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 Abstract 
Histograms are a commonly used analysis tool in image processing and data mining 
applications. They show the frequency of occurrence of each data element. 

Although trivial to compute on the CPU, histograms are traditionally quite difficult to 
compute efficiently on the GPU. Previously proposed methods include using the occlusion 
query mechanism (which requires a rendering pass for each histogram bucket), or sorting the 
pixels of the image and then searching for the start of each bucket, both of which are quite 
expensive 

We can use OpenCL and the fast local memory to efficiently produce histograms, which can 
then either be read back to the host or kept on the GPU for later use. The two OpenCL 
SDK samples: oclHistogram64 and oclHistogram256 demonstrate different approaches 
to efficient histogram computation on GPU using OpenCL.. 
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Introduction 

 
Figure 1: An example of an image histogram 

 

An image histogram shows the distribution of pixel intensities within an image. 
Figure 1 is an example of an image histogram with amplitude (or color) on the horizontal 
axis and pixel count on the vertical axis.  

oclHistogram64 demonstrates a simple and high-performance implementation 
of a 64-bin histogram. Due to the current hardware resource limitations, its approach cannot 
be scaled to higher resolutions. 64-bin resolution is enough for many applications, but it’s 
not well suited for many image processing methods, like, for example, histogram 
equalization. 

oclHistogram256 demonstrates an efficient implementation of a 256-bin 
histogram, which makes it suitable for image processing applications that require higher 
precision than 64 bins can provide. 
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Overview 
Calculating an image histogram on a sequential device with single thread of execution is 
fairly easy: 

 

for(unsigned int i = 0; i < BIN_COUNT; i++) 
    result[i] = 0; 
 
for(unsigned int i = 0; i < dataN; i++) 
    result[data[i]]++; 

  Listing 1. Histogram calculation on a single-threaded device. (pseudo-code) 

Distribution of the computation process between multiple work-items is possible. It 
amounts to three fundamental computation steps: 

1) Map input data array to work-groups and work-items within a work-group. Generally, 
the exact mapping pattern doesn’t matter for correctness. The only mandatory constraint is 
that each input data element must be counted exactly once. 

2) Each work-item sequentially processes input data elements it is mapped, building up 
private work-item sub-histograms., which is largely identical to the pseudo-code in Listing 1. 
It may also be possible for subgroups of work-items within a work-group to build up 
common sub-histograms shared by these subgroups by using atomic operations (or 
otherwise resolve potential access collisions inevitable in parallel processing), thus 
considerably decreasing the size of required per work-group sub-histogram storage and the 
amount of work for step 3. But resolving collisions between work-items within the 
subgroups may vary from being expensive to impossible. 

3) Finally all sub-histograms need to be merged into a single histogram. Each bin of the 
resulting histogram is merely a sum of corresponding bin values of sub-histogram(s) 
produced on previous stages of computation. If needed, this step is performed at multiple 
levels, i.e. first-level merge step would combine work-item sub-histograms to form a work-
group sub-histogram; second-level merge step would combine work-group sub-histograms 
to form the histogram of the entire input data array. 

When adapting these steps to the particular family of GPUs some important features and 
characteristics should be kept in mind. 

 Local memory has approximately an order of magnitude higher bandwidth than 
global memory (loading/storing from/to local memory is generally as fast as 
reading/writing private register memory), tolerates many irregular access 
patterns, but is limited in size: maximum local storage size for G8x / G9x / 
G10x NVIDIA GPUs is 16KB. 

 Only G10x NVIDIA GPUs provide built-in support for workgroup-wide atomic 
operations in local memory. But even on earlier G8x / G9x NVIDIA GPUs 
local-memory atomic operations can be emulated basing on the fundamental fact 
that work-groups are executed as subgroups of logically coherent work-items, 
called warps , though “consistency domain” of such manually-implemented 
atomic operations will also be limited by warp size, which is 32 work-items on 
G8x / G9x / G10x NVIDIA GPUs. But even with built-in support of atomic 

 

April 2009 



  
    

 

operations we may want to limit the amount of work-items sharing the same 
sub-histogram, since the hardware still has to serialize colliding accesses, and the 
degree of contention increases as the amount of work-items competing for 
shared resource does. 

 Depending on the utilization of local and private register memory, optimal work-
group size typically varies in the range of 64..256 work-items. 

With the intention to minimize the potential contention degree and avoid the need in 
expensive atomic operations (either built-in or emulated), we simply stick to “one sub-
histogram per work-item” tactics, which is implemented in oclHistogram64 OpenCL 
SDK sample. Such strategy however introduces some serious limitations: 16 KB per average 
192 work-items in a group amount to the maximum of ~85 bytes of local memory per work-
item. So this approach limits the histogram resolution to 64 bins on G8x / G9x / G10x 
NVIDIA GPUs. From the implementation perspective, byte counters also introduce 255-
byte limit to the data size processed by single work-item, which must be taken into account 
during data subdivision between the execution threads. Also note that 8- and 16-bit 
loads/stores are not part of OpenCL 1.0 standart and currently available as 
cl_khr_byte_addressable_store extension on G8x / G9x / G10x NVIDIA 
GPUs. 

oclHistogram256 OpenCL SDK sample raises the histogram resolution limit by utilizing 
local-memory atomics and building up per-warp sub-histograms in local memory, greatly 
relieving local memory size pressure: 192 work-items per work-group / 32 work-items per 
warp * 256 counters per sub-histogram * 4 bytes per counter = 6KB per work-group. 

Implementation details of these two approaches are described in the following sections. 

 

 

 

Implementation of oclHistogram64 
The per-work-item sub-histograms are stored in the local-memory l_Hist[] array, treated 
as a 2D byte array of BIN_COUNT rows by WORKGROUP_SIZE columns, as shown in Figure 
1. For best performance a bank-conflict-free access pattern needs to be ensured, if possible.  
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Figure 1. l_Hist[] array layout for oclHistogram64. 

For each work-item of a work-group with its own coordinate lPos and data value (which 
may be the same for some or all other work-items in the work-group or not), local memory 
bank index is equal to ((lPos + data * WORKGROUP_SIZE) / 4) % 16.  (See 
section 5.1.2.4 of CUDA Programming Guide.) 

If WORKGROUP_SIZE is a multiple of 64, the expression reduces to (lPos / 4) % 16, 
which is independent of data value. (lPos / 4) % 16 is equal to the [5: 2] bits of 
lPos. A half-warp can be defined as a group of work-item in which all work-items have the 
same upper bits [31 : 4] of get_local_id(0)  

If lPos is simply set equal to get_local_id(0), all work-items  within a half-warp will 
access its own byte “lane”, but these lanes will map to only 4 banks, thus introducing 4-way 
bank conflicts. However, swapping the [5 : 4] and [3 : 0] bit ranges in the bit representation 
of get_local_id(0) will make bank index identical to lower four bits of get_local_id(0) 
thus completely eliminating bank conflicts. 

Since G8x / G9x / G10x NVIDIA GPUs most efficiently work with global-memory arrays 
of 4, 8 and 16 bytes per element, input data is loaded from global memory as four-byte 
words. Since local-memory histogram bin counters are only 8-bit, the data size processed by 
single work-item is limited to 255 bytes or 63 full 4-byte words, and correspondingly data 
processed by the entire work-group is limited to WORKGROUP_SIZE * 63 4-byte 
words. (48,384 bytes for 192 work-items per work-group) 
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Figure 2. Shifting start accumulation positions (blue) in order to avoid bank conflicts during 
the merging stage in histogram64. 

The second computational phase in the histogram64() kernel is merging of built per-
workitem sub-histograms into a per-workgroup sub-histogram. At this phase each bin 
counter is assigned corresponding work-item, running through WORKGROUP_SIZE columns 
of l_Hist[]. Similarly to the above, the local memory bank index is equal to ((accumPos 
+ get_local_id(0) * WORKGROUP_SIZE) / 4) % 16. Still assuming 
WORKGROUP_SIZE to be a multiple of 64, the expression reduces to (accumPos / 4) 
% 16. If each thread within a half-warp starts accumulation at the same position [0 .. 
WORKGROUP_SIZE), then we get 16-way bank conflicts. However, simply by shifting the 
thread accumulation start position by 4 * (get_local_id(0) % 16) bytes relative to 
the half-warp base, we can completely avoid bank conflicts at this stage as well.  This is 
shown in Figure 2. 

After the workgroup-level merge step the produced subhistograms are written to global 
memory and passed down to the dedicated mergeHistogram64() kernel finalizing the 
merging. Although mergeKernel64()’s global memory loads are uncoalescable due to 
large stride of BIN_COUNT words between consecutive work-items, its running time 
nonetheless is only a fraction (< 5%) of the main histogram64() kernel, so may be largely 
ignored. 

 

Implementation of oclHistogram256 
The per-warp sub-histograms are stored in the local-memory l_Hist[]array, treated as a 
2D word array of WARP_COUNT rows by BIN_COUNT columns, as shown in Figure 3. 
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Figure 3. l_Hist[] layout for oclHistogram256. 

As was already stated in the “Overview” section, since a sub-histogram is shared by more 
than one work-item, local memory collisions are inevitable. Also since atomic local memory 
operations are not natively supported on G8x / G9x NVIDIA GPUs, special care has to be 
taken in order to resolve the collisions and produce correct results. 

The heart of the 256-bin histogram implementation is addData256() function  

 

void addData256( 
volatile __local uint *l_WarpHist,  
uint data,  
uint workitemTag 

){ 
    uint count; 
 
    do{ 
        count = l_WarpHist[data] & 0x07FFFFFFU; 
        count = workitemTag | (count + 1); 
        l_WarpHist[data] = count; 
    }while(l_WarpHist[data] != count); 
}  

Listing 3. Resolving intra-warp local memory collisions. 

The l_WarpHist is a pointer to current warp sub-histogram. 

The data argument is a value read from global memory lying in the [0, 255] range. 
Essentially, at function entry each work-item of a warp has an outstanding increment 
operation it has to commit. Obviously, the exact serialization patter in the case of collisions 
doesn’t matter for correctness. 

workitemTag is a unique id used by work-items to “sign” the data on write attempt and 
then determine whether the outstanding increments have finally committed to local memory. 
It is simply 5 lower bits of local ID (left-shifted by 27 bits to occupy 5 higher bits of count). 

Let’s consider what happens in a single iteration of the do{…}while(…); loop in Listing 
3: Each active (e.g. not masked out bwork-item of a warp loads a corresponding value from 
the sub-histogram storage and produces a private tagged increment (in count variable), 
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then stores it back, all in lock-step (e.g. logically coherently) by the definition of warp. 
However, in the case when two or more work-items store to the same location, the hardware 
performs local memory write combining, that effectively results in rejection of all  but one 
colliding stores. 

The while(…) condition evaluated to FALSE by a work-item means that this work-item 
has committed it’s increment and thus should exit the loop. At hardware level committed 
work-items are masked out (e.g. have all state updates disabled) until all warp work-items exit 
the loop, after which the warp continues its normal execution. Worst-case scenario for 
addData256() is 32 iterations per warp, in the case when entire warp receives the same 
value in the formal data parameter. 

The second and the third computational steps of the discussed 256-bin histogram 
implementation are largely indentical to those of oclHistogram64: merging of per-warp 
sub-histograms into a per-workgroup subhistogram (second phase of histogram256() 
kernel) and separate mergeHistogram256() kernel merging the per-workgroup sub-
histograms produced by histogram256() kernel. Similar to 
mergeHistogram64(), mergeHistogram256() has uncoalescable global loads, 
but its running time constitutes only a small fraction of the total running time. 
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