IIIIIII

www.nvidia.com
NVML TRM-06719-001 _vR331 | 2

Chapter 1.
NVML APl REFERENCE

The NVIDIA Management Library (NVML) is a C-based programmatic interface for
monitoring and managing various states within NVIDIA Tesla” GPUs. It is intended
to be a platform for building 3rd party applications, and is also the underlying library
for the NVIDIA-supported nvidia-smi tool. NVML is thread-safe so it is safe to make
simultaneous NVML calls from multiple threads.

APl Documentation

Supported OS platforms:

» Windows: Windows Server 2008 R2 64-bit, Windows 7-8 64-bit
» Linux: 32-bit and 64-bit

Supported products:
» Full Support
» NVIDIA Tesla Line:

» 52050, C2050, C2070, C2075,

» M2050, M2070, M2075, M2090,

» X2070, X2090,

» K10, K20, K20X, K20Xm, K20¢, K20m, K20s, K40c, K40m, K40t, K40s, K40st
» NVIDIA Quadro Line:

» 410, 600, 2000, 4000, 5000, 6000, 7000, M2070-Q
» K2000, K2000D, K4000, K5000, K6000
» NVIDIA GRID Line:

» K1, K2, K340, K520
» NVIDIA GeForce Line: None

Limited Support

www.nvidia.com
NVML TRM-06719-001 _vR331 | 1

NVML API Reference

» NVIDIA Tesla Line: S1070, C1060, M1060 and all other previous generation
Tesla-branded parts

» NVIDIA Quadro Line: All other current and previous generation Quadro-
branded parts

» NVIDIA GeForce Line: All current and previous generation GeForce-branded
parts

The NVML library can be found at:%ProgramW6432%\"NVIDIA Corporation"\NVSMI
\on Windows, but will not be added to the path. To dynamically link to NVML, add this
path to the PATH environmental variable. To dynamically load NVML, call LoadLibrary
with this path.

On Linux the NVML library will be found on the standard library path. For 64-bit Linux,
both the 32-bit and 64-bit NVML libraries will be installed.

The NVML APl is divided into five categories:
» Support Methods:

» Initialization and Cleanup
» Query Methods:

» System Queries
» Device Queries
» Unit Queries

» Control Methods:

» Unit Commands
» Device Commands
» Event Handling Methods:

» Event Handling Methods
» Error reporting Methods

» Error Reporting

List of changes can be found in the Change Log.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 2

Chapter 2.
KNOWN ISSUES

This is a list of known NVML issues in the current driver:

>

On Linux when X Server is running nvmlDeviceGetComputeRunningProcesses may
return a nvmlProcessInfo_t::usedGpuMemory value that is larger than the actual
value. This will be fixed in a future release.

On Linux GPU Reset can't be triggered when there is pending GPU Operation Mode
(GOM) change.

On Linux GPU Reset may not successfully change pending ECC mode. A full reboot
may be required to enable the mode change.

nvmlAccountingStats supports only one process per GPU at a time (CUDA proxy
server counts as one process).

nvmlAccountingStats_t.time reports time and utilization values starting from culnit
till process termination. Next driver versions might change this behavior slightly
and account process only from cuCtxCreate till cuCtxDestroy.

On GPUs from Fermi family current PO clocks (reported by
nvmlDeviceGetClockInfo) can differ from max clocks by few MHz.

www.nvidia.com

NVML

TRM-06719-001 _vR331 | 3

Chapter 3.
CHANGE LOG

This chapter list changes in API and bug fixes that were introduced to the library.

Changes between NVML v5.319 Update and v331

The following new functionality is exposed on NVIDIA display drivers version 331 or
later.

» Added nvmlDeviceGetMinorNumber to get the minor number for the device.
» Added nvmlDeviceGetBARIMemorylInfo to get BARI total, available and used
memory size.

» Added nvmlDeviceGetBridgeChipInfo to get the information related to bridge chip
firmware.

» Added enforced power limit query API nvmlDeviceGetEnforcedPowerLimit
» Updated nvmlEventSetWait to return xid event data in case of xid error event.

Changes between NVML v5.319 RC and v5.319 Update

The following new functionality is exposed on NVIDIA display drivers version 319
Update or later.

» Added nvmlDeviceSetAPIRestriction and nvmlDeviceGetAPIRestriction, with initial
ability to toggle root-only requirement for nvmlDeviceSetApplicationsClocks and
nvmlDeviceResetApplicationsClocks.

Changes between NVML v4.304 Production and v5.319 RC

The following new functionality is exposed on NVIDIA display drivers version 319 RC
or later.

» Added _v2 versions of nvmlDeviceGetHandleByIndex and nvmlDeviceGetCount
that also count devices not accessible by current user

» nvmlDeviceGetHandleByIndex_v2 (default) can also return
NVML_ERROR_NO_PERMISSION

www.nvidia.com
NVML TRM-06719-001 _vR331 | 4

Cha
The

Change Log

Added nvmlInit_v2 and nvmlDeviceGetHandleByIndex_v?2 that is safer and thus
recommended function for initializing the library

» nvmllnit_v2 lazily initializes only requested devices (queried with
nvmlDeviceGetHandle*)

» nvmlh defines nvmlInit_v2 and nvmlDeviceGetHandleByIndex_v2 as default
functions

Added nvmlDeviceGetIndex
Added NVML_ERROR_GPU_IS_LOST to report GPUs that have fallen off the bus.

» All NVML device APIs can return this error code, as a GPU can fall off the bus
at any time.

Added new class of APIs for gathering process statistics (nvmlAccountingStats)

Application Clocks are no longer supported on GPU's from Quadro product line

Added APIs to support dynamic page retirement. See nvmlDeviceGetRetiredPages
and nvmlDeviceGetRetiredPagesPendingStatus

Renamed nvmlClocksThrottleReasonUserDefinedClocks to
nvmlClocksThrottleReasonApplicationsClocksSetting. Old name is deprecated and
can be removed in one of the next major releases.

Added nvmlDeviceGetDisplayActive and updated documentation to clarify how it
differs from nvmlDeviceGetDisplayMode

nges between NVML v4.304 RC and v4.304 Production

following new functionality is exposed on NVIDIA display drivers version 304

Production or later.

>

Cha
The

Added nvmlDeviceGetGpuOperationMode and
nvmlDeviceSetGpuOperationMode.

nges between NVML v3.295 and v4.304 RC

following new functionality is exposed on NVIDIA display drivers version 304 RC

or later.

>

Added nvmlDeviceGetInforomConfigurationChecksum and
nvmlDeviceValidateInforom.

Added nvmlDeviceGetDisplayActive and updated documentation to clarify how it
differs from nvmlDeviceGetDisplayMode.

Added new error return value for initialization failure due to kernel module not
receiving interrupts.

Added nvmlDeviceSetApplicationsClocks, nvmlDeviceGetApplicationsClock,
nvmlDeviceResetApplicationsClocks.

Added nvmlDeviceGetSupportedMemoryClocks and

nvmlDeviceGetSupported GraphicsClocks.

www.nvidia.com

NVML

TRM-06719-001 _vR331 | 5

Change Log

» Added nvmlDeviceGetPowerManagementLimitConstraints,
nvmlDeviceGetPowerManagementDefaultLimit and
nvmlDeviceSetPowerManagementLimit.

» Added nvmlDeviceGetInforomImageVersion.

» Expanded nvmlDeviceGetUUID to support all CUDA capable GPUs.

» Deprecated nvmlDeviceGetDetailedEccErrors in favor of
nvmlDeviceGetMemoryErrorCounter.

» Added NVML_MEMORY_LOCATION_TEXTURE_MEMORY to support reporting
of texture memory error counters.

» Added nvmlDeviceGetCurrentClocksThrottleReasons and
nvmlDeviceGetSupportedClocksThrottleReasons.

» NVML_CLOCK_SM is now also reported on supported Kepler devices.
» Dropped support for GT200 based Tesla brand GPUs: C1060, M1060, S1070.

Changes between NVML v2.285 and v3.295

The following new functionality is exposed on NVIDIA display drivers version 295 or
later.

» Deprecated nvmlDeviceGetHandleBySerial in favor of newly added
nvmlDeviceGetHandleByUUID.

» Marked the input parameters of nvmlDeviceGetHandleBySerial,
nvmlDeviceGetHandleByUUID and nvmlDeviceGetHandleByPciBusld as const.

» Added nvmlDeviceOnSameBoard.

» Added nvmlConstants defines.

» Added nvmlDeviceGetMaxPcieLinkGeneration, nvmlDeviceGetMaxPcieLinkWidth,
nvmlDeviceGetCurrPcieLinkGeneration,nvmlDeviceGetCurrPcieLinkWidth.

» Format change of nvmlDeviceGetUUID output to match the UUID standard. This
function will return a different value.

» nvmlDeviceGetDetailedEccErrors will report zero for unsupported ECC error
counters when a subset of ECC error counters are supported.

Changes between NVML v1.0 and v2.285

The following new functionality is exposed on NVIDIA display drivers version 285 or
later.

» Added possibility to query separately current and pending driver model with
nvmlDeviceGetDriverModel.

» Added API nvmlDeviceGetVbiosVersion function to report VBIOS version.

» Added pciSubSystemld to nvmlPcilnfo_t struct.

» Added API nvmlErrorString function to convert error code to string.

» Updated docs to indicate we support M2075 and C2075.

» Added API nvmlSystemGetHicVersion function to report HIC firmware version.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 6

Change Log

Added NVML versioning support

» Functions that changed API and/or size of structs have appended versioning
suffix (e.g., nvmlDeviceGetPcilnfo_v2). Appropriate C defines have been added
that map old function names to the newer version of the function.

Added support for concurrent library usage by multiple libraries.

Added API nvmlDeviceGetMaxClockInfo function for reporting device's clock

limits.

Added new error code NVML_ERROR_DRIVER_NOT_LOADED used by nvmlInit.

Extended nvmlPcilnfo_t struct with new field: sub system id.

Added NVML support on Windows guest account.

Changed format of pciBusld string (to XXXX:XX:XX.X) of nvmlIPcilnfo_t.

Parsing of busld in nvmIDeviceGetHandleByPciBusld is less restrictive. You can
pass 0:2:0.0 or 0000:02:00 and other variations.

Added API for events waiting for GPU events (Linux only) see docs of nvmlEvents.

Added API nvmlDeviceGetComputeRunningProcesses and
nvmlSystemGetProcessName functions for looking up currently running compute
applications.

Deprecated nvmlDeviceGetPowerState in favor of nvmlDeviceGetPerformanceState.

www.nvidia.com

NVML

TRM-06719-001 _vR331 | 7

Chapter 4.
MODULES

Here is a list of all modules:

» Device Structs

» Device Enums

» Unit Structs

» Accounting Statistics

» Initialization and Cleanup
» Error reporting

» Constants

» System Queries

» Unit Queries

» Device Queries

» Unit Commands

» Device Commands

» Event Handling Methods

» Event Types
» NvmlClocksThrottleReasons

4.1. Device Structs

www.nvidia.com
NVML TRM-06719-001 _vR331 | 8

Modules

struct nvmIBART1Memory_t

struct nvmlBridgeChipHierarchy_t
struct nvmlBridgeChipInfo_t
struct nvmlEccErrorCounts_t
struct nvmlMemory_t

struct nvmlPcilnfo_t

struct nvmlProcessIinfo_t

struct nvmlUtilization_t

enum nvmlBridgeChipType_t
Enum to represent type of bridge chip

Values

NVML_BRIDGE_CHIP_PLX =0
NVML_BRIDGE_CHIP_BRO4=1

#define NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE 16

Buffer size guaranteed to be large enough for pci bus id

#define NVML_MAX_PHYSICAL_BRIDGE (128)

Maximum limit on Physical Bridges per Board

#define NVML_VALUE_NOT_AVAILABLE (-1)

Special constant that some fields take when they are not available. Used when only part
of the struct is not available.

Each structure explicitly states when to check for this value.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 9

Modules

4.2. Device Enums

enum nvmlClockType_t

Clock types.
All speeds are in Mhz.

Values

NVML_CLOCK_GRAPHICS =0
Graphics clock domain.
NVML_CLOCK_SM =1
SM clock domain.
NVML_CLOCK_MEM =2
Memory clock domain.
NVML_CLOCK_COUNT

enum nvmlComputeMode_t

Compute mode.

NVML_COMPUTEMODE_EXCLUSIVE_PROCESS was added in CUDA 4.0.
Earlier CUDA versions supported a single exclusive mode, which is equivalent to
NVML_COMPUTEMODE_EXCLUSIVE_THREAD in CUDA 4.0 and beyond.

Values

NVML_COMPUTEMODE_DEFAULT =0
Default compute mode -- multiple contexts per device.
NVML_COMPUTEMODE_EXCLUSIVE_THREAD =1
Compute-exclusive-thread mode -- only one context per device, usable from one
thread at a time.
NVML_COMPUTEMODE_PROHIBITED = 2
Compute-prohibited mode -- no contexts per device.
NVML_COMPUTEMODE_EXCLUSIVE_PROCESS =3
Compute-exclusive-process mode -- only one context per device, usable from
multiple threads at a time.
NVML_COMPUTEMODE_COUNT

enum nvmlDriverModel t

Driver models.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 10

Modules

Windows only.

Values

NVML_DRIVER_WDDM =0

WDDM driver model -- GPU treated as a display device.
NVML_DRIVER_WDM =1

WDM (TCC) model (recommended) -- GPU treated as a generic device.

enum nvmlEccCounterType_t

ECC counter types.

Note: Volatile counts are reset each time the driver loads. On Windows this is once per

boot. On Linux this can be more frequent. On Linux the driver unloads when no active

clients exist. If persistence mode is enabled or there is always a driver client active (e.g.

X11), then Linux also sees per-boot behavior. If not, volatile counts are reset each time a
compute app is run.

Values

NVML_VOLATILE_ECC=0

Volatile counts are reset each time the driver loads.
NVML_AGGREGATE_ECC=1

Aggregate counts persist across reboots (i.e. for the lifetime of the device).
NVML_ECC_COUNTER_TYPE_COUNT

Count of memory counter types.

enum nvmlEnableState_t

Generic enable/disable enum.

Values

NVML_FEATURE_DISABLED =0
Feature disabled.

NVML_FEATURE_ENABLED =1
Feature enabled.

enum nvmlGpuOperationMode_t

GPU Operation Mode

GOM allows to reduce power usage and optimize GPU throughput by disabling GPU
features.

Each GOM is designed to meet specific user needs.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 11

Modules

Values

NVML_GOM_ALL_ON=0
Everything is enabled and running at full speed.
NVML_GOM_COMPUTE =1
Designed for running only compute tasks. Graphics operations are not allowed
NVML_GOM_LOW_DP =2
Designed for running graphics applications that don't require high bandwidth double
precision

enum nvmlinforomObject_t

Available infoROM objects.

Values

NVML_INFOROM_OEM =0
An object defined by OEM.
NVML_INFOROM_ECC=1
The ECC object determining the level of ECC support.
NVML_INFOROM_POWER =2
The power management object.
NVML_INFOROM_COUNT
This counts the number of infoROM objects the driver knows about.

enum nvmlMemoryErrorType_t

Memory error types

Values

NVML_MEMORY_ERROR_TYPE_CORRECTED =0
A memory error that was correctedFor ECC errors, these are single bit errors For
Texture memory, these are errors fixed by resend
NVML_MEMORY_ERROR_TYPE_UNCORRECTED =1
A memory error that was not correctedFor ECC errors, these are double bit errors For
Texture memory, these are errors where the resend fails
NVML_MEMORY_ERROR_TYPE_COUNT
Count of memory error types.

enum nvmlMemoryLocation_t

Memory locations

See nvmlDeviceGetMemoryErrorCounter

www.nvidia.com
NVML TRM-06719-001 _vR331 | 12

Modules

Values

NVML_MEMORY_LOCATION_L1_CACHE =0

GPU L1 Cache.
NVML_MEMORY_LOCATION_L2_CACHE=1

GPU L2 Cache.
NVML_MEMORY_LOCATION_DEVICE_MEMORY =2

GPU Device Memory.
NVML_MEMORY_LOCATION_REGISTER_FILE =3

GPU Register File.
NVML_MEMORY_LOCATION_TEXTURE_MEMORY =4

GPU Texture Memory.
NVML_MEMORY_LOCATION_COUNT

This counts the number of memory locations the driver knows about.

enum nvmlPageRetirementCause_t

Causes for page retirement

Values

NVML_PAGE_RETIREMENT_CAUSE_MULTIPLE_SINGLE_BIT_ECC_ERRORS =0
Page was retired due to multiple single bit ECC error.
NVML_PAGE_RETIREMENT_CAUSE_DOUBLE_BIT_ECC_ERROR =1
Page was retired due to double bit ECC error.
NVML_PAGE_RETIREMENT_CAUSE_COUNT

enum nvmlPstates_t

Allowed PStates.

Values

NVML_PSTATE 0=0
Performance state 0 -- Maximum Performance.
NVML _PSTATE 1=1
Performance state 1.
NVML_PSTATE 2=2
Performance state 2.
NVML_PSTATE 3=3
Performance state 3.
NVML_PSTATE 4=4
Performance state 4.
NVML_PSTATE 5=5
Performance state 5.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 13

Modules

NVML_PSTATE 6=6
Performance state 6.
NVML_PSTATE 7=7
Performance state 7.
NVML_PSTATE_8=8
Performance state 8.
NVML_PSTATE 9=9
Performance state 9.
NVML_PSTATE_10=10
Performance state 10.
NVML_PSTATE_11=11
Performance state 11.
NVML_PSTATE_12=12
Performance state 12.
NVML_PSTATE_13=13
Performance state 13.
NVML_PSTATE_14=14
Performance state 14.
NVML_PSTATE_15=15
Performance state 15 -- Minimum Performance.
NVML_PSTATE_UNKNOWN = 32
Unknown performance state.

enum nvmlRestrictedAPI t

API types that allow changes to default permission restrictions

Values

NVML_RESTRICTED_API_SET_APPLICATION_CLOCKS =0
APIs that change application clocks, see nvmlDeviceSetApplicationsClocks and
nvmlDeviceResetApplicationsClocks

NVML_RESTRICTED_API_COUNT

enum nvmlReturn_t

Return values for NVML API calls.

Values

NVML_SUCCESS =0

The operation was successful.
NVML_ERROR_UNINITIALIZED =1

NVML was not first initialized with nvmlInit().

www.nvidia.com
NVML TRM-06719-001 _vR331 | 14

NVML_ERROR_INVALID_ARGUMENT = 2

A supplied argument is invalid.
NVML_ERROR_NOT_SUPPORTED =3

The requested operation is not available on target device.
NVML_ERROR_NO_PERMISSION =4

The current user does not have permission for operation.
NVML_ERROR_ALREADY_INITIALIZED =5

Deprecated: Multiple initializations are now allowed through ref counting.

NVML_ERROR_NOT_FOUND =6

A query to find an object was unsuccessful.
NVML_ERROR_INSUFFICIENT_SIZE =7

An input argument is not large enough.
NVML_ERROR_INSUFFICIENT_POWER =8

A device's external power cables are not properly attached.
NVML_ERROR_DRIVER_NOT_LOADED =9

NVIDIA driver is not loaded.
NVML_ERROR_TIMEOUT =10

User provided timeout passed.
NVML_ERROR_IRQ_ISSUE =11

NVIDIA Kernel detected an interrupt issue with a GPU.
NVML_ERROR_LIBRARY_NOT_FOUND =12

NVML Shared Library couldn't be found or loaded.
NVML_ERROR_FUNCTION_NOT_FOUND =13

Local version of NVML doesn't implement this function.
NVML_ERROR_CORRUPTED_INFOROM = 14

infoROM is corrupted
NVML_ERROR_GPU_IS_LOST =15

The GPU has fallen off the bus or has otherwise become inaccessible.
NVML_ERROR_UNKNOWN =999

An internal driver error occurred.

enum nvmlTemperatureSensors_t

Temperature sensors.

Values

NVML_TEMPERATURE_GPU =0
Temperature sensor for the GPU die.
NVML_TEMPERATURE_COUNT

www.nvidia.com

Modules

NVML TRM-06719-001 _vR331 | 15

Modules

#define NVML_DOUBLE_BIT_ECC
NVML_MEMORY_ERROR_TYPE_UNCORRECTED

Double bit ECC errors
Deprecated Mapped to NVML_MEMORY_ERROR_TYPE_UNCORRECTED

#define NVML_SINGLE_BIT_ECC
NVML_MEMORY_ERROR_TYPE_CORRECTED

Single bit ECC errors
Deprecated Mapped to NVML_MEMORY_ERROR_TYPE_CORRECTED

#define nvmlEccBitType_t nvmlMemoryErrorType_t

ECC bit types.
Deprecated See nvmIMemoryErrorType_t for a more flexible type

#define nvmlFlagDefault 0x00

Generic flag used to specify the default behavior of some functions. See description of
particular functions for details.

#define nvmlFlagForce 0x01

Generic flag used to force some behavior. See description of particular functions for
details.

4.3. Unit Structs

www.nvidia.com
NVML TRM-06719-001 _vR331 | 16

Modules

struct nvmlHwbcEntry_t
struct nvmlLedState_t
struct nvmlIPSUInfo_t

struct nvmlUnitFaninfo_t
struct nvmlUnitFanSpeeds_t
struct nvmlUnitinfo_t

enum nvmlFanState t

Fan state enum.

Values

NVML_FAN_NORMAL =0
Fan is working properly.

NVML_FAN_FAILED =1
Fan has failed.

enum nvmlLedColor_t

Led color enum.

Values

NVML_LED_COLOR_GREEN =0
GREEN, indicates good health.

NVML_LED_COLOR_AMBER =1
AMBER, indicates problem.

4.4. Accounting Statistics

Set of APIs designed to provide per process information about usage of GPU.

» All accounting statistics and accounting mode live in nvidia driver and reset to
default (Disabled) when driver unloads. It is advised to run with persistence mode
enabled.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 17

Modules

- » Enabling accounting mode has no negative impact on the GPU performance.

struct nvmlAccountingStats_t

nvmlReturn_t nvmlDeviceClearAccountingPids
(nvmlDevice_t device)

Parameters

device
The identifier of the target device

Returns

» NVML_SUCCESS if accounting information has been cleared

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ ARGUMENT if device are invalid

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation
» NVML_ERROR_UNKNOWN on any unexpected error

Description
Clears accounting information about all processes that have already terminated.

For Tesla and Quadro products from the Kepler family. Requires root/admin
permissions.

See nvmlDeviceGetAccountingMode See nvmlDeviceGetAccountingStats See
nvmlDeviceSetAccountingMode

nvmlReturn_t nvmlDeviceGetAccountingBufferSize
(nvmlDevice_t device, unsigned int *bufferSize)

Parameters

device
The identifier of the target device

bufferSize
Reference in which to provide the size (in number of elements) of the circular buffer
for accounting stats.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 18

Modules

Returns

» NVML_SUCCESS if buffer size was successfully retrieved

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or bufferSize is NULL

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature or
accounting mode is disabled

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Returns the number of processes that the circular buffer with accounting pids can hold.
For Tesla and Quadro products from the Kepler family.

This is the maximum number of processes that accounting information will be stored
for before information about oldest processes will get overwritten by information about
new processes.

See also:
nvmlDeviceGetAccountingStats

nvmlDeviceGetAccountingPids

nvmlReturn_t nvmlDeviceGetAccountingMode
(nvmlDevice_t device, nvmlEnableState_t *mode)

Parameters

device
The identifier of the target device
mode
Reference in which to return the current accounting mode

Returns

» NVML_SUCCESS if the mode has been successfully retrieved

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or mode are NULL

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Queries the state of per process accounting mode.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 19

Modules

For Tesla and Quadro products from the Kepler family.

See nvmlIDeviceGetAccountingStats for more details. See
nvmlDeviceSetAccountingMode

nvmlReturn_t nvmlDeviceGetAccountingPids
(nvmlDevice_t device, unsigned int *count, unsigned int
*pids)

Parameters

device
The identifier of the target device
count
Reference in which to provide the pids array size, and to return the number of
elements ready to be queried
pids
Reference in which to return list of process ids

Returns

» NVML_SUCCESS if pids were successfully retrieved

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or count is NULL

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature or
accounting mode is disabled

» NVML_ERROR_INSUFFICIENT_SIZE if count is too small (count is set to expected
value)

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Queries list of processes that can be queried for accounting stats.
For Tesla and Quadro products from the Kepler family.

To just query the number of processes ready to be queried, call this function with *count
=0 and pids=NULL. The return code will be NVML_ERROR_INSUFFICIENT_SIZE, or
NVML_SUCCESS if list is empty.

For more details see nvmlIDeviceGetAccountingStats.

In case of PID collision some processes might not be accessible before the circular
buffer is full.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 20

Modules

See also:

nvmlDeviceGetAccountingBufferSize

nvmlReturn_t nvmlDeviceGetAccountingStats
(nvmlDevice_t device, unsigned int pid,
nvmlAccountingStats_t *stats)

Parameters

device
The identifier of the target device
pid
Process Id of the target process to query stats for
stats
Reference in which to return the process's accounting stats

Returns

» NVML_SUCCESS if stats have been successfully retrieved

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or stats are NULL

» NVML_ERROR_NOT_FOUND if process stats were not found

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature or
accounting mode is disabled

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Queries process's accounting stats.
For Tesla and Quadro products from the Kepler family.

Accounting stats capture GPU utilization and other statistics across the lifetime of a
process. Accounting stats can be queried during life time of the process and after its
termination. Accounting stats are kept in a circular buffer, newly created processes
overwrite information about old processes.

See nvmlAccountingStats_t for description of each returned metric. List of processes that
can be queried can be retrieved from nvmlDeviceGetAccountingPids.

» Accounting Mode needs to be on. See nvmlDeviceGetAccountingMode.
» Only compute and graphics applications stats can be queried. Monitoring
applications stats can't be queried since they don't contribute to GPU utilization.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 21

Modules

» In case of pid collision stats of only the latest process (that terminated last) will
be reported

See also:

nvmlDeviceGetAccountingBufferSize

nvmlReturn_t nvmlDeviceSetAccountingMode
(nvmlDevice_t device, nvmlEnableState_t mode)

Parameters

device

The identifier of the target device
mode

The target accounting mode

Returns

» NVML_SUCCESS if the new mode has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device or mode are invalid

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Enables or disables per process accounting.

For Tesla and Quadro products from the Kepler family. Requires root/admin
permissions.

» This setting is not persistent and will default to disabled after driver unloads.
Enable persistence mode to be sure the setting doesn't switch off to disabled.

» Enabling accounting mode has no negative impact on the GPU performance.
» Disabling accounting clears all accounting pids information.

See nvmlDeviceGetAccountingMode See nvmlDeviceGetAccountingStats See
nvmlDeviceClearAccountingPids

www.nvidia.com
NVML TRM-06719-001 _vR331 | 22

Modules

4.5. Initialization and Cleanup

This chapter describes the methods that handle NVML initialization and cleanup. It
is the user's responsibility to call nvmlInit() before calling any other methods, and
nvmlShutdown() once NVML is no longer being used.

nvmlReturn_t nvmlinit (void)

Returns

» NVML_SUCCESS if NVML has been properly initialized
» NVML_ERROR_DRIVER_NOT_LOADED if NVIDIA driver is not running

» NVML_ERROR_NO_PERMISSION if NVML does not have permission to talk to the
driver

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Initialize NVML, but don't initialize any GPUs yet.

In NVML 5.319 new nvmlinit_v2 has replaced nvmllnit"_v1" (default in NVML 4.304 and
older) that did initialize all GPU devices in the system.

This allows NVML to communicate with a GPU when other GPUs in the system are
unstable or in a bad state. When using this API, GPUs are discovered and initialized in
nvmlDeviceGetHandleBy* functions instead.

To contrast nvmlinit_v2 with nvmlinit"_v1", NVML 4.304 nvmlInit"_v1" will fail when
any detected GPU is in a bad or unstable state.
For all products.

This method, should be called once before invoking any other methods in the library.
A reference count of the number of initializations is maintained. Shutdown only occurs
when the reference count reaches zero.

nvmlReturn_t nvmlShutdown (void)

Returns

» NVML_SUCCESS if NVML has been properly shut down
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

www.nvidia.com
NVML TRM-06719-001 _vR331 | 23

Modules

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Shut down NVML by releasing all GPU resources previously allocated with nvmlInit().
For all products.

This method should be called after NVML work is done, once for each call to nvmlIInit()
A reference count of the number of initializations is maintained. Shutdown only occurs
when the reference count reaches zero. For backwards compatibility, no error is reported
if nvmIShutdown() is called more times than nvmlInit().

4.6. Error reporting

This chapter describes helper functions for error reporting routines.

const DECLDIR char *nvmlErrorString (nvml(Return_t
result)

Parameters

result
NVML error code to convert

Returns

String representation of the error.

Description
Helper method for converting NVML error codes into readable strings.

For all products

4.7. Constants

#define NVML_DEVICE_INFOROM_VERSION_BUFFER_SIZE
16

Buffer size guaranteed to be large enough for nvmIDeviceGetInforomVersion and
nvmlDeviceGetInforomImageVersion

www.nvidia.com
NVML TRM-06719-001 _vR331 | 24

Modules

#define NVML_DEVICE_NAME_BUFFER_SIZE 64

Buffer size guaranteed to be large enough for nvmIDeviceGetName

#define NVML_DEVICE_SERIAL_BUFFER_SIZE 30

Buffer size guaranteed to be large enough for nvmlDeviceGetSerial

#define NVML_DEVICE_UUID_BUFFER_SIZE 80

Buffer size guaranteed to be large enough for nvmlIDeviceGetUUID

#define NVML_DEVICE_VBIOS_VERSION_BUFFER_SIZE 32

Buffer size guaranteed to be large enough for nvmlIDeviceGetVbiosVersion

#define NVML_SYSTEM_DRIVER_VERSION_BUFFER_SIZE
80

Buffer size guaranteed to be large enough for nvmISystemGetDriverVersion

#define NVML_SYSTEM_NVML_VERSION_BUFFER_SIZE 80

Buffer size guaranteed to be large enough for nvmISystemGetNVMLVersion

4.8. System Queries

This chapter describes the queries that NVML can perform against the local system.
These queries are not device-specific.

nvmlReturn_t nvmlSystemGetDriverVersion (char
*version, unsigned int length)

Parameters

version
Reference in which to return the version identifier
length
The maximum allowed length of the string returned in version

Returns

» NVML_SUCCESS if version has been set

www.nvidia.com
NVML TRM-06719-001 _vR331 | 25

Modules

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ ARGUMENT if version is NULL
» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

Description
Retrieves the version of the system's graphics driver.
For all products.

The version identifier is an alphanumeric string. It will not exceed
80 characters in length (including the NULL terminator). See
nvmlConstants:NVML_SYSTEM_DRIVER_VERSION_BUFFER_SIZE.

nvmlReturn_t nvmlSystemGetNVMLVersion (char
*version, unsigned int length)

Parameters

version
Reference in which to return the version identifier

length
The maximum allowed length of the string returned in version

Returns

» NVML_SUCCESS if version has been set
» NVML_ERROR_INVALID_ARGUMENT if version is NULL
» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

Description
Retrieves the version of the NVML library.
For all products.

The version identifier is an alphanumeric string. It will not exceed
80 characters in length (including the NULL terminator). See
nvmlConstants:NVML_SYSTEM_NVML_VERSION_BUFFER_SIZE.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 26

Modules

nvmlReturn_t nvmlSystemGetProcessName (unsigned int
pid, char *name, unsigned int length)

Parameters

pid
The identifier of the process

name

Reference in which to return the process name

length

The maximum allowed length of the string returned in name

Returns

>

NVML_SUCCESS if name has been set

NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

NVML_ERROR_INVALID ARGUMENT if name is NULL
NVML_ERROR_NOT_FOUND if process doesn't exists

NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform

this operation
NVML_ERROR_UNKNOWN on any unexpected error

Description

Gets name of the process with provided process id

For all products.

Returned process name is cropped to provided length. name string is encoded in ANSI.

4.9. Unit Queries

This chapter describes that queries that NVML can perform against each unit. For S-
class systems only. In each case the device is identified with an nvmlUnit_t handle. This
handle is obtained by calling nvmlUnitGetHandleByIndex().

www.nvidia.com
NVML

TRM-06719-001 _vR331 | 27

Modules

nvmlReturn_t nvmlSystemGetHicVersion (unsigned int
*hwbcCount, nvmlHwbcEntry_t *hwbcEntries)

Parameters

hwbcCount
Size of hwbcEntries array
hwbcEntries
Array holding information about hwbc

Returns

» NVML_SUCCESS if hwbcCount and hwbcEntries have been populated
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if either hwbcCount or hwbcEntries is
NULL

» NVML_ERROR_INSUFFICIENT_ SIZE if hwbcCount indicates that the hwbcEntries
array is too small

Description

Retrieves the IDs and firmware versions for any Host Interface Cards (HICs) in the
system.

For S-class products.

The hwbcCount argument is expected to be set to the size of the input hwbcEntries
array. The HIC must be connected to an S-class system for it to be reported by this
function.

nvmlReturn_t nvmlUnitGetCount (unsigned int
*unitCount)

Parameters

unitCount
Reference in which to return the number of units

Returns

» NVML_SUCCESS if unitCount has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if unitCount is NULL

» NVML_ERROR_UNKNOWN on any unexpected error

www.nvidia.com
NVML TRM-06719-001 _vR331 | 28

Modules

Description
Retrieves the number of units in the system.

For S-class products.

nvmlReturn_t nvmlUnitGetDevices (nvmlUnit_t unit,
unsigned int *deviceCount, nvmlDevice_t *devices)

Parameters

unit
The identifier of the target unit
deviceCount
Reference in which to provide the devices array size, and to return the number of
attached GPU devices
devices
Reference in which to return the references to the attached GPU devices

Returns

» NVML_SUCCESS if deviceCount and devices have been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INSUFFICIENT SIZE if deviceCount indicates that the devices
array is too small

» NVML_ERROR_INVALID_ ARGUMENT if unit is invalid, either of deviceCount or
devices is NULL

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the set of GPU devices that are attached to the specified unit.
For S-class products.

The deviceCount argument is expected to be set to the size of the input devices array.

nvmlReturn_t nvmlUnitGetFanSpeedinfo (nvmlUnit_t
unit, nvmlUnitFanSpeeds_t *fanSpeeds)

Parameters

unit
The identifier of the target unit

www.nvidia.com
NVML TRM-06719-001 _vR331 | 29

Modules

fanSpeeds
Reference in which to return the fan speed information

Returns

» NVML_SUCCESS if fanSpeeds has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if unit is invalid or fanSpeeds is NULL

» NVML_ERROR_NOT_SUPPORTED if this is not an S-class product

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the fan speed readings for the unit.
For S-class products.

See nvmlUnitFanSpeeds_t for details on available fan speed info.

nvmlReturn_t nvmlUnitGetHandleBylndex (unsigned int
index, nvmlUnit_t *unit)

Parameters

index

The index of the target unit, >= 0 and < unitCount
unit

Reference in which to return the unit handle

Returns

» NVML_SUCCESS if unit has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if index is invalid or unit is NULL

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Acquire the handle for a particular unit, based on its index.
For S-class products.

Valid indices are derived from the unitCount returned by nvmlUnitGetCount(). For
example, if unitCount is 2 the valid indices are 0 and 1, corresponding to UNIT 0 and
UNIT 1.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 30

Modules

The order in which NVML enumerates units has no guarantees of consistency between
reboots.

nvmlReturn_t nvmlUnitGetLedState (nvmlUnit_t unit,
nvmlLedState_t *state)

Parameters

unit
The identifier of the target unit
state
Reference in which to return the current LED state

Returns

» NVML_SUCCESS if state has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if unit is invalid or state is NULL

» NVML_ERROR_NOT_SUPPORTED if this is not an S-class product

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the LED state associated with this unit.
For S-class products.

See nvmlLedState_t for details on allowed states.

See also:

nvmlUnitSetLedState()

nvmlReturn_t nvmlUnitGetPsulnfo (nvmlUnit_t unit,
nvmlPSUInfo_t *psu)

Parameters
unit
The identifier of the target unit

psu
Reference in which to return the PSU information

www.nvidia.com
NVML TRM-06719-001 _vR331 | 31

Modules

Returns

» NVML_SUCCESS if psu has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if unit is invalid or psu is NULL

» NVML_ERROR_NOT_SUPPORTED if this is not an S-class product

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the PSU stats for the unit.
For S-class products.

See nvmIPSUInfo_t for details on available PSU info.

nvmlReturn_t nvmlUnitGetTemperature (nvmlUnit_t
unit, unsigned int type, unsigned int *temp)

Parameters
unit
The identifier of the target unit
type
The type of reading to take
temp
Reference in which to return the intake temperature

Returns

» NVML_SUCCESS if temp has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if unit or type is invalid or temp is NULL
» NVML_ERROR_NOT_SUPPORTED if this is not an S-class product

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the temperature readings for the unit, in degrees C.
For S-class products.

Depending on the product, readings may be available for intake (type=0), exhaust
(type=1) and board (type=2).

www.nvidia.com
NVML TRM-06719-001 _vR331 | 32

Modules

nvmlReturn_t nvmlUnitGetUnitIinfo (nvmlUnit_t unit,
nvmlUnitinfo_t *info)

Parameters
unit
The identifier of the target unit
info
Reference in which to return the unit information

Returns

» NVML_SUCCESS if info has been populated
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if unit is invalid or info is NULL

Description
Retrieves the static information associated with a unit.
For S-class products.

See nvmlUnitInfo_t for details on available unit info.

4.10. Device Queries

This chapter describes that queries that NVML can perform against each device. In
each case the device is identified with an nvmlDevice_t handle. This handle is obtained
by calling one of nvmlDeviceGetHandleByIndex(), nvmlDeviceGetHandleBySerial (),
nvmlDeviceGetHandleByPciBusld(). or nvmlDeviceGetHandleByUUID().

nvmlReturn_t nvmlDeviceGetAPIRestriction
(nvmlDevice_t device, nvmlRestrictedAPI_t apiType,
nvmlEnableState_t *isRestricted)

Parameters

device
The identifier of the target device

apiType
Target API type for this operation

www.nvidia.com
NVML TRM-06719-001 _vR331 | 33

Modules

isRestricted
Reference in which to return the current restriction NVML_FEATURE_ENABLED
indicates that the API is root-only NVML_FEATURE_DISABLED indicates that the

API is accessible to all users

Returns

» NVML_SUCCESS if isRestricted has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, apiType incorrect or
isRestricted is NULL

» NVML_ERROR_NOT_SUPPORTED if this query is not supported by the device

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the root/admin permissions on the target API. See nvmIRestricted API_t for
the list of supported APIs. If an AP is restricted only root users can call that API. See
nvmlDeviceGetAPIRestriction to change current permissions.

For Tesla and Quadro &tm products from the Kepler+ family.

See also:

nvmlRestricted API_t

nvmlReturn_t nvmlDeviceGetApplicationsClock
(nvmlDevice_t device, nvmlClockType_t clockType,
unsigned int *clockMHz)

Parameters

device

The identifier of the target device
clockType

Identify which clock domain to query
clockMHz

Reference in which to return the clock in MHz

Returns

» NVML_SUCCESS if clockMHz has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

www.nvidia.com
NVML TRM-06719-001 _vR331 | 34

Modules

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or clockMHz is NULL
or clockType is invalid
» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current setting of a clock that applications will use unless an overspec
situation occurs. Can be changed using nvmlDeviceSetApplicationsClocks.

For Tesla products from the Kepler family.

nvmlReturn_t nvmlDeviceGetBAR1Memoryinfo
(nvmlDevice_t device, nvmIBART1Memory_t
*bartMemory)

Parameters

device
The identifier of the target device
barlMemory
Reference in which BAR1 memory information is returned.

Returns

» NVML_SUCCESS if BAR1 memory is successfully retrieved

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, barlMemory is NULL

» NVML_ERROR_NOT_SUPPORTED if this query is not supported by the device

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Gets Total, Available and Used size of BAR1 memory.

BARL1 is used to map the FB (device memory) so that it can be directly accessed by the
CPU or by 3rd party devices (peer-to-peer on the PCIE bus).

For Tesla and Quadro &tm products from the Kepler+ family.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 35

Modules

nvmlReturn_t nvmlDeviceGetBridgeChipinfo
(nvmlDevice_t device, nvmlBridgeChipHierarchy_t
*bridgeHierarchy)

Parameters

device

The identifier of the target device
bridgeHierarchy

Reference to the returned bridge chip Hierarchy

Returns

» NVML_SUCCESS if bridge chip exists

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, or bridgeInfo is NULL

» NVML_ERROR_NOT_SUPPORTED if bridge chip not supported on the device

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Get Bridge Chip Information for all the bridge chips on the board.
For all fully supported multi-GPU products

nvmlReturn_t nvmlDeviceGetClockinfo (nvmlDevice_t
device, nvmlClockType_t type, unsigned int *clock)

Parameters

device
The identifier of the target device
type
Identify which clock domain to query
clock
Reference in which to return the clock speed in MHz

Returns

» NVML_SUCCESS if clock has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

www.nvidia.com
NVML TRM-06719-001 _vR331 | 36

Modules

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or clock is NULL

» NVML_ERROR_NOT_SUPPORTED if the device cannot report the specified clock

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the current clock speeds for the device.
For Tesla and Quadro products from the Fermi and Kepler families.

See nvmIClockType_t for details on available clock information.

nvmlReturn_t nvmlDeviceGetComputeMode
(nvmlDevice_t device, nvmlComputeMode_t *mode)

Parameters

device
The identifier of the target device
mode
Reference in which to return the current compute mode

Returns

» NVML_SUCCESS if mode has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or mode is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the current compute mode for the device.
For all CUDA-capable products.

See nvmlComputeMode_t for details on allowed compute modes.

See also:

nvmlDeviceSetComputeMode()

www.nvidia.com
NVML TRM-06719-001 _vR331 | 37

Modules

nvmlReturn_t nvmlDeviceGetComputeRunningProcesses
(nvmlDevice_t device, unsigned int *infoCount,
nvmlProcessinfo_t *infos)

Parameters

device
The identifier of the target device
infoCount
Reference in which to provide the infos array size, and to return the number of
returned elements
infos
Reference in which to return the process information

Returns

» NVML_SUCCESS if infoCount and infos have been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INSUFFICIENT_SIZE if infoCount indicates that the infos array is
too small infoCount will contain minimal amount of space necessary for the call to
complete

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, either of infoCount or
infos is NULL

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Get information about processes with a compute context on a device
For Tesla and Quadro products from the Fermi and Kepler families.

This function returns information only about compute running processes (e.g. CUDA
application which have active context). Any graphics applications (e.g. using OpenGL,
DirectX) won't be listed by this function.

To query the current number of running compute processes, call this function with
*infoCount = 0. The return code will be NVML_ERROR_INSUFFICIENT _SIZE, or
NVML_SUCCESS if none are running. For this call infos is allowed to be NULL.

Keep in mind that information returned by this call is dynamic and the number of
elements might change in time. Allocate more space for infos table in case new compute
processes are spawned.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 38

Modules

See also:

nvmlSystemGetProcessName

nvmlReturn_t nvmlDeviceGetCount (unsigned int
*deviceCount)

Parameters

deviceCount
Reference in which to return the number of accessible devices

Returns

» NVML_SUCCESS if deviceCount has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if deviceCount is NULL

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the number of compute devices in the system. A compute device is a single
GPU.

For all products.

Note: New nvmlDeviceGetCount_v2 (default in NVML 5.319) returns count

of all devices in the system even if nvmlDeviceGetHandleByIndex_v2 returns
NVML_ERROR_NO_PERMISSION for such device. Update your code to handle this
error, or use NVML 4.304 or older nvml header file. For backward binary compatibility
reasons _v1 version of the API is still present in the shared library. Old _v1 version of
nvmlDeviceGetCount doesn't count devices that NVML has no permission to talk to.

nvmlReturn_t
nvmlDeviceGetCurrentClocksThrottleReasons
(nvmlDevice_t device, unsigned long long
*clocksThrottleReasons)

Parameters

device
The identifier of the target device
clocksThrottleReasons
Reference in which to return bitmask of active clocks throttle reasons

www.nvidia.com
NVML TRM-06719-001 _vR331 | 39

Modules

Returns

» NVML_SUCCESS if clocksThrottleReasons has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or
clocksThrottleReasons is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves current clocks throttling reasons.

For Tesla products from Kepler family.

More than one bit can be enabled at the same time. Multiple reasons can be affecting
clocks at once.

See also:

NvmlClocksThrottleReasons

nvmlDeviceGetSupportedClocksThrottleReasons

nvmlReturn_t nvmlDeviceGetCurrPcieLinkGeneration
(nvmlDevice_t device, unsigned int *currLinkGen)

Parameters

device
The identifier of the target device
currLinkGen
Reference in which to return the current PCle link generation

Returns

» NVML_SUCCESS if currLinkGen has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or currLinkGen is null
» NVML_ERROR_NOT_SUPPORTED if PCle link information is not available

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

www.nvidia.com
NVML TRM-06719-001 _vR331 | 40

Modules

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current PCle link generation

For Tesla and Quadro products from the Fermi and Kepler families.

nvmlReturn_t nvmlDeviceGetCurrPcieLinkWidth
(nvmlDevice_t device, unsigned int *currLinkWidth)

Parameters

device
The identifier of the target device
currLinkWidth
Reference in which to return the current PCle link generation

Returns

» NVML_SUCCESS if currLinkWidth has been populated
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID ARGUMENT if device is invalid or currLinkWidth is
null

» NVML_ERROR_NOT_SUPPORTED if PCle link information is not available

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current PCle link width

For Tesla and Quadro products from the Fermi and Kepler families.

nvmlReturn_t nvmlDeviceGetDefaultApplicationsClock
(nvmlDevice_t device, nvmlClockType_t clockType,
unsigned int *clockMHz)

Parameters

device
The identifier of the target device

www.nvidia.com
NVML TRM-06719-001 _vR331 | 41

Modules

clockType
Identify which clock domain to query
clockMHz
Reference in which to return the default clock in MHz

Returns
» NVML_SUCCESS if clockMHz has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID ARGUMENT if device is invalid or clockMHz is NULL

or clockType is invalid
» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the default applications clock that GPU boots with or defaults to after
nvmlDeviceResetApplicationsClocks call.

For Tesla products from the Kepler family.

See also:

nvmlDeviceGetApplicationsClock

nvmlReturn_t nvmlDeviceGetDetailedEccErrors
(nvmlDevice_t device, nvmlMemoryErrorType_t
errorType, nvmlEccCounterType_t counterType,
nvmlEccErrorCounts_t *eccCounts)

Parameters

device
The identifier of the target device
errorType
Flag that specifies the type of the errors.
counterType
Flag that specifies the counter-type of the errors.
eccCounts
Reference in which to return the specified ECC errors

www.nvidia.com

NVML TRM-06719-001 _vR331 | 42

Modules

Returns

» NVML_SUCCESS if eccCounts has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device, errorType or counterType is
invalid, or eccCounts is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the detailed ECC error counts for the device.

Deprecated This API supports only a fixed set of ECC error locations On different GPU
architectures different locations are supported See nvmlIDeviceGetMemoryErrorCounter

For Tesla and Quadro products from the Fermi and Kepler families. Requires
NVML_INFOROM_ECC version 2.0 or higher to report aggregate location-based ECC
counts. Requires NVML_INFOROM_ECC version 1.0 or higher to report all other ECC
counts. Requires ECC Mode to be enabled.

Detailed errors provide separate ECC counts for specific parts of the memory system.

Reports zero for unsupported ECC error counters when a subset of ECC error counters
are supported.

See nvmIMemoryErrorType_t for a description of available bit types. See
nvmlEccCounterType_t for a description of available counter types. See
nvmlEccErrorCounts_t for a description of provided detailed ECC counts.

See also:

nvmlDeviceClearEccErrorCounts()

nvmlReturn_t nvmlDeviceGetDisplayActive
(nvmlDevice_t device, nvmlEnableState_t *isActive)

Parameters

device
The identifier of the target device
isActive
Reference in which to return the display active state

www.nvidia.com
NVML TRM-06719-001 _vR331 | 43

Modules

Returns

» NVML_SUCCESS if isActive has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or isActive is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the display active state for the device.
For Tesla and Quadro products from the Fermi and Kepler families.

This method indicates whether a display is initialized on the device. For example
whether X Server is attached to this device and has allocated memory for the screen.

Display can be active even when no monitor is physically attached.

See nvmlEnableState_t for details on allowed modes.

nvmlReturn_t nvmlDeviceGetDisplayMode (nvmlDevice_t
device, nvmlEnableState_t *display)

Parameters

device
The identifier of the target device
display
Reference in which to return the display mode

Returns

» NVML_SUCCESS if display has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or display is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the display mode for the device.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 44

Modules

For Tesla and Quadro products from the Fermi and Kepler families.

This method indicates whether a physical display (e.g. monitor) is currently connected
to any of the device's connectors.

See nvmlEnableState_t for details on allowed modes.

nvmlReturn_t nvmlDeviceGetDriverModel (nvmlDevice_t
device, nvmlDriverModel_t *current, nvmlDriverModel_t
*pending)

Parameters

device

The identifier of the target device
current

Reference in which to return the current driver model
pending

Reference in which to return the pending driver model

Returns

» NVML_SUCCESS if either current and/or pending have been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID ARGUMENT if device is invalid or both current and
pending are NULL

» NVML_ERROR_NOT_SUPPORTED if the platform is not windows

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current and pending driver model for the device.
For Tesla and Quadro products from the Fermi and Kepler families. For windows only.

On Windows platforms the device driver can run in either WDDM or WDM (TCC)
mode. If a display is attached to the device it must run in WDDM mode. TCC mode is
preferred if a display is not attached.

See nvmlDriverModel t for details on available driver models.
See also:

nvmlDeviceSetDriverModel()

www.nvidia.com
NVML TRM-06719-001 _vR331 | 45

Modules

nvmlReturn_t nvmlDeviceGetEccMode (nvmlDevice_t
device, nvmlEnableState_t *current, nvmlEnableState_t
*pending)

Parameters

device

The identifier of the target device
current

Reference in which to return the current ECC mode
pending

Reference in which to return the pending ECC mode

Returns

» NVML_SUCCESS if current and pending have been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or either current or
pending is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current and pending ECC modes for the device.

For Tesla and Quadro products from the Fermi and Kepler families. Requires
NVML_INFOROM_ECC version 1.0 or higher.

Changing ECC modes requires a reboot. The "pending" ECC mode refers to the target
mode following the next reboot.

See nvmlEnableState_t for details on allowed modes.

See also:

nvmlDeviceSetEccMode()

www.nvidia.com
NVML TRM-06719-001 _vR331 | 46

Modules

nvmlReturn_t nvmlDeviceGetEnforcedPowerLimit
(nvmlDevice_t device, unsigned int *limit)

Parameters

device
The device to communicate with
limit
Reference in which to return the power management limit in milliwatts

Returns

» NVML_SUCCESS if limit has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or limit is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Get the effective power limit that the driver enforces after taking into account all limiters

Note: This can be different from the nvmIDeviceGetPowerManagementLimit if other
limits are set elsewhere This includes the out of band power limit interface

nvmlReturn_t nvmlDeviceGetFanSpeed (nvmlDevice_t
device, unsigned int *speed)

Parameters

device
The identifier of the target device
speed
Reference in which to return the fan speed percentage

Returns

» NVML_SUCCESS if speed has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or speed is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not have a fan

www.nvidia.com
NVML TRM-06719-001 _vR331 | 47

Modules

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the intended operating speed of the device's fan.

Note: The reported speed is the intended fan speed. If the fan is physically blocked and
unable to spin, the output will not match the actual fan speed.

For all discrete products with dedicated fans.

The fan speed is expressed as a percent of the maximum, i.e. full speed is 100%.

nvmlReturn_t nvmlDeviceGetGpuOperationMode
(nvmlDevice_t device, nvmlGpuOperationMode_t
*current, nvmlGpuOperationMode_t *pending)

Parameters

device

The identifier of the target device
current

Reference in which to return the current GOM
pending

Reference in which to return the pending GOM

Returns

» NVML_SUCCESS if mode has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or current or pending is
NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current GOM and pending GOM (the one that GPU will switch to after
reboot).

For GK110 M-class and X-class Tesla products from the Kepler family. Not supported on
Quadro and Tesla C-class products.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 48

Modules

See also:
nvmlGpuOperationMode_t

nvmlDeviceSetGpuOperationMode

nvmlReturn_t nvmlDeviceGetHandleBylndex (unsigned
int index, nvmlDevice_t *device)

Parameters

index

The index of the target GPU, >= 0 and < accessibleDevices
device

Reference in which to return the device handle

Returns

» NVML_SUCCESS if device has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if index is invalid or device is NULL

» NVML_ERROR_INSUFFICIENT_POWER if any attached devices have improperly
attached external power cables

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to talk to this
device

» NVML_ERROR_IRQ_ISSUE if NVIDIA kernel detected an interrupt issue with the
attached GPUs

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Acquire the handle for a particular device, based on its index.
For all products.

Valid indices are derived from the accessibleDevices count returned by
nvmlDeviceGetCount(). For example, if accessibleDevices is 2 the valid indices are 0 and
1, corresponding to GPU 0 and GPU 1.

The order in which NVML enumerates devices has no guarantees of consistency
between reboots. For that reason it is recommended that devices be looked

up by their PCI ids or UUID. See nvmIDeviceGetHandleByUUID() and
nvmlDeviceGetHandleByPciBusId().

www.nvidia.com
NVML TRM-06719-001 _vR331 | 49

Modules

Note: The NVML index may not correlate with other APIs, such as the CUDA device
index.

Starting from NVML 5, this API causes NVML to initialize the target GPU NVML may
initialize additional GPUs if:

» The target GPU is an SLI slave

Note: New nvmlDeviceGetCount_v2 (default in NVML 5.319) returns count

of all devices in the system even if nvmlDeviceGetHandleByIndex_v2 returns
NVML_ERROR_NO_PERMISSION for such device. Update your code to handle this
error, or use NVML 4.304 or older nvml header file. For backward binary compatibility
reasons _v1 version of the API is still present in the shared library. Old _v1 version of
nvmlDeviceGetCount doesn't count devices that NVML has no permission to talk to.

This means that nvmlDeviceGetHandleByIndex_v2 and _v1 can return different devices
for the same index. If you don't touch macros that map old (_v1) versions to _v2 versions
at the top of the file you don't need to worry about that.

See also:
nvmlDeviceGetIndex

nvmlDeviceGetCount

nvmlReturn_t nvmlDeviceGetHandleByPciBusld (const
char *pciBusld, nvmlDevice_t *device)

Parameters

pciBusld
The PCI bus id of the target GPU
device
Reference in which to return the device handle

Returns

» NVML_SUCCESS if device has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if pciBusld is invalid or device is NULL

» NVML_ERROR_NOT_FOUND if pciBusld does not match a valid device on the
system

» NVML_ERROR_INSUFFICIENT_POWER if the attached device has improperly
attached external power cables

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to talk to this
device

www.nvidia.com
NVML TRM-06719-001 _vR331 | 50

Modules

» NVML_ERROR_IRQ_ISSUE if NVIDIA kernel detected an interrupt issue with the
attached GPUs

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Acquire the handle for a particular device, based on its PCI bus id.
For all products.
This value corresponds to the nvmlPcilnfo_t::busld returned by nvmlDeviceGetPcilnfo().

Starting from NVML 5, this API causes NVML to initialize the target GPU NVML may
initialize additional GPUs if:

» The target GPU is an SLI slave

NVML 4.304 and older version of nvmlDeviceGetHandleByPciBusld"_v1" returns
NVML_ERROR_NOT_FOUND instead of NVML_ERROR_NO_PERMISSION.

nvmlReturn_t nvmlDeviceGetHandleBySerial (const char
*serial, nvmlDevice_t *device)

Parameters

serial

The board serial number of the target GPU
device

Reference in which to return the device handle

Returns

» NVML_SUCCESS if device has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ ARGUMENT if serial is invalid, device is NULL or more
than one device has the same serial (dual GPU boards)

» NVML_ERROR_NOT_FOUND if serial does not match a valid device on the system

» NVML_ERROR_INSUFFICIENT_POWER if any attached devices have improperly
attached external power cables

» NVML_ERROR_IRQ_ISSUE if NVIDIA kernel detected an interrupt issue with the
attached GPUs

www.nvidia.com
NVML TRM-06719-001 _vR331 | 51

Modules

» NVML_ERROR_GPU_IS_LOST if any GPU has fallen off the bus or is otherwise
inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Acquire the handle for a particular device, based on its board serial number.

For all products.

This number corresponds to the value printed directly on the board, and to the value

returned by nvmIDeviceGetSerial().

Deprecated Since more than one GPU can exist on a single board this function is
deprecated in favor of nvmlDeviceGetHandleByUUID. For dual GPU boards this
function will return NVML_ERROR_INVALID_ARGUMENT.

Starting from NVML 5, this API causes NVML to initialize the target GPU NVML may
initialize additional GPUs as it searches for the target GPU

See also:
nvmlDeviceGetSerial

nvmlDeviceGetHandleByUUID

nvmlReturn_t nvmlDeviceGetHandleByUUID (const char
*uuid, nvmlDevice_t *device)

Parameters
uuid
The UUID of the target GPU

device
Reference in which to return the device handle

Returns

» NVML_SUCCESS if device has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if uuid is invalid or device is null

» NVML_ERROR_NOT_FOUND if uuid does not match a valid device on the system

» NVML_ERROR_INSUFFICIENT_POWER if any attached devices have improperly
attached external power cables

» NVML_ERROR_IRQ_ISSUE if NVIDIA kernel detected an interrupt issue with the
attached GPUs

www.nvidia.com
NVML TRM-06719-001 _vR331 | 52

Modules

» NVML_ERROR_GPU_IS_LOST if any GPU has fallen off the bus or is otherwise
inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Acquire the handle for a particular device, based on its globally unique immutable
UUID associated with each device.

For all products.

Starting from NVML 5, this API causes NVML to initialize the target GPU NVML may
initialize additional GPUs as it searches for the target GPU

See also:

nvmlDeviceGetUUID

nvmlReturn_t nvmlDeviceGetindex (nvmlDevice_t
device, unsigned int *index)

Parameters

device
The identifier of the target device
index
Reference in which to return the NVML index of the device

Returns

» NVML_SUCCESS if index has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, or index is NULL

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the NVML index of this device.
For all products.

Valid indices are derived from the accessibleDevices count returned by
nvmlDeviceGetCount(). For example, if accessibleDevices is 2 the valid indices are 0 and
1, corresponding to GPU 0 and GPU 1.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 53

Modules

The order in which NVML enumerates devices has no guarantees of consistency
between reboots. For that reason it is recommended that devices be looked up
by their PCI ids or GPU UUID. See nvmlDeviceGetHandleByPciBusld() and
nvmlDeviceGetHandleByUUID().

Note: The NVML index may not correlate with other APIs, such as the CUDA device
index.

See also:
nvmlDeviceGetHandleByIndex()

nvmlDeviceGetCount()

nvmlReturn_t
nvmlDeviceGetinforomConfigurationChecksum
(nvmlDevice_t device, unsigned int *checksum)

Parameters

device
The identifier of the target device
checksum
Reference in which to return the infoROM configuration checksum

Returns

» NVML_SUCCESS if checksum has been set

» NVML_ERROR_CORRUPTED_INFOROM if the device's checksum couldn't be
retrieved due to infoROM corruption

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if checksum is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the checksum of the configuration stored in the device's infoROM.
For Tesla and Quadro products from the Fermi and Kepler families.

Can be used to make sure that two GPUs have the exact same configuration. Current
checksum takes into account configuration stored in PWR and ECC infoROM objects.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 54

Modules

Checksum can change between driver releases or when user changes configuration (e.g.
disable/enable ECC)

nvmlReturn_t nvmlDeviceGetinforomImageVersion
(nvmlDevice_t device, char *version, unsigned int
length)

Parameters

device

The identifier of the target device
version

Reference in which to return the infoROM image version
length

The maximum allowed length of the string returned in version

Returns

» NVML_SUCCESS if version has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if version is NULL

» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

» NVML_ERROR_NOT_SUPPORTED if the device does not have an infoROM

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the global infoROM image version
For Tesla and Quadro products from the Kepler family.

Image version just like VBIOS version uniquely describes the exact version
of the infoROM flashed on the board in contrast to infoROM object version
which is only an indicator of supported features. Version string will not
exceed 16 characters in length (including the NULL terminator). See
nvmlConstants::NVML_DEVICE_INFOROM_VERSION_BUFFER_SIZE.

See also:

nvmlDeviceGetInforom Version

www.nvidia.com
NVML TRM-06719-001 _vR331 | 55

Modules

nvmlReturn_t nvmlDeviceGetinforomVersion
(nvmlDevice_t device, nvmlinforomObject_t object,
char *version, unsigned int length)

Parameters

device
The identifier of the target device
object
The target infoROM object
version
Reference in which to return the infoROM version
length
The maximum allowed length of the string returned in version

Returns

» NVML_SUCCESS if version has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if version is NULL

» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

» NVML_ERROR_NOT_SUPPORTED if the device does not have an infoROM

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the version information for the device's infoROM object.
For Tesla and Quadro products from the Fermi and Kepler families.

Fermi and higher parts have non-volatile on-board memory for persisting
device info, such as aggregate ECC counts. The version of the data
structures in this memory may change from time to time. It will not
exceed 16 characters in length (including the NULL terminator). See
nvmlConstants::NVML_DEVICE_INFOROM_VERSION_BUFFER_SIZE.

See nvmlInforomObject_t for details on the available infoROM objects.

See also:

nvmlDeviceGetInforomImageVersion

www.nvidia.com
NVML TRM-06719-001 _vR331 | 56

Modules

nvmlReturn_t nvmlDeviceGetMaxClockinfo
(nvmlDevice_t device, nvmlClockType_t type, unsigned
int *clock)

Parameters

device
The identifier of the target device

type
Identify which clock domain to query
clock
Reference in which to return the clock speed in MHz

Returns

» NVML_SUCCESS if clock has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or clock is NULL

» NVML_ERROR_NOT_SUPPORTED if the device cannot report the specified clock

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the maximum clock speeds for the device.
For Tesla and Quadro products from the Fermi and Kepler families.

See nvmlIClockType_t for details on available clock information.

On GPUs from Fermi family current PO clocks (reported by nvmlDeviceGetClockinfo)
can differ from max clocks by few MHz.

nvmlReturn_t nvmlDeviceGetMaxPcieLinkGeneration
(nvmlDevice_t device, unsigned int *maxLinkGen)

Parameters

device
The identifier of the target device

www.nvidia.com
NVML TRM-06719-001 _vR331 | 57

Modules

maxLinkGen
Reference in which to return the max PCle link generation

Returns

» NVML_SUCCESS if maxLinkGen has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or maxLinkGen is null
» NVML_ERROR_NOT_SUPPORTED if PCle link information is not available

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the maximum PCle link generation possible with this device and system

LE. for a generation 2 PCle device attached to a generation 1 PCle bus the max link
generation this function will report is generation 1.

For Tesla and Quadro products from the Fermi and Kepler families.

nvmlReturn_t nvmlDeviceGetMaxPcieLinkWidth
(nvmlDevice_t device, unsigned int *maxLinkWidth)

Parameters

device
The identifier of the target device
maxLinkWidth

Reference in which to return the max PCle link generation

Returns

» NVML_SUCCESS if maxLinkWidth has been populated
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR _INVALID ARGUMENT if device is invalid or maxLinkWidth is
null

» NVML_ERROR_NOT_SUPPORTED if PCle link information is not available

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

www.nvidia.com
NVML TRM-06719-001 _vR331 | 58

Modules

Description

Retrieves the maximum PCle link width possible with this device and system

LE. for a device with a 16x PCle bus width attached to a 8x PCle system bus this function
will report a max link width of 8.

For Tesla and Quadro products from the Fermi and Kepler families.

nvmlReturn_t nvmlDeviceGetMemoryErrorCounter
(nvmlDevice_t device, nvmlMemoryErrorType_t
errorType, nvmlEccCounterType_t counterType,
nvmlMemoryLocation_t locationType, unsigned long long
*count)

Parameters

device

The identifier of the target device
errorType

Flag that specifies the type of error.
counterType

Flag that specifies the counter-type of the errors.
locationType

Specifies the location of the counter.
count

Reference in which to return the ECC counter

Returns

» NVML_SUCCESS if count has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device, bitTyp,e counterType or
locationType is invalid, or count is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support ECC error
reporting in the specified memory

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the requested memory error counter for the device.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 59

Modules

For Tesla and Quadro products from the Fermi family. Requires
NVML_INFOROM_ECC version 2.0 or higher to report aggregate location-based
memory error counts. Requires NVML_INFOROM_ECC version 1.0 or higher to report
all other memory error counts.

For all Tesla and Quadro products from the Kepler family.
Requires ECC Mode to be enabled.

See nvmIMemoryErrorType_t for a description of available memory error types.
See nvmlEccCounterType_t for a description of available counter types. See
nvmlIMemoryLocation_t for a description of available counter locations.

nvmlReturn_t nvmlDeviceGetMemorylnfo (nvmlDevice_t
device, nvmlMemory_t *memory)

Parameters

device
The identifier of the target device
memory
Reference in which to return the memory information

Returns

» NVML_SUCCESS if memory has been populated
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or memory is NULL

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the amount of used, free and total memory available on the device, in bytes.
For all products.

Enabling ECC reduces the amount of total available memory, due to the extra required
parity bits. Under WDDM most device memory is allocated and managed on startup by
Windows.

Under Linux and Windows TCC, the reported amount of used memory is equal to the
sum of memory allocated by all active channels on the device.

See nvmIMemory_t for details on available memory info.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 60

Modules

nvmlReturn_t nvmlDeviceGetMinorNumber
(nvmlDevice_t device, unsigned int *minorNumber)

Parameters

device
The identifier of the target device
minorNumber
Reference in which to return the minor number for the device

Returns

» NVML_SUCCESS if the minor number is successfully retrieved

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or minorNumber is
NULL

» NVML_ERROR_NOT_SUPPORTED if this query is not supported by the device

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves minor number for the device. The minor number for the device is such that the
Nvidia device node file for each GPU will have the form /dev/nvidia[minor number].

For all the GPUs. Supported only for Linux

nvmlReturn_t nvmlDeviceGetName (nvmlDevice_t
device, char *name, unsigned int length)

Parameters

device
The identifier of the target device
name
Reference in which to return the product name
length
The maximum allowed length of the string returned in name

Returns

» NVML_SUCCESS if name has been set

www.nvidia.com
NVML TRM-06719-001 _vR331 | 61

Modules

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID ARGUMENT if device is invalid, or name is NULL

» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the name of this device.
For all products.

The name is an alphanumeric string that denotes a particular product, e.g. Tesla
C2070. It will not exceed 64 characters in length (including the NULL terminator). See
nvmlConstants:NVML_DEVICE_NAME_BUFFER_SIZE.

nvmlReturn_t nvmlDeviceGetPcilnfo (nvmlDevice_t
device, nvmlPcilnfo_t *pci)

Parameters

device
The identifier of the target device

pci
Reference in which to return the PCI info
Returns

» NVML_SUCCESS if pci has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or pci is NULL

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the PCI attributes of this device.
For all products.

See nvmlPcilnfo_t for details on the available PCI info.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 62

Modules

nvmlReturn_t nvmlDeviceGetPerformanceState
(nvmlDevice_t device, nvmlPstates_t *pState)

Parameters

device
The identifier of the target device
pState
Reference in which to return the performance state reading

Returns

» NVML_SUCCESS if pState has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or pState is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the current performance state for the device.
For Tesla and Quadro products from the Fermi and Kepler families.

See nvmlPstates_t for details on allowed performance states.

nvmlReturn_t nvmlDeviceGetPersistenceMode
(nvmlDevice_t device, nvmlEnableState_t *mode)

Parameters

device
The identifier of the target device
mode
Reference in which to return the current driver persistence mode

Returns

» NVML_SUCCESS if mode has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or mode is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

www.nvidia.com
NVML TRM-06719-001 _vR331 | 63

Modules

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the persistence mode associated with this device.
For all CUDA-capable products. For Linux only.

When driver persistence mode is enabled the driver software state is not torn down
when the last client disconnects. By default this feature is disabled.

See nvmlEnableState_t for details on allowed modes.

See also:

nvmlDeviceSetPersistenceMode()

nvmlReturn_t
nvmlDeviceGetPowerManagementDefaultLimit
(nvmlDevice_t device, unsigned int *defaultLimit)

Parameters

device
The identifier of the target device
defaultLimit
Reference in which to return the default power management limit in milliwatts

Returns

» NVML_SUCCESS if defaultLimit has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or defaultLimit is
NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves default power management limit on this device, in milliwatts. Default power
management limit is a power management limit that the device boots with.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 64

Modules

For Tesla and Quadro products from the Kepler family.

nvmlReturn_t nvmlDeviceGetPowerManagementLimit
(nvmlDevice_t device, unsigned int *limit)

Parameters

device
The identifier of the target device
limit
Reference in which to return the power management limit in milliwatts

Returns

» NVML_SUCCESS if limit has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or limit is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the power management limit associated with this device.
For "GF11x" Tesla and Quadro products from the Fermi family.

» Requires NVML_INFOROM_POWER version 3.0 or higher.
For Tesla and Quadro products from the Kepler family.

» Does not require NVML_INFOROM_POWER object.

The power limit defines the upper boundary for the card's power draw. If the card's total
power draw reaches this limit the power management algorithm kicks in.

This reading is only available if power management mode is supported. See
nvmlDeviceGetPowerManagementMode.

nvmlReturn_t
nvmlDeviceGetPowerManagementLimitConstraints

www.nvidia.com
NVML TRM-06719-001 _vR331 | 65

Modules

(nvmlDevice_t device, unsigned int *minLimit, unsigned
int *maxLimit)

Parameters

device

The identifier of the target device
minLimit

Reference in which to return the minimum power management limit in milliwatts
maxLimit

Reference in which to return the maximum power management limit in milliwatts

Returns

» NVML_SUCCESS if minLimit and maxLimit have been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID ARGUMENT if device is invalid or minLimit or
maxLimit is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves information about possible values of power management limits on this device.

For Tesla and Quadro products from the Kepler family.

See also:

nvmlDeviceSetPowerManagementLimit

nvmlReturn_t nvmlDeviceGetPowerManagementMode
(nvmlDevice_t device, nvmlEnableState_t *mode)

Parameters

device
The identifier of the target device
mode
Reference in which to return the current power management mode

www.nvidia.com
NVML TRM-06719-001 _vR331 | 66

Modules

Returns

» NVML_SUCCESS if mode has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ ARGUMENT if device is invalid or mode is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the power management mode associated with this device.
For "GF11x" Tesla and Quadro products from the Fermi family.

» Requires NVML_INFOROM_POWER version 3.0 or higher.
For Tesla and Quadro products from the Kepler family.

» Does not require NVML_INFOROM_POWER object.

This flag indicates whether any power management algorithm is currently active on the
device. An enabled state does not necessarily mean the device is being actively throttled
-- only that that the driver will do so if the appropriate conditions are met.

See nvmlEnableState_t for details on allowed modes.

nvmlReturn_t nvmlDeviceGetPowerState (nvmlDevice_t
device, nvmlPstates_t *pState)

Parameters

device
The identifier of the target device
pState
Reference in which to return the performance state reading

Returns

» NVML_SUCCESS if pState has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or pState is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

www.nvidia.com
NVML TRM-06719-001 _vR331 | 67

Modules

Description

Deprecated: Use nvmlDeviceGetPerformanceState. This function exposes an incorrect
generalization.

Retrieve the current performance state for the device.
For Tesla and Quadro products from the Fermi and Kepler families.

See nvmlPstates_t for details on allowed performance states.

nvmlReturn_t nvmlDeviceGetPowerUsage (nvmlDevice_t
device, unsigned int *power)

Parameters

device
The identifier of the target device
power
Reference in which to return the power usage information

Returns

» NVML_SUCCESS if power has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or power is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support power readings

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves power usage for this GPU in milliwatts and its associated circuitry (e.g.
memory)

For "GF11x" Tesla and Quadro products from the Fermi family.
» Requires NVML_INFOROM_POWER version 3.0 or higher.
For Tesla and Quadro products from the Kepler family.

» Does not require NVML_INFOROM_POWER object.

On Fermi and Kepler GPUs the reading is accurate to within +/- 5% of current power
draw.

It is only available if power management mode is supported. See
nvmlDeviceGetPowerManagementMode.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 68

Modules

nvmlReturn_t nvmlDeviceGetRetiredPages
(nvmlDevice_t device, nvmlPageRetirementCause_t
cause, unsigned int *pageCount, unsigned long long
*addresses)

Parameters

device
The identifier of the target device

cause
Filter page addresses by cause of retirement

pageCount
Reference in which to provide the addresses buffer size, and to return the number
of retired pages that match cause Set to 0 to query the size without allocating an
addresses buffer

addresses
Buffer to write the page addresses into

Returns

» NVML_SUCCESS if pageCount was populated and addresses was filled

» NVML_ERROR_INSUFFICIENT_SIZE if pageCount indicates the buffer is not large
enough to store all the matching page addresses. pageCount is set to the needed
size.

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, pageCount is NULL,
cause is invalid, or addresses is NULL

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Returns the list of retired pages by source, including pages that are pending retirement
The address information provided from this API is the hardware address of the page
that was retired. Note that this does not match the virtual address used in CUDA, but
will match the address information in XID 63

For Tesla K20 products

www.nvidia.com
NVML TRM-06719-001 _vR331 | 69

Modules

nvmlReturn_t nvmlDeviceGetRetiredPagesPendingStatus
(nvmlDevice_t device, nvmlEnableState_t *isPending)

Parameters

device
The identifier of the target device
isPending
Reference in which to return the pending status

Returns

» NVML_SUCCESS if isPending was populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or isPending is NULL

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Check if any pages are pending retirement and need a reboot to fully retire.

For Tesla K20 products

nvmlReturn_t nvmlDeviceGetSerial (nvmlDevice_t
device, char *serial, unsigned int length)

Parameters

device

The identifier of the target device
serial

Reference in which to return the board/module serial number
length

The maximum allowed length of the string returned in serial

Returns

» NVML_SUCCESS if serial has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid, or serial is NULL

www.nvidia.com
NVML TRM-06719-001 _vR331 | 70

Modules

» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the globally unique board serial number associated with this device's board.
For Tesla and Quadro products from the Fermi and Kepler families.

The serial number is an alphanumeric string that will not exceed 30
characters (including the NULL terminator). This number matches
the serial number tag that is physically attached to the board. See
nvmlConstants:NVML_DEVICE_SERIAL BUFFER_SIZE.

nvmlReturn_t
nvmlDeviceGetSupportedClocksThrottleReasons
(nvmlDevice_t device, unsigned long long
*supportedClocksThrottleReasons)

Parameters

device
The identifier of the target device
supportedClocksThrottleReasons
Reference in which to return bitmask of supported clocks throttle reasons

Returns

» NVML_SUCCESS if supportedClocksThrottleReasons has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or
supportedClocksThrottleReasons is NULL

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves bitmask of supported clocks throttle reasons that can be returned by
nvmlDeviceGetCurrentClocksThrottleReasons

For all devices

www.nvidia.com
NVML TRM-06719-001 _vR331 | 71

Modules

See also:
NvmlClocksThrottleReasons

nvmlDeviceGetCurrentClocksThrottleReasons

nvmlReturn_t nvmlDeviceGetSupportedGraphicsClocks
(nvmlDevice_t device, unsigned int memoryClockMHz,
unsigned int *count, unsigned int *clocksMHz)

Parameters

device
The identifier of the target device
memoryClockMHz
Memory clock for which to return possible graphics clocks
count
Reference in which to provide the clocksMHz array size, and to return the number of
elements
clocksMHz
Reference in which to return the clocks in MHz

Returns

» NVML_SUCCESS if count and clocksMHz have been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_NOT_FOUND if the specified memoryClockMHz is not a
supported frequency

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or clock is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_INSUFFICIENT_SIZE if count is too small

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the list of possible graphics clocks that can be used as an argument for
nvmlDeviceSetApplicationsClocks.

For Tesla products and Quadro products from the Kepler family.

See also:

www.nvidia.com
NVML TRM-06719-001 _vR331 | 72

Modules

nvmlDeviceSetApplicationsClocks

nvmlDeviceGetSupportedMemoryClocks

nvmlReturn_t nvmlDeviceGetSupportedMemoryClocks
(nvmlDevice_t device, unsigned int *count, unsigned int
*clocksMHz)

Parameters

device
The identifier of the target device
count
Reference in which to provide the clocksMHz array size, and to return the number of
elements
clocksMHz
Reference in which to return the clock in MHz

Returns

» NVML_SUCCESS if count and clocksMHz have been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or count is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_INSUFFICIENT_SIZE if count is too small (count is set to the
number of required elements)

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the list of possible memory clocks that can be used as an argument for
nvmlDeviceSetApplicationsClocks.

For Tesla products from the Kepler family.

See also:
nvmlDeviceSetApplicationsClocks

nvmlDeviceGetSupportedGraphicsClocks

www.nvidia.com
NVML TRM-06719-001 _vR331 | 73

Modules

nvmlReturn_t nvmlDeviceGetTemperature
(nvmlDevice_t device, nvmlTemperatureSensors_t
sensorType, unsigned int *temp)

Parameters

device

The identifier of the target device
sensorType

Flag that indicates which sensor reading to retrieve
temp

Reference in which to return the temperature reading

Returns

» NVML_SUCCESS if temp has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, sensorType is invalid
or temp is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not have the specified sensor

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description
Retrieves the current temperature readings for the device, in degrees C.
For all discrete and S-class products.

See nvmlTemperatureSensors_t for details on available temperature sensors.

nvmlReturn_t nvmlDeviceGetTotalEccErrors
(nvmlDevice_t device, nvmlMemoryErrorType_t
errorType, nvmlEccCounterType_t counterType,
unsigned long long *eccCounts)

Parameters

device
The identifier of the target device

www.nvidia.com
NVML TRM-06719-001 _vR331 | 74

Modules

errorType

Flag that specifies the type of the errors.
counterType

Flag that specifies the counter-type of the errors.
eccCounts

Reference in which to return the specified ECC errors

Returns

» NVML_SUCCESS if eccCounts has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device, errorType or counterType is
invalid, or eccCounts is NULL

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the total ECC error counts for the device.

For Tesla and Quadro products from the Fermi and Kepler families. Requires
NVML_INFOROM_ECC version 1.0 or higher. Requires ECC Mode to be enabled.

The total error count is the sum of errors across each of the separate memory systems,
i.e. the total set of errors across the entire device.

See nvmIMemoryErrorType_t for a description of available error types. See
nvmlEccCounterType_t for a description of available counter types.

See also:

nvmlDeviceClearEccErrorCounts()

nvmlReturn_t nvmlDeviceGetUtilizationRates
(nvmlDevice_t device, nvmlUtilization_t *utilization)

Parameters

device
The identifier of the target device
utilization
Reference in which to return the utilization information

www.nvidia.com

NVML TRM-06719-001 _vR331 | 75

Modules

Returns

» NVML_SUCCESS if utilization has been populated

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid or utilization is NULL
» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description

Retrieves the current utilization rates for the device's major subsystems.
For Tesla and Quadro products from the Fermi and Kepler families.

See nvmlUtilization_t for details on available utilization rates.

During driver initialization when ECC is enabled one can see high GPU and Memory
Utilization readings. This is caused by ECC Memory Scrubbing mechanism that is
performed during driver initialization.

nvmlReturn_t nvmlDeviceGetUUID (nvmlDevice_t
device, char *uuid, unsigned int length)

Parameters

device
The identifier of the target device
uuid
Reference in which to return the GPU UUID
length
The maximum allowed length of the string returned in uuid

Returns

» NVML_SUCCESS if uuid has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid, or uuid is NULL

» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

www.nvidia.com
NVML TRM-06719-001 _vR331 | 76

Modules

Description

Retrieves the globally unique immutable UUID associated with this device, as a 5 part
hexadecimal string, that augments the immutable, board serial identifier.

For all CUDA capable GPUs.

The UUID is a globally unique identifier. It is the only available identifier for pre-
Fermi-architecture products. It does NOT correspond to any identifier printed on the
board. It will not exceed 80 characters in length (including the NULL terminator). See
nvmlConstants:NVML_DEVICE_UUID_BUFFER_SIZE.

nvmlReturn_t nvmlDeviceGetVbiosVersion (nvmlDevice_t
device, char *version, unsigned int length)

Parameters

device
The identifier of the target device
version
Reference to which to return the VBIOS version
length
The maximum allowed length of the string returned in version

Returns

» NVML_SUCCESS if version has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid, or version is NULL

» NVML_ERROR_INSUFFICIENT_SIZE if length is too small

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Get VBIOS version of the device.
For all products.

The VBIOS version may change from time to time. It will not
exceed 32 characters in length (including the NULL terminator). See
nvmlConstants:NVML_DEVICE_VBIOS_VERSION_BUFFER_SIZE.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 77

Modules

nvmlReturn_t nvmlDeviceOnSameBoard (nvmlDevice_t
device1, nvmlDevice_t device2, int *onSameBoard)

Parameters

devicel
The first GPU device
device2
The second GPU device
onSameBoard
Reference in which to return the status. Non-zero indicates that the GPUs are on the
same board.

Returns

» NVML_SUCCESS if onSameBoard has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID ARGUMENT if dev1 or dev2 are invalid or
onSameBoard is NULL

» NVML_ERROR_NOT_SUPPORTED if this check is not supported by the device

» NVML_ERROR_GPU_IS LOST if the either GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Check if the GPU devices are on the same physical board.

nvmlReturn_t nvmlDeviceResetApplicationsClocks
(nvmlDevice_t device)

Parameters

device
The identifier of the target device

Returns

» NVML_SUCCESS if new settings were successfully set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if device is invalid

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

www.nvidia.com
NVML TRM-06719-001 _vR331 | 78

Modules

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description
Resets the application clock to the default value

This is the applications clock that will be used after system reboot or driver
reload. Default value is constant, but the current value an be changed using
nvmlDeviceSetApplicationsClocks.

See also:
nvmlDeviceGetApplicationsClock
nvmlDeviceSetApplicationsClocks

For Tesla products from the Kepler family.

nvmlReturn_t nvmlDeviceValidatelnforom (nvmlDevice_t
device)

Parameters

device
The identifier of the target device

Returns

» NVML_SUCCESS if infoROM is not corrupted

» NVML_ERROR_CORRUPTED_INFOROM if the device's infoROM is corrupted

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Reads the infoROM from the flash and verifies the checksums.

For Tesla and Quadro products from the Fermi and Kepler families.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 79

Modules

4.11. Unit Commands

This chapter describes NVML operations that change the state of the unit. For S-class
products. Each of these requires root/admin access. Non-admin users will see an
NVML_ERROR_NO_PERMISSION error code when invoking any of these methods.

nvmlReturn_t nvmlUnitSetLedState (nvmlUnit_t unit,
nvmlLedColor_t color)

Parameters

unit

The identifier of the target unit
color

The target LED color

Returns

» NVML_SUCCESS if the LED color has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if unit or color is invalid

» NVML_ERROR_NOT_SUPPORTED if this is not an S-class product

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Set the LED state for the unit. The LED can be either green (0) or amber (1).
For S-class products. Requires root/admin permissions.

This operation takes effect immediately.

Current S-Class products don't provide unique LEDs for each unit. As such, both
front and back LEDs will be toggled in unison regardless of which unit is specified
with this command.

See nvmlLedColor _t for available colors.

See also:

nvmlUnitGetLedState()

www.nvidia.com
NVML TRM-06719-001 _vR331 | 80

Modules

4.12. Device Commands

This chapter describes NVML operations that change the state of the device.
Each of these requires root/admin access. Non-admin users will see an
NVML_ERROR_NO_PERMISSION error code when invoking any of these methods.

nvmlReturn_t nvmlDeviceClearEccErrorCounts
(nvmlDevice_t device, nvmlEccCounterType_t
counterType)

Parameters

device
The identifier of the target device
counterType
Flag that indicates which type of errors should be cleared.

Returns

» NVML_SUCCESS if the error counts were cleared

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or counterType is
invalid

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Clear the ECC error and other memory error counts for the device.

For Tesla and Quadro products from the Fermi and Kepler families. Requires
NVML_INFOROM_ECC version 2.0 or higher to clear aggregate location-based ECC
counts. Requires NVML_INFOROM_ECC version 1.0 or higher to clear all other ECC
counts. Requires root/admin permissions. Requires ECC Mode to be enabled.

Sets all of the specified ECC counters to 0, including both detailed and total counts.
This operation takes effect immediately.

See nvmIMemoryErrorType_t for details on available counter types.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 81

Modules

See also:

» nvmlDeviceGetDetailedEccErrors()
» nvmlDeviceGetTotalEccErrors()

nvmlReturn_t nvmlDeviceSetAPIRestriction
(nvmlDevice_t device, nvmlRestrictedAPI_t apiType,
nvmlEnableState_t isRestricted)

Parameters

device

The identifier of the target device
apiType

Target API type for this operation
isRestricted

The target restriction

Returns

» NVML_SUCCESS if isRestricted has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or apiType incorrect

» NVML_ERROR_NOT_SUPPORTED if the device does not support changing API
restrictions

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Changes the root/admin restructions on certain APIs. See nvmlIRestricted API_t for the
list of supported APIs. This method can be used by a root/admin user to give non-root/
admin access to certain otherwise-restricted APIs. The new setting lasts for the lifetime
of the NVIDIA driver; it is not persistent. See nvmlDeviceGetAPIRestriction to query the
current restriction settings.

For Tesla and Quadro &tm products from the Kepler+ family. Requires root/admin
permissions.

See also:

www.nvidia.com
NVML TRM-06719-001 _vR331 | 82

Modules

nvmlRestricted API_t

nvmlReturn_t nvmlDeviceSetApplicationsClocks
(nvmlDevice_t device, unsigned int memClockMHz,
unsigned int graphicsClockMHz)

Parameters

device

The identifier of the target device
memClockMHz

Requested memory clock in MHz
graphicsClockMHz

Requested graphics clock in MHz

Returns

» NVML_SUCCESS if new settings were successfully set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or memClockMHz and
graphicsClockMHz is not a valid clock combination

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_NOT_SUPPORTED if the device doesn't support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description
Set clocks that applications will lock to.

Sets the clocks that compute and graphics applications will be running at. e.g. CUDA
driver requests these clocks during context creation which means this property defines
clocks at which CUDA applications will be running unless some overspec event occurs
(e.g. over power, over thermal or external HW brake).

Can be used as a setting to request constant performance.
For Tesla products from the Kepler family. Requires root/admin permissions.

See nvmlDeviceGetSupportedMemoryClocks and
nvmlDeviceGetSupportedGraphicsClocks for details on how to list available clocks
combinations.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 83

Modules

After system reboot or driver reload applications clocks go back to their default value.
See nvmlDeviceResetApplicationsClocks.

nvmlReturn_t nvmlDeviceSetComputeMode
(nvmlDevice_t device, nvmlComputeMode_t mode)

Parameters

device

The identifier of the target device
mode

The target compute mode

Returns

» NVML_SUCCESS if the compute mode was set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or mode is invalid

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Set the compute mode for the device.
For all CUDA-capable products. Requires root/admin permissions.

The compute mode determines whether a GPU can be used for compute operations and
whether it can be shared across contexts.

This operation takes effect immediately. Under Linux it is not persistent across reboots
and always resets to "Default". Under windows it is persistent.

Under windows compute mode may only be set to DEFAULT when running in WDDM

See nvmIComputeMode_t for details on available compute modes.

See also:

nvmlDeviceGetComputeMode()

www.nvidia.com
NVML TRM-06719-001 _vR331 | 84

Modules

nvmlReturn_t nvmlDeviceSetDriverModel (nvmlDevice_t
device, nvmlDriverModel_t driverModel, unsigned int
flags)

Parameters

device

The identifier of the target device
driverModel

The target driver model
flags

Flags that change the default behavior

Returns

» NVML_SUCCESS if the driver model has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or driverModel is
invalid

» NVML_ERROR_NOT_SUPPORTED if the platform is not windows or the device
does not support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Set the driver model for the device.

For Tesla and Quadro products from the Fermi and Kepler families. For windows only.
Requires root/admin permissions.

On Windows platforms the device driver can run in either WDDM or WDM (TCC)
mode. If a display is attached to the device it must run in WDDM mode.

It is possible to force the change to WDM (TCC) while the display is still attached with a
force flag (nvmlFlagForce). This should only be done if the host is subsequently powered
down and the display is detached from the device before the next reboot.

This operation takes effect after the next reboot.

Windows driver model may only be set to WDDM when running in DEFAULT compute
mode.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 85

Modules

Change driver model to WDDM is not supported when GPU doesn't support graphics
acceleration or will not support it after reboot. See nvmlDeviceSetGpuOperationMode.

See nvmlDriverModel_t for details on available driver models. See nvmlFlagDefault and
nvmlFlagForce

See also:

nvmlDeviceGetDriverModel()

nvmlReturn_t nvmlDeviceSetEccMode (nvmlDevice_t
device, nvmlEnableState_t ecc)

Parameters

device

The identifier of the target device
ecc

The target ECC mode

Returns

» NVML_SUCCESS if the ECC mode was set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or ecc is invalid

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Set the ECC mode for the device.

For Tesla and Quadro products from the Fermi and Kepler families. Requires
NVML_INFOROM_ECC version 1.0 or higher. Requires root/admin permissions.

The ECC mode determines whether the GPU enables its ECC support.
This operation takes effect after the next reboot.

See nvmlEnableState_t for details on available modes.

See also:

www.nvidia.com
NVML TRM-06719-001 _vR331 | 86

Modules

nvmlDeviceGetEccMode()

nvmlReturn_t nvmlDeviceSetGpuOperationMode
(nvmlDevice_t device, nvmlGpuOperationMode_t mode)

Parameters

device

The identifier of the target device
mode

Target GOM

Returns

» NVML_SUCCESS if mode has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR _INVALID ARGUMENT if device is invalid or mode incorrect

» NVML_ERROR_NOT_SUPPORTED if the device does not support GOM or specific
mode

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Sets new GOM. See nvmlGpuOperationMode_t for details.

For GK110 M-class and X-class Tesla products from the Kepler family. Not supported on
Quadro and Tesla C-class products. Requires root/admin permissions.

Changing GOMs requires a reboot. The reboot requirement might be removed in the
future.

Compute only GOMs don't support graphics acceleration. Under windows switching
to these GOMs when pending driver model is WDDM is not supported. See
nvmlDeviceSetDriverModel.

See also:
nvmlGpuOperationMode_t

nvmlDeviceGetGpuOperationMode

www.nvidia.com
NVML TRM-06719-001 _vR331 | 87

Modules

nvmlReturn_t nvmlDeviceSetPersistenceMode
(nvmlDevice_t device, nvmlEnableState_t mode)

Parameters

device

The identifier of the target device
mode

The target persistence mode

Returns

» NVML_SUCCESS if the persistence mode was set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or mode is invalid

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform
this operation

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Set the persistence mode for the device.
For all CUDA-capable products. For Linux only. Requires root/admin permissions.

The persistence mode determines whether the GPU driver software is torn down after
the last client exits.

This operation takes effect immediately. It is not persistent across reboots. After each
reboot the persistence mode is reset to "Disabled".

See nvmlEnableState t for available modes.

See also:

nvmlDeviceGetPersistenceMode()

www.nvidia.com
NVML TRM-06719-001 _vR331 | 88

Modules

nvmlReturn_t nvmlDeviceSetPowerManagementLimit
(nvmlDevice_t device, unsigned int limit)

Parameters

device
The identifier of the target device
limit
Power management limit in milliwatts to set

Returns

» NVML_SUCCESS if limit has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if device is invalid or defaultLimit is out of
range

» NVML_ERROR_NOT_SUPPORTED if the device does not support this feature

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible
» NVML_ERROR_UNKNOWN on any unexpected error

Description
Set new power limit of this device.

For Tesla and Quadro products from the Kepler family. Requires root/admin
permissions.

See nvmlDeviceGetPowerManagementLimitConstraints to check the allowed ranges of
values.

Limit is not persistent across reboots or driver unloads. Enable persistent mode to
prevent driver from unloading when no application is using the device.

See also:
nvmlDeviceGetPowerManagementLimitConstraints

nvmlDeviceGetPowerManagementDefaultLimit

www.nvidia.com
NVML TRM-06719-001 _vR331 | 89

Modules

4.13. Event Handling Methods

This chapter describes methods that NVML can perform against each device to register
and wait for some event to occur.

struct nvmlEventData_t
Event Types

typedef struct nvmlEventSet_st *nvmlEventSet_t

Handle to an event set

nvmlReturn_t nvmlDeviceGetSupportedEventTypes
(nvmlDevice_t device, unsigned long long *eventTypes)

Parameters

device
The identifier of the target device
eventTypes
Reference in which to return bitmask of supported events

Returns

» NVML_SUCCESS if the eventTypes has been set
» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if eventType is NULL

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Returns information about events supported on device
For all products.

Events are not supported on Windows. So this function returns an empty mask in
eventTypes on Windows.

See also:

www.nvidia.com
NVML TRM-06719-001 _vR331 | 90

Modules

Event Types

nvmlDeviceRegisterEvents

nvmlReturn_t nvmlDeviceRegisterEvents (nvmlDevice_t
device, unsigned long long eventTypes, nvmlEventSet_t
set)

Parameters

device

The identifier of the target device
eventTypes

Bitmask of Event Types to record
set

Set to which add new event types

Returns

» NVML_SUCCESS if the event has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if eventTypes is invalid or set is NULL

» NVML_ERROR_NOT_SUPPORTED if the platform does not support this feature or
some of requested event types

» NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is
otherwise inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Starts recording of events on a specified devices and add the events to specified
nvmlEventSet_t

For Tesla and Quadro products from the Fermi and Kepler families. Ecc events are
available only on ECC enabled devices (see nvmlDeviceGetTotalEccErrors) Power
capping events are available only on Power Management enabled devices (see
nvmlDeviceGetPowerManagementMode)

For Linux only.
IMPORTANT: Operations on set are not thread safe

This call starts recording of events on specific device. All events that occurred
before this call are not recorded. Checking if some event occurred can be done with
nvmlEventSetWait

www.nvidia.com
NVML TRM-06719-001 _vR331 | 91

Modules

If function reports NVML_ERROR_UNKNOWN, event set is in undefined state and
should be freed. If function reports NVML_ERROR_NOT_SUPPORTED, event set can
still be used. None of the requested eventTypes are registered in that case.

See also:

Event Types
nvmlDeviceGetSupported EventTypes
nvmlEventSetWait

nvmlEventSetFree

nvmlReturn_t nvmlEventSetCreate (nvmlEventSet_t
*set)

Parameters

set
Reference in which to return the event handle

Returns

» NVML_SUCCESS if the event has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
» NVML_ERROR_INVALID_ARGUMENT if set is NULL

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Create an empty set of events. Event set should be freed by nvmlEventSetFree

See also:

nvmlEventSetFree

nvmlReturn_t nvmlEventSetFree (nvmlEventSet_t set)

Parameters

set
Reference to events to be released

www.nvidia.com
NVML TRM-06719-001 _vR331 | 92

Modules

Returns

» NVML_SUCCESS if the event has been successfully released

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_UNKNOWN on any unexpected error

Description
Releases events in the set

For Tesla and Quadro products from the Fermi and Kepler families.

See also:

nvmlDeviceRegisterEvents

nvmlReturn_t nvmlEventSetWait (nvmlEventSet_t set,
nvmlEventData_t *data, unsigned int timeoutms)

Parameters

set
Reference to set of events to wait on
data
Reference in which to return event data
timeoutms
Maximum amount of wait time in milliseconds for registered event

Returns

» NVML_SUCCESS if the data has been set

» NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized

» NVML_ERROR_INVALID_ARGUMENT if data is NULL

» NVML_ERROR_TIMEOUT if no event arrived in specified timeout or interrupt
arrived

» NVML_ERROR_GPU_IS_LOST if a GPU has fallen off the bus or is otherwise
inaccessible

» NVML_ERROR_UNKNOWN on any unexpected error

Description

Waits on events and delivers events
For Tesla and Quadro products from the Fermi and Kepler families.

If some events are ready to be delivered at the time of the call, function returns
immediately. If there are no events ready to be delivered, function sleeps till event

www.nvidia.com

NVML TRM-06719-001 _vR331 | 93

Modules

arrives but not longer than specified timeout. This function in certain conditions can
return before specified timeout passes (e.g. when interrupt arrives)

See also:
Event Types

nvmlDeviceRegisterEvents

4.13.1. Event Types

Event Handling Methods

Event Types which user can be notified about. See description of particular functions for
details.

See nvmlDeviceRegisterEvents and nvmlDeviceGetSupportedEventTypes to check
which devices support each event.

Types can be combined with bitwise or operator '|' when passed to
nvmlDeviceRegisterEvents

#define nvmlEventTypeAll (nvmlEventTypeNone

\ | nvmlEventTypeSingleBitEccError \ |
nvmlEventTypeDoubleBitEccError \ | nvmlEventTypePState \ |
nvmlEventTypeClock \ | nvmlEventTypeXidCriticalError \)

Mask of all events.

#define nvmlEventTypeClock 0x0000000000000010LL

Event about clock changes.

Kepler only

#define nvmlEventTypeDoubleBitEccError 0x0000000000000002LL
Event about double bit ECC errors.

An uncorrected texture memory error is not an ECC error, so it does not generate a
double bit event

#define nvmlEventTypeNone 0x0000000000000000LL

Mask with no events.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 94

Modules

#define nvmlEventTypePState 0x0000000000000004LL
Event about PState changes.

On Fermi architecture PState changes are also an indicator that GPU is throttling
down due to no work being executed on the GPU, power capping or thermal capping.
In a typical situation, Fermi-based GPU should stay in PO for the duration of the
execution of the compute process.

#define nvmlEventTypeSingleBitEccError 0x0000000000000001LL

Event about single bit ECC errors.

= A corrected texture memory error is not an ECC error, so it does not generate a single
bit event

#define nvmlEventTypeXidCriticalError 0x0000000000000008LL

Event that Xid critical error occurred.

4.14. NvmlClocksThrottleReasons

#define nvmlClocksThrottleReasonAll
(nvmlClocksThrottleReasonNone \ |
nvmlClocksThrottleReasonGpuldle \ |
nvmlClocksThrottleReasonApplicationsClocksSetting
\ | nvmlClocksThrottleReasonSwPowerCap \

| nvmlClocksThrottleReasonHwSlowdown \ |
nvmlClocksThrottleReasonUnknown \)

Bit mask representing all supported clocks throttling reasons New reasons might be
added to this list in the future

#define
nvmlClocksThrottleReasonApplicationsClocksSetting
0x0000000000000002LL

GPU clocks are limited by current setting of applications clocks

www.nvidia.com
NVML TRM-06719-001 _vR331 | 95

Modules

See also:
nvmlDeviceSetApplicationsClocks

nvmlDeviceGetApplicationsClock

#define nvmlClocksThrottleReasonGpuldle
0x0000000000000001LL

Nothing is running on the GPU and the clocks are dropping to Idle state

n This limiter may be removed in a later release

#define nvmlClocksThrottleReasonHwSlowdown
0x0000000000000008LL

HW Slowdown (reducing the core clocks by a factor of 2 or more) is engaged
This is an indicator of:

» temperature being too high

» External Power Brake Assertion is triggered (e.g. by the system power supply)
» Power draw is too high and Fast Trigger protection is reducing the clocks

» May be also reported during PState or clock change

» This behavior may be removed in a later release.
See also:
nvmlDeviceGetTemperature

nvmlDeviceGetPowerUsage

#define nvmlClocksThrottleReasonNone
0x0000000000000000LL
Bit mask representing no clocks throttling

Clocks are as high as possible.

#define nvmlClocksThrottleReasonSwPowerCap
0x0000000000000004LL

SW Power Scaling algorithm is reducing the clocks below requested clocks

See also:

www.nvidia.com
NVML TRM-06719-001 _vR331 | 96

Modules

nvmlDeviceGetPowerUsage
nvmlDeviceSetPowerManagementLimit

nvmlDeviceGetPowerManagementLimit

#define nvmlClocksThrottleReasonUnknown
0x8000000000000000LL

Some other unspecified factor is reducing the clocks

#define nvmlClocksThrottleReasonUserDefinedClocks
nvmlClocksThrottleReasonApplicationsClocksSetting

Deprecated Renamed to nvmIClocksThrottleReasonApplicationsClocksSetting as the
name describes the situation more accurately.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 97

Chapter 5.
DATA STRUCTURES

Here are the data structures with brief descriptions:

nvmlAccountingStats_t
nvmlBAR1IMemory_t
nvmlBridgeChipHierarchy_t
nvmlBridgeChipInfo_t
nvmlEccErrorCounts_t
nvmlEventData_t
nvmlHwbcEntry_t
nvmlLedState_t
nvmlMemory_t
nvmlPcilnfo_t
nvmlProcessInfo_t
nvmlPSUlInfo_t
nvmlUnitFanInfo t
nvmlUnitFanSpeeds_t
nvmlUnitInfo t
nvmlUtilization_t

5.1. nvmlAccountingStats_t Struct Reference

Describes accounting statistics of a process.
unsigned int nvmlAccountingStats_t::gpuUtilization

Description

Percent of time over the process's lifetime during which one or more
kernels was executing on the GPU. Utilization stats just like returned by
nvmlDeviceGetUtilizationRates but for the life time of a process (not just the last sample

www.nvidia.com
NVML TRM-06719-001 _vR331 | 98

Data Structures

period). Set to NVML_VALUE_NOT_AVAILABLE if nvmlDeviceGetUtilizationRates is
not supported

unsigned long long
nvmlAccountingStats_t::maxMemoryUsage

Description

Maximum total memory in bytes that was ever allocated by the process. Set to
NVML_VALUE_NOT_AVAILABLE if nvmlProcessInfo_t->usedGpuMemory is not
supported

unsigned int nvmlAccountingStats_t::memoryUtilization

Description

Percent of time over the process's lifetime during which global (device)
memory was being read or written. Set to NVML_VALUE_NOT_AVAILABLE if
nvmlDeviceGetUtilizationRates is not supported

unsigned long long nvmlAccountingStats_t::time

Amount of time in ms during which the compute context was active.

5.2. nvmIBARTMemory_t Struct Reference

BAR1 Memory allocation Information for a device

unsigned long long nvmIBAR1Memory_t::bar1Free
Unallocated BAR1 Memory (in bytes).

unsigned long long nvmIBAR1Memory_t::bar1Total
Total BAR1 Memory (in bytes).

unsigned long long nvmIBAR1Memory_t::bar1Used
Allocated Used Memory (in bytes).

5.3. nvmlBridgeChipHierarchy_t Struct Reference

This structure stores the complete Hierarchy of the Bridge Chip within the board. The
immediate bridge is stored at index 0 of bridgeInfoList, parent to immediate bridge is at
index 1 and so forth.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 99

Data Structures

struct nvmlBridgeChiplInfo_t
nvmlBridgeChipHierarchy_t::bridgeChipinfo

Hierarchy of Bridge Chips on the board.

unsigned char nvmlBridgeChipHierarchy_t::bridgeCount
Number of Bridge Chips on the Board.

5.4. nvmlBridgeChiplInfo_t Struct Reference

Information about the Bridge Chip Firmware

unsigned int nvmlBridgeChipInfo_t::fwVersion

Firmware Version.

nvmlBridgeChipType_t nvmlBridgeChipInfo_t::type

Type of Bridge Chip.

5.5. nvmlEccErrorCounts_t Struct Reference

Detailed ECC error counts for a device.

Deprecated Different GPU families can have different memory error counters See
nvmlDeviceGetMemoryErrorCounter

www.nvidia.com
NVML TRM-06719-001 _vR331 | 100

Data Structures

unsigned long long
nvmlEccErrorCounts_t::deviceMemory

Device memory errors.

unsigned long long nvmlEccErrorCounts_t::l1Cache

L1 cache errors.

unsigned long long nvmlEccErrorCounts_t::12Cache

L2 cache errors.

unsigned long long nvmlEccErrorCounts_t::registerFile

Register file errors.

5.6. nvmlEventData_t Struct Reference

Information about occurred event

nvmlDevice_t nvmlEventData_t::device

Specific device where the event occurred.

unsigned long long nvmlEventData_t::eventType

Information about what specific event occurred.

5.7. nvmlHwbcEntry_t Struct Reference

Description of HWBC entry

5.8. nvmlLedState_t Struct Reference

LED states for an S-class unit.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 101

Data Structures

char nvmlLedState t::cause

If amber, a text description of the cause.

nvmlLedColor_t nvmlLedState_t::color
GREEN or AMBER.

5.9. nvmlMemory_t Struct Reference

Memory allocation information for a device.

unsigned long long nvmIMemory_t::free
Unallocated FB memory (in bytes).

unsigned long long nvmIlMemory_t::total
Total installed FB memory (in bytes).

unsigned long long nvmlMemory_t::used

Allocated FB memory (in bytes). Note that the driver/GPU always sets aside a small
amount of memory for bookkeeping.

5.10. nvmlPcilnfo_t Struct Reference

PCI information about a GPU device.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 102

Data Structures

unsigned int nvmlPcilnfo_t::bus

The bus on which the device resides, 0 to 0xff.

char nvmlPcilnfo_t::busld
The tuple domain:bus:device.function PCI identifier (& NULL terminator).

unsigned int nvmlPcilnfo_t::device
The device's id on the bus, 0 to 31.

unsigned int nvmlPcilnfo_t::domain
The PCI domain on which the device's bus resides, 0 to Oxffff.

unsigned int nvmlPcilnfo_t::pciDeviceld
The combined 16-bit device id and 16-bit vendor id.

unsigned int nvmlPcilnfo_t::pciSubSystemlid
The 32-bit Sub System Device ID.

5.11. nvmlProcessinfo_t Struct Reference

Information about running compute processes on the GPU

unsigned int nvmlProcessinfo_t::pid

Process ID.

unsigned long long nvmlProcessinfo_t::usedGpuMemory

Description

Amount of used GPU memory in bytes. Under WDDM,
NVML_VALUE_NOT_AVAILABLE is always reported because Windows KMD
manages all the memory and not the NVIDIA driver

5.12. nvmlIPSUInfo_t Struct Reference

Power usage information for an S-class unit. The power supply state is a human
readable string that equals "Normal" or contains a combination of "Abnormal" plus one
or more of the following:

» High voltage

www.nvidia.com
NVML TRM-06719-001 _vR331 | 103

Data Structures

» Fan failure

» Heatsink temperature

» Current limit

» Voltage below UV alarm threshold
» Low-voltage

» SI2C remote off command

» MOD_DISABLE input

» Short pin transition

unsigned int nvmlPSUInfo_t::current
PSU current (A).

unsigned int nvmIPSUInfo_t::power
PSU power draw (W).

char nvmlPSUInfo_t::state
The power supply state.

unsigned int nvmlPSUInfo_t::voltage
PSU voltage (V).

5.13. nvmlUnitFanInfo_t Struct Reference

Fan speed reading for a single fan in an S-class unit.

unsigned int nvmlUnitFaninfo_t::speed
Fan speed (RPM).

nvmlFanState_t nvmlUnitFaninfo_t::state
Flag that indicates whether fan is working properly.

5.14. nvmlUnitFanSpeeds_t Struct Reference

Fan speed readings for an entire S-class unit.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 104

Data Structures

unsigned int nvmlUnitFanSpeeds_t::count

Number of fans in unit.

struct nvmlUnitFaninfo_t nvmlUnitFanSpeeds_t::fans

Fan speed data for each fan.

5.15. nvmlUnitinfo_t Struct Reference

Static S-class unit info.

char nvmlUnitIinfo_t::firmwareVersion

Firmware version.

char nvmlUnitInfo_t::id

Product identifier.

char nvmlUnitinfo_t::name

Product name.

char nvmlUnitInfo_t::serial

Product serial number.

5.16. nvmlUtilization_t Struct Reference

Utilization information for a device. Each sample period may be between 1 second and
1/6 second, depending on the product being queried.

unsigned int nvmlUtilization_t::gpu

Percent of time over the past sample period during which one or more kernels was
executing on the GPU.

unsigned int nvmlUtilization_t::memory

Percent of time over the past sample period during which global (device) memory was
being read or written.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 105

Chapter 6.
DATA FIELDS

Here is a list of all documented struct and union fields with links to the struct/union

documentation for each field:

B
barl1Free
nvmIBARIMemory_t
bar1Total
nvmlBARIMemory_t
bar1Used
nvmlBARIMemory_t
bridgeChipInfo
nvmlBridgeChipHierarchy_t
bridgeCount
nvmlBridgeChipHierarchy_t
bus
nvmlPcilnfo_t
busld
nvmlPcilnfo_t

C
cause
nvmlLedState_t
color
nvmlLedState_t
count
nvmlUnitFanSpeeds_t
current
nvmlPSUlInfo_t

www.nvidia.com
NVML

TRM-06719-001 _vR331 | 106

Data Fields

D
device
nvmlPcilnfo_t
nvmlEventData_t
deviceMemory
nvmlEccErrorCounts_t
domain
nvmlPcilnfo t

E
eventType
nvmlEventData_t

F

fans
nvmlUnitFanSpeeds_t

firmwareVersion
nvmlUnitInfo_t

free
nvmlMemory_t

fwVersion
nvmlBridgeChipInfo_t

G
gpu
nvmlUtilization_t
gpuUtilization
nvmlAccountingStats_t

|
id
nvmlUnitInfo_t

L

11Cache
nvmlEccErrorCounts_t

12Cache
nvmlEccErrorCounts_t

M
maxMemoryUsage
nvmlAccountingStats_t

www.nvidia.com
NVML TRM-06719-001 _vR331 | 107

Data Fields

memory
nvmlUtilization_t

memoryUtilization
nvmlAccountingStats_t

N
name
nvmlUnitInfo_t

P

pciDeviceld
nvmlPcilnfo_t

pciSubSystemld
nvmlPcilnfo_t

pid
nvmlProcessInfo_t

power
nvmlIPSUInfo_t

R
registerFile
nvmlEccErrorCounts_t

S
serial
nvmlUnitInfo_t
speed
nvmlUnitFanInfo_t
state
nvmlIPSUInfo_t
nvmlUnitFanInfo_t

T
time
nvmlAccountingStats_t
total
nvmlMemory_t
type
nvmlBridgeChipInfo_t

U
used
nvmlMemory_t

www.nvidia.com
NVML TRM-06719-001 _vR331 | 108

Data Fields

usedGpuMemory
nvmlProcessInfo_t

\
voltage
nvmlPSUInfo_t

www.nvidia.com
NVML TRM-06719-001 _vR331 | 109

Chapter 7.
DEPRECATED LIST

Class nvmlEccErrorCounts_t

Different GPU families can have different memory error counters See
nvmlDeviceGetMemoryErrorCounter

Global NVML_DOUBLE_BIT_ECC
Mapped to NVML_MEMORY_ERROR_TYPE_UNCORRECTED

Global NVML_SINGLE_BIT_ECC
Mapped to NVML_MEMORY_ERROR_TYPE_CORRECTED

Global nvmlEccBitType_t

See nvmIMemoryErrorType_t for a more flexible type

Global nvmlDeviceGetDetailedEccErrors

This API supports only a fixed set of ECC error locations On
different GPU architectures different locations are supported See
nvmlDeviceGetMemoryErrorCounter

Global nvmlDeviceGetHandleBySerial

Since more than one GPU can exist on a single board this function is deprecated in
tavor of nvmlDeviceGetHandleByUUID. For dual GPU boards this function will
return NVML_ERROR_INVALID_ARGUMENT.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 110

Deprecated List

Global nvmlClocksThrottleReasonUserDefinedClocks

Renamed to nvmlClocksThrottleReasonApplicationsClocksSetting as the name
describes the situation more accurately.

www.nvidia.com
NVML TRM-06719-001 _vR331 | 111

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbiA®

	NVML API Reference
	Known Issues
	Change Log
	Modules
	4.1. Device Structs
	struct nvmlBAR1Memory_t
	struct nvmlBridgeChipHierarchy_t
	struct nvmlBridgeChipInfo_t
	struct nvmlEccErrorCounts_t
	struct nvmlMemory_t
	struct nvmlPciInfo_t
	struct nvmlProcessInfo_t
	struct nvmlUtilization_t
	enum nvmlBridgeChipType_t
	
	

	#define NVML_DEVICE_PCI_BUS_ID_BUFFER_SIZE 16
	#define NVML_MAX_PHYSICAL_BRIDGE (128)
	#define NVML_VALUE_NOT_AVAILABLE (-1)

	4.2. Device Enums
	enum nvmlClockType_t
	
	
	
	

	enum nvmlComputeMode_t
	
	
	
	
	

	enum nvmlDriverModel_t
	
	

	enum nvmlEccCounterType_t
	
	
	

	enum nvmlEnableState_t
	
	

	enum nvmlGpuOperationMode_t
	
	
	

	enum nvmlInforomObject_t
	
	
	
	

	enum nvmlMemoryErrorType_t
	
	
	

	enum nvmlMemoryLocation_t
	
	
	
	
	
	

	enum nvmlPageRetirementCause_t
	
	
	

	enum nvmlPstates_t
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum nvmlRestrictedAPI_t
	
	

	enum nvmlReturn_t
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum nvmlTemperatureSensors_t
	
	

	#define NVML_DOUBLE_BIT_ECC NVML_MEMORY_ERROR_TYPE_UNCORRECTED
	#define NVML_SINGLE_BIT_ECC NVML_MEMORY_ERROR_TYPE_CORRECTED
	#define nvmlEccBitType_t nvmlMemoryErrorType_t
	#define nvmlFlagDefault 0x00
	#define nvmlFlagForce 0x01

	4.3. Unit Structs
	struct nvmlHwbcEntry_t
	struct nvmlLedState_t
	struct nvmlPSUInfo_t
	struct nvmlUnitFanInfo_t
	struct nvmlUnitFanSpeeds_t
	struct nvmlUnitInfo_t
	enum nvmlFanState_t
	
	

	enum nvmlLedColor_t
	
	

	4.4. Accounting Statistics
	struct nvmlAccountingStats_t
	nvmlReturn_t nvmlDeviceClearAccountingPids (nvmlDevice_t device)
	nvmlReturn_t nvmlDeviceGetAccountingBufferSize (nvmlDevice_t device, unsigned int *bufferSize)
	nvmlReturn_t nvmlDeviceGetAccountingMode (nvmlDevice_t device, nvmlEnableState_t *mode)
	nvmlReturn_t nvmlDeviceGetAccountingPids (nvmlDevice_t device, unsigned int *count, unsigned int *pids)
	nvmlReturn_t nvmlDeviceGetAccountingStats (nvmlDevice_t device, unsigned int pid, nvmlAccountingStats_t *stats)
	nvmlReturn_t nvmlDeviceSetAccountingMode (nvmlDevice_t device, nvmlEnableState_t mode)

	4.5. Initialization and Cleanup
	nvmlReturn_t nvmlInit (void)
	nvmlReturn_t nvmlShutdown (void)

	4.6. Error reporting
	const DECLDIR char *nvmlErrorString (nvmlReturn_t result)

	4.7. Constants
	#define NVML_DEVICE_INFOROM_VERSION_BUFFER_SIZE 16
	#define NVML_DEVICE_NAME_BUFFER_SIZE 64
	#define NVML_DEVICE_SERIAL_BUFFER_SIZE 30
	#define NVML_DEVICE_UUID_BUFFER_SIZE 80
	#define NVML_DEVICE_VBIOS_VERSION_BUFFER_SIZE 32
	#define NVML_SYSTEM_DRIVER_VERSION_BUFFER_SIZE 80
	#define NVML_SYSTEM_NVML_VERSION_BUFFER_SIZE 80

	4.8. System Queries
	nvmlReturn_t nvmlSystemGetDriverVersion (char *version, unsigned int length)
	nvmlReturn_t nvmlSystemGetNVMLVersion (char *version, unsigned int length)
	nvmlReturn_t nvmlSystemGetProcessName (unsigned int pid, char *name, unsigned int length)

	4.9. Unit Queries
	nvmlReturn_t nvmlSystemGetHicVersion (unsigned int *hwbcCount, nvmlHwbcEntry_t *hwbcEntries)
	nvmlReturn_t nvmlUnitGetCount (unsigned int *unitCount)
	nvmlReturn_t nvmlUnitGetDevices (nvmlUnit_t unit, unsigned int *deviceCount, nvmlDevice_t *devices)
	nvmlReturn_t nvmlUnitGetFanSpeedInfo (nvmlUnit_t unit, nvmlUnitFanSpeeds_t *fanSpeeds)
	nvmlReturn_t nvmlUnitGetHandleByIndex (unsigned int index, nvmlUnit_t *unit)
	nvmlReturn_t nvmlUnitGetLedState (nvmlUnit_t unit, nvmlLedState_t *state)
	nvmlReturn_t nvmlUnitGetPsuInfo (nvmlUnit_t unit, nvmlPSUInfo_t *psu)
	nvmlReturn_t nvmlUnitGetTemperature (nvmlUnit_t unit, unsigned int type, unsigned int *temp)
	nvmlReturn_t nvmlUnitGetUnitInfo (nvmlUnit_t unit, nvmlUnitInfo_t *info)

	4.10. Device Queries
	nvmlReturn_t nvmlDeviceGetAPIRestriction (nvmlDevice_t device, nvmlRestrictedAPI_t apiType, nvmlEnableState_t *isRestricted)
	nvmlReturn_t nvmlDeviceGetApplicationsClock (nvmlDevice_t device, nvmlClockType_t clockType, unsigned int *clockMHz)
	nvmlReturn_t nvmlDeviceGetBAR1MemoryInfo (nvmlDevice_t device, nvmlBAR1Memory_t *bar1Memory)
	nvmlReturn_t nvmlDeviceGetBridgeChipInfo (nvmlDevice_t device, nvmlBridgeChipHierarchy_t *bridgeHierarchy)
	nvmlReturn_t nvmlDeviceGetClockInfo (nvmlDevice_t device, nvmlClockType_t type, unsigned int *clock)
	nvmlReturn_t nvmlDeviceGetComputeMode (nvmlDevice_t device, nvmlComputeMode_t *mode)
	nvmlReturn_t nvmlDeviceGetComputeRunningProcesses (nvmlDevice_t device, unsigned int *infoCount, nvmlProcessInfo_t *infos)
	nvmlReturn_t nvmlDeviceGetCount (unsigned int *deviceCount)
	nvmlReturn_t nvmlDeviceGetCurrentClocksThrottleReasons (nvmlDevice_t device, unsigned long long *clocksThrottleReasons)
	nvmlReturn_t nvmlDeviceGetCurrPcieLinkGeneration (nvmlDevice_t device, unsigned int *currLinkGen)
	nvmlReturn_t nvmlDeviceGetCurrPcieLinkWidth (nvmlDevice_t device, unsigned int *currLinkWidth)
	nvmlReturn_t nvmlDeviceGetDefaultApplicationsClock (nvmlDevice_t device, nvmlClockType_t clockType, unsigned int *clockMHz)
	nvmlReturn_t nvmlDeviceGetDetailedEccErrors (nvmlDevice_t device, nvmlMemoryErrorType_t errorType, nvmlEccCounterType_t counterType, nvmlEccErrorCounts_t *eccCounts)
	nvmlReturn_t nvmlDeviceGetDisplayActive (nvmlDevice_t device, nvmlEnableState_t *isActive)
	nvmlReturn_t nvmlDeviceGetDisplayMode (nvmlDevice_t device, nvmlEnableState_t *display)
	nvmlReturn_t nvmlDeviceGetDriverModel (nvmlDevice_t device, nvmlDriverModel_t *current, nvmlDriverModel_t *pending)
	nvmlReturn_t nvmlDeviceGetEccMode (nvmlDevice_t device, nvmlEnableState_t *current, nvmlEnableState_t *pending)
	nvmlReturn_t nvmlDeviceGetEnforcedPowerLimit (nvmlDevice_t device, unsigned int *limit)
	nvmlReturn_t nvmlDeviceGetFanSpeed (nvmlDevice_t device, unsigned int *speed)
	nvmlReturn_t nvmlDeviceGetGpuOperationMode (nvmlDevice_t device, nvmlGpuOperationMode_t *current, nvmlGpuOperationMode_t *pending)
	nvmlReturn_t nvmlDeviceGetHandleByIndex (unsigned int index, nvmlDevice_t *device)
	nvmlReturn_t nvmlDeviceGetHandleByPciBusId (const char *pciBusId, nvmlDevice_t *device)
	nvmlReturn_t nvmlDeviceGetHandleBySerial (const char *serial, nvmlDevice_t *device)
	nvmlReturn_t nvmlDeviceGetHandleByUUID (const char *uuid, nvmlDevice_t *device)
	nvmlReturn_t nvmlDeviceGetIndex (nvmlDevice_t device, unsigned int *index)
	nvmlReturn_t nvmlDeviceGetInforomConfigurationChecksum (nvmlDevice_t device, unsigned int *checksum)
	nvmlReturn_t nvmlDeviceGetInforomImageVersion (nvmlDevice_t device, char *version, unsigned int length)
	nvmlReturn_t nvmlDeviceGetInforomVersion (nvmlDevice_t device, nvmlInforomObject_t object, char *version, unsigned int length)
	nvmlReturn_t nvmlDeviceGetMaxClockInfo (nvmlDevice_t device, nvmlClockType_t type, unsigned int *clock)
	nvmlReturn_t nvmlDeviceGetMaxPcieLinkGeneration (nvmlDevice_t device, unsigned int *maxLinkGen)
	nvmlReturn_t nvmlDeviceGetMaxPcieLinkWidth (nvmlDevice_t device, unsigned int *maxLinkWidth)
	nvmlReturn_t nvmlDeviceGetMemoryErrorCounter (nvmlDevice_t device, nvmlMemoryErrorType_t errorType, nvmlEccCounterType_t counterType, nvmlMemoryLocation_t locationType, unsigned long long *count)
	nvmlReturn_t nvmlDeviceGetMemoryInfo (nvmlDevice_t device, nvmlMemory_t *memory)
	nvmlReturn_t nvmlDeviceGetMinorNumber (nvmlDevice_t device, unsigned int *minorNumber)
	nvmlReturn_t nvmlDeviceGetName (nvmlDevice_t device, char *name, unsigned int length)
	nvmlReturn_t nvmlDeviceGetPciInfo (nvmlDevice_t device, nvmlPciInfo_t *pci)
	nvmlReturn_t nvmlDeviceGetPerformanceState (nvmlDevice_t device, nvmlPstates_t *pState)
	nvmlReturn_t nvmlDeviceGetPersistenceMode (nvmlDevice_t device, nvmlEnableState_t *mode)
	nvmlReturn_t nvmlDeviceGetPowerManagementDefaultLimit (nvmlDevice_t device, unsigned int *defaultLimit)
	nvmlReturn_t nvmlDeviceGetPowerManagementLimit (nvmlDevice_t device, unsigned int *limit)
	nvmlReturn_t nvmlDeviceGetPowerManagementLimitConstraints (nvmlDevice_t device, unsigned int *minLimit, unsigned int *maxLimit)
	nvmlReturn_t nvmlDeviceGetPowerManagementMode (nvmlDevice_t device, nvmlEnableState_t *mode)
	nvmlReturn_t nvmlDeviceGetPowerState (nvmlDevice_t device, nvmlPstates_t *pState)
	nvmlReturn_t nvmlDeviceGetPowerUsage (nvmlDevice_t device, unsigned int *power)
	nvmlReturn_t nvmlDeviceGetRetiredPages (nvmlDevice_t device, nvmlPageRetirementCause_t cause, unsigned int *pageCount, unsigned long long *addresses)
	nvmlReturn_t nvmlDeviceGetRetiredPagesPendingStatus (nvmlDevice_t device, nvmlEnableState_t *isPending)
	nvmlReturn_t nvmlDeviceGetSerial (nvmlDevice_t device, char *serial, unsigned int length)
	nvmlReturn_t nvmlDeviceGetSupportedClocksThrottleReasons (nvmlDevice_t device, unsigned long long *supportedClocksThrottleReasons)
	nvmlReturn_t nvmlDeviceGetSupportedGraphicsClocks (nvmlDevice_t device, unsigned int memoryClockMHz, unsigned int *count, unsigned int *clocksMHz)
	nvmlReturn_t nvmlDeviceGetSupportedMemoryClocks (nvmlDevice_t device, unsigned int *count, unsigned int *clocksMHz)
	nvmlReturn_t nvmlDeviceGetTemperature (nvmlDevice_t device, nvmlTemperatureSensors_t sensorType, unsigned int *temp)
	nvmlReturn_t nvmlDeviceGetTotalEccErrors (nvmlDevice_t device, nvmlMemoryErrorType_t errorType, nvmlEccCounterType_t counterType, unsigned long long *eccCounts)
	nvmlReturn_t nvmlDeviceGetUtilizationRates (nvmlDevice_t device, nvmlUtilization_t *utilization)
	nvmlReturn_t nvmlDeviceGetUUID (nvmlDevice_t device, char *uuid, unsigned int length)
	nvmlReturn_t nvmlDeviceGetVbiosVersion (nvmlDevice_t device, char *version, unsigned int length)
	nvmlReturn_t nvmlDeviceOnSameBoard (nvmlDevice_t device1, nvmlDevice_t device2, int *onSameBoard)
	nvmlReturn_t nvmlDeviceResetApplicationsClocks (nvmlDevice_t device)
	nvmlReturn_t nvmlDeviceValidateInforom (nvmlDevice_t device)

	4.11. Unit Commands
	nvmlReturn_t nvmlUnitSetLedState (nvmlUnit_t unit, nvmlLedColor_t color)

	4.12. Device Commands
	nvmlReturn_t nvmlDeviceClearEccErrorCounts (nvmlDevice_t device, nvmlEccCounterType_t counterType)
	nvmlReturn_t nvmlDeviceSetAPIRestriction (nvmlDevice_t device, nvmlRestrictedAPI_t apiType, nvmlEnableState_t isRestricted)
	nvmlReturn_t nvmlDeviceSetApplicationsClocks (nvmlDevice_t device, unsigned int memClockMHz, unsigned int graphicsClockMHz)
	nvmlReturn_t nvmlDeviceSetComputeMode (nvmlDevice_t device, nvmlComputeMode_t mode)
	nvmlReturn_t nvmlDeviceSetDriverModel (nvmlDevice_t device, nvmlDriverModel_t driverModel, unsigned int flags)
	nvmlReturn_t nvmlDeviceSetEccMode (nvmlDevice_t device, nvmlEnableState_t ecc)
	nvmlReturn_t nvmlDeviceSetGpuOperationMode (nvmlDevice_t device, nvmlGpuOperationMode_t mode)
	nvmlReturn_t nvmlDeviceSetPersistenceMode (nvmlDevice_t device, nvmlEnableState_t mode)
	nvmlReturn_t nvmlDeviceSetPowerManagementLimit (nvmlDevice_t device, unsigned int limit)

	4.13. Event Handling Methods
	struct nvmlEventData_t
	Event Types
	typedef struct nvmlEventSet_st *nvmlEventSet_t
	nvmlEventSet_st * ::

	nvmlReturn_t nvmlDeviceGetSupportedEventTypes (nvmlDevice_t device, unsigned long long *eventTypes)
	nvmlReturn_t nvmlDeviceRegisterEvents (nvmlDevice_t device, unsigned long long eventTypes, nvmlEventSet_t set)
	nvmlReturn_t nvmlEventSetCreate (nvmlEventSet_t *set)
	nvmlReturn_t nvmlEventSetFree (nvmlEventSet_t set)
	nvmlReturn_t nvmlEventSetWait (nvmlEventSet_t set, nvmlEventData_t *data, unsigned int timeoutms)
	4.13.1. Event Types
	#define nvmlEventTypeAll (nvmlEventTypeNone \ | nvmlEventTypeSingleBitEccError \ | nvmlEventTypeDoubleBitEccError \ | nvmlEventTypePState \ | nvmlEventTypeClock \ | nvmlEventTypeXidCriticalError \)
	#define nvmlEventTypeClock 0x0000000000000010LL
	#define nvmlEventTypeDoubleBitEccError 0x0000000000000002LL
	#define nvmlEventTypeNone 0x0000000000000000LL
	#define nvmlEventTypePState 0x0000000000000004LL
	#define nvmlEventTypeSingleBitEccError 0x0000000000000001LL
	#define nvmlEventTypeXidCriticalError 0x0000000000000008LL

	4.14. NvmlClocksThrottleReasons
	#define nvmlClocksThrottleReasonAll (nvmlClocksThrottleReasonNone \ | nvmlClocksThrottleReasonGpuIdle \ | nvmlClocksThrottleReasonApplicationsClocksSetting \ | nvmlClocksThrottleReasonSwPowerCap \ | nvmlClocksThrottleReasonHwSlowdown \ | nvmlClocksThrottleReasonUnknown \)
	#define nvmlClocksThrottleReasonApplicationsClocksSetting 0x0000000000000002LL
	#define nvmlClocksThrottleReasonGpuIdle 0x0000000000000001LL
	#define nvmlClocksThrottleReasonHwSlowdown 0x0000000000000008LL
	#define nvmlClocksThrottleReasonNone 0x0000000000000000LL
	#define nvmlClocksThrottleReasonSwPowerCap 0x0000000000000004LL
	#define nvmlClocksThrottleReasonUnknown 0x8000000000000000LL
	#define nvmlClocksThrottleReasonUserDefinedClocks nvmlClocksThrottleReasonApplicationsClocksSetting

	Data Structures
	5.1. nvmlAccountingStats_t Struct Reference
	unsigned int nvmlAccountingStats_t::gpuUtilization
	unsigned long long nvmlAccountingStats_t::maxMemoryUsage
	unsigned int nvmlAccountingStats_t::memoryUtilization
	unsigned long long nvmlAccountingStats_t::time

	5.2. nvmlBAR1Memory_t Struct Reference
	unsigned long long nvmlBAR1Memory_t::bar1Free
	unsigned long long nvmlBAR1Memory_t::bar1Total
	unsigned long long nvmlBAR1Memory_t::bar1Used

	5.3. nvmlBridgeChipHierarchy_t Struct Reference
	struct nvmlBridgeChipInfo_t nvmlBridgeChipHierarchy_t::bridgeChipInfo
	unsigned char nvmlBridgeChipHierarchy_t::bridgeCount

	5.4. nvmlBridgeChipInfo_t Struct Reference
	unsigned int nvmlBridgeChipInfo_t::fwVersion
	nvmlBridgeChipType_t nvmlBridgeChipInfo_t::type

	5.5. nvmlEccErrorCounts_t Struct Reference
	unsigned long long nvmlEccErrorCounts_t::deviceMemory
	unsigned long long nvmlEccErrorCounts_t::l1Cache
	unsigned long long nvmlEccErrorCounts_t::l2Cache
	unsigned long long nvmlEccErrorCounts_t::registerFile

	5.6. nvmlEventData_t Struct Reference
	nvmlDevice_t nvmlEventData_t::device
	unsigned long long nvmlEventData_t::eventType

	5.7. nvmlHwbcEntry_t Struct Reference
	5.8. nvmlLedState_t Struct Reference
	char nvmlLedState_t::cause
	nvmlLedColor_t nvmlLedState_t::color

	5.9. nvmlMemory_t Struct Reference
	unsigned long long nvmlMemory_t::free
	unsigned long long nvmlMemory_t::total
	unsigned long long nvmlMemory_t::used

	5.10. nvmlPciInfo_t Struct Reference
	unsigned int nvmlPciInfo_t::bus
	char nvmlPciInfo_t::busId
	unsigned int nvmlPciInfo_t::device
	unsigned int nvmlPciInfo_t::domain
	unsigned int nvmlPciInfo_t::pciDeviceId
	unsigned int nvmlPciInfo_t::pciSubSystemId

	5.11. nvmlProcessInfo_t Struct Reference
	unsigned int nvmlProcessInfo_t::pid
	unsigned long long nvmlProcessInfo_t::usedGpuMemory

	5.12. nvmlPSUInfo_t Struct Reference
	unsigned int nvmlPSUInfo_t::current
	unsigned int nvmlPSUInfo_t::power
	char nvmlPSUInfo_t::state
	unsigned int nvmlPSUInfo_t::voltage

	5.13. nvmlUnitFanInfo_t Struct Reference
	unsigned int nvmlUnitFanInfo_t::speed
	nvmlFanState_t nvmlUnitFanInfo_t::state

	5.14. nvmlUnitFanSpeeds_t Struct Reference
	unsigned int nvmlUnitFanSpeeds_t::count
	struct nvmlUnitFanInfo_t nvmlUnitFanSpeeds_t::fans

	5.15. nvmlUnitInfo_t Struct Reference
	char nvmlUnitInfo_t::firmwareVersion
	char nvmlUnitInfo_t::id
	char nvmlUnitInfo_t::name
	char nvmlUnitInfo_t::serial

	5.16. nvmlUtilization_t Struct Reference
	unsigned int nvmlUtilization_t::gpu
	unsigned int nvmlUtilization_t::memory

	Data Fields
	Deprecated List

