
NVIDIA CUDA TOOLKIT 9.2.106

RN-06722-001 _v9.2 | April 2018

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | ii

TABLE OF CONTENTS

Chapter 1. CUDA Toolkit Major Components... 1
Chapter 2. New Features...4

2.1. General CUDA... 4
2.2. CUDA Tools...5

2.2.1. CUDA Compilers... 5
2.2.2. CUDA Profiler...5
2.2.3. CUDA Profiling Tools Interface (CUPTI).. 5
2.2.4. CUDA-GDB...5
2.2.5. CUDA-MEMCHECK.. 6

2.3. CUDA Libraries.. 6
2.3.1. cuBLAS Library... 6
2.3.2. NVIDIA Performance Primitives (NPP).. 6
2.3.3. cuFFT Library.. 6
2.3.4. cuSOLVER Library.. 6
2.3.5. cuSPARSE Library.. 7
2.3.6. Thrust Library..7

Chapter 3. Deprecated Features..8
Chapter 4. Resolved Issues... 10

4.1. General CUDA.. 10
4.2. CUDA Tools... 11

4.2.1. CUDA Compilers.. 11
4.2.2. CUDA Profiler... 11
4.2.3. CUDA Profiling Tools Interface (CUPTI)...11
4.2.4. CUDA-GDB... 12
4.2.5. CUDA-MEMCHECK... 12

4.3. CUDA Libraries... 12
4.3.1. cuBLAS Library..12
4.3.2. NVIDIA Performance Primitives (NPP)...12

Chapter 5. Known Issues..13
5.1. General CUDA.. 13
5.2. CUDA Tools... 14

5.2.1. CUDA Compiler... 14
5.2.2. CUDA Profiler... 14
5.2.3. CUDA-MEMCHECK... 14

5.3. CUDA Libraries... 14
5.3.1. cuBLAS Library..14

5.4. CUDA Samples..15
Chapter 6. CUDA Tegra Release Notes... 16

6.1. New Features.. 16
6.2. Known Issues and Limitations... 16

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | iii

LIST OF TABLES

Table 1 CUDA Toolkit and Compatible Driver Versions ...2

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | iv

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 1

Chapter 1.
CUDA TOOLKIT MAJOR COMPONENTS

This section provides an overview of the major components of the CUDA Toolkit and
points to their locations after installation.
Compiler

The CUDA-C and CUDA-C++ compiler, nvcc, is found in the bin/ directory. It is
built on top of the NVVM optimizer, which is itself built on top of the LLVM compiler
infrastructure. Developers who want to target NVVM directly can do so using the
Compiler SDK, which is available in the nvvm/ directory.
Please note that the following files are compiler-internal and subject to change
without any prior notice.

‣ any file in include/crt and bin/crt
‣ include/common_functions.h, include/device_double_functions.h,

include/device_functions.h, include/host_config.h, include/
host_defines.h, and include/math_functions.h

‣ nvvm/bin/cicc
‣ bin/cudafe++, bin/bin2c, and bin/fatbinary

Tools
The following development tools are available in the bin/ directory (except for
Nsight Visual Studio Edition (VSE) which is installed as a plug-in to Microsoft Visual
Studio).

‣ IDEs: nsight (Linux, Mac), Nsight VSE (Windows)
‣ Debuggers: cuda-memcheck, cuda-gdb (Linux), Nsight VSE (Windows)
‣ Profilers: nvprof, nvvp, Nsight VSE (Windows)
‣ Utilities: cuobjdump, nvdisasm, gpu-library-advisor

Libraries
The scientific and utility libraries listed below are available in the lib/ directory
(DLLs on Windows are in bin/), and their interfaces are available in the include/
directory.

‣ cublas (BLAS)
‣ cublas_device (BLAS Kernel Interface)
‣ cuda_occupancy (Kernel Occupancy Calculation [header file implementation])

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 2

‣ cudadevrt (CUDA Device Runtime)
‣ cudart (CUDA Runtime)
‣ cufft (Fast Fourier Transform [FFT])
‣ cupti (Profiling Tools Interface)
‣ curand (Random Number Generation)
‣ cusolver (Dense and Sparse Direct Linear Solvers and Eigen Solvers)
‣ cusparse (Sparse Matrix)
‣ npp (NVIDIA Performance Primitives [image and signal processing])
‣ nvblas ("Drop-in" BLAS)
‣ nvcuvid (CUDA Video Decoder [Windows, Linux])
‣ nvgraph (CUDA nvGRAPH [accelerated graph analytics])
‣ nvml (NVIDIA Management Library)
‣ nvrtc (CUDA Runtime Compilation)
‣ nvtx (NVIDIA Tools Extension)
‣ thrust (Parallel Algorithm Library [header file implementation])

CUDA Samples
Code samples that illustrate how to use various CUDA and library APIs are available
in the samples/ directory on Linux and Mac, and are installed to C:\ProgramData
\NVIDIA Corporation\CUDA Samples on Windows. On Linux and Mac, the
samples/ directory is read-only and the samples must be copied to another location
if they are to be modified. Further instructions can be found in the Getting Started
Guides for Linux and Mac.

Documentation
The most current version of these release notes can be found online at http://
docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html. Also, the version.txt
file in the root directory of the toolkit will contain the version and build number of
the installed toolkit.
Documentation can be found in PDF form in the doc/pdf/ directory, or in HTML
form at doc/html/index.html and online at http://docs.nvidia.com/cuda/
index.html.

CUDA Driver
Running a CUDA application requires the system with at least one CUDA capable
GPU and a driver that is compatible with the CUDA Toolkit. For more information
various GPU products that are CUDA capable, visit https://developer.nvidia.com/
cuda-gpus. Each release of the CUDA Toolkit requires a minimum version of the
CUDA driver. The CUDA driver is backward compatible, meaning that applications
compiled against a particular version of the CUDA will continue to work on
subsequent (later) driver releases. More information on compatibility can be found at
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-
and-driver-api-version.

Table 1 CUDA Toolkit and Compatible Driver Versions

CUDA Toolkit
Linux x86_64
Driver Version

Windows x86_64
Driver Version

CUDA 7.0 (7.0.28) >= 346.46 >= 347.62

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 3

CUDA Toolkit
Linux x86_64
Driver Version

Windows x86_64
Driver Version

CUDA 7.5 (7.5.16) >= 352.31 >= 353.66

CUDA 8.0 (8.0.44) >= 367.48 >= 369.30

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 9.1 (9.1.85) >= 387.26 >= 388.19

CUDA 9.2 (9.2.88) >= 396.14 >= 397.05

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit
installation. Note that this driver is for development purposes and is not
recommended for use in production with Tesla GPUs. For running CUDA
applications in production with Tesla GPUs, it is recommended to download the
latest driver for Tesla GPUs from the NVIDIA driver downloads site at http://
www.nvidia.com/drivers.
During the installation of the CUDA Toolkit, the installation of the NVIDIA driver
may be skipped on Windows (when using the interactive or silent installation) or on
Linux (by using meta packages). For more information on customizing the install
process on Windows, see http://docs.nvidia.com/cuda/cuda-installation-guide-
microsoft-windows/index.html#install-cuda-software. For meta packages on Linux,
see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-
manager-metas

CUDA-GDB Sources
CUDA-GDB sources are available as follows:

‣ For CUDA Toolkit 7.0 and newer, in the installation directory extras/. The
directory is created by default during the toolkit installation unless the .rpm or
.deb package installer is used. In this case, the cuda-gdb-src package must be
manually installed.

‣ For CUDA Toolkit 6.5, 6.0, and 5.5, at https://github.com/NVIDIA/cuda-gdb.
‣ For CUDA Toolkit 5.0 and earlier, at ftp://download.nvidia.com/CUDAOpen64/.
‣ Upon request by sending an e-mail to mailto:oss-requests@nvidia.com.

http://www.nvidia.com/drivers
http://www.nvidia.com/drivers
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://github.com/NVIDIA/cuda-gdb
ftp://download.nvidia.com/CUDAOpen64/
mailto:oss-requests@nvidia.com

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 4

Chapter 2.
NEW FEATURES

The release notes for the CUDA Toolkit can be found online at http://docs.nvidia.com/
cuda/cuda-toolkit-release-notes/index.html.

2.1. General CUDA
‣ Improved kernel launch latency (using the <<< >>> syntax and the

cudaLaunchKernel API) for both multithreaded and multi-GPU code by up to a
factor of 2 compared to CUDA 9.0.

‣ Added support for unified memory with address translation services (ATS) on IBM
POWER9.

‣ Added arithmetic operators for the __half2 data type and a volatile assignment
operator for the __half data type.

‣ Added version 6.2 of the Parallel Thread Execution instruction set architecture (ISA).
For details about new instructions (activemask, nanosleep, FP16, and atomics)
and deprecated instructions, see Parallel Thread Execution ISA Version 6.2 in the
PTX documentation.

‣ IPC functionality is now supported on Windows.
‣ Added P2P write and read bandwidth and latency metrics to the

p2pBandwidthLatencyTest sample.
‣ Thrust now uses CUB v1.7.5.
‣ Added some performance optimizations in Thrust for the templated complex type.
‣ Added support for new operating systems. For a list of operating systems supported

by CUDA, see the following information in the installation guides:

‣ Windows system requirements
‣ Mac OS X system requirements
‣ Linux system requirements

‣ Changed CUDA_DEVICE_ORDER==FASTEST_FIRST to enumerate GPUs in
descending order of performance.

‣ Added a new driver API cuStreamGetCtx to retrieve the context associated with a
stream. This API is primarily used by the multidevice cooperative launch runtime
API to ensure that the specified function's module is loaded in the right context.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html#ptx-isa-version-6-2
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#system-requirements
https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 5

‣ Added support for full core dump generation on Linux by using named pipes for
MPS-based CUDA applications and CUDA applications that are not based on MPS.

‣ Added these new helper APIs for cooperative groups:

‣ grid_dim() to get the 3-dimensional grid size
‣ block_dim() to get the 3-dimensional block size

2.2. CUDA Tools

2.2.1. CUDA Compilers
‣ The following compilers are supported as host compilers in nvcc

‣ Clang 5.0
‣ GCC 7.x
‣ Microsoft Visual Studio 2017 (RTW and Update 6)
‣ PGI pgc++ 18.x
‣ XLC 13.1.6

‣ __device__ / __constant__ variables are now allowed to have an rvalue
reference type.

‣ Functions in math_functions.hpp have been changed to use memcpy for type
punning.

‣ Added support for std::tuple.
‣ Enabled pgcc to include some CUDA header files by defining CUDA-specific

macros with GNU-style attributes.

2.2.2. CUDA Profiler
‣ Added new utilization and count metrics for Tensor Cores on GPUs based on the

Volta architecture.
‣ Added CLI options for nvprof --trace <gpu,api> to show trace and profile

information in the same output.
‣ Visual Profiler now includes a summary view to show the memory hierarchy.

2.2.3. CUDA Profiling Tools Interface (CUPTI)
For information about new features such as PCIe topology, new metrics, and new
profiling scope in CUPTI, see Changelog in the CUPTI documentation.

‣ Added support in CUPTI to allow hwpm_active_warps and
hwpm_active_cycles counters to be collected in a single pass.

‣ Added support for the NVTX v3 interface

2.2.4. CUDA-GDB
‣ CUDA now supports lightweight core dumps.

http://docs.nvidia.com/cuda/cupti/r_changelog.html#r_changelog

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 6

2.2.5. CUDA-MEMCHECK
For new features in CUDA-MEMCHECK, see Release Notes in the CUDA-MEMCHECK
documentation.

2.3. CUDA Libraries

2.3.1. cuBLAS Library
‣ Improved performance for a range of small and large tile size matrices that are

extensively used in RNN based speech and NLP models, Convolutional seq2seq
(Fairseq) models, OpenAI research and other emerging DL applications. These sizes
are optimized on the Tesla V100 architecture to deliver enhanced out-of-the-box
performance.

‣ Added GEMM API logging for developers to trace the algorithm and dataset used
during the last BLAS API call.

‣ Improved GEMM performance on Tesla V100 for single and double precision inputs.

2.3.2. NVIDIA Performance Primitives (NPP)
‣ Added support for NV12-to-RGB format conversion, which is important for deep

learning because the decoder output format is NV12 and the typical input format for
networks is RGB.

‣ Added primitives to convert real-valued images to complex-valued images and vice
versa, for single-channeled images.

‣ Added a new NPP sample under CUDA samples called boundSegmentsNPP.

2.3.3. cuFFT Library
‣ Improved the performance for prime factor FFT sizes with fused bluestein kernels.
‣ A new memory-usage API provides an optional minimal work area policy setting

that allows:

‣ Transforms of type C2C to be supported with sizes of up to 4096 in any
dimension

‣ Transforms of type Z2Z to be supported with sizes of up to 2048 in any
dimension

‣ Provided a new static library that supports only standard cuFFT APIs, that
is, without the callbacks. Supporting standard only cuFFT APIs removes the
dependency on the CUDA compiler and callback functionality for certain
deployments.

2.3.4. cuSOLVER Library
‣ Added the following sparse matrix reordering options:

http://docs.nvidia.com/cuda/cuda-memcheck/index.html#release-notes

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 7

‣ A zero-free diagonal reordering option to permute rows of a sparse matrix such
that there are no zeroes on diagonals after reordering.

‣ An option for matrix reordering by using the METIS library. This option
typically delivers smaller zero fill-in than nested dissection during factorization.

2.3.5. cuSPARSE Library
‣ Significantly improved the performance of the merge-path-based sparse matrix-

vector multiplication routines (csrmv_mp and csrmvEx) .
‣ Added a new triangular solver (csrsm2) that provides the same functionality as the

existing csrsv2 but extends support for multiple right-hand-side vectors.
‣ Added a batched pentadiagonal solver that supports 5-vector matrices and

interleaved data layouts. This solver is intended for large batches (thousands) of
small matrices (size in the hundreds).

2.3.6. Thrust Library
‣ CUB 1.7.5 has been integrated as a device back end for Thrust.

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 8

Chapter 3.
DEPRECATED FEATURES

The following features are deprecated in the current release of the CUDA software.
The features still work in the current release, but their documentation may have
been removed, and they will become officially unsupported in a future release. We
recommend that developers employ alternative solutions to these features in their
software.
General CUDA

‣ The execution control APIs in CUDA will be removed in the next release of
CUDA and will no longer be available. These APIs are as follows:

‣ cudaConfigureCall
‣ cudaLaunch
‣ cudaSetupArgument

‣ The NVIDIA Video Decoder (NVCUVID) is deprecated. Instead, use the NVIDIA
Video Codec SDK. As of CUDA 9.2, the following files are still available under
the CUDA installation directory (for example, for Linux, this directory may be /
usr/local/cuda/include). These files will be removed in the next release of
the CUDA Toolkit:

‣ dynlink_cuviddec.h
‣ dynlink_nvcuvid.h
‣ dynlink_cuda.h
‣ dynlink_cuda_cuda.h
‣ Windows nvcuvid static library: \lib\x64\nvcuvid.lib

‣ The --use-local-env option no longer requires --cl-version and --cl-
version is now ignored. With this change, nvcc detects the Microsoft Visual
Studio compiler version from the local environment without relying on --cl-
version.

‣ In the next release of CUDA, Microsoft Visual Studio 2010 will no longer be
supported.

‣ Starting with R396, the OpenCL ICD loader version will be reported as 2.2
instead of 2.0. Note that there is no change in the OpenCL version (1.2) supported
by NVIDIA.

‣ Starting with R396, the Fermi architecture (sm_2x) is no longer supported.

http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION__DEPRECATED.html
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk

Deprecated Features

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 9

CUDA Libraries

‣ Since CUDA 5.0, the cuBLAS library has supported the ability to call the same
cuBLAS APIs from within device routines, i.e. kernels. These routines are
implemented using the Dynamic Parallelism feature, which is available starting
with the Kepler generation of GPUs.The device library (cublas_device) that
enables this feature, is deprecated in this release and will be dropped starting
next release. NOTE: none of the main cuBLAS library functionality and the APIs
that can be called from the host, is impacted.

https://docs.nvidia.com/cuda/cublas/index.html#device-api

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 10

Chapter 4.
RESOLVED ISSUES

4.1. General CUDA
‣ Fixed incorrect memory access issues when oceanFFT is running on GPUs based on

the Volta architecture.
‣ The macros in cooperative groups cg_assert() and die() have been renamed to

_CG_ASSERT() and _CG_ABORT()
‣ Fixed a crash with the simpleIPC CUDA sample on 16-GPU systems.
‣ Fixed an issue in NVML to allow users to set application clocks by using nvidia-

smi (nvidia-smi -ac) without requiring root privileges on GPUs based on the
Pascal and later architectures.

‣ Improved the performance of the PTX JIT cache in a multiprocess environment. See
the CUDA documentation about JIT cache management for more information.

‣ Fixed a bug in the CUDA runtime that caused a pthread_mutex hang on the
POWER platform when running some CUDA applications.

‣ Fixed a bug in the CUDA memory allocator when using cudaDeviceSetLimit()
that could result in heap corruption.

‣ Fixed a bug in the shfl_scan CUDA sample code when converting unsigned int
to uchar4.

‣ In R396, removed nv_flush_caches() for recent kernels (2.6.25 and greater),
which implement cache flush in pageattr.c.

‣ Fixed a bug where the CUDA samples would not load when multiple versions of
Microsoft Visual Studio are installed on the system.

‣ In R396, fixed nvmlDeviceGetTopologyCommonAncestor to return
NVML_ERROR_NOT_SUPPORTED instead of NVML_ERROR_UNKNOWN for GPUs that do
not support this API.

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#compiler-jit-cache-management

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 11

4.2. CUDA Tools

4.2.1. CUDA Compilers
‣ Fixed an issue in the CUDA compiler, where in some cases, mixing shfl and certain

carry operations on sm_70 produces incorrect code.
‣ Fixed an issue in the CUDA compiler with incorrect constant folding in the presence

of mul.wide.u16 instructions.
‣ Fixed a crash in PTXAS compiling certain PTX files that contain debugging

information.
‣ Fixed an incompatibility issue with nvcc and glibc 2.26
‣ In some cases, when NVVM IR is compiled with libNVVM on GCC with debugging

information (-g), PTXAS may fail with the following message:
Parsing error near '-': syntax error

‣ Fixed a crash in PTXAS when a user-defined label is present at the start of a
function.

‣ Fixed a performance issue by tuning the CUDA compiler's heuristics for application
code that may contain a large number of switch statements.

‣ Fixed an issue in the CUDA compiler to significantly reduce the compilation time
for certain kernels that include complicated array element access patterns.

‣ The explicit instantiation definition directive for a __global__ function template is
now supported

‣ Fixed an issue in the CUDA compiler related to incorrect parameter pack expansion.
‣ The CUDA compiler previously incorrectly determined that the constructor for a

__shared__ multidimensional array variable was non-empty in some scenarios,
and generated a spurious diagnostic. The bug has now been fixed.

4.2.2. CUDA Profiler
‣ Fixed an issue in nvprof where the --trace api option does not print the API

calls when the --metrics option or the --events option is also specified.
‣ The NVLink topology diagram available in the Visual Profiler may be garbled

and the rectangles representing the CPUs and GPUs may be overlapped. You can
manually select and rearrange the processor rectangles to get a better layout.

‣ Fixed an issue in the Visual Profiler when no events or metrics are collected when
profiling on a remote system.

4.2.3. CUDA Profiling Tools Interface (CUPTI)
‣ Fixed an issue with incorrect reporting of the half precision functional unit

utilization (hp_fu_utilization) metric in CUPTI.

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 12

4.2.4. CUDA-GDB
‣ Fixed an issue in CUDA-GDB to where info float would trigger an assert inside a

CUDA stack frame.
‣ Fixed an issue with CUDA-GDB where in some cases, continuing from a deleted

breakpoint would result in an error on GPUs based on the Volta architecture.
‣ Fixed an issue with CUDA-GDB where it would crash with an OpenMP 4.5 offload

program compiled with the Clang compiler.

4.2.5. CUDA-MEMCHECK
‣ Fixed an issue with CUDA-MEMCHECK where it did not correctly detect illegal

memory accesses on GPUs based on the Volta architecture.

4.3. CUDA Libraries

4.3.1. cuBLAS Library
‣ Fixed an issue with a cuBLAS malfunction for specific int8 row-major GEMM sizes,

which resulted in incorrect results.
‣ Fixed an incorrect data type for const float used in batched GEMM APIs from

const float* foo[] to const float* const foo[]. This fix enables users to
bind a pointer of type float** or float*[] to the argument.

‣ Fixed the cuBLAS code sample "Application Using C and CUBLAS: 0-based
Indexing" that was cut off in the PDF version of cuBLAS Library User Guide.

4.3.2. NVIDIA Performance Primitives (NPP)
‣ Fixed a functional correctness issue for the following NPP routines

‣ nppiDilate_8u_C1R
‣ nppiDilate_16u_C1R

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 13

Chapter 5.
KNOWN ISSUES

5.1. General CUDA
‣ The driver that is supplied with CUDA 9.2 (R396) has known issues with the

upcoming Windows 10 RS4 release. Users of Windows 10 RS4 should upgrade to the
latest GA driver from nvidia.com.

‣ In some cases on Windows, when CUDA 9.2 is installed with custom installation
settings (where all display driver features are disabled), the existing desktop context
menu may not show the NVIDIA Display Control Panel any more. Re-install the
NVIDIA driver to obtain the control panel.

‣ On systems with Fedora 27, the CUDA Toolkit runfile installer may fail to install
without the elfutils-libelf-devel package installed. Install the missing
package or install the dkms package to complete the installation of the CUDA
Toolkit.

‣ For warp matrix functions in this release, all threads in a warp must call the
same load_matrix_sync() function at the same source line, otherwise the code
execution is likely to hang or produce unintended side effects. For example, the
following usage is not supported:
if (threadIdx.x % 2) {
…
load_matrix_sync(...);
…
}
else {
…
load_matrix_sync(...);
…
}

The same restriction applies to calls to store_matrix_sync() and mma_sync().

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 14

5.2. CUDA Tools

5.2.1. CUDA Compiler
‣ nvcc in CUDA 9.2 has a known regression with function-try-blocks (see [except]

in ISO C++ standard for the definition of function-try-blocks). In the presence of
any function-try-blocks, compilation with nvcc aborts with an assertion failure.
Function-try-blocks can be replaced with try-blocks in functions to work around
this issue unless function-try-blocks are used to catch and handle exceptions thrown
by member initializers (see [class.base.init] in ISO C++ standard for the definition
of member initializers). For example, compilation of the following code with nvcc
aborts with an assertion failure:
void f() try { /* do something */ } catch (…) { /* handle exception */ }

To avoid the failure, rewrite the code as follows:
void f() { try { /* do something */ } catch (…) { /* handle exception */ } }

This issue will be fixed in the next release.

5.2.2. CUDA Profiler
‣ Event and metric collection is not supported for multidevice

cooperative kernels, that is, kernels launched by using the API
functions cudaLaunchCooperativeKernelMultiDevice or
cuLaunchCooperativeKernelMultiDevice.

‣ Because of the low resolution of the timer on Windows, the start and end
timestamps can be same for activities having short execution duration on Windows.
As a result, the Visual Profiler and nvprof report the following warning:
Found N invalid records in the result.

‣ The source file for unified memory profiling results cannot be opened in the source
view if the user is remote profiling on a POWER platform through Visual Profiler.

‣ Running both the analysis and the application in Analysis All fails on TCC. To work
around this issue, run each unguided analysis and application analysis individually.

5.2.3. CUDA-MEMCHECK
For known issues in CUDA-MEMCHECK, see Known Issues in the CUDA-
MEMCHECK documentation.

5.3. CUDA Libraries

5.3.1. cuBLAS Library
‣ The previously documented behavior of cuBLAS allowed the same handle to be

used simultaneously from multiple host threads. However, there are multiple

http://docs.nvidia.com/cuda/cuda-memcheck/index.html#known-issues

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 15

known issues with this, including in application crashes in some instances, and
performance degradations in other situations. To avoid this issue, each host thread
should use a separate cuBLAS handle to call the APIs. The documentation for the
cuBLAS library has also been changed to indicate that simultaneous use of the
same handle from multiple host threads is disallowed, as the functionality and
performance issues will not be addressed.

5.4. CUDA Samples
‣ The NVRTC samples on Mac OS do not link correctly. To work around the issue,

modify the linker command in the Makefile to pass -L/Developer/NVIDIA/
CUDA-9.2/lib.

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 16

Chapter 6.
CUDA TEGRA RELEASE NOTES

The release notes for CUDA Tegra contain only information this is specific to the CUDA
Tegra Driver and the mobile version of other CUDA components such as compilers,
tools, libraries, and samples. The release notes for the desktop version of CUDA in the
remaining chapters of this document also apply to CUDA Tegra. On Tegra, the CUDA
Toolkit version is 9.2.78.

6.1. New Features
CUDA Tegra Driver

‣ Support has been added for Pegasus on Vibrante Linux.
‣ EGL Stream has been enhanced as follows:

‣ Support for additional color formats for EGL streams has been added.
‣ In addition to allowing the release of frames in order, support for out-of-

order release of frames has been added. Applications can use this feature to
speed up their computational tasks.

‣ GPU work submission latency on Android, L4T, and QNX platforms has been
optimized.

‣ Support has been added on Linux for registering host allocation, which enables
the use of third-party memory to be processed directly by the GPU.

CUDA Tegra Driver API

‣ cudaDevAttrHostRegisterSupported now checks whether the device
supports host memory registration through the cudaHostRegister API. The
attribute will be set to 1 if the device supports host memory registration (beyond
Xavier with kernel driver and OS support) and 0 otherwise.

6.2. Known Issues and Limitations
CUDA Tegra Driver

‣ Starting from CUDA 9.2, 32-bit support will no longer be available.

CUDA Tegra Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 9.2.106 RN-06722-001 _v9.2 | 17

‣ During initialization, the driver reserves a large amount of CPU virtual address
(VA) for its internal memory management. On QNX, this CPU VA reservation
might take a considerable amount of time on systems with large physical
memory. Because of this behavior, CUDA initialization might take more time on
QNX Xavier compared with earlier releases. NVIDIA is working with its partners
to address this issue in upcoming releases.

‣ cudaHostRegister on QNX is not supported because of lack of support from
the QNX kernels. This functionality will be enabled in future releases.

‣ CUDA allocators cannot make a single allocation greater than 4 GB on Tegra
SoC memory. This limitation applies to all allocations on Tegra iGPU and zero-
copy memory allocations on Tegra dGPU. To work around this limitation, ensure
that applications make multiple allocations and aggregate them to create a large
allocation.

‣ The cudaDeviceGetAttribute method returns incorrect information (false)
for the attribute cudaDevAttrHostNativeAtomicSupported. Native atomics
have been supported fromT194 onwards, but the device attribute is returned
incorrectly.

CUDA Profiler

‣ PC sampling is not supported.
‣ The Volta dGPU (GV100) is not supported.
‣ This release does not support HWPM context switching. That means that

counters that are collected through the HWPM counter provider are available at
the device level only at this time. This will be fixed in a future release.

CUDA-GDB

‣ QNX: cuda-qnx-gdb may intermittently miss device breakpoints.
‣ QNX : The info threads command in cuda-qnx-gdb displays the host

threads even when the focus is on the device.
‣ Linux: CUDA-GDB may intermittently miss device exceptions.
‣ Linux: The set cuda memcheck on command in CUDA-GDB does not have

any effect.
‣ Linux: CUDA-GDB may intermittently miss device breakpoints in CUDA

applications that use the iGPU and the dGPU at the same time.

Acknowledgments

NVIDIA extends thanks to Professor Mike Giles of Oxford University for providing
the initial code for the optimized version of the device implementation of the
double-precision exp() function found in this release of the CUDA toolkit.

NVIDIA acknowledges Scott Gray for his work on small-tile GEMM kernels for
Pascal. These kernels were originally developed for OpenAI and included since
cuBLAS 8.0.61.2.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2018 NVIDIA Corporation. All rights reserved.
www.nvidia.com

	Table of Contents
	List of Tables
	CUDA Toolkit Major Components
	New Features
	2.1. General CUDA
	2.2. CUDA Tools
	2.2.1. CUDA Compilers
	2.2.2. CUDA Profiler
	2.2.3. CUDA Profiling Tools Interface (CUPTI)
	2.2.4. CUDA-GDB
	2.2.5. CUDA-MEMCHECK

	2.3. CUDA Libraries
	2.3.1. cuBLAS Library
	2.3.2. NVIDIA Performance Primitives (NPP)
	2.3.3. cuFFT Library
	2.3.4. cuSOLVER Library
	2.3.5. cuSPARSE Library
	2.3.6. Thrust Library

	Deprecated Features
	Resolved Issues
	4.1. General CUDA
	4.2. CUDA Tools
	4.2.1. CUDA Compilers
	4.2.2. CUDA Profiler
	4.2.3. CUDA Profiling Tools Interface (CUPTI)
	4.2.4. CUDA-GDB
	4.2.5. CUDA-MEMCHECK

	4.3. CUDA Libraries
	4.3.1. cuBLAS Library
	4.3.2. NVIDIA Performance Primitives (NPP)

	Known Issues
	5.1. General CUDA
	5.2. CUDA Tools
	5.2.1. CUDA Compiler
	5.2.2. CUDA Profiler
	5.2.3. CUDA-MEMCHECK

	5.3. CUDA Libraries
	5.3.1. cuBLAS Library

	5.4. CUDA Samples

	CUDA Tegra Release Notes
	6.1. New Features
	6.2. Known Issues and Limitations

