the Plugin Registry:
getPluginName
This returns the plugin name and should match the return value of
IPluginExt: :getPluginType.
getPluginVersion
Returns the plugin version. For all internal TensorRT plugins, this defaults to 1.
getFieldNames
In order to successfully create a plugin, it is necessary to know all the field
parameters of the plugin. This method returns the PluginFieldCollection
struct with the PluginField entries populated to reflect the field name and
PluginFieldType (the data should point to nullptr).
createPlugin
This method is used to create the plugin using the PluginFieldCollection
argument. The data field of the P1luginField entries should be populated to point to
the actual data for each plugin field entry.
deserializePlugin
This method is called internally by the TensorRT engine based on the plugin name
and version. It should return the plugin object to be used for inference.
set/getPluginNamespace
This method is used to set the namespace that this creator instance belongs to (default
can be ).

4.5. Best Practices For Custom Layers

Converting User-Defined Layers

To create a custom layer implementation as a TensorRT plugin, you need to implement
the IP1uginV2Ext class and the IPluginCreator class for your plugin.

For more information about both API classes, see Plugin API Description.

For Caffe networks, see Example 1: Adding A Custom Layer Using C++ For Caffe.
For TensorFlow (UFF) networks, see Example 2: Adding A Custom Layer That Is Not
Supported In UFF Using C++.
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Using The UFF Plugin API

For an example of how to use plugins with UFF in both C++ and Python, see Example 1:
Adding A Custom Layer Using C++ For Caffe and Example 2: Adding A Custom Layer
That Is Not Supported In UFF Using Python.

Debuggin Custom Layer Issues

Memory allocated in the plugin must be freed to ensure no memory leak. If

resources are acquired in the initialize () function, they need to be released in the
terminate () function. All other memory allocations should be freed preferably in

the plugin class destructor or in the destroy () method. Adding Custom Layers Using
The C++ API outlines this in detail and also provides some notes for best practices when
using plugins.
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Chapter 5.
WORKING WITH MIXED PRECISION

Mixed precision is the combined use of different numerical precisions in a computational
method. TensorRT can store weights and activations, and execute layers, in 32-bit
floating point, 16-bit floating point, or quantized 8-bit integer.

Using precision lower than FP32 reduces memory usage, allowing deployment of larger
networks. Data transfers take less time, and compute performance increases, especially
on GPUs with Tensor Core support for that precision.

By default, TensorRT uses FP32 inference, but it also supports FP16 and INT8. While
running FP16 inference, it automatically converts FP32 weights to FP16 weights.

You can check the supported precision on a platform using the following APIs:

if (builder->platformHasFastFpl6()) { .. };

if (builder->platformHasFastInt8()) { .. };

Specifying the precision for a network defines the minimum acceptable precision for the
application. Higher precision kernels may be chosen if they are faster for some particular
set of kernel parameters, or if no lower-precision kernel exists. You can set the builder
flag setStrictTypeConstraints to force the network or layer precision, which may
not have optimal performance. Usage of this flag is only recommended for debugging
purposes.

You can also choose to set both INT8 and FP16 mode if the platform supports it.
TensorRT will choose the most performance optimal kernel to perform inference.

5.1. Mixed Precision Using The C++ API

5.1.1. Setting The Layer Precision Using C++

If you want to run certain layers a specific precision, you can set the precision per layer
using the following API:

layer->setPrecision (nvinferl: :DataType: :kINTS8)
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This gives the layer’s inputs and outputs a preferred type (for example,
DataType: :kINT8). You can choose a different preferred type for an output of a layer
using:

layer->setOutputType (out_tensor_ index, nvinferl::DataType: :kFLOAT)

This method cannot be used to set the data type of the second output tensor of the
TopK layer. The data type of the second output tensor of the TopK layer is always
INT32. For more information, see TopK Layer.

TensorRT has very few implementations that run in heterogeneous precision: in
TensorRT 5.x.x the only ones are INT8 implementations for Convolution, Deconvolution,
and FullyConnected layers that produce FP32 output.

Setting the precision, requests TensorRT to use a layer implementation whose inputs
and outputs matches the preferred types, inserting reformat operations if necessary.

By default, TensorRT will choose such an implementation only if it results in a higher-
performance network. If an implementation at a higher precision is faster, TensorRT will
use it, and issue a warning. Thus, you can detect whether using lower precision would
result in unexpected performance loss.

You can override this behavior by making the type constraints strict.

builder->setStrictTypeConstraints (true) ;

If the constraints are strict, TensorRT will obey them unless there is no implementation
with the preferred precision constraints, in which case it will issue a warning and use the
fastest available implementation.

If the precision is not explicitly set, TensorRT will select the computational precision
based on performance considerations and the flags specified to the builder.

See https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#int8_api_sample for an example of running mixed precision inference with
these APIs.

5.1.2. Enabling FP16 Inference Using C++

Setting the builder’s Fpl6Mode flag indicates that 16-bit precision is acceptable.

builder->setFpl6Mode (true) ;

This flag allows, but does not guarantee, that 16-bit kernels will be used when building
the engine. You can choose to force 16-bit precision by setting the following builder flag:

builder->setStrictTypeConstraints (true) ;

Weights can be specified in FP16 or FP32, and they will be converted automatically to
the appropriate precision for the computation.

See https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#googlenet_sample and https://docs.nvidia.com/deeplearning/sdk/tensorrt-
sample-support-guide/index.html#mnist_sample for examples of running FP16
inference.
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5.1.3. Enabling INT8 Inference Using C++

Setting the builder flag enables INTS8 precision inference.

builder->setInt8Mode (true) ;

In order to perform INTS8 inference, FP32 activation tensors and weights need to be
quantized. In order to represent 32-bit floating point values and INT 8-bit quantized
values, TensorRT needs to understand the dynamic range of each activation tensor. The
dynamic range is used to determine the appropriate quantization scale.

TensorRT supports symmetric quantization with quantization scale calculated using
absolute maximum dynamic range values.

TensorRT needs the dynamic range for each tensor in the network. There are two ways
in which the dynamic range can be provided to the network:

» manually set the dynamic range for each network tensor using setDynamicRange
API

Or

» use INTS calibration to generate per tensor dynamic range using the calibration
dataset.

The dynamic range API can also be used along with INT8 calibration, such that
manually setting the range will take precedence over the calibration generated dynamic
range. Such scenario is possible if INTS8 calibration does not generate a satisfactory
dynamic range for certain tensors.

For more information, see https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-
support-guide/index.html#int8_api_sample.

5.1.3.1. Setting Per-Tensor Dynamic Range Using C++

You can generate per tensor the dynamic range using various techniques. The basic
technique includes recording per tensor the min and max values during the last epoch of
training, or using quantization aware training. TensorRT expects you to set the dynamic
range for each network tensor to perform INT8 inference. After you have the dynamic
range information, you can set the dynamic range as follows:

ITensor* tensor = network->getlayer (layer index)->getOutput (output_index) ;
tensor->setDynamicRange (min_float, max float);

You also need to set the dynamic range for the network input:

ITensor* input_tensor = network->getInput (input_index) ;
input_tensor->setDynamicRange (min_float, max_ float);

One way to achieve this, is to iterate through the network layers and tensors and set
per tensor the dynamic range. TensorRT only supports symmetric range currently,
therefore, only abs (min_float) and abs (max_float) is used for quantization. For
more information, see https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-
support-guide/index.html#int8_api_sample.
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5.1.3.2. INT8 Calibration Using C++

INTS8 calibration provides an alternative to generate per activation tensor the dynamic
range. This methods can be categorized as post training technique to generate the
appropriate quantization scale. The process of determining these scale factors is called
calibration, and requires the application to pass batches of representative input for the
network (typically batches from the training set.) Experiments indicate that about 500
images is sufficient for calibrating ImageNet classification networks.

To provide calibration data to TensorRT, implement the IInt8Calibrator interface.
TensorRT provides multiple variants of IInt8Calibrator:
IEntropyCalibratorVv2
This is the preferred calibrator and is required for DLA as it supports per activation
tensor scaling.
IEntropyCalibrator
This is the legacy entropy calibrator which supports per channel scaling. This is less
complicated than legacy calibrator and produces better results.
ILegacyCalibrator
This calibrator is for compatibility with 2.0EA. It is deprecated and should not be
used.

The builder invokes the calibrator as follows:

» First, it calls getBatchSize () to determine the size of the input batch to expect

» Then, it repeatedly calls getBatch () to obtain batches of input. Batches should
be exactly the batch size by getBatchSize (). When there are no more batches,
getBatch () should return false.

Calibration can be slow, therefore, the [Int8Calibrator interface provides methods for
caching intermediate data. Using these methods effectively requires a more detailed
understanding of calibration.

When building an INT8 engine, the builder performs the following steps:

1. Builds a 32-bit engine, runs it on the calibration set, and records a histogram for each
tensor of the distribution of activation values.

2. Builds a calibration table from the histograms.
3. Builds the INT8 engine from the calibration table and the network definition.

The calibration table can be cached. Caching is useful when building the same network
multiple times, for example, on multiple platforms. It captures data derived from the
network and the calibration set. The parameters are recorded in the table. If the network
or calibration set changes, it is the application’s responsibility to invalidate the cache.

The cache is used as follows:

» if a calibration table is found, calibration is skipped, otherwise:
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» the calibration table is built from the histograms and parameters
» then the INTS8 network is built from the network definition and the calibration table.

Cached data is passed as a pointer and length.
After you have implemented the calibrator, you can configure the builder to use it:

builder->setInt8Calibrator (calibrator) ;

It is possible to cache the output of calibration using the writeCalibrationCache ()
and readCalibrationCache () methods. The builder checks the cache prior to
performing calibration, and if data is found, calibration is skipped.

For more information about configuring INT8 Calibrator objects, see
https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#int8_sample.

5.2. Mixed Precision Using The Python API

5.2.1. Setting The Layer Precision Using Python

In Python, you can specify the layer precision using the precision flag:

layer.precision = trt.int8

You can set the output tensor data type to conform with the layer implementation:

layer.set_output_ type (out_tensor_index, trt.int8)

Ensure that the builder understands to force the precision:

builder.strict_type constraints = true

5.2.2. Enabling FP16 Inference Using Python

In Python, set the fp16_mode flag as follows:

builder.fpl6é mode = True

Force 16-bit precision by setting the builder flag:

builder.strict_type_ constraints = True

5.2.3. Enabling INT8 Inference Using Python

Enable INT8 mode by setting the builder flag:

trt builder.int8 mode = True

Similar to the C++ AP, you can choose per activation tensor the dynamic range either
using set_dynamic_range or using INTS calibration.
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INT8 calibration can be used along with the dynamic range APIs. Setting the dynamic
range manually will override the dynamic range generated from INT8 calibration.

5.2.3.1. Setting Per-Tensor Dynamic Range Using Python

In order to perform INTS inference, you must set the dynamic range for each network
tensor. You can derive the dynamic range values using various methods including
quantization aware training or simply recording per tensor the min and max values
during the last training epoch. To set the dynamic range use:

layer = network[layer index]
tensor = layer.get_output (output_index)
tensor.set_dynamic_range (min_float, max_float)

You also need to set the dynamic range for the network input:

input_tensor = network.get_ input(input_index)
input_tensor.set_dynamic_range (min_float, max float)

5.2.3.2. INT8 Calibration Using Python

INTS calibration provides an alternative approach to generate per activation tensor the
dynamic range. This method can be categorized as a post training technique to generate
the appropriate quantization scale.

The following steps illustrate how to create an INT8 Calibrator object using the Python
API. By default, TensorRT supports INT8 Calibration.

1. Import TensorRT:

import tensorrt as trt

2. Similar to test/validation files, use set of input files as calibration files dataset.
Make sure the calibration files are representative of the overall inference data files.
For TensorRT to use the calibration files, we need to create batchstream object.
Batchstream object will be used to configure the calibrator.

NUM_IMAGES_ PER BATCH = 5
batchstream = ImageBatchStream(NUM IMAGES PER BATCH, calibration files)

3. Create an Int8_calibrator object with input nodes names and batch stream:

Int8_ calibrator = EntropyCalibrator (["input_node name"], batchstream)
4. Set INT8 mode and INTS8 Calibrator:
trt builder.int8_ calibrator = Int8 calibrator

The rest of the logic for engine creation and inference is similar to Importing From
ONNX Using Python.
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NVIDIA DLA (Deep Learning Accelerator) is a fixed function accelerator engine
targeted for deep learning operations. DLA is designed to do full hardware acceleration
of convolutional neural networks. DLA supports various layers such as convolution,
deconvolution, fully-connected, activation, pooling, batch normalization, etc.

For more information about DLA support in TensorRT layers, see DLA Supported
Layers. The trtexec tool has additional arguments to run networks on DLA, see
Command Line Program.

To run the AlexNet network on DLA using trtexec in FP16 mode, issue:

./trtexec --deploy=data/AlexNet/AlexNet N2.prototxt --output=prob --
useDLACore=1 --fpl6é --allowGPUFallback

To run the AlexNet network on DLA using trtexec in INT8 mode, issue:

./trtexec --deploy=data/AlexNet/AlexNet N2.prototxt --output=prob --
useDLACore=1 --int8 --allowGPUFallback

6.1. Running On DLA During TensorRT Inference

The TensorRT builder can be configured to enable inference on DLA. DLA support is
currently limited to networks running in either FP16 or INT8 mode. The DeviceType
enumeration is used to specify the device that the network or layer will execute on. The
following API functions in the IBuilder class can be used to configure the network to
use DLA:
setDeviceType (ILayer* layer, DeviceType deviceType)

This function can be used to set the deviceType that the layer must execute on.
getDeviceType (const ILayer* layer)

This function can be used to return the deviceType that this layer will execute on. If

the layer is executing on the GPU, this will return DeviceType: : kGPU.
canRunOnDLA (const ILayer* layer)

This function can be used to check if a layer can run on DLA.
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setDefaultDeviceType (DeviceType deviceType)
This function sets the default deviceType to be used by the builder. It ensures that
all the layers that can run on DLA will run on DLA, unless setDeviceType is used to
override the deviceType for a layer.
getDefaultDeviceType ()
This function returns the default deviceType which was set by
setDefaultDeviceType.
isDeviceTypeSet (const ILayer* layer)
This function checks whether the deviceType has been explicitly set for this layer.
resetDeviceType (ILayer* layer)
This function resets the deviceType for this layer. The value is reset to the
deviceType that is specified by setDefaultDeviceType or DeviceType: : kGPU if
none specified.
getMaxDLABatchSize (DeviceType deviceType)
This function returns the maximum batch size DLA can support.

For any tensor, the total volume of index dimensions combined with the requested
batch size should not exceed the value returned by this function.

allowGPUFallback (bool setFallBackMode)
This function notifies the builder to use GPU if a layer that was supposed to run on
DLA cannot run on DLA. For more information, see GPU Fallback Mode.

reset (nvinferl: : INetworkDefinition& network)
This function can be used to reset the builder state, which sets the deviceType for
all layers to be DeviceType: :kGPU. After reset, the builder can be re-used to build
another network with a different DLA config.

Caution In TensorRT 5.x.x, this resets the state for all networks and not the
current network.

If the builder is not accessible, such as in the case where a plan file is being loaded online
in an inference application, then the DLA to be utilized can be specified differently by
using DLA extensions to the IRuntime. The following API functions in the IRuntime
class can be used to configure the network to use DLA:
getNbDLACores ()

This function returns the number of DLA cores that are accessible to the user.
setDLACore (int dlaCore)

The DLA core to execute on. Where dlaCore is a value between 0 and

getNbDLACores () - 1. The default value is 0.

6.1.1. Example 1: sampleMNIST With DLA

This section provides details on how to run a TensorRT sample with DLA enabled.
The https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#mnist_sample sample demonstrates how to import a trained Caffe model,
build the TensorRT engine, serialize and deserialize the engine and finally use the
engine to perform inference.

The sample first creates the builder:
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auto builder =
SampleUniquePtr<nvinferl: :IBuilder> (nvinferl: :createInferBuilder (gLogger)) ;

if (!'builder) return false;

builder->setMaxBatchSize (batchSize) ;

builder->setMaxWorkspaceSize (16_MB) ;

Then, enable GPUFallback mode:

builder->allowGPUFallback (true) ;
builder->setFpl6Mode (true) ; or builder->setInt8Mode (true) ;

Enable execution on DLA, where deviceType specifies the DLA core to execute on:

builder->setDefaul tDeviceType (deviceType) ;

With these additional changes, sampleMNIST is ready to execute on DLA. To run
sampleMNIST with DLA, use the following command:

./sample mnist --useDLACore=1 [--int8|--£fpl6]

6.1.2. Example 2: Enable DLA Mode For A Layer During
Network Creation

In this example, let’s create a simple network with Input, Convolution and Output.

1. Create the builder and the network:

IBuilder* builder = createInferBuilder (gLogger) ;
INetworkDefinition* network = builder->createNetwork() ;

2. Add the Input layer to the network, with the input dimensions.

auto data = network->addInput (INPUT BLOB NAME, dt, Dims3{1, INPUT H,
INPUT W}) ;

3. Add the Convolution layer with hidden layer input nodes, strides, and weights for
filter and bias.

auto convl = network->addConvolution (*data->getOutput(0), 20, DimsHW{5, 5},
weightMap["convlfilter"], weightMap|["convlbias"]) ;
convl->setStride (DimsHW{1l, 1});

4. Set the convolution layer to run on DLA:

if (canRunOnDLA (convl))

{
builder->setFpl6Mode (true) ; or builder->setInt8Mode (true) ;
builder->setDeviceType (convl, DeviceType: :kDLA) ;

}
5. Mark the output:

network->markOutput (*convl->getOutput (0)) ;
6. Set the DLA engine to execute on:

engine->setDLACore (0)
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6.2. DLA Supported Layers

This section lists the layers supported by DLA along with the constraints associated with
each layer.

Generic restrictions while running on DLA (applicable to all layers)

» Max batch size supported is 32.

Batch size for DLA is the product of all index dimensions except the CHW
dimensions. For example, if input dimensions are NPQRS, the effective batch size
is N*P.

» Input and output tensor data format should be FP16.

Layer specific restrictions
Convolution, Deconvolution, and Fully Connected Layers
Convolution and Deconvolution Layers

»  Width and height of kernel size must be in the range [1, 32]
» Width and height of padding must be in the range [0, 31]

»  Width and height of stride must be in the range [1,8] for Convolution Layer and
[1,32] for Deconvolution layer

» Number of output maps must be in the range [1, 8192]
» Axis mustbe 1

» Grouped and dilated convolution supported. Dilation values must be in the range
[1,32]

Pooling Layer

» Operations supported: kMIN, kMAX, kKAVERAGE

» Width and height of the window size must be in the range [1, 8]
»  Width and height of padding must be in the range [0, 7]

»  Width and height of stride must be in the range [1, 16]

Activation Layer
» Functions supported: ReLU, Sigmoid, Hyperbolic Tangent
» Negative slope not supported for ReLU
ElementWise Layer

» Operations supported: Sum, Product, Max, and Min
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Scale Layer
» Mode supported: Uniform, Per-Channel, and Elementwise
LRN (Local Response Normalization) Layer

» Window size is configurable to 3, 5, 7, or 9
» Normalization region supported is: ACROSS_CHANNELS

Concatenation Layer

» DLA supports concatenation only along the channel axis

6.3. GPU Fallback Mode

The GPUFallbackMode sets the builder to use GPU if a layer that was marked to run on
DLA could not run on DLA. A layer may not run on DLA due to the following reasons:

1. The layer operation is not supported on DLA.
The parameters specified are out of supported range for DLA.
The given batch size exceeds the maximum permissible DLA batch size. For more
information, see DLA Supported Layers.

4. A combination of layers in the network causes the internal state to exceed what the
DLA is capable of supporting.

5. There are no DLA engines available on the platform.

If the GPUFallbackMode is set to false, a layer set to execute on DLA, that couldn't
run on DLA will result in an error. However, with GPUFallbackMode set to true, it will
continue to execute on the GPU instead, after reporting a warning.

Similarly, if defaultDeviceType is set to DeviceType: :kDLA and GPUFallbackMode
is set to £alse, it will result in an error if any of the layers can't run on DLA. With
GPUFallbackMode set to true, it will report a warning and continue executing on the
GPU.
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DEPLOYING A TENSORRT OPTIMIZED

MODEL

After you've created a plan file containing your optimized inference model, you can
deploy that file into your production environment. How you create and deploy the plan
file will depend on your environment. For example, you may have a dedicated inference
executable for your model that loads the plan file and then uses the TensorRT Execution
API to pass inputs to the model, execute the model to perform inference, and finally
read outputs from the model.

This section discusses how TensorRT can be deployed in some common deployment
environments.

7.1. Deploying In The Cloud

One common cloud deployment strategy for inferencing is to expose a model through a
server that implements an HTTP REST or gRPC endpoint for the model. A remote client
can then perform inferencing by sending a properly formatted request to that endpoint.
The request will select a model, provide the necessary input tensor values required by
the model, and indicate which model outputs should be calculated.

To take advantage of TensorRT optimized models within this deployment strategy does
not require any fundamental change. The inference server must be updated to accept
models represented by TensorRT plan files and must use the TensorRT Execution APIs
to load and executes those plans. An example of an inference server that provides a
REST endpoint for inferencing can be found in the TensorRT Inference Server Container
Release Notes and TensorRT Inference Server Guide.

7.2. Deploying To An Embedded System

TensorRT can also be used to deploy trained networks to embedded systems such as
NVIDIA Drive PX. In this context, deployment means taking the network and using it
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in a software application running on the embedded device, such as an object detection
or mapping service. Deploying a trained network to an embedded system involves the
following steps:

1.

Export the trained network to a format such as UFF or ONNX which can be
imported into TensorRT (see Working With Deep Learning Frameworks for more
details).

Write a program that uses the TensorRT C++ API to import, optimize, and serialize
the trained network to a plan file (see sections Working With Deep Learning
Frameworks, Working With Mixed Precision, and Performing Inference In C++). For
the purpose of discussion, let’s call this program make_plan.

a) Optionally, perform INTS calibration and export a calibration cache (see Working
With Mixed Precision).

Build and run make_plan on the host system to validate the trained model before
deployment to the target system.

Copy the trained network (and INTS calibration cache, if applicable) to the target
system. Re-build and re-run the make_plan program on the target system to
generate a plan file.

The make plan program must run on the target system in order for the TensorRT
engine to be optimized correctly for that system. However, if an INT8 calibration
cache was produced on the host, the cache may be re-used by the builder on the
target when generating the engine (in other words, there is no need to do INT8
calibration on the target system itself).

After the plan file has been created on the embedded system, an embedded
application can create an engine from the plan file and perform inferencing with
the engine by using the TensorRT C++ API. For more information, see Performing
Inference In C++.

To walk through a typical use case where a TensorRT engine is deployed on an
embedded system, see:

» Deploying INT8 Inference For Autonomous Vehicles for DRIVE PX
»  GitHub for Jetson and Jetpack
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Chapter 8.
WORKING WITH DEEP LEARNING
FRAMEWORKS

With the Python AP, an existing model built with TensorFlow, Caffe, or an ONNX
compatible framework can be used to build a TensorRT engine using the provided
parsers. The Python API also supports frameworks that store layer weights in a NumPy
compatible format, for example PyTorch.

8.1. Working With TensorFlow

You can work with TensorFlow in the following ways:

TE-TRT
This method accelerates a TensorFlow graph with TensorRT even if there are
TensorFlow operators in the graph that are not supported by TensorRT (or TF-TRT).
The subgraphs that are supported by TensorRT and TF-TRT are accelerated and the
resulting graph is still a TensorFlow graph that you can execute as usual. For step-
by-step instructions on how to accelerate inference in TensorFlow with TensorRT
(TE-TRT), see the TE-TRT User Guide and Release Notes. For TF-TRT examples, see
Examples for TensorRT in TensorFlow (TE-TRT).

UFF
This method works only if the whole graph can be converted to UFF and can be
accelerated by TensorRT. For information on using TensorRT with a TensorFlow
model, see the “Hello World” For TensorRT Using TensorFlow And Python Python
sample.

The UFF Parser which is used to parse a network in UFF format will be deprecated
in a future release. The recommended method of importing TensorFlow models to
TensorRT is using TensorFlow with TensorRT (TF-TRT).

8.1.1. Freezing A TensorFlow Graph
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In order to use the command-line UFF utility, TensorFlow graphs must be frozen and
saved as .pb files. For more information, see:

» A Tool Developer's Guide to TensorFlow Model Files: Freezing
» Exporting trained TensorFlow models to C++ the RIGHT way!

8.1.2. Freezing A Keras Model
You can use the following sample code to freeze a Keras model.

from keras.models import load model

import keras.backend as K

from tensorflow.python.framework import graph io

from tensorflow.python.tools import freeze graph

from tensorflow.core.protobuf import saver pb2

from tensorflow.python.training import saver as saver lib

def convert keras to pb(keras model, out names, models dir,
model filename) :

model = load model (keras model)

K.set learning phase (0)

sess = K.get session|()

saver = saver lib.Saver (write version=saver pb2.SaverDef.V2)
checkpoint path = saver.save(sess, 'saved ckpt', global step=0,
latest filename='checkpoint state') B B

graph io.write graph(sess.graph, '.', 'tmp.pb')

freeze graph.freeze graph('./tmp.pb', '',
False, checkpoint path, out names,
"save/restore all", "save/Const:0",
models dir+model filename, False, "")

8.1.3. Converting A Frozen Graph To UFF

You can use the following sample code to convert the .pb frozen graph to .uff format
file.

convert-to-uff input file [-o output file] [-O output node]

You can list the TensorFlow layers:

convert-to-uff input file -1

8.1.4. Working With TensorFlow RNN Weights

This section provides information about TensorFlow weights and their stored formats.
Additionally, the following sections will guide you on how to approach and decrypt
RNN weights from TensorFlow.

8.1.4.1. TensorFlow RNN Cells Supported In TensorRT

An RNN layer in TensorRT can be thought of as a MultiRNNCell from TensorFlow. One
layer consists of sublayers with the same configurations, in other words, hidden and
embedding size. This encapsulation is done so that the internal connections between the
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multiple sublayers can be abstracted away from the user. This allows for simpler code
when deeper networks are involved.

TensorRT supports four different RNN layer types. These layer types are RNN relu,
RNN tanh, LSTM, and GRU. The TensorFlow cells that match these types are:

TensorRT RNN Relu/Tanh Layer
1. BasicRNNCell

a. Permitted activation functions: tf. tanh and tf.nn.relu.
b. This is a platform independent cell.

TensorRT LSTM Layer
1. BasicLSTMCell

a. forget bias must be set to 0 when creating an instance of this cell in
TensorFlow. To support a non-zero forget bias, you need to preprocess the bias
by adding the parameterized forget bias to the dumped TensorFlow forget
biases.

b. This is a platform independent cell.

2. CudnnCompatibleLSTMCell

a. Same condition for the forget bias applies to this cell as it does to the
BasicLSTMCell.

b. TensorRT does not currently support peepholes so use_peepholes must be set
to False.

c. This is a cuDNN compatible cell.

TensorRT GRU Layer
1. CudnnCompatibleGRUCell

a. This is a cuDNN compatible cell.
b. Differs in implementation from standard, platform independent GRU cells. Due
to this, CudnnCompatiableGRUCell is the correct cell to use with TensorRT.

8.1.4.2. Maintaining Model Consistency Between TensorFlow And

TensorRT

For any TensorFlow cell not listed in TensorFlow RNN Cells Supported In TensorRT,
consult the TensorRT API and TensorFlow API to ensure the cell is mathematically
equivalent to what TensorRT supports and the storage format is consistent with the

format that you are expecting. One good way of doing this is to set up unit tests to
validate the output from TensorRT by using TensorFlow as the ground truth.

8.1.4.3. Workflow

We will be using the following workflow to extract and use TensorFlow weights:
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Figure 12 TensorFlow RNN Workflow

8.1.4.4. Dumping The TensorFlow Weights

Python script dumpTFWts . py can be used to dump all the variables and weights from
a given TensorFlow checkpoint. The script is located in the /usr/src/tensorrt/
samples/common/dumpTFWts . py directory. Issue dumpTFWts.py -h for more
information on the usage of this script.

8.1.4.5. Loading Dumped Weights

Function loadWeights () loads from the dump of the dumpTFWts.py script. It has
been provided as an example in https://docs.nvidia.com/deeplearning/sdk/tensorrt-
sample-support-guide/index.html#charRNN_sample. The function signature is:

std: :map<std::string, Weights> loadWeights(const std::string file,
std: :unordered_set<std::string> names) ;

This function loads the weights specified by the names set from the specified file and
returns them in a std: :map<std: :string, Weights>.

8.1.4.6. Converting The Weights To A TensorRT Format

At this point, we are ready to convert the weights. To do this, the following steps are
required:

1. Understanding and using the TensorFlow checkpoint to get the tensor.
2. Understanding and using the tensors to extract and reformat relevant weights and
set them to the corresponding layers in TensorRT.

8.1.4.6.1. TensorFlow Checkpoint Storage Format

There are two possible TensorFlow checkpoint storage formats:
1. Platform independent format - separated by layer

a. Cell i kernel <Weights>
b. Cell i bias <Weights>
2. cuDNN compatible format - separated by input and recurrent

a. Cell i Candidate_Input kernel <Weights>
b. Cell i Candidate_ Hidden kernel <Weights>

In other words, 1.1 Cell_i_kernel <Weights> in the concatenation

of 21 Cell_i Candidate_Input_kernel <Weights>and 2.2

Cell i Candidate_ Hidden kernel <Weights>. Therefore, storage format 2 is
simply a more fine-grain version of storage format 1.
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8.1.4.6.2. TensorFlow Kernel Tensor Storage Format

Before storing the weights in the checkpoint, TensorFlow transposes and then interleaves
the rows of transposed matrices. The order of the interleaving is described in the next
section. A figure is provided in BasicLSTMCell Example to further illustrate this format.

Gate Order Based On Layer Operation Type The transposed weight matrices are
interleaved in the following order:

1. RNN relu/tanh:

a. input gate (1)
2. LSTM:

a. input gate (i), cell gate (c), forget gate (£), output gate (o)
3. GRU:

a. reset (r), update (u)

8.1.4.6.3. Kernel Weights Conversion To A TensorRT Format

Converting the weights from TensorFlow format can be summarized in two steps.

1. Reshape the weights to push the interleaving down to a lower dimension.

2. Transpose the weights to get rid of the interleaving completely and have the weight
matrices stored contiguously in memory.

Transformation Utilities To help perform these transformations correctly,
reorderSubBuffers (), transposeSubBuffers (), and reshapeWeights () are
functions that have been provided. For more information, see NvUtils.h.

8.1.4.6.4. TensorFlow Bias Weights Storage Format

The bias tensor is simply stored as contiguous vectors concatenated in the order
specified in TensorFlow Kernel Tensor Storage Format. If the checkpoint storage is
platform independent, then TensorFlow combines the recurrent and input biases into
a single tensor by adding them together. Otherwise, the recurrent and input biases and
stored in separate tensors.

8.1.4.6.5. Bias Tensor Conversion To TensorRT Format

Since the biases are stored as contiguous vectors, there aren’t any transformations that
need to be applied to get the bias into the TensorRT format.

8.1.4.7. BasicLSTMCell Example

8.1.4.7.1. BasicLSTMCell Kernel Tensor

To understand the format in which these tensors are being stored, let us consider an
example of a BasicLSTMCell. Figure 13 illustrates what the tensor looks like within the
TensorFlow checkpoint.
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Figure 13 Tensors within a TensorFlow checkpoint

DS/Data Size is distinct from Hidden Size for the first layer. For all the following
sublayers Data Size is equal to Hidden Size.

In Figure 13, W represents the input weights, R represents the hidden weights, DS
represents the data size, and HS represents hidden size.

Since this is a platform independent cell, the input weights and hidden weights have
been concatenated together. If we had used a CudnnCompatibleLSTMCell, then
these weights would have been split into two separate tensors.

Applying the conversion process discussed earlier will result in the converted tensor
shown in Figure 14.
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Figure 14 Converted tensors

Data Size is distinct from Hidden Size for the first layer in the sequence of RNN
sublayers. For all the following sublayers Data Size is equal to Hidden Size.

8.1.4.7.2. BasicLSTMCell Bias Tensor

Figure 15 illustrates the format in which the bias tensor is stored.

W; W, W W,

Figure 15 Bias tensor stored format

Because this is a platform independent cell, W in the image above represents the result
of ElementWise adding the input and recurrent biases together. TensorFlow does this
addition internally to save memory before it stores the tensor.

This is already in the format we require, therefore, we do not need to apply any
transformations.

8.1.4.8. Setting The Converted Weights And Biases

The converted tensors for both the weights and bias are now ready to use. You need
to iterate over the tensors in the order specified in TensorFlow Kernel Tensor Storage
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Format and set the weights and bias using IRNNv2Layer: : setWeightsForGate () and
IRNNv2Layer: : setBiasForGate () functions, respectively.

If you are using a platform independent cell, you will need to set all the recurrent
biases manually using zeroed out dummy weights.

A real-world example of the training, dumping, converting, and setting process is
described in https://docs.nvidia.com/deeplearning/sdk/tensorrt-sample-support-guide/
index.html#charRNN_sample. For more information, consult the code in this sample.

8.1.5. Preprocessing A TensorFlow Graph Using the
Graph Surgeon API

The Graph Surgeon API, also known as graphsurgeon, allows you to transform
TensorFlow graphs. Its capabilities are broadly divided into two categories:
Search

The search functions allow you to find nodes in a TensorFlow graph.
Manipulation

The manipulation functions allow you to modify, add, or remove nodes.

Using graphsurgeon, you can mark certain nodes (or sets of nodes) as plugin nodes
in the graph. These plugins can either be plugins shipped with TensorRT or plugins
written by you. For more information, see Extending TensorRT With Custom Layers.

If you are writing a plugin, also refer to see Extending TensorRT With Custom Layers for
details on how to implement the IP1luginExt and IPluignCreator classes in addition
to registering the plugin.

The following code snippet illustrates how to use graphsurgeon to map a TensorFlow
Leaky ReLU operation to a TensorRT Leaky ReLU plugin node.

import graphsurgeon as gs

lrelu node = gs.create plugin node (name="trt lrelu”, op="LReLU_TRT”,
negSlope=0.2)

namespace_plugin map = { “tf lrelu” : lrelu node }

# Transform TensorFlow graph using graphsurgeon and save to UFF
dynamic _graph = gs.DynamicGraph (tf_lrelu.graph)
dynamic_graph.collapse namespaces (namespace plugin map)

# Run UFF converter using new graphdef
uff model = uff.from tensorflow(dynamic_graph.as_graph def (), ["trt lrelu"],
output filename="test_lrelu.uff”, text=True)

In the above code, the op field in the create_plugin_node method should match the
registered plugin name. This enables the UFF parser to look up the Plugin in the Plugin
Registry using this field to insert the plugin node into the network.

For a working graphsurgeon example, see https://docs.nvidia.com/deeplearning/sdk/
tensorrt-sample-support-guide/index.html#uffssd_sample for C++.

For more details about the graphsurgeon AP], see the Graph Surgeon APL
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8.2. Working With PyTorch And Other Frameworks

Using TensorRT with PyTorch and other frameworks involves replicating the network
architecture using the TensorRT API, and then copying the weights from PyTorch (or
any other framework with NumPy compatible weights). For more information on using
TensorRT with a PyTorch model, see the https://docs.nvidia.com/deeplearning/sdk/
tensorrt-sample-support-guide/index.html#network_api_pytorch_mnist Python sample.
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Chapter 9.
WORKING WITH DALI

TensorRT can be integrated with NVIDIA Data Loading Library (DALI); a collection of
highly optimized building blocks and an execution engine to accelerate input data pre-
processing for deep learning applications.

DALI is an open sourced library available on GitHub. It is a highly optimized open
source library for data preprocessing. It uses an execution engine for fast preprocessing
pipeline. DALI accelerates blocks for image loading and augmentation and also provides
GPU support for JPEG decoding and image manipulation.

For more information about DALI, see the DALI data loading documentation.

9.1. Benefits Of Integration

The benefits of integrating DALI with TensorRT include the following:

» Running DNN models requires input data pre-processing
» Computational complexity of the I/O pipeline has increased. Hence, the GPU starves
for data. DALI helps accelerating the preprocessing pipeline.

» DALI offsets the compute intensive data pre-processing to GPU.

» Pre-processing involves decoding, resize, crop, spatial augmentation, format
conversions (NCHW and NHWC)
»  Multi device DNN inference could be achieved via same I/O pipeline

DALI supports:

» The feature to accelerate pre-processing on GPUs

» Configurable graphs and custom operators

»  Multiple input formats (for example JPEG, LMDB, RecordIO, TFRecord)
» Serializing a whole graph (portable graph)

| 4

Easily integrates with framework plugins and open source bindings

DALI supports a custom operator library which can be loaded in runtime. TensorRT
inference can be configured as a custom operator to be a part of DALI pipeline. A
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working example of TensorRT inference integrated as a part of DALI is open sourced
here.

For more information about integrating DALI with TensorRT on Xavier, see the GTC
2019 talk here.
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Chapter 10.
TROUBLESHOOTING

The following sections help answer the most commonly asked questions regarding
typical use cases.

10.1. FAQs

Q: How do | create an engine that is optimized for several different batch sizes?
A: While TensorRT allows an engine optimized for a given batch size to run at any
smaller size, the performance for those smaller sizes may not be as well-optimized. To
optimize for multiple different batch sizes, run the builder and serialize an engine for
each batch size.

Q: Are engines and calibration tables portable across TensorRT versions?

A: No. Internal implementations and formats are continually optimized and may change
between versions. For this reason, engines and calibration tables are not guaranteed to
be binary compatible with different versions of TensorRT. Applications should build
new engines and INT8 calibration tables when using a new version of TensorRT.

Q: How do | choose the optimal workspace size?

A: Some TensorRT algorithms require additional workspace on the GPU. The method
IBuilder: : setMaxWorkspaceSize () controls the maximum amount of workspace
that may be allocated, and will prevent algorithms that require more workspace from
being considered by the builder. At runtime, the space is allocated automatically

when creating an IExecutionContext. The amount allocated will be no more than

is required, even if the amount set in IBuilder: : setMaxWorkspaceSize () is much
higher. Applications should therefore allow the TensorRT builder as much workspace as
they can afford; at runtime TensorRT will allocate no more than this, and typically less.
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Q: How do | use TensorRT on multiple GPUs?

A: Each ICudaEngine object is bound to a specific GPU when it is instantiated, either
by the builder or on deserialization. To select the GPU, use cudaSetDevice () before
calling the builder or deserializing the engine. Each IExecutionContext is bound
to the same GPU as the engine from which it was created. When calling execute ()
or enqueue (), ensure that the thread is associated with the correct device by calling
cudaSetDevice () if necessary.

Q: How do | get the version of TensorRT from the library file?

A: There is a symbol in the symbol table named tensorrt version_# # # # which
contains the TensorRT version number. One possible way to read this symbol on Linux is
to use the nm command like in the example below:

$ nm -D libnvinfer.so.4.1.0 | grep tensorrt version
000000000c18£78c B tensorrt version_4 0 0 _7

Q: What can | do if my network is producing the wrong answer?

A: There are several reasons why your network may be generating incorrect answers.
Here are some troubleshooting approaches which may help diagnose the problem:

» Turn on INFO level messages from the log stream and check what TensorRT is
reporting.

»  Check that your input preprocessing is generating exactly the input format required
by the network.

» If you're using reduced precision, run the network in FP32. If it produces the correct
result, it is possible that lower precision has insufficient dynamic range for the
network.

» Try marking intermediate tensors in the network as outputs, and see if they
match what you are expecting. Note: Marking tensors as outputs may inhibit
optimizations, and therefore, may change the results.

Q: How do | determine how much device memory will be required by my network?
A: TensorRT engines use device memory for two purposes: to hold the weights
required by the network, and to hold the intermediate activations required by
IExecutionContext. The size of the weights can be closely approximated by the size
of the serialized engine (in fact this will be a slight overestimate, as the serialized engine
also includes the network definition). The size of the activation memory required can be
determined by calling ICudaEngine: : getDeviceMemorySize () . The sum of these
will be the amount of device memory TensorRT allocates for the engine.

IBuilder may temporarily use more device memory than what the engine requires.

» During a phase, it uses twice as much memory for the weights required by the
engine. During that phase, no memory is allocated for activations.
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» The auto-tuner times each layer for FP32 operation. Timing a layer in FP32
consumes twice as much memory as an FP16 operation, and four times as much
for an INT8 operation, both for the weights and its input/output activations. The
additional memory consumption for timing is theoretically noticeable if a single
layer dominates overall memory consumption of a network.

The CUDA infrastructure and device code also consume device memory. The amount
of memory will vary by platform, device, and TensorRT version. Use cudaGetMemInfo
to determine the total amount of device memory in use.

Q: If 1 build the engine on one GPU and run the engine on another GPU, will this
work?

A: We recommend that you don’t, however, if you do, you'll need to follow these
guidelines:

1. The major, minor, and patch versions of TensorRT must match between systems.
This ensures you are picking kernels that are still present and have not undergone
certain optimizations or bug fixes that would change their behavior.

2. The CUDA compute capability major and minor versions must match between

systems. This ensures that the same hardware features are present so the kernel
will not fail to execute. An example would be mixing cards with different precision
capabilities.

3. The following properties should match between systems:

» Maximum GPU graphics clock speed
» Maximum GPU memory clock speed
» GPU memory bus width

» Total GPU memory

» GPU L2 cache size

» SM processor count

» Asynchronous engine count

If any of the above properties do not match, you will receive the following warning:
Using an engine plan file across different models of devices is
not recommended and is likely to affect performance or even cause
errors.

If you still want to proceed, then you should build the engine on the smallest SKU in
the family because autotuner choices made on smaller GPUs will generalize better.

10.2. How Do | Report A Bug?
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We appreciate all types of feedback. If you encounter any issues, please report them by
following these steps:

Register for the NVIDIA Developer website.

Log into the developer site.

Click on your name in the upper right corner.

Click My account > My Bugs and select Submit a New Bug.

Fill out the bug reporting page. Be descriptive and if possible, provide the steps that
you are following to help reproduce the problem.

6. Click Submit a bug.

o A wDNR

10.3. Understanding Error Messages

If an error is encountered during execution, TensorRT will report an error message that
is intended to help in debugging the problem. Some common error messages that may
be encountered by developers are discussed in the following sections.

UFF Parser Error Messages

The following table captures common UFF parser error messages.

Error Message Description

The input to the Scale Layer is This error message can occur due to incorrect
required to have a minimum of 3 input dimensions. In UFF, input dimensions should
dimensions. always be specified in CHW format, with the

implicit batch dimension not included in the

Invalid scale mode, nbWeights: <X> e e
specification.

kernel weights has count <X> but <Y¥>
was expected

<NODE> Axis node has op <OP>, expected As indicated by the error message, the axis must

Const. The axis must be specified as | be a build-time constant in order for UFF to parse

SNEonsERneder the node correctly.

ONNX Parser Error Messages

The parser may issue error messages if a constant input is used with a layer that does
not support constant inputs. Consider using a tensor input instead.

TensorRT Core Library Error Messages

The following table captures common TensorRT core library error messages.
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Error Message

Description

Installation Errors

Cuda initialization
failure with error
<code>. Please check
cuda installation:
http://docs.nvidia.com/

cuda/cuda-installation-

guide-linux/index.html.

This error message can occur

if the CUDA or NVIDIA driver
installation is corrupt. Refer

to the URL for instructions on
installing CUDA and the NVIDIA
driver on your operating system.

Builder Errors
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Internal error: could not
find any implementation
for node <name>,
try increasing the
workspace size with

This error message occurs
because there is no layer
implementation for the given
node in the network that

IBuilder: :setMaxWorkspaceSe'Eﬁleo(Ber‘_:‘te with the given

workspace size. This usually
occurs because the workspace
size is insufficient, but could
also indicate a bug. If increasing
the workspace size as suggested
doesn’t help, report a bug (see
How Do | Report A Bug?).

<layer-name>: (kernel|

bias) weights has non-
zero count but null
values

<layer-name>: (kernel|

bias) weights has zero
count but non-null
values

This error message occurs when
there is a mismatch between
the values and count fields in a
Weights data structure passed

to the builder. If the count is

0, then the values field should
contain a null pointer; otherwise
the count must be non-zero and
values should contain a device
pointer.

Builder was created on
device different from
current device.

This error message may show up
if you:

1. Created an IBuilder
targeting one GPU, then

2. Called cudasetDevice ()
to target a different GPU,
then

3. Attempted to use the
IBuilder to create an
engine.
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Error Message

Description

Ensure you only use the IBuilder
when targeting the GPU that was
used to create the IBuilder.

You may encounter error messages indicating that the tensor

dimensions do not match the semantics of the given layer. Carefully

read the documentation on Nvinfer.h on the usage of each layer and

the expected dimensions of the tensor inputs and outputs to the

layer.

INT8 Calibration Errors

Tensor <X> is uniformly
zero; network
calibration failed.

This warning occurs, and should
be treated as an error, when
data distribution for a tensor is
uniformly zero. In a network,
the output tensor distribution
can be uniformly zero under the
following scenarios:

1. Constant tensor with all
zero values; not an error.

2. Activation (Relu) output
with all negative inputs: not
an error.

3. Data distribution is
forced to all zero due
to computation error in
previous layer; emit a
warning here.

4. User does not provide any
calibration images; emit a

warning here."

Could not find scales for
tensor <X>.

This error message indicates that
a calibration failure occurred
with no scaling factors detected.
This could be due to no INT8
calibrator or insufficient custom
scales for network layers. Refer
to the INT8 sample to setup
calibration correctly.

1
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It is recommended to evaluate the calibration input or validate the previous layer outputs.
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Error Message

Description

Engine Compatibility Errors

The engine plan file is
not compatible with this
version of TensorRT,
expecting (format|

library) version <X> got
<Y>, please rebuild.

This error message can occur

if you are running TensorRT

using an engine PLAN file that is
incompatible with the current
version of TensorRT. Ensure you
use the same version of TensorRT
when generating the engine and
running it.

The engine plan file
is generated on an
incompatible device,
expecting compute <X>
got compute <Y>, please
rebuild.

This error message can occur if
you build an engine on a device
of a different compute capability
than the device that is used to
run the engine. If you build an
engine on a device with the same
compute capability but is not
identical to the device that is
used to run the engine, you will
see the following warning:
Using an engine plan
file across different
models of devices is
not recommended and
is likely to affect
Performance or even
cause errors.
As indicated by the warning,
it is highly recommended
to use a device of the same
model when generating the
engine and deploying it to avoid
compatibility issues.

Out Of Memory Errors
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GPU memory allocation
failed during
initialization of
(tensor|layer) : <name>

GPU memory

Allocation failed during
deserialization of
weights.

GPU does not meet
the minimum memory

These error messages can occur
if there is insufficient GPU
memory available to instantiate
a given TensorRT engine. Verify
that the GPU has sufficient
available memory to contain
the required layer weights and
activation tensors.
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Error Message

Description

requirements to run this
engine ..

FP16 Errors

Network needs native FP16
and platform does not
have native FPl6

This error message can occur if
you attempted to deserialize an
engine that uses FP16 arithmetic
on a GPU that does not support
FP16 arithmetic. You will either
need to rebuild the engine
without FP16 precision inference
or upgrade your GPU to a model
that supports FP16 precision
inference.

Plugin Errors

Custom layer <name>
returned non-zero
initialization

This error message can occur

if the initialize () method
of a given plugin layer returns
a non-zero value. Refer to the
implementation of that layer
to debug this error further. For
more information, see TensorRT

Layers.

10.4. Support

Support, resources, and information about TensorRT can be found online at https://
developer.nvidia.com/tensorrt. This includes blogs, samples, and more.

In addition, you can access the NVIDIA DevTalk TensorRT forum at https://
devtalk.nvidia.com/default/board/304/tensorrt/ for all things related to TensorRT. This
forum offers the possibility of finding answers, make connections, and to get involved in
discussions with customers, developers, and TensorRT engineers.
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Appendix A.
APPENDIX

A.1. TensorRT Layers

In TensorRT, layers represent distinct flavours of mathematical and/or programmatic
operations. The following sections describe every layer that is supported by TensorRT.
To view a list of the specific attributes that are supported by each layer, refer to the
TensorRT API documentation.

TensorRT has the ability to optimize performance by fusing layers. For information
about how to enable layer fusion optimizations, see Types Of Fusions. For information
about how to optimize layer performance, see How Do I Optimize My Layer
Performance? from the Best Practices guide.

A.1.1. lActivationLayer

The IActivationLayer implements element-wise activation functions.

Layer Description

Apply an activation function on a input tensor A, and produce an output tensor B with
the same dimensions.

The Activation layer supports the following operations:
rectified Linear Unit (RelLU): B = ReLU(A)

Hyperbolic tangent: B = tanh(3)
“s” shaped curve (sigmoid): B = o (A)

Conditions And Limitations
None

See the C++ [ActivationLayer method or the Python IActivationLayer method for further
details.
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A.1.2. IConcatenationLayer

The IConcatenationLayer links together multiple tensors of the same non-channel sizes
along the channel dimension.

Layer Description
The concatenation layer is passed in an array of minput tensors A* and a channel axis c.

All dimensions of all input tensors must match in every axis except axis c. Let each input
tensor have dimensions a*. The concatenated output tensor will have dimensions b such
that

m—1

b,={a, if j#c, and Y a otherwise}
<

]

Conditions And Limitations

The default channel axis is assumed to be the third from last axis, or the first non-batch
axis if there are fewer than 3 non-batch axes. Concatenation cannot be done along the
batch axis. All input tensors must either be non-INT32 type or all must be INT32 type.

See the C++ IConcatenationLayer method or the Python IConcatenationLayer method for
further details.

A.1.3. IConstantLayer

The IConstantLayer outputs a tensor with values provided as parameters to this layer,
enabling the convenient use of constants in computations.
Layer Description

Given dimensions d and weight vector w, the constant layer will output a tensor B of
dimensions d with the constant values in w. This layer takes no input tensor. The number
of elements in the weight vector w is equal to the volume of d.

Conditions And Limitations
The output can be a tensor of zero to seven dimensions.

See the C++ IConstantLayer method or the Python IConstantLayer method for further
details.

A.1.4. IConvolutionLayer
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The IConvolutionLayer computes a 2D (channel, height, and width) convolution, with or
without bias.

The operation the IConvolutionLayer performs is actually a correlation. Therefore, it
is a consideration if you are formatting weights to import via an API, rather than via
the NvCaffeParser library.

Layer Description

Compute a cross-correlation with 2D filters on a 4D tensor &, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of &, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

» b = [ag m by b3s]
> by (az+2po-to) /so+1
» b3 = (az+2p;-ti1)/si1+l

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

» wis ordered according to shape [m a;/g ro ri]
» xhaslengthm

Let tensor K with dimensionsk = [m a;/g to ti] be defined as the zero-filled tensor,
such that:

> ki,j,hh,11 = Wi, j,h,1
» hh = {0 if h = 0, h + dg(h-1) otherwise},and11l = {0 if 1 =0, 1 +
d; (1-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [ag a; az+p:1], then tensor B
is defined as:

B =% (C

i,9,k,1 = i, kikk,1:11

zx K, .. )tx,

mgpow

where kk = k+tp-1,and 11 = 1+t;-1.

Conditions And Limitations

Input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
If groups are specified and INTS8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.

See the C++ IConvolutionLayer method or the Python IConvolutionLayer method for
further details.
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A.1.5. IDeconvolutionLayer

The IDeconvolutionLayer computes a 2D (channel, height, and width) deconvolution,
with or without bias.

This layer actually applies a 2D transposed convolution operator over a 2D input. It is
also known as fractionally-strided convolution or transposed convolution.

Layer Description

Compute a cross-correlation with 2D filters on a 4D tensor 3, of dimensions a, to
produce a 4D tensor B, of dimensions b. The dimensions of B depend on the dimensions
of &, the number of output maps m, kernel size r, symmetric padding p, stride s, dilation
d, and dilated kernel size t = r+d(r-1), such that height and width are adjusted
accordingly as follows:

» b = [ag m by b3]
» by = ( ax-l)*sp + to - 2po
» b3y = ( az-1)*s; + t1 - 2pg

The kernel weights w and bias weights x (optional) for the number of groups g, are such
that:

» wis ordered according to shape [ai1/g m ro ri]
» xhaslengthm

Let tensor K with dimensionsk = [m b1/g to ti1] be defined as the zero-filled tensor,
such that:

> ki,j,ph,11 = Wi,j,h,1
» hh = {0 if h = 0, h + dy(h-1) otherwise},and1l = {0 if 1 =0, 1 +

d; (1-1) otherwise}.

and tensor C the zero-padded copy of A with dimensions [ag a; az+p:1], then tensor B
is defined as:

B —%

i, 9,k 1 ;:,v{c Kj+xj

i,d,k-u,l-w
where u ranges from 0 tomin (to-1, k), and v ranges from 0 tomin (t;-1, 1).

Conditions And Limitations

Input and output may have more than 4 dimensions; beyond 4, all dimensions are
treated as multipliers on the batch size, and input and output are treated as 4D tensors.
If groups are specified and INTS8 data type is used, then the size of the groups must be a
multiple of 4 for both input and output.
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See the C++ IDeconvolutionLayer method or the Python IDeconvolutionLayer method
for further details.

A.1.6. IElementWiselLayer

The IElementWiseLayer, also known as the Eltwise layer, implements per-element
operations.

Layer Description

This layer computes a per-element binary operation between input tensor A and input
tensor B to produce an output tensor C. For each dimension, their lengths must match,
or one of them must be one. In the latter case, the tensor is broadcast along that axis. The
output tensor has the same number of dimensions as the inputs. For each dimension, its
length is the maximum of the lengths of the corresponding input dimension.

The IElementWiseLayer supports the following operations:

Sum: C = A+B

Product: C = A*B
Minimum: C = min(A, B)
Maximum: C = max (A, B)

Subtraction: C = A-B
Division: C = A/B
Power: C = A”B

Conditions And Limitations

The length of each dimension of the two input tensors A and B must be equal or equal to
one.

See the C++ [ElementWiseLayer method or the Python [ElementWiseLayer method for
further details.

A.1.6.1. ElementWise Layer Setup

The ElementWise layer is used to execute the second step of the functionality provided
by a FullyConnected layer. The output of the £cbias Constant layer and Matrix
Multiplication layer are used as inputs to the ElementWise layer. The output from this
layer is then supplied to the TopK layer. The code below demonstrates how to setup the
layer:

C++ code snippet

auto fcbias = network->addConstant (Dims2 (VOCAB SIZE, 1),
weightMap[FCB NAME]) ;

auto addBiasLayer = network->addElementWise (
*matrixMultLayer->getOutput (0),

*fcbias->getOutput (0) , ElementWiseOperation: :kSUM) ;
assert (addBiasLayer '= nullptr);
addBiasLayer->getOutput (0) ->setName ("Add Bias output") ;
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Python code snippet

fc _bias = network.add constant((VOCAB_SIZE, 1), weightMap[FCB NAME])
add bias_layer = network.add elementwise(

matrix mult layer.get_ output(0),

fc bias.get output(0), trt.ElementWiseOperation.SUM)

assert add bias layer != None

add bias_ layer.get output(0) .name = "Add Bias output"

For more information, see the TensorRT API documentation.

A.1.7. IFullyConnectedLayer

The IFullyConnectedLayer implements a matrix-vector product, with or without bias.

Layer Description

The IFullyConnectedLayer expects an input tensor A of three or more dimensions. Given
an input tensor A of dimensions a=[ag ... ap-1], it is first reshaped into a tensor

A’ of dimensionsa’=[ag ... ap-s4 (a@n-3*an-2*an-1) 1 by squeezing the last three
dimensions into one dimension.

Then, the layer performs the operation B’ =WA’ +X where W is the weight tensor of
dimensions w=[ (ap-3*an-2*an-1) k], X is the bias tensor of dimensions x=[ k]
broadcasted along the other dimensions, and k is the number of output channels,
configurable via setNbOutputChannels (). If X is not specified, the value of the bias is
implicitly 0. The resulting B’ is a tensor of dimensionsb’=[ag ... ap-s k].

Finally, B’ is reshaped again into the output tensor B of dimensionsb=[ag ... an-s k
1 1] by inserting two lower dimensions each of size 1.

In summary, for input tensor A of dimensions a=[ag ... as-1], the output tensor B will
have dimensionsb=[ag ... as-4 k 1 1].

Conditions And Limitations
A must have three dimensions or more.

See the C++ [FullyConnectedLaver method or the Python IFullyConnectedLayer method
for further details.

A.1.8. IGatherLayer

The IGatherLayer implements the gather operation on a given axis.

Layer Description

The IGatherLayer gathers elements of each data tensor A along the specified axisxusing
indices tensor B of zero dimensions or more dimensions, to produce output tensor C of
dimensions c.
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If B has zero dimensions and it is a scalar b, then cy={ay if k<x, and ay,; if k>x}
and c has length equal to one less than the length of a. In this case, C;=A; where jx={b
if k=x, iy if k<x, and ix.; if k>x}.

If B is a tensor of dimensions b (with length b), then cy={ax if k<x, by x if k2x
and k<x+b, and ay_p+1 otherwise}. In this case, C;=A; where j={Bx(;) if k=x,
ix if k<x, and ixp if k>x} and X (i) =iy, .. x+p-1-

Conditions And Limitations

Elements cannot be gathered along the batch size dimension. The data tensor A must
contain at least one non-batch dimension. The data tensor A must contain at least axis
+1 non-batch dimensions. The indices tensor B must contain only INT32 values. The
parameter axis is zero-indexed and starts at the first non-batch dimension of data tensor
A. If there are any invalid indices elements in the indices tensor, then zeros will be stored
at the appropriate locations in the output tensor.

See the C++ [GatherLaver method or the Python IGatherLayer method for further
details.

A.1.9. lldentityLayer

The IIdentityLayer implements the identity operation.

Layer Description

The output of the layer is mathematically identical to the input. This layer allows you to
precisely control the precision of tensors and transform from one precision to another.
If the input is at a different precision than the output, the layer will convert the input
tensor into the output precision.

Conditions And Limitations
None

See the C++ IIdentityLayer method or the Python IIdentityLayer method for further
details.

A.1.10. IPluginV2Layer

The IPluginV2Layer provides the ability to extend the functionalities of TensorRT by
using custom implementations for unsupported layers.

Layer Description

The IPluginV2Layer is used to set-up and configure the plugin. See IPluginV2 API
Description for more details on the API. TensorRT also has support for a Plugin Registry;
a single registration point for all plugins in the network. In order to register plugins with
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the registry, implement the IP1uginVv2 class and the IPluginCreator class for your
plugin.

Conditions And Limitations

None

See the C++ [PluginV2Laver method or the Python IPluginV2Layer method for further
details.

A.1.11. ILRNLayer

The ILRNLayer implements cross-channel Local Response Normalization (LRN).

Layer Description

Given an input 8, the LRN layer performs a cross-channel Local Response
Normalization to produce output Bof the same dimensions.. The operation of this layer
depends on 4 constant values: wis the size of the cross-channel window over which the
normalization will occur, &, B, and k are normalization parameters. The formula below
describes the operation performed by the layer:

— AI
BI G UAJCDE)B

Where I represents the indexes of tensor elements, and j (I) the indices where the
channel dimension is replaced by j. For channel index ¢ of cchannels, index j ranges
from max (0, c-w) and min(C-1, c+w).

Conditions And Limitations

A must have 3 or more dimensions. The following list shows the possible values for the
parameters:

> w #{1, 3, 5, 7, 9, 11, 13, 15}
» a #[-1 x 10%°, 1 x 102%

» B #[0.01, 1 x 10°]

» k #[1 x 1075, 1 x 107

See the C++ ILRNLayer method or the Python ILRNLayer method for further details.

A.1.12. IMatrixMultiplyLayer

The IMatrixMultiplyLayer implements matrix multiplication for a collection of matrices.
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Layer Description

The IMatrixMultiplyLayer computes the matrix multiplication of input tensors A, of
dimensions a, and B, of dimensions b, and produces output tensor C, of dimensions c.
A, B, and C all have the same rank n22. If n>2, then A, B, and C are treated as collections
of matrices; A and B may be optionally transposed (the transpose is applied to the last
two dimensions). Let A™ and B* be the input tensors after the optional transpose, then

I 1
Cio,..,in-3,:,:=A%0,..,in-3,:,:*B7i0,..,in-3,:,:-

Given the corresponding dimensions a* and b* of A and BY, then c;={max (a; ,b;) if
i<n-2,a'; if i=n-2, andb’; if i=n-1};that is the resulting collection has the
same number of matrices as the input collections, and the rows and columns correspond

to the rows in AT and the columns in BY. Notice also the use of max in the lengths, for the
case of broadcast on a dimension.

Conditions And Limitations

Tensors A and B must have at least two dimensions, and agree on the number of
dimensions. The length of each dimension must be the same, assuming that dimensions
of length one are broadcast to match the corresponding length.

See the C++ IMatrixMultiplyLayer method or the Python IMatrixMultiplyLayer method
for further details.

A.1.12.1. MatrixMultiply Layer Setup

The Matrix Multiplication layer is used to execute the first step of the functionality
provided by a FullyConnected layer. As shown in the code below, a Constant layer
will need to be used so that the FullyConnected weights can be stored in the engine.
The output of the Constant and RNN layers are then used as inputs to the Matrix
Multiplication layer. The RNN output is transposed so that the dimensions for the
MatrixMultiply are valid.

C++ code snippet

weightMap["trt fcw"] = transposeFCWeights (weightMap[FCW_NAME]) ;

auto fcwts = network->addConstant (Dims2 (VOCAB_SIZE, HIDDEN_ SIZE),
weightMap["trt_fcw"]) ;

auto matrixMultlLayer = network->addMatrixMultiply (
*fcwts->getOutput (0) , false, *rnn->getOutput(0), true);
assert(matrixMultLayer '= nullptr);

matrixMultLayer->getOutput (0) ->setName ("Matrix Multiplication output") ;

Python code snippet

weight map["trt_fcw"] = transpose_fc_weights (weight map[FCW_NAME])
fc_wts = network.add constant((VOCAB_SIZE, HIDDEN SIZE),

weight map["trt fcw"])

matrix mult layer = network.add matrix multiply(

fc_wts.get _output(0), trt.MatrixOperation.NONE, rnn.get output(0),
trt.MatrixOperation.TRANSPOSE)

assert matrix mult layer !'= None

matrix mult layer.get_output(0) .name =

"Matrix Multiplication output"
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For more information, see the TensorRT API documentation.

A.1.13. IPaddinglLayer

The IPaddingLayer implements spatial zero-padding of tensors along the two innermost
dimensions.

Layer Description

The IPaddingLayer pads zeros to (or trims edges from) an input tensor A along each of
the two innermost dimensions and gives the output tensor B. Padding can be different
on each dimension, asymmetric, and can be either positive (resulting in expansion of the
tensor) or negative (resulting in trimming). Padding at the beginning and end of the two
dimensions is specified by 2D vectors x and y, for pre and post padding respectively.

For input tensor A of n dimensions a, the output B will have n dimensions b such

that byj={xo+an-2+yo if i=n-2; x;+a,1+y:1 if i=n-1; and a; otherwise}.
Accordingly, the values of B, are zeros if w,_,<x¢ or xg+an-» Sw,_» or w,_1<x; or
x1+an_2 Swy_1 . Otherwise, B,=A, where z,_,=w,_2+Xy, Zp-1=Wn-1+x71, and z;=w; for all
other dimensions i.

Conditions And Limitations

» A must have three dimensions or more.
» The padding can only be applied along the two innermost dimensions.
»  Only zero-padding is supported.

See the C++ IPaddinglayer method or the Python IPaddingLayer method for further
details.

A.1.14. IPluginLayer

The IPluginLayer is user-defined and provides the ability to extend the functionalities of
TensorRT. See Extending TensorRT With Custom Layers for more details.

See the C++ [PluginLayer method or the Python IPluginLayer method for further details.

A.1.15. IPoolingLayer

The IPoolingLayer implements pooling within a channel. Supported pooling types are
maximum, average and maximum-average blend.

Layer Description

Compute a pooling with 2D filters on a tensor A, of dimensions a, to produce a tensor
B, of dimensions b. The dimensions of B depend on the dimensions of &, window size r,
symmetric padding p and stride s such that:
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» b = [ap a1...an-3 by-2 bp-1]

» bp2 = (an-2+2po-ro) /so+l

» bp1 = (ap-1+2p1-r1)/s1+l

Let tensor C be the zero-padded copy of A with dimensions [ap a;1... an-2+2po

ap-1+2p;i] then, By k1= func(Cj._._ k:kk 1:11) Wherekk = k+rg-1, and 11 = 1
+r;-1.

Where func is defined by one of the pooling types t:

PoolingType: : kMAX
Maximum over elements in window.

PoolingType: : kKAVERAGE
Average over elements in the window.

PoolingType: :kMAX AVERAGE BLEND
Hybrid of maximum and average pooling. The results of the
maximum pooling and the average pooling are combined with the
blending factor as (1-blendFactor) *maximumPoolingResult +
blendFactor*averagePoolingResult to yield the result. The blendFactor can be
set to a value between 0 and 1.

By default, average pooling is performed on the overlap between the pooling window
and the padded input. If the exclusive parameter is set to true, the average pooling is
performed on the overlap area between the pooling window and unpadded input.

Conditions And Limitations
Input and output tensors should have 3 or more dimensions.

See the C++ [PoolingLaver method or the Python [PoolingLayer method for further
details.

A.1.16. IRaggedSoftMaxLayer

The IRaggedSoftMaxLayer applies the SoftMax function on an input tensor of sequences
across the sequence lengths specified by the user.

Layer Description

This layer has two inputs: a 2D input tensor A of shape zs containing z sequences
of data and a 1D bounds tensor B of shape z containing the lengths of each of the z
sequences in A. The resulting output tensor C has the same dimensions as the input
tensor A.

The SoftMax function S is defined on every i of the z sequences of data values A; .51
just like in the SoftMax layer.
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Conditions And Limitations
None

See the C++ IRaggedSoftMaxLaver method or the Python IRaggedSoftMaxLayer method
for further details.

A.1.17. IReducelayer

The IReduceLayer implements dimension reduction of tensors using reduce operators.

Layer Description

The IReduceLayer computes a reduction of input tensor A, of dimensions a, to produce
an output tensor B, of dimensions b, over the set of reduction dimensions r. The
reduction operator op is one of max, min, product, sum, and average. The reduction
can preserve the number of dimensions of A or not. If the dimensions are kept, then
b;={1 if i#r, and a; otherwise}; if the dimensions are not kept, then bj_n(5)=a;
where j#r and m(j) is the number of reduction indexes in r less than or equal to j.

With the sequence of indexes i, B;=op (A;3), where the sequence of indexes j is such that
jx={: if k#r, and iy otherwise}.
Conditions And Limitations

The input must have at least one non-batch dimension. The batch size dimension cannot
be reduced.

See the C++ IReducelLayer method or the Python IReduceLayer method for further
details.

A.1.18. IRNNLayer

The IRNNLayer is deprecated in favor of IRNNv2Layer, however, it is still available for
backwards compatibility.

Layer Description

This layer is identical to the IRNNv2Layer in functionality, but contains additional
limitations as described in the Conditions and Limitations section.

Conditions And Limitations

Unlike the IRNNv2Layer, the legacy IRNNLayer does not support specifying sequence
lengths via an input tensor.

The legacy IRNNLayer does not support arbitrary batch dimensions, and requires that
input tensor data be specified using the dimension ordering: sequence length T, batch
size N, embedding size E. In contrast, the IRNNv2Layer requires that tensor data be
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specified using the dimension ordering: batch size N, sequence length T, embedding size
E.

All limitations that apply to the IRNNv2Layer also apply to the legacy RNN layer.
See the C++ IRNNLayer method or the Python IRNNLayer method for further details.

A.1.19. IRNNv2Layer

The IRNNv2Layer implements recurrent layers such as Recurrent Neural Network
(RNN), Gated Recurrent Units (GRU), and Long Short-Term Memory (LSTM).
Supported types are RNN, GRU, and LSTM. It performs a recurrent operation, where
the operation is defined by one of several well-known recurrent neural network (RNN)
"cells".

Layer Description

This layer accepts an input sequence X, initial hidden state Hq, and if the cell is a long
short-term memory (LSTM) cell, initial cell state Cq, and produces an output ¥ which
represents the output of the final RNN "sub-layer" computed across T timesteps (see
below). Optionally, the layer can also produce an output hy representing the final hidden
state, and, if the cell is an LSTM cell, an output cr representing the final cell state.

Let the operation of the cell be defined as the function G(x, h, c). This function
takes vector inputs x, h, and ¢, and produces up to two vector outputs, h* and c¢’,
representing the hidden and cell state after the cell operation has been performed.

In the default (unidirectional) configuration, the RNNv2 layer applies Gas shown in the
following diagram:

Yo Y = Y11
hm G hJ,L G hZ‘,L e G hr..L
> ' » >
0 0 . 1
. . .
- : » .
Thf 1 T hs ThT-I.f
hy, —» > —> —> —>
ot G hyy G h,, G hr,
' >
Abyo A by Ahy o
hoo —™ > —> —> —>
" G' |[ho| G |[hy G' |
— > > > —> >
X x; . as X1
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G’ is avariantof G, .
Arrows leading into boxes are function inputs, and arrows leading away from boxes are

function outputs. X = [x¢, %1, .., %11, Y = [yo, Y1, -/, ¥Yrl,Hi= [hi o, hi, 1,
~, hj 1], and Ci= [ci,0, €i,1/ -, Ci,L].

The gray c edges are only present if the RNN is using LSTM cells for G and G’ .

The above construction has L "sub-layers" (horizontal rows of G), and the matrices H;
and c¢; have dimensionality L.

Optionally, the sequence length Tmay be specified as an input to the RNNv2 layer,
allowing the client to specify a batch of input sequences with different lengths.

Bidirectional RNNs (BiRNNs): The RNN can be configured to be bidirectional. In that
case, each sub-layer consists of a "forward" layer and "backward" layer. The forward
layer iteratively applies G using x; from 0 to T, and the backward layer iteratively
applies G using x; from T to 0, as shown in the diagram below:
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G herges | G

y N T } 7
>

>

By, €— le— <«
Il 6 [ hrwes 1| G [ hewet™" hus || G
Crh1 f—rp <« L -« [ e— <1
! 7 C(Tapb.1 } E(T.2)b.1 Ciny ' y
b > —
o G higs G by wwe B G
. V I > / c:.__.’ ST > /
hyp hio Th1
T”n.-..: has,g Th.lf:' Tfhm.\ Moo | hirajen
By o€ € e— <— l€— h,,
e | G' " h T80 | G' hraes * " hwo | G' .
CTh0 <— < | fe— Cii0
r 7 b0 } T CyT206.0 Cibo ’ y
> —>
hare G' hiso G' hag  wew Pimago
oo E Cieo = Ca (.E Sru)ie
Xp X

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.1.5 | 87



Appendix

Black bars in the diagram above represent concatenation. The full hidden state h. is
defined by the concatenation of the forward hidden state h¢ and the backward hidden
state hyy:

» h¢,s = [ Ber,i ,hep, il

» he = [ he,o,, ht,1, ..,he,n].

Similarly, for the cell state (not shown). Each ht,i isused as input to the next sub-
layer, as shown above.

RNN operations: The RNNv2 layer supports the following cell operations:

» ReLU: G(x, h, ¢) := max(Wix + R;h + Wy, + Ry, 0) (cnotused)
» tanh: G(x, h, ¢) := tanh(W;x + R;h + W, + Rp) (cnotused)
» GRU:
» Z := sigmoid(W,x + R;h + Wy, + Ry;)
» M := sigmoid (W.x + R:h + Wpy + Rypy)
» G(x, h, ¢) := tanh(Wyx + M(h + Ry) + W) (¢ notused)
» LSTM:

I := sigmoid(Wix + Rth + Wp; + Rpj)
F := sigmoid (Wex + Rfh + Wpe + Rps)

» O := sigmoid(Wox + Roh + Wpo + Rypo)
C := tanh(Wex + Rch + Wpe + Rpc)

» C’' :=F x C
» H := 0 x tanh(C’)
» G(x, h, ¢) (= { H, C" }

For GRU and LSTM, we refer to the intermediate computations for z, M, I, F, etc. as
"gates".

In the unidirectional case, the dimensionality of the W matrices is HxE for the first layer
and HxH for subsequent layers (unless skip mode is set, see below). In the bidirectional
case, the dimensionality of the W matrices is HxE for the first forward/backward layer,
and Hx2H for subsequent layers.

The dimensionality of the R matrices is always HxH. The biases Wyx and Rpy have
dimensionality H.

Skip mode: The default mode used by RNNv2 is "linear mode". In this mode, the first
sub-layer of the RNNv2 layer uses the cell G’ (x, h, ¢), which accepts a vector x of
size E (embedding size), and vectors h and c of size H (hidden state size), and is defined
by the cell operation formula. Subsequent layers use the cell G(x, h, c), where x, h,
and c are all vectors of size H, and is also defined by the cell operation formula.
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Optionally, the RNN can be configured to run in "skip mode", which means the input
weight matrices for the first layer are implicitly identity matrices, and x Is expected to
be size H.

Conditions And Limitations

The data (X) input and initial hidden/cell state (Ho and Cy) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions.

The optional sequence length input T'is 0-dimensional (scalar) when excluding batch
dimensions.

The data (Y) output and final hidden/cell state (Hy and Cr) tensors have at least 2 non-
batch dimensions. Additional dimensions are considered batch dimensions. If the
sequence length input is provided, each output in the batch is padded to the maximum
sequence length Tpayx.

The IRNNv2Layer supports:

» FP32 and FP16 data type for input and output, hidden, and cell tensors.
» INT32 data type only for the sequence length tensor.

After the network is defined, you can mark the required outputs. RNNv2 output tensors
that are not marked as network outputs or used as inputs to another layer are dropped.

network->markOutput (*pred->getOutput (1)) ;
pred->getOutput (1) ->setType (DataType: : kINT32) ;
rnn->getOutput (1) ->setName (HIDDEN_OUT BLOB_NAME) ;
network->markOutput (*rnn->getOutput (1)) ;

if (rnn->getOperation() == RNNOperation: :kLSTM)

{

rnn->getOutput (2) ->setName (CELL_OUT_BLOB_NAME) ;
network->markOutput (*rnn->getOutput(2)) ;

};

See the C++ IRNNv2Laver method or the Python IRNNv2Layer method for further
details.

A.1.19.1. RNNv2 Layer Setup

The first layer in the network is an RNN layer. This is added and configured in the
addRNNv2Layer () function. This layer consists of the following configuration
parameters:
Operation
This defines the operation of the RNN cell. Supported operations are currently relu,
LSTM, GRU, and tanh.
Direction
This defines whether the RNN is unidirectional or bidirectional (BiRNN).
Input mode
This defines whether the first layer of the RNN carries out a matrix multiply (linear
mode), or the matrix multiply is skipped (skip mode).
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For example, in the network used in sampleCharRNN, we used a linear, unidirectional
LSTM cell containing LAYER COUNT number of stacked layers. The code below shows
how to create this RNNv2 layer.

auto rnn = network->addRNNv2 (*data, LAYER COUNT, HIDDEN SIZE, SEQ SIZE,
RNNOperation: : kLSTM) ;

For the RNNv2 layer, weights and bias need to be set separately. For more
information, see RNNv2 Layer - Optional Inputs.

For more information, see the TensorRT API documentation.

A.1.19.2. RNNv2 Layer - Optional Inputs

If there are cases where the hidden and cell states need to be pre-initialized to a non-zero
value, then you can pre-initialize them via the setHiddenState and setCellState
calls. These are optional inputs to the RNN.

C++ code snippet

rnn->setHiddenState (*hiddenIn) ;
if (rnn->getOperation() == RNNOperation: :kLSTM)
rnn->setCellState (*cellln) ;

Python code snippet

rnn.hidden_state = hidden_in

if rnn.op == trt.RNNOperation.LSTM:
rnn.cell state = cell in

A.1.20. IScalelLayer

The IScaleLayer implements a per-tensor, per-channel, or per-element affine
transformation and/or exponentiation by constant values.

Layer Description

Given an input tensor &, the IScaleLayer performs a per-tensor, per-channel or per-
element transformation to produce an output tensor B of the same dimensions. The
transformations corresponding to each mode are:
ScaleMode: : kUNIFORM tensor-wise transformation

B = (A * scale + shift)P°ver
ScaleMode: : kCHANNEL channel-wise transformation

Br = (A; * scale.(r) + shiftg(r))Po"ere®
ScaleMode: : kELEMENTWISE element-wise transformation

Br = (A; * scale; + shift;)Po¥e™:
Where I represents the indexes of tensor elements and ¢ (I) is the channel dimension in
I.

Conditions And Limitations

A must have 3 or more dimensions.

www.nvidia.com
TensorRT SWE-SWDOCTRT-001-DEVG_vTensorRT 5.1.5 | 90


https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

Appendix

If an empty weight object is provided for scale, shift, or power, then a default value
is used. By default, scale has a value of 1.0, shift has a value of 0.0, and power has a
value of 1.0.

See the C++ IScaleLayer method or the Python IScaleLayer method for further details.

A.1.21. IShuffleLayer

The IShuffleLayer implements a reshape and transpose operator for tensors.

Layer Description

The IShuffleLayer implements reshuffling of tensors to permute the tensor and/or
reshape it. An input tensor A of dimensions a is transformed by applying a transpose,
followed by a reshape operation with reshape dimensions r, and then followed by
another transpose operation to produce an output data tensor B of dimensions b.

To apply the transpose operation to A, the permutation order needs to be specified.

The specified permutation p1 is used to permute the elements of A in the following
manner to produce output C of dimensions ¢, such that ci=api (i) and C1=Ag; (1)

for a sequence of indexes I. By default, the permutation is assumed to be an identity (no
change to the input tensor).

The reshape operation does not alter the order of the elements, and reshapes tensor C
into tensor R of shape r?, such that £*;={r; if r;>0, c; if r;=0, inferred if

r;=-1}. Only one dimension can be inferred, such that Mrli=Mla;.

The second transpose operation is applied after the reshape operation. It follows the
same rules as the first transpose operation and requires a permutation (say p2) to be
specified. This permutation produces an output tensor B of dimensions b, such that
b;=rp (i) and By (1)=R; for a sequence of indexes I.

Conditions And Limitations

Product of dimensions r* must be equal to the product of input dimensions a.

See the C++ [ShuffleLayer method or the Python IShuffleLayer method for further
details.

A.1.22. ISliceLayer

The ISliceLayer implements a slice operator for tensors.

Layer Description

Giving an input n-dimension (excluding batch dimension) tensor 3, the Slice layer
generates an output tensor B with elements extracted from A. The correspondence
between element coordinates in A and Bis given by: ai = bi*sit+oi (0 < i < n),
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where a, b, s, o are element coordinates in A, element coordinates in B, stride and
starting offset, respectively. The stride can be positive, negative or zero.

Conditions And Limitations
The corresponding A coordinates for every elements in B must not be out-of-bound.

See the C++ ISliceLayer method or the Python ISliceLayer method for further details.

A.1.23. ISoftMaxLayer

The ISoftMaxLayer applies the SoftMax function on the input tensor along an input
dimension specified by the user.

Layer Description

Given an input tensor A of shape a and an input dimension i, this layer applies the
SoftMax function on every slice .o, ., ai-1, :, ai+1, ., an-1 along dimension i of A.
The resulting output tensor C has the same dimensions as the input tensor A.

The SoftMax function S for a slice x is defined as:

S (%) =exp () / Y exp (X))

The SoftMax function rescales the input such that every value in the output lies in
the range [0, 1] and the values of every slice Cao, ., ai-1, :, ai+1, ., an-1along
dimension i of C sum up to 1.

Conditions And Limitations

For n being the length of a, the input dimension i should be i#[0,n-1]. If the user does
not provide an input dimension, then i=max (0, n-3).

See the C++ [SoftMaxLaver method or the Python [SoftMaxLayer method for further
details.

A.1.24. ITopKLayer

The ITopKLayer finds the top K maximum (or minimum) elements along a dimension,
returning a reduced tensor and a tensor of index positions.

Layer Description

For an input tensor A of dimensions a, given an axis i, an operator that is either max
or min, and a value for k, produces a tensor of values V and a tensor of indices I of
dimensions v such that vy={k if i#j, and a; otherwise}.

The output values are:
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» Va0, ., ai-1, :, ai+l, .,an sC’rt(AaO, .., ai-1, :, ai+1, .,.,an) 'K

> IaO, .., ai-1, :, ai+l, ..,an argsort(Aao, .., ai-1, :, ai+l, ...,an) :K

where sort is in descending order for operator max and ascending order for operator

min.

Ties are broken during sorting with lower index considered to be larger for operator
max, and lower index considered to be smaller for operator min.

Conditions And Limitations

The K value must be 3840 or less. Only one axis can be searched to find the top K
minimum or maximum values; this axis cannot be the batch dimension.

See the C++ ITopKLayer method or the Python ITopKLayer method for further details.

A.1.24.1. TopK Layer Setup

The TopK layer is used to identify the character that has the maximum probability of
appearing next.

The layer has two outputs. The first output is an array of the top K values. The
second, which is of more interest to us, is the index at which these maximum values
appear.

The code below sets up the TopK layer and assigns the OUTPUT_BLOB_NAME to the
second output of the layer.
C++ code snippet
auto pred = network->addTopK (*addBiasLayer->getOutput(0),
nvinferl: :TopKOperation: :kMAX, 1, reduceAxis);
assert(pred !'= nullptr);
pred->getOutput (1) ->setName (OUTPUT _BLOB_ NAME) ;
Python code snippet
pred = network.add topk(add bias_layer.get output(0),
trt.TopKOperation.MAX, 1, reduce_axis)
assert pred !'= None

pred.get_output(l) .name = OUTPUT_ BLOB_NAME

For more information, see the TensorRT API documentation.

A.1.25. IUnaryLayer

The IUnaryLayer supports pointwise unary operations.

Layer Description

The IUnaryLayer performs pointwise operations on input tensor Aresulting in output
tensor Bof the same dimensions. The following functions are supported:

» exp: B = e”A
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» abs: B
» log: B

[A]
1n(3)

» sqgrt: B = \A (rounded to nearest even mode)

» neg: B = -A

» recip: B =1/ A (reciprocal) in rounded to nearest even mode

Conditions And Limitations
Input and output can be zero to 7 dimensional tensors.

See the C++ IUnaryLaver method or the Python IUnaryLayer method for further details.

A.2. Data Format Descriptions

TensorRT supports different data formats. There are two aspects to consider: data type
and layout.

Data type format

The data type is the representation of each individual value. Its size determines the
range of values and the precision of the representation; which are FP32 (32-bit floating
point, or single precision), FP16 (16-bit floating point, or half precision), INT32 (32-bit
integer representation) and INT8 (8-bit representation).

Layout format

The layout format determines the ordering in which values are stored. Typically,
batch dimensions are the leftmost dimensions, and the other dimensions refer to
aspects of each data item such as C is channel, H is height, and W is width, in images.
Ignoring batch sizes, which are always preceding these, C, H, and W are typically
sorted as CHW #unique_133/unique_133_Connect_42_figl or HWC #unique_133/
unique_133_Connect_42_fig2.
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To enable faster computations, more formats are defined to pack together channel values
and use reduced precision. For this reason, TensorRT also supports formats NC/2HW2 and
NHWCS.

In NC/2HW2, pairs of channel values are packed together in each HxW matrix (with

an empty value in the case of an odd number of channels). The result is a format in
which the values of #C/2#HxW matrices are pairs of values of two consecutive channels
#unique_133/unique_133_Connect_42_fig3; notice that this ordering interleaves
dimensions as values of channels that have stride 1 if they are in the same pair and
stride 2xHxW otherwise.

I I I |

0,0 0,1 0,W-1
1,0

0,H-1 H-1,W-1

C=0
c=1 |
C=2
0.0 01 0.1 1.0 | Hee 0,0 P WA

In NHWCS, the entries of an HxW matrix include the values of all the channels
#unique_133/unique_133_Connect_42_fig4. In addition, these values are packed together
in #C/8# 8-tuples and C is rounded up to the nearest multiple of 8.
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0,0 0,1
1,0
0,H-1 H-1,W-1
Cc=0
c=1|
c=2
| 0.0 01 | __u.w-1 | 1o ‘ LH-1.W—1‘

A.3. Command Line Program

Included in the samples directory is a command line program, called trtexec, for
TensorRT. It is useful for benchmarking networks on random data and for generating
serialized engines from such models.

The command line arguments are as follows:

&&&& RUNNING TensorRT.trtexec # ./trtexec -h

[I] help

Mandatory params:
-—-deploy=<file> Caffe deploy file
OR —-—uff=<file> UFF file
OR —--onnx=<file> ONNX Model file

OR --loadEngine=<file> Load a saved engine

Mandatory params for UFF:
-—uffInput=<name>,C,H,W Input blob name and its dimensions for
UFF parser (can be specified multiple times)

--output=<name> Output blob name (can be specified
multiple times)
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Mandatory params for Caffe:
--output=<name> Output blob name (can be specified
multiple times)

Optional params:

--model=<file> Caffe model file (default = no model,
random weights used)

--batch=N Set batch size (default = 1)

-—device=N Set cuda device to N (default = 0)

-—iterations=N Run N iterations (default = 10)

—-—avgRuns=N Set avgRuns to N - perf is measured as
an average of avgRuns (default=10)

--percentile=P For each iteration, report the
percentile time at P percentage (0<=P<=100, with 0 representing
min, and 100 representing max; default = 99.0%)

--workspace=N Set workspace size in megabytes
(default = 16)

--safe Only test the functionality available
in safety restricted flows.

-—-fplo Run in fpl6 mode (default = false).
Permits 16-bit kernels

==L At Run in int8 mode (default = false).
Currently no support for ONNX model.

—--verbose Use verbose logging (default = false)

--saveEngine=<file> Save a serialized engine to file.

--loadEngine=<file> Load a serialized engine from file.

--calib=<file> Read INT8 calibration cache file.
Currently no support for ONNX model.

—--useDLACore=N Specify a DLA engine for layers that

support DLA. Value can range from 0 to n-1, where n is the
number of DLA engines on the platform.

--allowGPUFallback If --useDLACore flag is present and if
a layer can't run on DLA, then run on GPU.
--useSpinWait Actively wait for work completion. This

option may decrease multi-process synchronization time at the
cost of additional CPU usage. (default = false)

——dumpOutput Dump outputs at end of test.

-h, --help Print usage

For example:

trtexec --deploy=/path/to/mnist.prototxt
--model=/path/to/mnist.caffemodel --output=prob

If no model is supplied, random weights are generated.

A.4. ACKNOWLEDGEMENTS

TensorRT uses elements from the following software, whose licenses are reproduced
below:

Google Protobuf

This license applies to all parts of Protocol Buffers except the following:
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» Atomicops support for generic gcc, located in sre/google/protobuf/stubs/
atomicops_internals generic_gcc.h. This file is copyrighted by Red Hat Inc.

» Atomicops support for AIX/POWER, located in src/google/protobuf/stubs/
atomicops_internals_power.h. This file is copyrighted by Bloomberg Finance
LP.

Copyright 2014, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

» Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

» Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner of the input file
used when generating it. This code is not standalone and requires a support library to be
linked with it. This support library is itself covered by the above license.

Google Flatbuffers

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.
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"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object” form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.
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2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works
of, publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim
in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or
Object form, provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute,
all copyright, patent, trademark, and attribution notices from the Source form
of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute,
alongside or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed as modifying the
License.
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You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such Derivative
Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions)
on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has been
advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
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APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) The text should be enclosed in the appropriate comment
syntax for the file format. We also recommend that a file or class name and description
of purpose be included on the same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright 2014 Google Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at: http://
www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

BVLC Caffe
COPYRIGHT
All contributions by the University of California:

Copyright (c) 2014, 2015, The Regents of the University of California (Regents) All rights
reserved.

All other contributions:
Copyright (c) 2014, 2015, the respective contributors All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over their
contributions to Caffe. The project versioning records all such contribution and
copyright details. If a contributor wants to further mark their specific copyright on
a particular contribution, they should indicate their copyright solely in the commit
message of the change when it is committed.

LICENSE

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/Caffe repository through pull-request, comment, or
otherwise, the contributor releases their content to the license and copyright terms
herein.

half.h
Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modity, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

jQuery.js
jQuery.js is generated automatically under doxygen.

In all cases TensorRT uses the functions under the MIT license.
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CRC

policies, either expressed or implied, of the Regents of the University of California.

The copyright of UC Berkeley's Berkeley Software Distribution ("BSD") source has
been updated. The copyright addendum may be found at ftp://ftp.cs.berkeley.edu/
pub/4bsd/README.Impt.License.Change and is

William Hoskins
Director, Office of Technology Licensing

University of California, Berkeley

getopt.c
Copyright (c) 2002 Todd C. Miller <Todd.Miller@courtesan.com>

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS

ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR
IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Sponsored in part by the Defense Advanced Research Projects Agency (DARPA) and
Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement
number F39502-99-1-0512.

Copyright (c) 2000 The NetBSD Foundation, Inc.
All rights reserved.

This code is derived from software contributed to The NetBSD Foundation by Dieter
Baron and Thomas Klausner.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
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THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
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THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,
MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,
AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A
SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE
(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER
LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS
FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR
IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and
fit for the application planned by customer and to do the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect
the quality and reliability of the NVIDIA product and may result in additional or different conditions and/
or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any
default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information
in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,
Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.
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