NVIDIA.

NVIDIA CUDA Installation Guide for
Microsoft Windows

Installation and Verification on Windows

DU-05349-001_v12.1 February 2023

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
1.1, SysStemM REQUITEMENTS. ...t 1
T.2. X806 32-DIT SUPPOT T ot 2
1.3, AbouUt This DOCUMENT.....iiiii e 2

Chapter 2. Installing CUDA Development TOOUS.........uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 3
2.1. Verify You Have a CUDA-Capable GPU........ccoiiii i 3
2.2. Download the NVIDIA CUDA TOOUKIt....coiiiiiiiii i 3
2.3. Install the CUDA SOtWATE.......oiiiiiii i 4

2.3.1. Uninstalling the CUDA SOftWare.......oviiii i 7
2.4. Using Conda to Install the CUDA Software.. ..o 7
2.4.7. C0N0AE DVEIVIEW. ...t 7
2.4.2. INSTAllatioN.. ..o 7
2.4 3. UNINStallation. ... 7
2.4.4. Installing Previous CUDA Releases........cooiiiiiiiiiii e 7
2.5. Use a Suitable Driver MOlooiiii i 8
2.6, Verify the Installation. . ..o e, 8
2.6.1. Running the Compiled EXamples... ..o 8

Chapter 3. Pip Wheels........oooi s 11

Chapter 4. Compiling CUDA Programs..........eoioiiiiiiiiiiiee e 14
4.7, Compiling Sample ProjeCS. ... 14
4.2, SAMPLE PrOJECES. oot 14
4.3. Build Customizations for New Projects.........cooiiiiiiii 15
4.4. Build Customizations for EXisting Projects.......cociiiiiiii 15

Chapter 5. Additional Considerations........oooi i 17

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | ii

Chapter 1. Introduction

CUDA® is a parallel computing platform and programming model invented by NVIDIA. It
enables dramatic increases in computing performance by harnessing the power of the
graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

» Provide a small set of extensions to standard programming languages, like C, that enable
a straightforward implementation of parallel algorithms. With CUDA C/C++, programmers
can focus on the task of parallelization of the algorithms rather than spending time on
their implementation.

» Support heterogeneous computation where applications use both the CPU and GPU. Serial
portions of applications are run on the CPU, and parallel portions are offloaded to the GPU.
As such, CUDA can be incrementally applied to existing applications. The CPU and GPU
are treated as separate devices that have their own memory spaces. This configuration
also allows simultaneous computation on the CPU and GPU without contention for
memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing
threads. These cores have shared resources including a register file and a shared memory.
The on-chip shared memory allows parallel tasks running on these cores to share data
without sending it over the system memory bus.

This guide will show you how to install and check the correct operation of the CUDA
development tools.

1.1. System Requirements

To use CUDA on your system, you will need the following installed:

» A CUDA-capable GPU
» A supported version of Microsoft Windows
» A supported version of Microsoft Visual Studio

» The NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)

The next two tables list the currently supported Windows operating systems and compilers.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 1

http://developer.nvidia.com/cuda-downloads

Introduction

Table 1. Windows Operating System Support in CUDA 12.1
Operating System Native x86_64 Cross (x86_32 on x86_64)
Windows 11 YES NO
Windows 10 YES NO
Windows Server 2022 YES NO
Windows Server 2019 YES NO
Windows Server 2016 YES NO
Table 2. Windows Compiler Support in CUDA 12.1
Cross (x86_32

Compiler* IDE Native x86_64 on x86_64)
MSVC Version Visual Studio 2022 17.2 YES YES

193x

MSVC Version Visual Studio 2019 16.11 YES YES

192x

MSVC Version Visual Studio 2017 15.9 (RTW YES YES

191x and all updates)

* Support for Visual Studio 2015 is deprecated in release 11.1.

x86_32 support is limited. See the x86 32-bit Support section for details.

For more information on MSVC versions, Visual Studio product versions, visit https://dev.to/
yumetodo/list-of-mscver-and-mscfullver-8nd.

1.2. x86 32-bit Support

Native development using the CUDA Toolkit on x86_32 is unsupported. Support for running

x86 32-bit applications on x86_64 Windows is limited to supporting existing applications on

GeForce GPUs. To this end only CUDA Driver will have 32-bit support. CUDA Runtime, Math
Library, Compiler and Developer Tools will not support 32-bit.

1.3. About This Document

This document is intended for readers familiar with Microsoft Windows operating systems and
the Microsoft Visual Studio environment. You do not need previous experience with CUDA or
experience with parallel computation.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 2

https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd
https://dev.to/yumetodo/list-of-mscver-and-mscfullver-8nd

Chapter 2. Installing CUDA
Development Tools

Basic instructions can be found in the Quick Start Guide. Read on for more detailed
instructions.

The setup of CUDA development tools on a system running the appropriate version of Windows
consists of a few simple steps:

» Verify the system has a CUDA-capable GPU.
» Download the NVIDIA CUDA Toolkit.
» Install the NVIDIA CUDA Toolkit.

» Test that the installed software runs correctly and communicates with the hardware.

2.1. Verify You Have a CUDA-Capable GPU

You can verify that you have a CUDA-capable GPU through the Display Adapters section in

the Windows Device Manager. Here you will find the vendor name and model of your graphics
card(s). If you have an NVIDIA card that is listed in http://developer.nvidia.com/cuda-gpus, that
GPU is CUDA-capable. The Release Notes for the CUDA Toolkit also contain a list of supported
products.

The Windows Device Manager can be opened via the following steps:
1. Open a run window from the Start Menu

2. Run:

control /name Microsoft.DeviceManager

2.2. Download the NVIDIA CUDA Toolkit

The NVIDIA CUDA Toolkit is available at https://developer.nvidia.com/cuda-downloads. Choose
the platform you are using and one of the following installer formats:

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 3

http://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#windows
http://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads

Installing CUDA Development Tools

1. Network Installer: A minimal installer which later downloads packages required for
installation. Only the packages selected during the selection phase of the installer are
downloaded. This installer is useful for users who want to minimize download time.

2. Full Installer: An installer which contains all the components of the CUDA Toolkit and does

not require any further download. This installer is useful for systems which lack network
access and for enterprise deployment.

The CUDA Toolkit installs the CUDA driver and tools needed to create, build and run a CUDA
application as well as libraries, header files, and other resources.

Download Verification

The download can be verified by comparing the MD5 checksum posted at https://

developer.download.nvidia.com/compute/cuda/11.6.2/docs/sidebar/md5sum.txt with that of
the downloaded file. If either of the checksums differ, the downloaded file is corrupt and needs
to be downloaded again.

To calculate the MD5 checksum of the downloaded file, follow the instructions at https://
support.microsoft.com/kb/889768.

2.3. Install the CUDA Software

Before installing the toolkit, you should read the Release Notes, as they provide details on
installation and software functionality.

Note: The driver and toolkit must be installed for CUDA to function. If you have not installed a
stand-alone driver, install the driver from the NVIDIA CUDA Toolkit.

Note: The installation may fail if Windows Update starts after the installation has begun. Wait
until Windows Update is complete and then try the installation again.

Graphical Installation

Install the CUDA Software by executing the CUDA installer and following the on-screen
prompts.

Silent Installation

The installer can be executed in silent mode by executing the package with the -s flag.
Additional parameters can be passed which will install specific subpackages instead of all
packages. See the table below for a list of all the subpackage names.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 4

https://developer.download.nvidia.com/compute/cuda/11.6.2/docs/sidebar/md5sum.txt
https://developer.download.nvidia.com/compute/cuda/11.6.2/docs/sidebar/md5sum.txt
https://support.microsoft.com/kb/889768
https://support.microsoft.com/kb/889768

Table 3.

Subpackage Name

Installing CUDA Development Tool

Possible Subpackage Names

Subpackage Description

Toolkit Subpackages (defaults to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1)

cuda_profiler_api_12.1

cudart_12.1
cuobjdump_12.1
cupti_12.1

cuxxfilt_12.1
demo_suite_12.1

documentation_12.1

nvce 12.1
nvdisasm_12.1
nvjitlink_12.1
nvml_dev_12.1

nvprof_12.1

nvprune_12.1

nvrtc_12.1
nvrtc_dev_12.1
nvtx_12.1
nvwm_samples_12.1
opencl_12.1
visual_profiler_12.1
sanitizer_12.1
thrust_12.1
cublas_12.1
cublas_dev_12.1
cufft_12.1
cufft_dev 12.1

curand_12.1

NVIDIA CUDA Installation Guide for Microsoft Windows

Driver and Runtime APIs for ProfilerStart/Stop.
CUDA Runtime libraries.
Extracts information from cubin files.

The CUDA Profiling Tools Interface for creating profiling and
tracing tools that target CUDA applications.

The CUDA cu++ filt demangler tool.
Prebuilt demo applications using CUDA.

CUDA HTML and PDF documentation files including the CUDA C++
Programming Guide, CUDA C++ Best Practices Guide, CUDA library
documentation, etc.

CUDA compiler.

Extracts information from standalone cubin files.
nvJitLink library.

NVML development libraries and headers.

Tool for collecting and viewing CUDA application profiling data from
the command-line.

Prunes host object files and libraries to only contain device code for
the specified targets.

NVRTC runtime libraries.

NVTX on Windows.
NVVM samples.
OpenCL library.

Visual Profiler.
Compute Sanitizer API.
CUDA Thrust.

cuBLAS runtime libraries.

cuFFT runtime libraries.

cuRAND runtime libraries.

DU-05349-001_v12.1 |

S

5

Installing CUDA Development Tools

Subpackage Name Subpackage Description

curand_dev_12.1

cusolver_12.1 cuSOLVER runtime libraries.
cusolver_dev_12.1

cusparse_12.1 cuSPARSE runtime libraries.

cusparse_dev_12.1

npp_12.1 NPP runtime libraries.
npp_dev_12.1
nvjpeg_12.1 nvJPEG libraries.

nvjpeg_dev_12.1

nsight_compute_12.1 Nsight Compute.

nsight_systems_12.1 Nsight Systems.

nsight_vse_12.1 Installs the Nsight Visual Studio Edition plugin in all VS.
visual_studio_integration_12.1 Installs CUDA project wizard and builds customization files in VS.
occupancy_calculator_12.1 Installs the CUDA_Occupancy Calculator.xls tool.

Driver Subpackages

Display.Driver The NVIDIA Display Driver. Required to run CUDA applications.

For example, to install only the compiler and driver components:

<PackageName>.exe -s nvcc 12.1 Display.Driver

Use the -n option if you do not want to reboot automatically after install or uninstall, even if
reboot is required.

Extracting and Inspecting the Files Manually

Sometimes it may be desirable to extract or inspect the installable files directly, such as in
enterprise deployment, or to browse the files before installation. The full installation package
can be extracted using a decompression tool which supports the LZMA compression method,
such as 7-zip or WinZip.

Once extracted, the CUDA Toolkit files will be in the CUDAToo1kit folder, and similarily for
CUDA Visual Studio Integration. Within each directory is a .dll and .nvi file that can be ignored
as they are not part of the installable files.

Note: Accessing the files in this manner does not set up any environment settings, such as
variables or Visual Studio integration. This is intended for enterprise-level deployment.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 6

http://www.7-zip.org/
http://www.winzip.com/

Installing CUDA Development Tools

2.3.1. Uninstalling the CUDA Software

All subpackages can be uninstalled through the Windows Control Panel by using the
Programs and Features widget.

2.4. Using Conda to Install the CUDA
Software

This section describes the installation and configuration of CUDA when using the Conda
installer. The Conda packages are available at https://anaconda.org/nvidia.

2.4.1. Conda Overview
The Conda installation installs the CUDA Toolkit. The installation steps are listed below.

2.4.2. Installation

To perform a basic install of all CUDA Toolkit components using Conda, run the following
command:

conda install cuda -c nvidia

2.4.3. Uninstallation

To uninstall the CUDA Toolkit using Conda, run the following command:

conda remove cuda

2.4.4. Installing Previous CUDA Releases

All Conda packages released under a specific CUDA version are labeled with that release
version. To install a previous version, include that label in the install command such as:

conda install cuda -c nvidia/label/cuda-11.3.0

Note:

Some CUDA releases do not move to new versions of all installable components. When this
is the case these components will be moved to the new label, and you may need to modify the
install command to include both labels such as:

conda install cuda -c nvidia/label/cuda-11.3.0 -c nvidia/label/cuda-11.3.1

This example will install all packages released as part of CUDA 11.3.0.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 7

https://anaconda.org/nvidia

Installing CUDA Development Tools

2.5. Use a Suitable Driver Model

On Windows 10 and later, the operating system provides two driver models under which the
NVIDIA Driver may operate:

» The WDDM driver model is used for display devices.

» The Tesla Compute Cluster [TCC) mode of the NVIDIA Driver is available for non-display
devices such as NVIDIA Tesla GPUs and the GeForce GTX Titan GPUs; it uses the Windows
WDM driver model.

TCC is enabled by default on most recent NVIDIA Tesla GPUs. To check which driver mode is
in use and/or to switch driver modes, use the nvidia-smi tool that is included with the NVIDIA
Driver installation (see nvidia-smi -h for details).

Note: Keep in mind that when TCC mode is enabled for a particular GPU, that GPU cannot be
used as a display device.

E Note: NVIDIA GeForce GPUs (excluding GeForce GTX Titan GPUs) do not support TCC mode.

2.6. Verify the Installation

Before continuing, it is important to verify that the CUDA toolkit can find and communicate
correctly with the CUDA-capable hardware. To do this, you need to compile and run some of
the included sample programs.

2.6.1. Running the Compiled Examples

The version of the CUDA Toolkit can be checked by running nvcc -v in a Command Prompt
window. You can display a Command Prompt window by going to:

Start > All Programs > Accessories > Command Prompt

CUDA Samples are located in https://github.com/nvidia/cuda-samples. To use the samples,
clone the project, build the samples, and run them using the instructions on the Github page.

To verify a correct configuration of the hardware and software, it is highly recommended
that you build and run the deviceQuery sample program. The sample can be built using the
provided VS solution files in the deviceQuery folder.

This assumes that you used the default installation directory structure. If CUDA is installed
and configured correctly, the output should look similar to Figure 1.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 8

http://www.nvidia.com/object/software-for-tesla-products.html
https://github.com/nvidia/cuda-samples
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/deviceQuery

Figure 1.

ER Chwindows\system32\cmd.exe
ideviceQuery.exe Starting...

CUDA Device Query (Runtime API> wversion {(CUDART
Detected 1 CUDA Capable device(s>

Device B: "GeForce GTX 688"
GUDA Driver Version ~ Runtime
CUDA Capability Major-Minor ve
Total amount of global memory:
¢ 8> Multiprocessors. (192> CUDA Cores-MP:

ion
n number:

GPU Clock rat
Hemory Cloc
Memory Bus

Haximum Texture Dimension 8Size (x,y. =)
Maximum Layered 1D Texture & {num} layers
Maximum Layered 2D Texture § num?> layers
Total amount of
Total amount of
Total number of
Warp size:
Haximum number of threads per multiprocessor:
Maximum number of threads per block:

Max dimension of a thread block (x.y
Hax dimension of a grid size [S"INTIN-3
Maximum memory pitch:

Texture alignment:

Concurrent copy and kernel execution:

Run time limit on kernels:

Integrated GPU sharing Host Memory:

Support host page—locked memory mapping:
Alignment requirement for Surfaces:

Device has ECC support:

CUDA Device Driver Mode (ICC or WDDM>:
Device supports Unified Addressing <(UUAD:
Device PCI Bus ID ~ PCI location ID:
Compute Mode

shared memory k:
registers available per block:

Installing CUDA Development Tools

Valid Results from deviceQuery CUDA Sample

static linking)

6.0 / 6.0

2048 MBytes (2147483648 hytes)
1536 CUDA Cores

1859 MHz <(1.86 GHz>
3004 Mhz

256-hit

524288 hytes
1D=¢65536>, 2D={(65536, 65536).
1D=(16384>, 2848 layers
2D=C(16384. 163842, 2848 layers
65536 hytes

49152 hytes

3D={4896. 40%6. 48%6>

4
(1624, 16024, 64>
(2147483647, 65535, 65535)>
2147483647 hytes
512 hytes

with 1 copy engineds>

Yes
Yes
No
Yes
Yes
Disabled

WDDM (Windows Display Driver Model>

o
i~-8

Default-(multiple host threads can use ::cudaSetDevice{) with device simultaneouslyl >

ideviceQuery, CUDA Driver = CUDART.

[Result = PASS

CUDA Driver Uersion

= 6.8, CUDA Runtime Uersion = 6.8, MumDevs = 1. Device® = GeForce GTX 688

The exact appearance and the output lines might be different on your system. The important
outcomes are that a device was found, that the device(s) match what is installed in your

system, and that the test passed.

If a CUDA-capable device and the CUDA Driver are installed but deviceQuery reports that no
CUDA-capable devices are present, ensure the deivce and driver are properly installed.

Running the bandwidthTest program, located in the same directory as deviceQuery above,
ensures that the system and the CUDA-capable device are able to communicate correctly. The

output should resemble Figure 2.

NVIDIA CUDA Installation Guide for Microsoft Windows

DU-05349-001_v12.1 | 9

Installing CUDA Development Tools

Figure 2. Valid Results from bandwidthTest CUDA Sample

N CAWindows\system32\cmd.exe

Device B: Quadro KS888
Quick Mode

Host to Device Bandwidth. 1 Devicefs>
FPIMMED Memory Transfers

Transfer Size (Buytes) Bandwidth<HMB-s >

33554432 £951.2

Device to Host Bandwidth. 1 Devicefs>

PIMMED Memory Transfers
Transfer Size (Bytes) Bandwidth<{HMB /s>
33554432 6342 .7

Device to Device Bandwidth. 1 Devicets>
PINNED Memory Transfers

Transfer Size (Bytes) Bandwidth<{MB. =

33554432 131928.7
= PASS

- o IEN

The device name (second line) and the bandwidth numbers vary from system to system.
The important items are the second line, which confirms a CUDA device was found, and the
second-to-last line, which confirms that all necessary tests passed.

If the tests do not pass, make sure you do have a CUDA-capable NVIDIA GPU on your system

and make sure it is properly installed.

To see a graphical representation of what CUDA can do, run the particles sample at

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/particles

NVIDIA CUDA Installation Guide for Microsoft Windows

DU-05349-001_v12.1 | 10

Chapter 3. Pip Wheels

NVIDIA provides Python Wheels for installing CUDA through pip, primarily for using CUDA with
Python. These packages are intended for runtime use and do not currently include developer
tools (these can be installed separately).

Please note that with this installation method, CUDA installation environment is managed via
pip and additional care must be taken to set up your host environment to use CUDA outside
the pip environment.

Prerequisites

To install Wheels, you must first install the nvidia-pyindex package, which is required

in order to set up your pip installation to fetch additional Python modules from the NVIDIA
NGC PyPI repo. If your pip and setuptools Python modules are not up-to-date, then use the
following command to upgrade these Python modules. If these Python modules are out-of-
date then the commands which follow later in this section may fail.

py —m pip install --upgrade setuptools pip wheel
You should now be able to install the nvidia-pyindex module.
py —m pip install nvidia-pyindex

If your project is using a requirements. txt file, then you can add the following line to your
requirements.txt file as an alternative to installing the nvidia-pyindex package:

--extra-index-url https://pypi.ngc.nvidia.com

Procedure
Install the CUDA runtime package:

py —m pip install nvidia-cuda-runtime-cul2
Optionally, install additional packages as listed below using the following command:
py —m pip install nvidia-<library>

Metapackages

The following metapackages will install the latest version of the named component on

Windows for the indicated CUDA version. "cu12” should be read as "cudal2"”.

» nvidia-cuda-runtime-cul?2

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 11

https://pypi.ngc.nvidia.com

>

>

These metapackages install the following packages:

>

>

>

nvidia-cuda-cupti-cu12
nvidia-cuda-nvcc-cul?2
nvidia-nvml-dev-cul?
nvidia-cuda-nvrtc-cul?
nvidia-nvtx-cul2
nvidia-cuda-sanitizer-api-cul12
nvidia-cublas-cul2
nvidia-cufft-cul2
nvidia-curand-cu1?2
nvidia-cusolver-cul?
nvidia-cusparse-cul?2
nvidia-npp-cul2
nvidia-nvjitlink-cu12
nvidia-nvjpeg-cul?2
nvidia-nvwm-samples-cul1?2

nvidia-opencl-cul2

nvidia-nvml-dev-cu120
nvidia-cuda-nvcc-cul20
nvidia-cuda-runtime-cu120
nvidia-cuda-cupti-cu120
nvidia-cublas-cu120
nvidia-cuda-sanitizer-api-cu120
nvidia-nvtx-cu120
nvidia-cuda-nvrtc-cu120
nvidia-npp-cu120
nvidia-cusparse-cu120

nvidia-cusolver-cu120

NVIDIA CUDA Installation Guide for Microsoft Windows

Pip Wheels

DU-05349-001_v12.1

12

Pip Wheels

» nvidia-curand-cu120

» nvidia-cufft-cu120

» nvidia-nvjitlink-cu120

» nvidia-nvjpeg-cu120

» nvidia-nvwwm-samples-cu120

» nvidia-opencl-cu120

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 13

Chapter 4. Compiling CUDA Programs

The project files in the CUDA Samples have been designed to provide simple, one-click builds
of the programs that include all source code. To build the Windows projects (for release

or debug mode), use the provided *.s1n solution files for Microsoft Visual Studio 2015
(deprecated in CUDA 11.1), 2017, 2019, or 2022. You can use either the solution files located in
each of the examples directories in

https://github.com/nvidia/cuda-samples

4.1. Compiling Sample Projects

The bandwidthTest project is a good sample project to build and run. It is located in https://
github.com/NVIDIA/cuda-samples/tree/master/Samples/bandwidthTest.

If you elected to use the default installation location, the output is placed in CUDA Samples
\v12.1\bin\win64\Release. Build the program using the appropriate solution file and run
the executable. If all works correctly, the output should be similar to Figure 2.

4.2. Sample Projects

The sample projects come in two configurations: debug and release (where release contains
no debugging information) and different Visual Studio projects.

A few of the example projects require some additional setup.

These sample projects also make use of the sCUDA_PATH environment variable to locate
where the CUDA Toolkit and the associated .props files are.

The environment variable is set automatically using the Build Customization cubpa
12.1.props file, and is installed automatically as part of the CUDA Toolkit installation
process.

Table 4. CUDA Visual Studio .props locations
Visual Studio CUDA 12.1 .props file Install Directory
Visual Studio 2015 C:\Program Files (x86)\MSBuild\Microsoft.Cpp
(deprecated) \v4.0\V140\BuildCustomizations

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 14

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/bandwidthTest
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/bandwidthTest

Compiling CUDA Programs

Visual Studio CUDA 12.1 .props file Install Directory

Visual Studio 2017 <Visual Studio Install Dir>\Common7\IDE\VC\VCTargets\BuildCustomizations

Visual Studio 2019 C:\Program Files (x86]\Microsoft Visual Studio\2019\Professional\MSBuild
\Microsoft\VC\v160\BuildCustomizations

Visual Studio 2022 C:\Program Files\Microsoft Visual Studio\2022\Professional\MSBuild

\Microsoft\VC\v170\BuildCustomizations

You can reference this CUDA 12.1.props file when building your own CUDA applications.

4.3. Build Customizations for New
Projects

When creating a new CUDA application, the Visual Studio project file must be configured to
include CUDA build customizations. To accomplish this, click File-> New | Project... NVIDIA-
> CUDA->, then select a template for your CUDA Toolkit version. For example, selecting the
"CUDA 12.1 Runtime" template will configure your project for use with the CUDA 12.1 Toolkit.
The new project is technically a C++ project (.vexproj) that is preconfigured to use NVIDIA's
Build Customizations. All standard capabilities of Visual Studio C++ projects will be available.

To specify a custom CUDA Toolkit location, under CUDA C/C++, select Common, and set the
CUDA Toolkit Custom Dir field as desired. Note that the selected toolkit must match the
version of the Build Customizations.

n Note: A supported version of MSVC must be installed to use this feature.

4.4. Build Customizations for Existing
Projects

When adding CUDA acceleration to existing applications, the relevant Visual Studio project
files must be updated to include CUDA build customizations. This can be done using one of the
following two methods:

1. Open the Visual Studio project, right click on the project name, and select Build
Dependencies->Build Customizations..., then select the CUDA Toolkit version you would
like to target.

2. Alternatively, you can configure your project always to build with the most recently
installed version of the CUDA Toolkit. First add a CUDA build customization to your project
as above. Then, right click on the project name and select Properties. Under CUDA C/C+
+, select Common, and set the CUDA Toolkit Custom Dir field to s (cupa_paTH) . Note that
the $ (cUDA PATH) environment variable is set by the installer.

While Option 2 will allow your project to automatically use any new CUDA Toolkit version
you may install in the future, selecting the toolkit version explicitly as in Option 1 is often

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 15

Compiling CUDA Programs

better in practice, because if there are new CUDA configuration options added to the build
customization rules accompanying the newer toolkit, you would not see those new options
using Option 2.

If you use the $ (cuDA_PATH) environment variable to target a version of the CUDA Toolkit

for building, and you perform an installation or uninstallation of any version of the CUDA
Toolkit, you should validate that the $ (cuba pATH) environment variable points to the correct
installation directory of the CUDA Toolkit for your purposes. You can access the value of the

$ (CUDA_PATH) environment variable via the following steps:

1. Open a run window from the Start Menu

2. Run:
control sysdm.cpl
3. Select the "Advanced” tab at the top of the window
4. Click "Environment Variables™ at the bottom of the window

Files which contain CUDA code must be marked as a cupa c/c++ file. This can done when
adding the file by right clicking the project you wish to add the file to, selecting Add\New Item,
selecting NVIDIA CUDA 12.1\Code\CUDA C/C++ File, and then selecting the file you wish to
add.

Note for advanced users: If you wish to try building your project against a newer CUDA Toolkit
without making changes to any of your project files, go to the Visual Studio command prompt,
change the current directory to the location of your project, and execute a command such as

the following:

msbuild <projectname.extension> /t:Rebuild /p:CudaToolkitDir="drive:/path/to/new/
toolkit/"

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001 v12.1 |

16

Chapter 5. Additional Considerations

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed, you can
examine and enjoy the numerous included programs. To begin using CUDA to accelerate the
performance of your own applications, consult the CUDA C++ Programming Guide.

A number of helpful development tools are included in the CUDA Toolkit or are available for
download from the NVIDIA Developer Zone to assist you as you develop your CUDA programs,
such as NVIDIA® Nsight™ Visual Studio Edition, and NVIDIA Visual Profiler.

For technical support on programming questions, consult and participate in the developer
forums at https://developer.nvidia.com/cuda/.

NVIDIA CUDA Installation Guide for Microsoft Windows DU-05349-001_v12.1 | 17

https://developer.nvidia.com/cuda/

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2009-2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
https://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. System Requirements
	1.2. x86 32-bit Support
	1.3. About This Document

	Installing CUDA Development Tools
	2.1. Verify You Have a CUDA-Capable GPU
	2.2. Download the NVIDIA CUDA Toolkit
	2.3. Install the CUDA Software
	2.3.1. Uninstalling the CUDA Software

	2.4. Using Conda to Install the CUDA Software
	2.4.1. Conda Overview
	2.4.2. Installation
	2.4.3. Uninstallation
	2.4.4. Installing Previous CUDA Releases

	2.5. Use a Suitable Driver Model
	2.6. Verify the Installation
	2.6.1. Running the Compiled Examples

	Pip Wheels
	Compiling CUDA Programs
	4.1. Compiling Sample Projects
	4.2. Sample Projects
	4.3. Build Customizations for New Projects
	4.4. Build Customizations for Existing Projects

	Additional Considerations

