
CUDA Tools SDK
CUPTI User’s Guide

DA-05679-001_v01 | October 2011

Document Change History

Ver Date Resp Reason for change
v01 2011/1/19 DG Initial revision for CUDA Tools SDK 4.0
v02 2011/8/15 DG Revisions for CUDA Tools SDK 4.1

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | ii

CUPTI

The CUDA Profiling Tools Interface (CUPTI) enables the creation of profiling and tracing
tools that target CUDA applications. CUPTI provides four APIs, the Activity API, the
Callback API, the Event API, and the Metric API. Using these APIs, you can develop
profiling tools that give insight into the CPU and GPU behavior of CUDA applications.
CUPTI is delivered as a dynamic library on all platforms supported by CUDA.

CUPTI Compatibility and Requirements
New versions of the CUDA driver are backwards compatible with older versions of CUPTI.
For example, a developer using a profiling tool based on CUPTI 4.0 can update their
CUDA driver to 4.1. However, new versions of CUPTI are not backwards compatible with
older versions of the CUDA driver. For example, a developer using a profiling tool based
on CUPTI 4.1 must have the 4.1 version of the CUDA driver (or later) installed as well.
CUPTI calls will fail with CUPTI_ERROR_NOT_INITIALIZED if the CUDA driver version is
not compatible with the CUPTI version.

CUPTI Initialization
CUPTI initialization occurs lazily the first time you invoke any CUPTI function. The the
Event, Metric, and Callback APIs there are no requirements on when this initialization
must occur (i.e. you can invoke the first CUPTI function at any point). For correct
operation, the Activity API does require that CUPTI be initialized before any CUDA
driver or runtime API is invoked. See the CUPTI Activity API section for more
information on CUPTI initialization requirements for the activity API.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 3

CUPTI Activity API
The CUPTI Activity API allows you to asychronously collect a trace of an application’s
CPU and GPU CUDA activity. The following terminology is used by the activity API.

Activity Record: CPU and GPU activity is reported in C data structures called activity
records. There is a different C structure type for each activity kind (e.g.
CUpti_ActivityMemcpy). Records are generically referred to using the
CUpti_Activity type. This type contains only a kind field that indicates the kind of
the activity record. Using this kind, the object can be cast from the generic
CUpti_Activity type to the specific type representing the activity. See the
printActivity function in the activity_trace sample for an example.

Activity Buffer: CUPTI fills activity buffers with activity records as the corresponding
activities occur on the CPU and GPU. The CUPTI client is responsible for providing
activity buffers as necessary to ensure that no records are dropped.

Activity Queue: CUPTI maintains queues of activity buffers. There are three types of
queues: global, context, and stream.

Global Queue: The global queue collects all activity records that are not associated
with a valid context. All device, context, and API activity records are collected in
the global queue. A buffer is enqueued in the global queue by specifying NULL for
the context argument.

Context Queue: Each context queue collects activity records associated with that
context that are not associated with a specific stream or that are associated with the
default stream. A buffer is enqueued in a context queue by specifying 0 for the
streamId argument and a valid context for the context argument.

Stream Queue: Each stream queue collects memcpy, memset, and kernel activity
records associated with the stream. A buffer is enqueued in a stream queue by
specifying a non-zero value for the streamId argument and a valid context for the
context argument. A streamId can be obtained from a CUstream object by using
the cuptiGetStreamId function.

CUPTI must be initialized in a specific manner to ensure that activity records are
collected correctly. Most importantly, CUPTI must be initialized before any CUDA driver
or runtime API is invoked. Initialization can be done by enqueuing one or more buffers in
the global queue, as shown in the initTrace function of the activity_trace sample.
Also, to ensure that device activity records are collected, you must enable device records
before CUDA is initialized (also shown in the initTrace function).

The other important requirement for correct activity API operation is the need to enqueue
at least one buffer in the context queue of each context as it is created. Thus, as shown in
the activity_trace example, the CUPTI client should use the resource callback to
enqueue at least one buffer when context creation is indicated by

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 4

CUPTI_CBID_RESOURCE_CONTEXT_CREATED. Using the stream queues is optional, but may
be useful to reduce or eliminate application perturbations caused by the need to process or
save the activity records returned in the buffers. For example, if a stream queue is used,
that queue can be flushed when the stream is synchronized.

Each activity buffer must be allocated by the CUPTI client, and passed to CUPTI using
the cuptiActivityEnqueueBuffer function. Enqueuing a buffer passes ownership to
CUPTI, and so the client should not read or write the contents of a buffer once it is
enqueued. Ownership of a buffer is regained by using the cuptiActivityDequeueBuffer
function.

As the application executes, the activity buffers will fill. It is the CUPTI client’s
responsibility to ensure that a sufficient number of appropriately sized buffers are
enqueued to avoid dropped activity records. Activity buffers can be enqueued and
dequeued at the following points. Enqueuing and dequeuing activity buffers at any other
point may result in corrupt activity records.

Before CUDA initialization: Buffers can be enqueued and dequeued to/from the global
queue before CUDA driver or runtime API is called.

In synchronization or resource callbacks: At context creation, destruction, or
synchronization, buffers may be enqueued or dequeued to/from the corresponding
context queue, and from any stream queues associated with streams in that context.
At stream creation, destruction, or synchronization, buffers may be enqueued or
dequeued to/from the corresponding stream queue. The global queue may also be
enqueued or dequeued at this time.

After device synchronization: After a CUDA device is synchronized or reset (with
cudaDeviceSynchronize or cudaDeviceReset), and before any subsequent CUDA
driver or runtime API is invoked, buffers can enqueued and dequeued to/from any
activity queue.

The activity_trace sample described on page 25 shows how to use global, context, and
stream queues to collect a trace of CPU and GPU activity for a simple application.

CUPTI Callback API
The CUPTI Callback API allows you to register a callback into your own code. Your
callback will be invoked when the application being profiled calls a CUDA runtime or
driver function, or when certain events occur in the CUDA driver. The following
terminology is used by the callback API.

Callback Domain: Callbacks are grouped into domains to make it easier to associate your
callback functions with groups of related CUDA functions or events. There are
currently four callback domains, as defined by CUpti_CallbackDomain: a domain for
CUDA runtime functions, a domain for CUDA driver functions, a domain for CUDA

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 5

resource tracking, and a domain for CUDA synchronization notification.

Callback ID: Each callback is given a unique ID within the corresponding callback domain
so that you can identify it within your callback function. The CUDA driver API IDs
are defined in cupti_driver_cbid.h and the CUDA runtime API IDs are defined in
cupti_runtime_cbid.h. Both of these headers are included for you when you
include cupti.h. The CUDA resource callback IDs are defined by
CUpti_CallbackIdResource and the CUDA synchronization callback IDs are defined
by CUpti_CallbackIdSync.

Callback Function: Your callback function must be of type CUpti_CallbackFunc. This
function type has two arguments that specify the callback domain and ID so that
you know why the callback is occurring. The type also has a cbdata argument that
is used to pass data specific to the callback.

Subscriber: A subscriber is used to associate each of your callback functions with one or
more CUDA API functions. There can be at most one subscriber initialized with
cuptiSubscribe() at any time. Before initializing a new subscriber, the existing
subscriber must be finalized with cuptiUnsubscribe().

Each callback domain is described in detail below.

Driver and Runtime API Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_DRIVER_API or
CUPTI_CB_DOMAIN_RUNTIME_API domains, you can associate a callback function with one
or more CUDA API functions. When those CUDA functions are invoked in the
application, your callback function is invoked as well. For these domains, the cbdata
argument to your callback function will be of the type CUpti_CallbackData.

The following code shows a typical sequence used to associate a callback function with one
or more CUDA API functions. To simplify the presentation error checking code has been
removed.

CUpti_SubscriberHandle subscriber;
MyDataStruct *my_data = ...;
...
cuptiSubscribe (&subscriber ,

(CUpti_CallbackFunc)my_callback , my_data);
cuptiEnableDomain (1, subscriber ,

CUPTI_CB_DOMAIN_RUNTIME_API);

First, cuptiSubscribe is used to initialize a subscriber with the my_callback callback
function. Next, cuptiEnableDomain is used to associate that callback with all the CUDA
runtime API functions. Using this code sequence will cause my_callback to be called

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 6

twice each time any of the CUDA runtime API functions are invoked, once on entry to the
CUDA function and once just before exit from the CUDA function. CUPTI callback API
functions cuptiEnableCallback and cuptiEnableAllDomains can also be used to
associate CUDA API functions with a callback (see reference below for more information).

The following code shows a typical callback function.

void CUPTIAPI
my_callback(void *userdata , CUpti_CallbackDomain domain ,

CUpti_CallbackId cbid , const void *cbdata)
{

const CUpti_CallbackData *cbInfo = (CUpti_CallbackData *)←↩
cbdata;

MyDataStruct *my_data = (MyDataStruct *) userdata;

if ((domain == CUPTI_CB_DOMAIN_RUNTIME_API) &&
(cbid == CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020)) {

if (cbInfo ->callbackSite == CUPTI_API_ENTER) {
cudaMemcpy_v3020_params *funcParams =

(cudaMemcpy_v3020_params *)(cbInfo ->
functionParams);

size_t count = funcParams ->count;
enum cudaMemcpyKind kind = funcParams ->kind;
...

}
...

In your callback function, you use the CUpti_CallbackDomain and CUpti_CallbackID
parameters to determine which CUDA API function invocation is causing this callback. In
the example above, we are checking for the CUDA runtime cudaMemCpy function. The
CUpti_CallbackData parameter holds a structure of useful information that can be used
within the callback. In this case we use the callbackSite member of the structure to
detect that the callback is occurring on entry to cudaMemCpy, and we use the
functionParams member to access the parameters that were passed to cudaMemCpy. To
access the parameters we first cast functionParams to a structure type corresponding to
the cudaMemCpy function. These parameter structures are contained in
generated_cuda_runtime_api_meta.h, generated_cuda_meta.h, and a number of other
files. When possible these files are included for you by cupti.h.

The callback_event and callback_timestamp samples described on page 25 both
show how to use the callback API for the driver and runtime API domains.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 7

Resource Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_RESOURCE domain, you can associate a
callback function with some CUDA resource creation and destruction events. For example,
when a CUDA context is created, your callback function will be invoked with a callback ID
equal to CUPTI_CBID_RESOURCE_CONTEXT_CREATED. For this domain, the cbdata argument
to your callback function will be of the type CUpti_ResourceData.

The activity_trace sample described on page 25 shows how to use the resource callback.

Synchronization Callbacks
Using the callback API with the CUPTI_CB_DOMAIN_SYNCHRONIZE domain, you can
associate a callback function with CUDA context and stream synchronizations. For
example, when a CUDA context is synchronized, your callback function will be invoked
with a callback ID equal to CUPTI_CBID_SYNCHRONIZE_CONTEXT_SYNCHRONIZED. For this
domain, the cbdata argument to your callback function will be of the type
CUpti_SynchronizeData.

The activity_trace sample described on page 25 shows how to use the synchronization
callback.

CUPTI Event API
The CUPTI Event API allows you to query, configure, start, stop, and read the event
counters on a CUDA-enabled device. The following terminology is used by the event API.

Event: An event is a countable activity, action, or occurrence on a device.

Event ID: Each event is assigned a unique identifier. A named event will represent the
same activity, action, or occurence on all device types. But the named event may
have different IDs on different device families. Use cuptiEventGetIdFromName to get
the ID for a named event on a particular device.

Event Category: Each event is placed in one of the categories defined by
CUpti_EventCategory. The category indicates the general type of activity, action, or
occurrence measured by the event.

Event Domain: A device exposes one or more event domains. Each event domain
represents a group of related events available on that device. A device may have
multiple instances of a domain, indicating that the device can simultaneously record
multiple instances of each event within that domain.

Event Group: An event group is a collection of events that are managed together. The
number and type of events that can be added to an event group are subject to

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 8

device-specific limits. At any given time, a device may be configured to count events
from a limited number of event groups. All events in an event group must belong to
the same event domain.

Event Group Set: An event group set is a collection of event groups that can be enabled at
the same time. Event group sets are created by cuptiEventGroupSetsCreate and
cuptiMetricCreateEventGroupSets.

The tables included in this section list the events available for each device, as determined
by the device’s compute capability. You can also determine the events available on a
device using the cuptiDeviceEnumEventDomains and cuptiEventDomainEnumEvents
functions. The cupti_query sample described on page 25 shows how to use these
functions. You can also enumerate all the CUPTI events available on any device using the
cuptiEnumEventDomains function.

Configuring and reading event counts requires the following steps. First, select your event
collection mode. If you want to count events that occur during the execution of a kernel,
use cuptiSetEventCollectionMode to set mode CUPTI_EVENT_COLLECTION_MODE_KERNEL.
If you want to continuously sample the event counts, use mode
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS. Next determine the names of the events that
you want to count, and then use the cuptiEventGroupCreate, cuptiEventGetIdFromName,
and cuptiEventGroupAddEvent functions to create and initialize an event group with those
events. If you are unable to add all the events to a single event group then you will need to
create multiple event groups. Alternatively, you can use the cuptiEventGroupSetsCreate
function to automatically create the event group(s) required for a set of events.

To begin counting a set of events, enable the event group or groups that contain those
events by using the cuptiEventGroupEnable function. If your events are contained in
multiple event groups you may be unable to enable all of the event groups at the same
time, due to device limitations. In this case, you will need to gather the events across
multiple executions of the application.

Use the cuptiEventGroupReadEvent and/or cuptiEventGroupReadAllEvents functions to
read the event values. When you are done collecting events, use the
cuptiEventGroupDisable function to stop counting of the events contained in an event
group. The callback_event sample described on page 25 shows how to use these
functions to create, enable, and disable event groups, and how to read event counts.

Collecting Kernel Execution Events
A common use of the event API is to count a set of events during the execution of a kernel
(as demonstrated by the callback_event sample). The following code shows a typical
callback used for this purpose. Assume that the callback was enabled only for a kernel
launch using the CUDA runtime (i.e. by cuptiEnableCallback(1, subscriber,
CUPTI_CB_DOMAIN_RUNTIME_API, CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020). To

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 9

simplify the presentation error checking code has been removed.

static void CUPTIAPI
getEventValueCallback(void *userdata ,

CUpti_CallbackDomain domain ,
CUpti_CallbackId cbid ,
const void *cbdata)

{
const CUpti_CallbackData *cbData =

(CUpti_CallbackData *) cbdata;

if (cbData ->callbackSite == CUPTI_API_ENTER) {
cudaThreadSynchronize ();
cuptiSetEventCollectionMode(cbInfo ->context ,

CUPTI_EVENT_COLLECTION_MODE_KERNEL←↩
);

cuptiEventGroupEnable(eventGroup);
}

if (cbData ->callbackSite == CUPTI_API_EXIT) {
cudaThreadSynchronize ();
cuptiEventGroupReadEvent(eventGroup ,

CUPTI_EVENT_READ_FLAG_ACCUMULATE ,
eventId ,
&bytesRead , &eventVal);

cuptiEventGroupDisable(eventGroup);
}

}

Two synchronization points are used to ensure that events are counted only for the
execution of the kernel. If the application contains other threads that launch kernels, then
additional thread-level synchronization must also be introduced to ensure that those
threads do not launch kernels while the callback is collecting events. When the
cudaLaunch API is entered (that is, before the kernel is actually launched on the device),
cudaThreadSynchronize is used to wait until the GPU is idle. The event collection mode
is set to CUPTI_EVENT_COLLECTION_MODE_KERNEL so that the event counters are
automatically started and stopped just before and after the kernel executes. Then event
collection is enabled with cuptiEventGroupEnable.

When the cudaLaunch API is exited (that is, after the kernel is queued for execution on
the GPU) another cudaThreadSynchronize is used to cause the CPU thread to wait for
the kernel to finish execution. Finally, the event counts are read with
cuptiEventGroupReadEvent.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 10

Sampling Events
The event API can also be used to sample event values while a kernel or kernels are
executing (as demonstrated by the event_sampling sample). The sample shows one
possible way to perform the sampling. The event collection mode is set to
CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS so that the event counters run continuously.
Two threads are used in event_sampling: one thread schedules the kernels and memcpys
that perform the computation, while another thread wakes periodically to sample an event
counter. In this sample there is no correlation of the event samples with what is happening
on the GPU. To get some coarse correlation, you can use cuptiDeviceGetTimestamp to
collect the GPU timestamp at the time of the sample and also at other interesting points
in your application.

Interpreting Event Values
The tables below describe the events available for each device. Each event has a type that
indicates how the activity or action associated with that event is collected. The event
types are SM, TPC, and FB.

SM Event Type

The SM event type indicates that the event is collected for an action or activity that
occurs on one or more of the device’s streaming multiprocessors (SMs). A streaming
multiprocessor creates, manages, schedules, and executes threads in groups of 32 threads
called warps.

The SM event values typically represent activity or action of thread warps, and not the
activity or action of individual threads. Details of how each event is incremented are given
in the event tables below.

Two factors will impact the accuracy of the values collected for SM type events. First, due
to variations in system state, event values can vary across different, identical, runs of the
same application. Second, for devices with compute capability less than 2.0, SM events are
counted only for one SM. For devices with compute capability greater than 2.0, SM events
from domain_d are counted for all SMs but for SM events from domain_a are counted
for multiple but not all, SMs. To get the most consistent results inspite of these factors, it
is best to have number of blocks for each kernel launched to be a multiple of the total
number of SMs on a device. In other words, the grid configuration should be chosen such
that the number of blocks launched on each SM is the same and also the amount of work
of interest per block is the same.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 11

TPC Event Type

The TPC event type indicates that the event is collected for an action or activity that
occurs on the SMs within the device’s first Texture Processing Cluster (TPC). Devices
with compute capabiliity less than 1.3 have two SMs per TPC, and devices with compute
capability 1.3 have three SMs per TPC.

Several of the TPC type events measure coherent and incoherent memory transactions. A
coherent (coalesced) access is said to occur when the memory required for a half-warp’s
execution of a single global load or global store instruction can be accessed with a single
memory transaction of 32, 64, or 128 bytes. If the memory cannot be accessed with a
single memory transaction the access is incoherent. For an incoherent (non-coalesced)
access a separate memory transaction is issued for each thread in the half-warp,
significantly reducing performance. The requirements for coherent access vary based on
compute capability. Refer to the CUDA C Programming Guide for details.

FB Event Type

The FB event type indicates that the event is collected for an action or activity that
occurs on a DRAM partition.

Event Reference - Compute Capability 1.0 to 1.3
Devices with compute capability less than 2.0 implement two event domains, called
domain_a and domain_b. Table 1 and Table 2 give a description of each event available
in these domains. The Type column indicates the event type, as described above in the
Interpreting Event Values section. For the Capability columns, a Y indicates that the event
is available for that compute capability and an N indicates that the event is not available.

Capability
Event Name Description Type 1.0 1.1 1.2 1.3
tex_cache_hit Number of texture cache hits SM Y Y Y Y
tex_cache_miss Number of texture cache misses SM Y Y Y Y

Table 1: Capability 1.x Events For domain_a

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 12

Capability
Event Name Description Type 1.0 1.1 1.2 1.3
branch Number of branches taken by threads

executing a kernel. This event is
incremented by one if at least one
thread in a warp takes the branch.
Note that barrier instructions (__-
syncThreads()) also get counted as
branches

SM Y Y Y Y

divergent_branch Number of divergent branches within
a warp. This event is incremented by
one if at least one thread in a warp di-
verges (that is, follows a different exe-
cution path) via a data dependent con-
ditional branch. The event is incre-
mented by one at each point of diver-
gence in a warp

SM Y Y Y Y

instructions Number of instructions executed SM Y Y Y Y
warp_serialize If two addresses of a memory request

fall in the same memory bank, there
is a bank conflict and the access has
to be serialized. This event gives the
number of thread warps that serialize
on address conflicts to either shared or
constant memory

SM Y Y Y Y

gld_incoherent Number of non-coalesced global mem-
ory loads

TPC Y Y N N

gld_coherent Number of coalesced global memory
loads

TPC Y Y N N

gld_32b Number of 32 byte global memory
load transactions; incremented by 1
for each 32 byte transaction

TPC N N Y Y

gld_64b Number of 64 byte global memory
load transactions; incremented by 1
for each 64 byte transaction

TPC N N Y Y

gld_128b Number of 128 byte global memory
load transactions; incremented by 1
for each 128 byte transaction

TPC N N Y Y

gst_incoherent Number of non-coalesced global mem-
ory stores

TPC Y Y N N

gst_coherent Number of coalesced global memory
stores

TPC Y Y N N

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 13

Capability
Event Name Description Type 1.0 1.1 1.2 1.3
gst_32b Number of 32 byte global memory

store transactions; incremented by 2
for each 32 byte transaction

TPC N N Y Y

gst_64b Number of 64 byte global memory
store transactions; incremented by 4
for each 64 byte transaction

TPC N N Y Y

gst_128b Number of 128 byte global memory
store transactions; incremented by 8
for each 128 byte transaction

TPC N N Y Y

local_load Number of local memory load trans-
actions. Each local load request will
generate one transaction irrespective
of the size of the transaction

TPC Y Y Y Y

local_store Number of local memory store trans-
actions; incremented by 2 for each 32-
byte transaction, by 4 for each 64-byte
transaction and by 8 for each 128-byte
transaction

TPC Y Y Y Y

cta_launched Number of threads blocks launched on
a TPC

TPC Y Y Y Y

sm_cta_launched Number of threads blocks launched on
an SM

SM Y Y Y Y

prof_trigger_XX There are 8 such triggers (00-07) that
user can profile. Those are generic and
can be inserted in any place of the code
to collect the related information

SM Y Y Y Y

Table 2: Capability 1.x Events For domain_b

Event Reference - Compute Capability 2.x
Devices with compute capability 2.0 or greater implement four event domains, called
domain_a, domain_b, domain_c and domain_d. Table 3, Table 4, Table 5 and Table 6
give a description of each event available in these domains. The Type column indicates the
event type, as described above in the Interpreting Event Values section. For the Capability
columns, a Y indicates that the event is available for that compute capability and an N
indicates that the event is not available.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 14

Capability
Event Name Description Type 2.0 2.1
sm_cta_launched Number of thread blocks launched SM Y Y
l1_local_load_hit Number of local load hits in L1 cache.

This increments by 1, 2, or 4 for 32, 64
and 128 bit accesses respectively

SM Y Y

l1_local_load_miss Number of local load misses in L1
cache This increments by 1, 2, or 4 for
32, 64 and 128 bit accesses respectively

SM Y Y

l1_local_store_hit Number of local store hits in L1 cache.
This increments by 1, 2, or 4 for 32, 64
and 128 bit accesses respectively

SM Y Y

l1_local_store_miss Number of local store misses in L1
cache. This increments by 1, 2, or 4
for 32, 64 and 128 bit accesses respec-
tively

SM Y Y

l1_global_load_hit Number of global load hits in L1 cache.
This increments by 1, 2, or 4 for 32, 64
and 128 bit accesses respectively

SM Y Y

l1_global_load_miss Number of global load misses in L1
cache. This increments by 1, 2, or 4
for 32, 64 and 128 bit accesses respec-
tively

SM Y Y

uncached_global_-
load_transaction

Number of uncached global load trans-
actions. This increments by 1, 2, or 4
for 32, 64 and 128 bit accesses respec-
tively

SM Y Y

global_store_-
transaction

Number of global store transactions.
This increments by 1, 2, or 4 for 32,
64 and 128 bit accesses respectively

SM Y Y

l1_shared_bank_-
conflict

Number of shared bank conflicts
caused due to addresses for two or
more shared memory requests fall in
the same memory bank

SM Y Y

tex0_cache_sector_-
queries

Number of texture cache requests.
This increments by 1 for each 32-byte
access

SM Y Y

tex0_cache_sector_-
misses

Number of texture cache misses. This
increments by 1 for each 32-byte access

SM Y Y

tex1_cache_sector_-
queries

Number of texture cache requests.
This increments by 1 for each 32-byte
access

SM N Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 15

Capability
Event Name Description Type 2.0 2.1
tex1_cache_sector_-
misses

Number of texture cache misses. This
increments by 1 for each 32-byte access

SM N Y

Table 3: Capability 2.x Events For domain_a

Capability
Event Name Description Type 2.0 2.1
l2_subp0_write_-
sector_misses

Number of write misses in slice 0 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp1_write_-
sector_misses

Number of write misses in slice 1 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp0_read_-
sector_misses

Number of read misses in slice 0 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp1_read_-
sector_misses

Number of read misses in slice 1 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp0_write_-
sector_queries

Number of write requests from L1 to
slice 0 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

l2_subp1_write_-
sector_queries

Number of write requests from L1 to
slice 1 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

l2_subp0_read_-
sector_queries

Number of read requests from L1 to
slice 0 of L2 cache. This increments
by 1 for each 32-byte access

FB Y Y

l2_subp1_read_-
sector_queries

Number of read requests from L1 to
slice 1 of L2 cache. This increments
by 1 for each 32-byte access

FB Y Y

l2_subp0_read_hit_-
sectors

Number of read requests from L1 that
hit in slice 0 of L2 cache. This incre-
ments by 1 for each 32-byte access

FB Y Y

l2_subp1_read_hit_-
sectors

Number of read requests from L1 that
hit in slice 1 of L2 cache. This incre-
ments by 1 for each 32-byte access

FB Y Y

l2_subp0_read_-
tex_sector_queries

Number of read requests from TEX to
slice 0 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 16

Capability
Event Name Description Type 2.0 2.1
l2_subp1_read_-
tex_sector_queries

Number of read requests from TEX to
slice 1 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

l2_subp0_read_-
tex_hit_sectors

Number of read requests from L1 that
hit in slice 0 of L2 cache. This incre-
ments by 1 for each 32-byte access

FB Y Y

l2_subp1_read_-
tex_hit_sectors

Number of read requests from L1 that
hit in slice 1 of L2 cache. This incre-
ments by 1 for each 32-byte access

FB Y Y

fb_subp0_read_-
sectors

Number of DRAM read requests to
sub partition 0, increments by 1 for 32
byte access

FB Y Y

fb_subp1_read_-
sectors

Number of DRAM read requests to
sub partition 1, increments by 1 for 32
byte access

FB Y Y

fb_subp0_write_-
sectors

Number of DRAM write requests to
sub partition 0, increments by 1 for 32
byte access

FB Y Y

fb_subp1_write_-
sectors

Number of DRAM write requests to
sub partition 1, increments by 1 for 32
byte access

FB Y Y

fb0_subp0_read_-
sectors

Number of DRAM read requests to
sub partition 0 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb0_subp1_read_-
sectors

Number of DRAM read requests to
sub partition 1 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb0_subp0_write_-
sectors

Number of DRAM write requests to
sub partition 0 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb0_subp1_write_-
sectors

Number of DRAM write requests to
sub partition 1 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp0_read_-
sectors

Number of DRAM read requests to
sub partition 0 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp1_read_-
sectors

Number of DRAM read requests to
sub partition 1 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 17

Capability
Event Name Description Type 2.0 2.1
fb1_subp0_write_-
sectors

Number of DRAM write requests to
sub partition 0 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp1_write_-
sectors

Number of DRAM write requests to
sub partition 1 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

Table 4: Capability 2.x Events For domain_b

Notes:

I Y**: Devices will have either fb_** counters or fb0_** and fb1_** counters. Total
DRAM reads and writes are calculated by adding values for all subpartitions.

I fb* and l2_*_misses events often give a large value when a display is connected to
the device. To get accurate values do not connect a display to the device collecting
event counts.

I l2_*_queries event values can be greater than l2_*_misses event values because
l2_*_queries counts only the requests from L1 to L2 (does not include, for example,
texture requests) while l2_*_misses counts all misses

I Initializing device memory on the host fetches data from DRAM to L2, which can
modify the fb*_read_sectors event values for a kernel

Capability
Event Name Description Type 2.0 2.1
gld_inst_8bit Total number of 8-bit global load in-

structions that are executed by all the
threads across all thread blocks

SM Y Y

gld_inst_16bit Total number of 16-bit global load in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

gld_inst_32bit Total number of 32-bit global load in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

gld_inst_64bit Total number of 64-bit global load in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

gld_inst_128bit Total number of 128-bit global load in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 18

Capability
Event Name Description Type 2.0 2.1
gst_inst_8bit Total number of 8-bit global store in-

structions that are executed by all the
threads across all thread blocks

SM Y Y

gst_inst_16bit Total number of 16-bit global store in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

gst_inst_32bit Total number of 32-bit global store in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

gst_inst_64bit Total number of 64-bit global store in-
structions that are executed by all the
threads across all thread blocks

SM Y Y

gst_inst_128bit Total number of 128-bit global store
instructions that are executed by all
the threads across all thread blocks

SM Y Y

Table 5: Capability 2.x Events For domain_c

Capability
Event Name Description Type 2.0 2.1
branch Number of branches taken by threads

executing a kernel. This counter will
be incremented by one if at least one
thread in a warp takes the branch

SM Y Y

divergent_branch Number of divergent branches within
a warp. This counter will be incre-
mented by one if at least one thread
in a warp diverges (that is, follows a
different execution path) via a data de-
pendent conditional branch

SM Y Y

warps_launched Number of warps launched SM Y Y
threads_launched Number of threads launched SM Y Y
active_warps Accumulated number of active warps

per cycle. For every cycle it incre-
ments by the number of active warps
in the cycle which can be in the range
0 to 48

SM Y Y

active_cycles Number of cycles a multiprocessor has
at least one active warp

SM Y Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 19

Capability
Event Name Description Type 2.0 2.1
local_load Number of local load instructions per

warp
SM Y Y

local_store Number of local store instructions per
warp

SM Y Y

gld_request Number of global load instructions per
warp

SM Y Y

gst_request Number of global store instructions
per warp

SM Y Y

shared_load Number of shared load instructions
per warp

SM Y Y

shared_store Number of shared store instructions
per warp

SM Y Y

prof_trigger_XX There are 8 such triggers (00-07) that
user can profile. The triggers are
generic and can be inserted in any
place of the code to collect the related
information

SM Y Y

inst_issued Number of instructions issued includ-
ing replays

SM Y N

inst_issued1_0 Number of times instruction group 0
issued one instruction

SM N Y*

inst_issued2_0 Number of times instruction group 0
issued two instructions

SM N Y*

inst_issued1_1 Number of times instruction group 1
issued one instruction

SM N Y*

inst_issued2_1 Number of times instruction group 1
issued two instructions

SM N Y*

inst_executed Number of instructions executed, not
including replays

SM Y Y

thread_inst_-
executed_0

Number of instructions executed by
all threads, not including replays, in
pipeline 0. For each instruction ex-
ecuted increments by the number of
threads in the warp

SM Y Y

thread_inst_-
executed_1

Number of instructions executed by
all threads, not including replays, in
pipeline 1. For each instruction ex-
ecuted increments by the number of
threads in the warp

SM Y Y

Table 6: Capability 2.x Events For domain_d

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 20

Notes:

I Y*: Total instructions issued for compute capability 2.1 can be calculated as:
inst_issued1_0 + (inst_issued2_0 * 2) + inst_issued1_1 + (inst_issued2_1 * 2)

CUPTI Metric API
The CUPTI Metric API allows you to collect application metrics calculated from one or
more event values. The following terminology is used by the metric API.

Metric: An characteristic of an application that is calculated from one or more event
values.

Metric ID: Each metric is assigned a unique identifier. A named metric will represent the
same characteristic on all device types. But the named metric may have different IDs
on different device families. Use cuptiMetricGetIdFromName to get the ID for a
named metric on a particular device.

Metric Category: Each metric is placed in one of the categories defined by
CUpti_MetricCategory. The category indicates the general type of the characteristic
measured by the metric.

Metric Value: Each metric has a value that represents one of the kinds defined by
CUpti_MetricValueKind. For each value kind, there is a corresponding member of
the CUpti_MetricValue union that is used to hold the value.

The tables included in this section list the metrics available for each device, as determined
by the device’s compute capability. You can also determine the metrics available on a
device using the cuptiDeviceEnumMetrics function. The cupti_query sample described
on page 25 shows how to use this function. You can also enumerate all the CUPTI metrics
available on any device using the cuptiEnumMetrics function.

Configuring and calculating metric values requires the following steps. First, determine the
name of the metric that you want to collect, and then use the cuptiMetricGetIdFromName
to get the metric ID. Use cuptiMetricEnumEvents to get the events required to calculate
the metric and follow instructions in the CUPTI Event API section to create the event
groups for those events. Alternatively, you can use the
cuptiMetricCreateEventGroupSets function to automatically create the event group(s)
required for metric’s events.

Collect event counts as described in the CUPTI Event API section, and then use
cuptiMetricGetValue to calculate the metric value from the collected event values. The
callback_metric sample described on page 25 shows how to use these functions to
calculate event values. Note that, as shown in the example, you should collect event counts
from all domain instances and normalize the counts to get the most accurate metric values.
It is necessary to normalize the event counts because the number of event counter

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 21

instances varies by device and by the event being counted.

For example, a device might have 8 multiprocessors but only have event counters for 4 of
the multiprocessors, and might have 3 memory units and only have events counters for one
memory unit. When calculating a metric that requires a multiprocessor event and a
memory unit event, the 4 multiprocessor counters should be summed and multiplied by 2
to normalize the event count across the entire device. Similarly, the one memory unit
counter should be multiplied by 3 to normalize the event count across the entire device.
The normalized values can then be passed to cuptiMetricGetValue to calculate the
metric value.

As described, the normalization assumes the kernel executes a sufficient number of blocks
to completely load the device. If the kernel has only a small number of blocks, normalizing
across the entire device may skew the result.

Metric Reference - Compute Capability 1.x
Devices with compute capability less than 2.0 implement the metrics shown in Table 7.

Metric Name Description Formula
branch_efficiency Ratio of non-divergent branches

to total branches
100*(branch-
divergent_branch)/branch

gld_efficiency Ratio of requested global mem-
ory load transactions to actual
global memory load transactions

For CC 1.2 & 1.3: (gld_request
/ ((gld_32 + gld_64 +
gld_128) / (2 * #SM)))
For CC 1.0 & 1.1: gld_coherent
/ (gld_coherent + gld_incoher-
ent)

gst_efficiency Ratio of requested global mem-
ory store transactions to actual
global memory store transac-
tions

For CC 1.2 & 1.3: (gst_request
/ ((gst_32 + gst_64 +
gst_128) / (2 * #SM)))
For CC 1.0 & 1.1: gst_coherent
/ (gst_coherent + gst_incoher-
ent)

gld_requested_-
throughput

Requested global memory load
throughput

(gld_32 * 32 + gld_64 * 64 +
gld_128 * 128) / (gputime)

gst_requested_-
throughput

Requested global memory store
throughput

(gst_32 * 32 + gst_64 * 64 +
gst_128 * 128) / (gputime)

Table 7: Capability 1.x Metrics

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 22

Metric Reference - Compute Capability 2.x
Devices with compute capability 2.0 or greater implement the metrics shown in Table 8.

Metric Name Description Formula
sm_efficiency The ratio of the time at least one

warp is active on a multiproces-
sor to the total time

100*(active_cycles/#SM) /
elapsed_clocks

achieved_occu-
pancy

Ratio of the average active
warps per active cycle to the
maximum number of warps sup-
ported on a multiprocessor

100*(active_warps/active_cy-
cles)/48

ipc Instructions executed per cycle (inst_executed/#SM) /
elapsed_clocks

branch_efficiency Ratio of non-divergent branches
to total branches

100*(branch-
divergent_branch)/branch

warp_execution_-
efficiency

Ratio of the average active
threads per warp to the max-
imum number of threads per
warp supported on a multipro-
cessor

thread_inst_executed/(inst_-
executed*warp_size)

inst_replay_over-
head

Percentage of instruction issues
due to memory replays

100*(instructions_issued -
instruction_exe-
cuted)/instruction_issued

shared_replay_-
overhead

Percentage of instruction issues
due to replays for shared mem-
ory conflicts

(100*shared_memory_bank_-
conflicts)/inst_issued

global_cache_re-
play_overhead

Percentage of instruction issues
due to replays for global mem-
ory cache misses

100*global_load_miss/ inst_-
issued

local_replay_over-
head

Percentage of instruction issues
due to replays for local memory
cache misses

100*(local_load_miss+local_-
store_miss)/ inst_issued

gld_efficiency Ratio of requested global mem-
ory load throughput to actual
global memory load throughput

100*gld_requested_through-
put/gld_throughput

gst_efficiency Ratio of requested global mem-
ory store throughput to actual
global memory store throughput

100*gst_requested_through-
put/gst_throughput

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 23

Metric Name Description Formula
gld_throughput Global memory load throughput ((128*global_load_hit) + (l2_-

subp0_read_requests + l2_-
subp1_read_requests) * 32 -
(l1_cached_local_ld_misses *
128))/(gputime)

gst_throughput Global memory store through-
put

(l2_subp0_write_requests +
l2_subp1_write_requests) * 32
- (l1_cached_local_ld_misses
* 128))/(gputime)

gld_requested_-
throughput

Requested global memory load
throughput

(gld_inst_8bit + 2*gld_inst_-
16bit + 4*gld_inst_32bit +
8*gld_inst_64bit + 16*gld_-
inst_128bit) / gputime

gst_requested_-
throughput

Requested global memory store
throughput

(gst_inst_8bit + 2*gst_inst_-
16bit + 4*gst_inst_32bit +
8*gst_inst_64bit + 16*gst_-
inst_128bit) / gputime

dram_read_-
throughput

DRAM read throughput (fb_subp0_read + fb_subp1_-
read) * 32 / gputime

dram_write_-
throughput

DRAM write throughput (fb_subp0_write + fb_-
subp1_write) * 32 / gputime

l1_cache_global_-
hit_rate

Hit rate in L1 cache for global
loads

100*l1_cached_global_ld_-
hits/(l1_cached_global_ld_-
hits+l1_cached_global_ld_-
misses)

l1_cache_local_-
hit_rate

Hit rate in L1 cache for local
loads and stores

100*l1_cached_local_ld_-
hits+l1_cached_local_st_-
hits/(l1_cached_local_ld_-
hits+l1_cached_local_ld_-
misses+l1_cached_local_st_-
hits+l1_cached_local_st_-
misses)

tex_cache_hit_-
rate

Texture cache hit rate 100 * (tex0Queries -
tex0Misses)/tex0Queries

tex_cache_-
throughput

Texture cache throughput tex_cache_sector_queries * 32
/ gputime

Table 8: Capability 2.x Metrics

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 24

Samples
The CUPTI installation includes several samples that demonstrate the use of the CUPTI
APIs.The samples are:

activity_trace: This sample shows how to collect a trace of CPU and GPU activity.

callback_event: This sample shows how to use both the callback and event APIs to record
the events that occur during the execution of a simple kernel. The sample shows the
required ordering for synchronization, and for event group enabling, disabling and
reading.

callback_metric: This sample shows how to use both the callback and metric APIs to
record the metric’s events during the execution of a simple kernel, and then use those
events to calculate the metric value.

callback_timestamp: This sample shows how to use the callback API to record a trace of
API start and stop times.

cupti_query: This sample shows how to query CUDA-enabled devices for their event
domains, events, and metrics.

event_sampling: This sample shows how to use the event API to sample events using a
separate host thread.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 25

CUPTI Reference

CUPTI Version
Defines

I #define CUPTI_API_VERSION 2

The API version for this implementation of CUPTI.

Functions
I CUptiResult cuptiGetVersion (uint32_t ∗version)

Get the CUPTI API version.

Define Documentation
#define CUPTI_API_VERSION 2

The API version for this implementation of CUPTI. This define along with
cuptiGetVersion can be used to dynamically detect if the version of CUPTI compiled
against matches the version of the loaded CUPTI library.

v1 : CUDAToolsSDK 4.0 v2 : CUDAToolsSDK 4.1

Function Documentation
CUptiResult cuptiGetVersion (uint32_t ∗ version)

Return the API version in ∗version.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 26

Parameters:

version Returns the version
Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_INVALID_PARAMETER if version is NULL

See also:

CUPTI_API_VERSION

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 27

CUPTI Result Codes
Enumerations

I enum CUptiResult {

CUPTI_SUCCESS = 0,

CUPTI_ERROR_INVALID_PARAMETER = 1,

CUPTI_ERROR_INVALID_DEVICE = 2,

CUPTI_ERROR_INVALID_CONTEXT = 3,

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID = 4,

CUPTI_ERROR_INVALID_EVENT_ID = 5,

CUPTI_ERROR_INVALID_EVENT_NAME = 6,

CUPTI_ERROR_INVALID_OPERATION = 7,

CUPTI_ERROR_OUT_OF_MEMORY = 8,

CUPTI_ERROR_HARDWARE = 9,

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT = 10,

CUPTI_ERROR_API_NOT_IMPLEMENTED = 11,

CUPTI_ERROR_MAX_LIMIT_REACHED = 12,

CUPTI_ERROR_NOT_READY = 13,

CUPTI_ERROR_NOT_COMPATIBLE = 14,

CUPTI_ERROR_NOT_INITIALIZED = 15,

CUPTI_ERROR_INVALID_METRIC_ID = 16,

CUPTI_ERROR_INVALID_METRIC_NAME = 17,

CUPTI_ERROR_QUEUE_EMPTY = 18,

CUPTI_ERROR_INVALID_HANDLE = 19,

CUPTI_ERROR_INVALID_STREAM = 20,

CUPTI_ERROR_INVALID_KIND = 21,

CUPTI_ERROR_INVALID_EVENT_VALUE = 22,

CUPTI_ERROR_DISABLED = 100,

CUPTI_ERROR_UNKNOWN = 999 }

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 28

Functions
I CUptiResult cuptiGetResultString (CUptiResult result, const char ∗∗str)

Get the descriptive string for a CUptiResult.

Enumeration Type Documentation
enum CUptiResult

Result codes.
Enumerator:

CUPTI_SUCCESS No error.

CUPTI_ERROR_INVALID_PARAMETER One or more of the parameters is
invalid.

CUPTI_ERROR_INVALID_DEVICE The device does not correspond to a valid
CUDA device.

CUPTI_ERROR_INVALID_CONTEXT The context is NULL or not valid.

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID The event domain id is
invalid.

CUPTI_ERROR_INVALID_EVENT_ID The event id is invalid.

CUPTI_ERROR_INVALID_EVENT_NAME The event name is invalid.

CUPTI_ERROR_INVALID_OPERATION The current operation cannot be
performed due to dependency on other factors.

CUPTI_ERROR_OUT_OF_MEMORY Unable to allocate enough memory to
perform the requested operation.

CUPTI_ERROR_HARDWARE The performance monitoring hardware could not
be reserved or some other hardware error occurred.

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT The output buffer
size is not sufficient to return all requested data.

CUPTI_ERROR_API_NOT_IMPLEMENTED API is not implemented.

CUPTI_ERROR_MAX_LIMIT_REACHED The maximum limit is reached.

CUPTI_ERROR_NOT_READY The object is not yet ready to perform the
requested operation.

CUPTI_ERROR_NOT_COMPATIBLE The current operation is not compatible
with the current state of the object

CUPTI_ERROR_NOT_INITIALIZED CUPTI is unable to initialize its
connection to the CUDA driver.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 29

CUPTI_ERROR_INVALID_METRIC_ID The metric id is invalid.

CUPTI_ERROR_INVALID_METRIC_NAME The metric name is invalid.

CUPTI_ERROR_QUEUE_EMPTY The queue is empty.

CUPTI_ERROR_INVALID_HANDLE Invalid handle (internal?).

CUPTI_ERROR_INVALID_STREAM Invalid stream.

CUPTI_ERROR_INVALID_KIND Invalid kind.

CUPTI_ERROR_INVALID_EVENT_VALUE Invalid event value.

CUPTI_ERROR_DISABLED CUPTI profiling is not compatible with current
profiling mode

CUPTI_ERROR_UNKNOWN An unknown internal error has occurred.

Function Documentation
CUptiResult cuptiGetResultString (CUptiResult result, const char
∗∗ str)

Return the descriptive string for a CUptiResult in ∗str.
Note:

Thread-safety: this function is thread safe.

Parameters:

result The result to get the string for

str Returns the string

Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_INVALID_PARAMETER if str is NULL or result is not a valid
CUptiResult

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 30

CUPTI Activity API
Data Structures

I struct CUpti_Activity

The base activity record.

I struct CUpti_ActivityAPI

The activity record for a driver or runtime API invocation.

I struct CUpti_ActivityContext

The activity record for a context.

I struct CUpti_ActivityDevice

The activity record for a device.

I struct CUpti_ActivityEvent

The activity record for a CUPTI event.

I struct CUpti_ActivityKernel

The activity record for kernel.

I struct CUpti_ActivityMemcpy

The activity record for memory copies.

I struct CUpti_ActivityMemset

The activity record for memset.

I struct CUpti_ActivityMetric

The activity record for a CUPTI metric.

Enumerations
I enum CUpti_ActivityComputeApiKind {

CUPTI_ACTIVITY_COMPUTE_API_UNKNOWN = 0,

CUPTI_ACTIVITY_COMPUTE_API_CUDA = 1,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 31

CUPTI_ACTIVITY_COMPUTE_API_OPENCL = 2 }

The kind of a compute API, indicating if the context was created for CUDA api or
OpenCL APIs.

I enum CUpti_ActivityFlag {

CUPTI_ACTIVITY_FLAG_NONE = 0,

CUPTI_ACTIVITY_FLAG_DEVICE_CONCURRENT_KERNELS = 1 << 0,

CUPTI_ACTIVITY_FLAG_MEMCPY_ASYNC = 1 << 0 }

Flags associated with activity records.

I enum CUpti_ActivityKind {

CUPTI_ACTIVITY_KIND_INVALID = 0,

CUPTI_ACTIVITY_KIND_MEMCPY = 1,

CUPTI_ACTIVITY_KIND_MEMSET = 2,

CUPTI_ACTIVITY_KIND_KERNEL = 3,

CUPTI_ACTIVITY_KIND_DRIVER = 4,

CUPTI_ACTIVITY_KIND_RUNTIME = 5,

CUPTI_ACTIVITY_KIND_EVENT = 6,

CUPTI_ACTIVITY_KIND_METRIC = 7,

CUPTI_ACTIVITY_KIND_DEVICE = 8,

CUPTI_ACTIVITY_KIND_CONTEXT = 9 }

The kinds of activity records.

I enum CUpti_ActivityMemcpyKind {

CUPTI_ACTIVITY_MEMCPY_KIND_UNKNOWN = 0,

CUPTI_ACTIVITY_MEMCPY_KIND_HTOD = 1,

CUPTI_ACTIVITY_MEMCPY_KIND_DTOH = 2,

CUPTI_ACTIVITY_MEMCPY_KIND_HTOA = 3,

CUPTI_ACTIVITY_MEMCPY_KIND_ATOH = 4,

CUPTI_ACTIVITY_MEMCPY_KIND_ATOA = 5,

CUPTI_ACTIVITY_MEMCPY_KIND_ATOD = 6,

CUPTI_ACTIVITY_MEMCPY_KIND_DTOA = 7,

CUPTI_ACTIVITY_MEMCPY_KIND_DTOD = 8,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 32

CUPTI_ACTIVITY_MEMCPY_KIND_HTOH = 9 }

The kind of a memory copy, indicating the source and destination targets of the copy.

I enum CUpti_ActivityMemoryKind {

CUPTI_ACTIVITY_MEMORY_KIND_UNKNOWN = 0,

CUPTI_ACTIVITY_MEMORY_KIND_PAGEABLE = 1,

CUPTI_ACTIVITY_MEMORY_KIND_PINNED = 2,

CUPTI_ACTIVITY_MEMORY_KIND_DEVICE = 3,

CUPTI_ACTIVITY_MEMORY_KIND_ARRAY = 4 }

The kinds of memory accessed by a memory copy.

Functions
I CUptiResult cuptiActivityDequeueBuffer (CUcontext context, uint32_t streamId,

uint8_t ∗∗buffer, size_t ∗validBufferSizeBytes)
Dequeue a buffer containing activity records.

I CUptiResult cuptiActivityDisable (CUpti_ActivityKind kind)

Disable collection of a specific kind of activity record.

I CUptiResult cuptiActivityEnable (CUpti_ActivityKind kind)

Enable collection of a specific kind of activity record.

I CUptiResult cuptiActivityEnqueueBuffer (CUcontext context, uint32_t streamId,
uint8_t ∗buffer, size_t bufferSizeBytes)

Queue a buffer for activity record collection.

I CUptiResult cuptiActivityGetNextRecord (uint8_t ∗buffer, size_t
validBufferSizeBytes, CUpti_Activity ∗∗record)

Iterate over the activity records in a buffer.

I CUptiResult cuptiActivityGetNumDroppedRecords (CUcontext context, uint32_t
streamId, size_t ∗dropped)

Get the number of activity records that were dropped from a queue because of insufficient
buffer space.

I CUptiResult cuptiActivityQueryBuffer (CUcontext context, uint32_t streamId,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 33

size_t ∗validBufferSizeBytes)
Query the status of the buffer at the head of a queue.

I CUptiResult cuptiGetStreamId (CUcontext context, CUstream stream, uint32_t
∗streamId)

Get the ID of a stream.

Enumeration Type Documentation
enum CUpti_ActivityComputeApiKind

Enumerator:

CUPTI_ACTIVITY_COMPUTE_API_UNKNOWN The compute API is not
known.

CUPTI_ACTIVITY_COMPUTE_API_CUDA The compute APIs are for CUDA.
CUPTI_ACTIVITY_COMPUTE_API_OPENCL The compute APIs are for

OpenCL.

enum CUpti_ActivityFlag

Activity record flags. Flags can be combined by bitwise OR to associated multiple flags
with an activity record. Each flag is specific to a certain activity kind, as noted below.
Enumerator:

CUPTI_ACTIVITY_FLAG_NONE Indicates the activity record has no flags.
CUPTI_ACTIVITY_FLAG_DEVICE_CONCURRENT_KERNELS Indicates

the activity represents a device that supports concurrent kernel execution. Valid
for CUPTI_ACTIVITY_KIND_DEVICE.

CUPTI_ACTIVITY_FLAG_MEMCPY_ASYNC Indicates the activity represents
an asychronous memcpy operation. Valid for
CUPTI_ACTIVITY_KIND_MEMCPY.

enum CUpti_ActivityKind

Each activity record kind represents information about a GPU or an activity occurring on
a CPU or GPU. Each kind is associated with a activity record structure that holds the
information associated with the kind.
See also:

CUpti_Activity

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 34

CUpti_ActivityAPI
CUpti_ActivityDevice
CUpti_ActivityEvent
CUpti_ActivityKernel
CUpti_ActivityMemcpy
CUpti_ActivityMemset
CUpti_ActivityMetric

Enumerator:

CUPTI_ACTIVITY_KIND_INVALID The activity record is invalid.

CUPTI_ACTIVITY_KIND_MEMCPY A host<->host, host<->device, or
device<->device memory copy. The corresponding activity record structure is
CUpti_ActivityMemcpy.

CUPTI_ACTIVITY_KIND_MEMSET A memory set executing on the GPU. The
corresponding activity record structure is CUpti_ActivityMemset.

CUPTI_ACTIVITY_KIND_KERNEL A kernel executing on the GPU. The
corresponding activity record structure is CUpti_ActivityKernel.

CUPTI_ACTIVITY_KIND_DRIVER A CUDA driver API function execution.
The corresponding activity record structure is CUpti_ActivityAPI.

CUPTI_ACTIVITY_KIND_RUNTIME A CUDA runtime API function execution.
The corresponding activity record structure is CUpti_ActivityAPI.

CUPTI_ACTIVITY_KIND_EVENT An event value. The corresponding activity
record structure is CUpti_ActivityEvent.

CUPTI_ACTIVITY_KIND_METRIC A metric value. The corresponding activity
record structure is CUpti_ActivityMetric.

CUPTI_ACTIVITY_KIND_DEVICE Information about a device. The
corresponding activity record structure is CUpti_ActivityDevice.

CUPTI_ACTIVITY_KIND_CONTEXT Information about a context. The
corresponding activity record structure is CUpti_ActivityContext.

enum CUpti_ActivityMemcpyKind

Each kind represents the source and destination targets of a memory copy. Targets are
host, device, and array.
Enumerator:

CUPTI_ACTIVITY_MEMCPY_KIND_UNKNOWN The memory copy kind is
not known.

CUPTI_ACTIVITY_MEMCPY_KIND_HTOD A host to device memory copy.

CUPTI_ACTIVITY_MEMCPY_KIND_DTOH A device to host memory copy.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 35

CUPTI_ACTIVITY_MEMCPY_KIND_HTOA A host to device array memory
copy.

CUPTI_ACTIVITY_MEMCPY_KIND_ATOH A device array to host memory
copy.

CUPTI_ACTIVITY_MEMCPY_KIND_ATOA A device array to device array
memory copy.

CUPTI_ACTIVITY_MEMCPY_KIND_ATOD A device array to device memory
copy.

CUPTI_ACTIVITY_MEMCPY_KIND_DTOA A device to device array memory
copy.

CUPTI_ACTIVITY_MEMCPY_KIND_DTOD A device to device memory copy.
CUPTI_ACTIVITY_MEMCPY_KIND_HTOH A host to host memory copy.

enum CUpti_ActivityMemoryKind

Each kind represents the type of the source or destination memory accessed by a memory
copy.
Enumerator:

CUPTI_ACTIVITY_MEMORY_KIND_UNKNOWN The source or destination
memory kind is unknown.

CUPTI_ACTIVITY_MEMORY_KIND_PAGEABLE The source or destination
memory is pageable.

CUPTI_ACTIVITY_MEMORY_KIND_PINNED The source or destination
memory is pinned.

CUPTI_ACTIVITY_MEMORY_KIND_DEVICE The source or destination
memory is on the device.

CUPTI_ACTIVITY_MEMORY_KIND_ARRAY The source or destination
memory is an array.

Function Documentation
CUptiResult cuptiActivityDequeueBuffer (CUcontext context,
uint32_t streamId, uint8_t ∗∗ buffer, size_t ∗ validBufferSizeBytes)

Remove the buffer from the head of the specified queue. See cuptiActivityEnqueueBuffer()
for description of queues. Calling this function transfers ownership of the buffer from
CUPTI. CUPTI will no add any activity records to the buffer after it is dequeued.

Parameters:

context The context, or NULL to dequeue from the global queue

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 36

streamId The stream ID

buffer Returns the dequeued buffer

validBufferSizeBytes Returns the number of bytes in the buffer that contain activity
records

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if buffer or validBufferSizeBytes
are NULL

CUPTI_ERROR_QUEUE_EMPTY the queue is empty, buffer returns NULL and
validBufferSizeBytes returns 0

CUptiResult cuptiActivityDisable (CUpti_ActivityKind kind)

Disable collection of a specific kind of activity record. Multiple kinds can be disabled by
calling this function multiple times. By default all activity kinds are disabled for collection.

Parameters:

kind The kind of activity record to stop collecting

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUptiResult cuptiActivityEnable (CUpti_ActivityKind kind)

Enable collection of a specific kind of activity record. Multiple kinds can be enabled by
calling this function multiple times. By default all activity kinds are disabled for collection.

Parameters:

kind The kind of activity record to collect

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_NOT_COMPATIBLE if the activity kind cannot be enabled

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 37

CUptiResult cuptiActivityEnqueueBuffer (CUcontext context,
uint32_t streamId, uint8_t ∗ buffer, size_t bufferSizeBytes)

Queue a buffer for activity record collection. Calling this function transfers ownership of
the buffer to CUPTI. The buffer should not be accessed or modified until ownership is
regained by calling cuptiActivityDequeueBuffer().

There are three types of queues:

Global Queue: The global queue collects all activity records that are not associated with a
valid context. All device and API activity records are collected in the global queue. A
buffer is enqueued in the global queue by specifying context == NULL.

Context Queue: Each context queue collects activity records associated with that context
that are not associated with a specific stream or that are associated with the default
stream. A buffer is enqueued in a context queue by specifying the context and a streamId
of 0.

Stream Queue: Each stream queue collects memcpy, memset, and kernel activity records
associated with the stream. A buffer is enqueued in a stream queue by specifying a context
and a non-zero stream ID.

Multiple buffers can be enqueued on each queue, and buffers can be enqueue on multiple
queues.

When a new activity record needs to be recorded, CUPTI searches for a non-empty queue
to hold the record in this order: 1) the appropriate stream queue, 2) the appropriate
context queue, and 3) the global queue. If the search does not find any queue with a buffer
then the activity record is dropped. If the search finds a queue containing a buffer, but
that buffer is full, then the activity record is dropped and the dropped record count for the
queue is incremented. If the search finds a queue containing a buffer with space available
to hold the record, then the record is recorded in the buffer.

At a minimum, one or more buffers must be queued in the global queue at all times to
avoid dropping activity records. For correct operation it is also necessary to enqueue at
least one buffer in the context queue of each context as it is created. The stream queues
are optional and can be used to reduce or eliminate application perturbations caused by
the need to process or save the activity records returned in the buffers. For example, if a
stream queue is used, that queue can be flushed when the stream is synchronized.

Parameters:

context The context, or NULL to enqueue on the global queue

streamId The stream ID

buffer The pointer to user supplied buffer for storing activity records.The buffer must
be at least 8 byte aligned, and the size of the buffer must be at least 1024 bytes.

bufferSizeBytes The size of the buffer, in bytes. The size of the buffer must be at least
1024 bytes.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 38

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if buffer is NULL, does not have
alignment of at least 8 bytes, or is not at least 1024 bytes in size

CUptiResult cuptiActivityGetNextRecord (uint8_t ∗ buffer, size_t
validBufferSizeBytes, CUpti_Activity ∗∗ record)

This is a helper function to iterate over the activity records in a buffer. A buffer of activity
records is typically obtained by using the cuptiActivityDequeueBuffer() function.

An example of typical usage:

CUpti_Activity *record = NULL;
CUptiResult status = CUPTI_SUCCESS;

do {
status = cuptiActivityGetNextRecord(buffer, validSize, &record);
if(status == CUPTI_SUCCESS) {

// Use record here...
}
else if (status == CUPTI_ERROR_MAX_LIMIT_REACHED)

break;
else {

goto Error;
}

} while (1);

Parameters:

buffer The buffer containing activity records

record Inputs the previous record returned by cuptiActivityGetNextRecord and
returns the next activity record from the buffer. If input value if NULL, returns
the first activity record in the buffer.

validBufferSizeBytes The number of valid bytes in the buffer.

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_MAX_LIMIT_REACHED if no more records in the buffer

CUPTI_ERROR_INVALID_PARAMETER if buffer is NULL.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 39

CUptiResult cuptiActivityGetNumDroppedRecords (CUcontext
context, uint32_t streamId, size_t ∗ dropped)

Get the number of records that were dropped from a queue because all the buffers in the
queue are full. See cuptiActivityEnqueueBuffer() for description of queues. Calling this
function does not transfer ownership of the buffer. The dropped count maintained for the
queue is reset to zero when this function is called.

Parameters:

context The context, or NULL to get dropped count from global queue

streamId The stream ID

dropped The number of records that were dropped since the last call to this function.

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if dropped is NULL

CUptiResult cuptiActivityQueryBuffer (CUcontext context, uint32_t
streamId, size_t ∗ validBufferSizeBytes)

Query the status of buffer at the head in the queue. See cuptiActivityEnqueueBuffer() for
description of queues. Calling this function does not transfer ownership of the buffer.

Parameters:

context The context, or NULL to query the global queue

streamId The stream ID

validBufferSizeBytes Returns the number of bytes in the buffer that contain activity
records

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if buffer or validBufferSizeBytes
are NULL

CUPTI_ERROR_MAX_LIMIT_REACHED if buffer is full

CUPTI_ERROR_QUEUE_EMPTY the queue is empty, validBufferSizeBytes
returns 0

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 40

CUptiResult cuptiGetStreamId (CUcontext context, CUstream
stream, uint32_t ∗ streamId)

Get the ID of a stream. The stream ID is needed to enqueue and dequeue activity record
buffers on a stream queue.

Parameters:

context The context containing the stream

stream The stream

streamId Returns the ID for the stream
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if streamId is NULL

See also:

cuptiActivityEnqueueBuffer
cuptiActivityDequeueBuffer

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 41

CUpti_Activity Type Reference
The base activity record.

Data Fields
I CUpti_ActivityKind kind

Detailed Description
The activity API uses a CUpti_Activity as a generic representation for any activity. The
’kind’ field is used to determine the specific activity kind, and from that the
CUpti_Activity object can be cast to the specific activity record type appropriate for that
kind.

Note that all activity record types are padded and aligned to ensure that each member of
the record is naturally aligned.

See also:

CUpti_ActivityKind

Field Documentation
CUpti_ActivityKind CUpti_Activity::kind

The kind of this activity.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 42

CUpti_ActivityAPI Type Reference
The activity record for a driver or runtime API invocation.

Data Fields
I CUpti_CallbackId cbid
I uint32_t correlationId
I uint64_t end
I CUpti_ActivityKind kind
I uint32_t processId
I uint32_t returnValue
I uint64_t start
I uint32_t threadId

Detailed Description
This activity record represents an invocation of a driver or runtime API
(CUPTI_ACTIVITY_KIND_DRIVER and CUPTI_ACTIVITY_KIND_RUNTIME).

Field Documentation
CUpti_CallbackId CUpti_ActivityAPI::cbid

The ID of the driver or runtime function.

uint32_t CUpti_ActivityAPI::correlationId

The correlation ID of the driver or runtime CUDA function. Each function invocation is
assigned a unique correlation ID that is identical to the correlation ID in the memcpy,
memset, or kernel activity record that is associated with this function.

uint64_t CUpti_ActivityAPI::end

The end timestamp for the function, in ns.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 43

CUpti_ActivityKind CUpti_ActivityAPI::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_DRIVER or
CUPTI_ACTIVITY_KIND_RUNTIME.

uint32_t CUpti_ActivityAPI::processId

The ID of the process where the driver or runtime CUDA function is executing.

uint32_t CUpti_ActivityAPI::returnValue

The return value for the function. For a CUDA driver function with will be a CUresult
value, and for a CUDA runtime function this will be a cudaError_t value.

uint64_t CUpti_ActivityAPI::start

The start timestamp for the function, in ns.

uint32_t CUpti_ActivityAPI::threadId

The ID of the thread where the driver or runtime CUDA function is executing.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 44

CUpti_ActivityDevice Type Reference
The activity record for a device.

Data Fields
I uint32_t computeCapabilityMajor
I uint32_t computeCapabilityMinor
I uint32_t constantMemorySize
I uint32_t coreClockRate
I uint32_t flags
I uint64_t globalMemoryBandwidth
I uint64_t globalMemorySize
I uint32_t id
I CUpti_ActivityKind kind
I uint32_t l2CacheSize
I uint32_t maxBlockDimX
I uint32_t maxBlockDimY
I uint32_t maxBlockDimZ
I uint32_t maxBlocksPerMultiprocessor
I uint32_t maxGridDimX
I uint32_t maxGridDimY
I uint32_t maxGridDimZ
I uint32_t maxIPC
I uint32_t maxRegistersPerBlock
I uint32_t maxSharedMemoryPerBlock
I uint32_t maxThreadsPerBlock
I uint32_t maxWarpsPerMultiprocessor
I const char ∗ name
I uint32_t numMemcpyEngines
I uint32_t numMultiprocessors
I uint32_t numThreadsPerWarp

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 45

Detailed Description
This activity record represents information about a GPU device
(CUPTI_ACTIVITY_KIND_DEVICE).

Field Documentation
uint32_t CUpti_ActivityDevice::computeCapabilityMajor

Compute capability for the device, major number.

uint32_t CUpti_ActivityDevice::computeCapabilityMinor

Compute capability for the device, minor number.

uint32_t CUpti_ActivityDevice::constantMemorySize

The amount of constant memory on the device, in bytes.

uint32_t CUpti_ActivityDevice::coreClockRate

The core clock rate of the device, in kHz.

uint32_t CUpti_ActivityDevice::flags

The flags associated with the device.
See also:

CUpti_ActivityFlag

uint64_t CUpti_ActivityDevice::globalMemoryBandwidth

The global memory bandwidth available on the device, in kBytes/sec.

uint64_t CUpti_ActivityDevice::globalMemorySize

The amount of global memory on the device, in bytes.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 46

uint32_t CUpti_ActivityDevice::id

The device ID.

CUpti_ActivityKind CUpti_ActivityDevice::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_DEVICE.

uint32_t CUpti_ActivityDevice::l2CacheSize

The size of the L2 cache on the device, in bytes.

uint32_t CUpti_ActivityDevice::maxBlockDimX

Maximum allowed X dimension for a block.

uint32_t CUpti_ActivityDevice::maxBlockDimY

Maximum allowed Y dimension for a block.

uint32_t CUpti_ActivityDevice::maxBlockDimZ

Maximum allowed Z dimension for a block.

uint32_t CUpti_ActivityDevice::maxBlocksPerMultiprocessor

Maximum number of blocks that can be present on a multiprocessor at any given time.

uint32_t CUpti_ActivityDevice::maxGridDimX

Maximum allowed X dimension for a grid.

uint32_t CUpti_ActivityDevice::maxGridDimY

Maximum allowed Y dimension for a grid.

uint32_t CUpti_ActivityDevice::maxGridDimZ

Maximum allowed Z dimension for a grid.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 47

uint32_t CUpti_ActivityDevice::maxIPC

The maximum "instructions per cycle" possible on each device multiprocessor.

uint32_t CUpti_ActivityDevice::maxRegistersPerBlock

Maximum number of registers that can be allocated to a block.

uint32_t CUpti_ActivityDevice::maxSharedMemoryPerBlock

Maximum amount of shared memory that can be assigned to a block, in bytes.

uint32_t CUpti_ActivityDevice::maxThreadsPerBlock

Maximum number of threads allowed in a block.

uint32_t CUpti_ActivityDevice::maxWarpsPerMultiprocessor

Maximum number of warps that can be present on a multiprocessor at any given time.

const char∗ CUpti_ActivityDevice::name

The device name. This name is shared across all activity records representing instances of
the device, and so should not be modified.

uint32_t CUpti_ActivityDevice::numMemcpyEngines

Number of memory copy engines on the device.

uint32_t CUpti_ActivityDevice::numMultiprocessors

Number of multiprocessors on the device.

uint32_t CUpti_ActivityDevice::numThreadsPerWarp

The number of threads per warp on the device.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 48

CUpti_ActivityEvent Type Reference
The activity record for a CUPTI event.

Data Fields
I uint32_t correlationId
I CUpti_EventDomainID domain
I CUpti_EventID id
I CUpti_ActivityKind kind
I uint64_t value

Detailed Description
This activity record represents the collection of a CUPTI event value
(CUPTI_ACTIVITY_KIND_EVENT). This activity record kind is not produced by the
activity API but is included for completeness and ease-of-use. Profile frameworks built on
top of CUPTI that collect event data may choose to use this type to store the collected
event data.

Field Documentation
uint32_t CUpti_ActivityEvent::correlationId

The correlation ID of the event. Use of this ID is user-defined, but typically this ID value
will equal the correlation ID of the kernel for which the event was gathered.

CUpti_EventDomainID CUpti_ActivityEvent::domain

The event domain ID.

CUpti_EventID CUpti_ActivityEvent::id

The event ID.

CUpti_ActivityKind CUpti_ActivityEvent::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_EVENT.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 49

uint64_t CUpti_ActivityEvent::value

The event value.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 50

CUpti_ActivityKernel Type Reference
The activity record for kernel.

Data Fields
I int32_t blockX
I int32_t blockY
I int32_t blockZ
I uint8_t cacheConfigExecuted
I uint8_t cacheConfigRequested
I uint32_t contextId
I uint32_t correlationId
I uint32_t deviceId
I int32_t dynamicSharedMemory
I uint64_t end
I int32_t gridX
I int32_t gridY
I int32_t gridZ
I CUpti_ActivityKind kind
I uint32_t localMemoryPerThread
I uint32_t localMemoryTotal
I const char ∗ name
I uint32_t pad
I uint16_t registersPerThread
I void ∗ reserved0
I uint32_t runtimeCorrelationId
I uint64_t start
I int32_t staticSharedMemory
I uint32_t streamId

Detailed Description
This activity record represents a kernel execution
(CUPTI_ACTIVITY_KIND_KERNEL).

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 51

Field Documentation
int32_t CUpti_ActivityKernel::blockX

The X-dimension block size for the kernel.

int32_t CUpti_ActivityKernel::blockY

The Y-dimension block size for the kernel.

int32_t CUpti_ActivityKernel::blockZ

The Z-dimension grid size for the kernel.

uint8_t CUpti_ActivityKernel::cacheConfigExecuted

The cache configuration used for the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

uint8_t CUpti_ActivityKernel::cacheConfigRequested

The cache configuration requested by the kernel. The value is one of the CUfunc_cache
enumeration values from cuda.h.

uint32_t CUpti_ActivityKernel::contextId

The ID of the context where the kernel is executing.

uint32_t CUpti_ActivityKernel::correlationId

The correlation ID of the kernel. Each kernel execution is assigned a unique correlation ID
that is identical to the correlation ID in the driver API activity record that launched the
kernel.

uint32_t CUpti_ActivityKernel::deviceId

The ID of the device where the kernel is executing.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 52

int32_t CUpti_ActivityKernel::dynamicSharedMemory

The dynamic shared memory reserved for the kernel, in bytes.

uint64_t CUpti_ActivityKernel::end

The end timestamp for the kernel execution, in ns.

int32_t CUpti_ActivityKernel::gridX

The X-dimension grid size for the kernel.

int32_t CUpti_ActivityKernel::gridY

The Y-dimension grid size for the kernel.

int32_t CUpti_ActivityKernel::gridZ

The Z-dimension grid size for the kernel.

CUpti_ActivityKind CUpti_ActivityKernel::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_KERNEL.

uint32_t CUpti_ActivityKernel::localMemoryPerThread

The amount of local memory reserved for each thread, in bytes.

uint32_t CUpti_ActivityKernel::localMemoryTotal

The total amount of local memory reserved for the kernel, in bytes.

const char∗ CUpti_ActivityKernel::name

The name of the kernel. This name is shared across all activity records representing the
same kernel, and so should not be modified.

uint32_t CUpti_ActivityKernel::pad

Undefined. Reserved for internal use.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 53

uint16_t CUpti_ActivityKernel::registersPerThread

The number of registers required for each thread executing the kernel.

void∗ CUpti_ActivityKernel::reserved0

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityKernel::runtimeCorrelationId

The runtime correlation ID of the kernel. Each kernel execution is assigned a unique
runtime correlation ID that is identical to the correlation ID in the runtime API activity
record that launched the kernel.

uint64_t CUpti_ActivityKernel::start

The start timestamp for the kernel execution, in ns.

int32_t CUpti_ActivityKernel::staticSharedMemory

The static shared memory allocated for the kernel, in bytes.

uint32_t CUpti_ActivityKernel::streamId

The ID of the stream where the kernel is executing.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 54

CUpti_ActivityMemcpy Type Reference
The activity record for memory copies.

Data Fields
I uint64_t bytes
I uint32_t contextId
I uint8_t copyKind
I uint32_t correlationId
I uint32_t deviceId
I uint8_t dstKind
I uint64_t end
I uint8_t flags
I CUpti_ActivityKind kind
I void ∗ reserved0
I uint32_t runtimeCorrelationId
I uint8_t srcKind
I uint64_t start
I uint32_t streamId

Detailed Description
This activity record represents a memory copy (CUPTI_ACTIVITY_KIND_MEMCPY).

Field Documentation
uint64_t CUpti_ActivityMemcpy::bytes

The number of bytes transferred by the memory copy.

uint32_t CUpti_ActivityMemcpy::contextId

The ID of the context where the memory copy is occurring.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 55

uint8_t CUpti_ActivityMemcpy::copyKind

The kind of the memory copy, stored as a byte to reduce record size.
See also:

CUpti_ActivityMemcpyKind

uint32_t CUpti_ActivityMemcpy::correlationId

The correlation ID of the memory copy. Each memory copy is assigned a unique
correlation ID that is identical to the correlation ID in the driver API activity record that
launched the memory copy.

uint32_t CUpti_ActivityMemcpy::deviceId

The ID of the device where the memory copy is occurring.

uint8_t CUpti_ActivityMemcpy::dstKind

The destination memory kind read by the memory copy, stored as a byte to reduce record
size.
See also:

CUpti_ActivityMemoryKind

uint64_t CUpti_ActivityMemcpy::end

The end timestamp for the memory copy, in ns.

uint8_t CUpti_ActivityMemcpy::flags

The flags associated with the memory copy.
See also:

CUpti_ActivityFlag

CUpti_ActivityKind CUpti_ActivityMemcpy::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_MEMCPY.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 56

void∗ CUpti_ActivityMemcpy::reserved0

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityMemcpy::runtimeCorrelationId

The runtime correlation ID of the memory copy. Each memory copy is assigned a unique
runtime correlation ID that is identical to the correlation ID in the runtime API activity
record that launched the memory copy.

uint8_t CUpti_ActivityMemcpy::srcKind

The source memory kind read by the memory copy, stored as a byte to reduce record size.

See also:

CUpti_ActivityMemoryKind

uint64_t CUpti_ActivityMemcpy::start

The start timestamp for the memory copy, in ns.

uint32_t CUpti_ActivityMemcpy::streamId

The ID of the stream where the memory copy is occurring.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 57

CUpti_ActivityMemset Type Reference
The activity record for memset.

Data Fields
I uint64_t bytes
I uint32_t contextId
I uint32_t correlationId
I uint32_t deviceId
I uint64_t end
I CUpti_ActivityKind kind
I void ∗ reserved0
I uint32_t runtimeCorrelationId
I uint64_t start
I uint32_t streamId
I uint32_t value

Detailed Description
This activity record represents a memory set operation
(CUPTI_ACTIVITY_KIND_MEMSET).

Field Documentation
uint64_t CUpti_ActivityMemset::bytes

The number of bytes being set by the memory set.

uint32_t CUpti_ActivityMemset::contextId

The ID of the context where the memory set is occurring.

uint32_t CUpti_ActivityMemset::correlationId

The correlation ID of the memory set. Each memory set is assigned a unique correlation
ID that is identical to the correlation ID in the driver API activity record that launched

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 58

the memory set.

uint32_t CUpti_ActivityMemset::deviceId

The ID of the device where the memory set is occurring.

uint64_t CUpti_ActivityMemset::end

The end timestamp for the memory set, in ns.

CUpti_ActivityKind CUpti_ActivityMemset::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_MEMSET.

void∗ CUpti_ActivityMemset::reserved0

Undefined. Reserved for internal use.

uint32_t CUpti_ActivityMemset::runtimeCorrelationId

The runtime correlation ID of the memory set. Each memory set is assigned a unique
runtime correlation ID that is identical to the correlation ID in the runtime API activity
record that launched the memory set.

uint64_t CUpti_ActivityMemset::start

The start timestamp for the memory set, in ns.

uint32_t CUpti_ActivityMemset::streamId

The ID of the stream where the memory set is occurring.

uint32_t CUpti_ActivityMemset::value

The value being assigned to memory by the memory set.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 59

CUpti_ActivityMetric Type Reference
The activity record for a CUPTI metric.

Data Fields
I uint32_t correlationId
I CUpti_MetricID id
I CUpti_ActivityKind kind
I uint32_t pad
I CUpti_MetricValue value

Detailed Description
This activity record represents the collection of a CUPTI metric value
(CUPTI_ACTIVITY_KIND_METRIC). This activity record kind is not produced by
the activity API but is included for completeness and ease-of-use. Profile frameworks built
on top of CUPTI that collect metric data may choose to use this type to store the
collected metric data.

Field Documentation
uint32_t CUpti_ActivityMetric::correlationId

The correlation ID of the metric. Use of this ID is user-defined, but typically this ID value
will equal the correlation ID of the kernel for which the metric was gathered.

CUpti_MetricID CUpti_ActivityMetric::id

The metric ID.

CUpti_ActivityKind CUpti_ActivityMetric::kind

The activity record kind, must be CUPTI_ACTIVITY_KIND_METRIC.

uint32_t CUpti_ActivityMetric::pad

Undefined. Reserved for internal use.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 60

CUpti_MetricValue CUpti_ActivityMetric::value

The metric value.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 61

CUPTI Callback API
Data Structures

I struct CUpti_CallbackData

Data passed into a runtime or driver API callback function.

I struct CUpti_ResourceData

Data passed into a resource callback function.

I struct CUpti_SynchronizeData

Data passed into a synchronize callback function.

Typedefs
I typedef void(∗ CUpti_CallbackFunc)(void ∗userdata, CUpti_CallbackDomain

domain, CUpti_CallbackId cbid, const void ∗cbdata)
Function type for a callback.

I typedef uint32_t CUpti_CallbackId

An ID for a driver API, runtime API, resource or synchronization callback.

I typedef CUpti_CallbackDomain ∗ CUpti_DomainTable

Pointer to an array of callback domains.

I typedef struct CUpti_Subscriber_st ∗ CUpti_SubscriberHandle

A callback subscriber.

Enumerations
I enum CUpti_ApiCallbackSite {

CUPTI_API_ENTER = 0,

CUPTI_API_EXIT = 1 }

Specifies the point in an API call that a callback is issued.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 62

I enum CUpti_CallbackDomain {

CUPTI_CB_DOMAIN_INVALID = 0,

CUPTI_CB_DOMAIN_DRIVER_API = 1,

CUPTI_CB_DOMAIN_RUNTIME_API = 2,

CUPTI_CB_DOMAIN_RESOURCE = 3,

CUPTI_CB_DOMAIN_SYNCHRONIZE = 4 }

Callback domains.

I enum CUpti_CallbackIdResource {

CUPTI_CBID_RESOURCE_INVALID = 0,

CUPTI_CBID_RESOURCE_CONTEXT_CREATED = 1,

CUPTI_CBID_RESOURCE_CONTEXT_DESTROY_STARTING = 2,

CUPTI_CBID_RESOURCE_STREAM_CREATED = 3,

CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING = 4 }

Callback IDs for resource domain.

I enum CUpti_CallbackIdSync {

CUPTI_CBID_SYNCHRONIZE_INVALID = 0,

CUPTI_CBID_SYNCHRONIZE_STREAM_SYNCHRONIZED = 1,

CUPTI_CBID_SYNCHRONIZE_CONTEXT_SYNCHRONIZED = 2 }

Callback IDs for synchronization domain.

Functions
I CUptiResult cuptiEnableAllDomains (uint32_t enable, CUpti_SubscriberHandle

subscriber)

Enable or disable all callbacks in all domains.

I CUptiResult cuptiEnableCallback (uint32_t enable, CUpti_SubscriberHandle
subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId cbid)

Enable or disabled callbacks for a specific domain and callback ID.

I CUptiResult cuptiEnableDomain (uint32_t enable, CUpti_SubscriberHandle
subscriber, CUpti_CallbackDomain domain)

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 63

Enable or disabled all callbacks for a specific domain.

I CUptiResult cuptiGetCallbackState (uint32_t ∗enable, CUpti_SubscriberHandle
subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId cbid)

Get the current enabled/disabled state of a callback for a specific domain and function ID.

I CUptiResult cuptiSubscribe (CUpti_SubscriberHandle ∗subscriber,
CUpti_CallbackFunc callback, void ∗userdata)

Initialize a callback subscriber with a callback function and user data.

I CUptiResult cuptiSupportedDomains (size_t ∗domainCount, CUpti_DomainTable
∗domainTable)

Get the available callback domains.

I CUptiResult cuptiUnsubscribe (CUpti_SubscriberHandle subscriber)

Unregister a callback subscriber.

Typedef Documentation
typedef void(∗ CUpti_CallbackFunc)(void ∗userdata,
CUpti_CallbackDomain domain, CUpti_CallbackId cbid, const
void ∗cbdata)

Function type for a callback. The type of the data passed to the callback in cbdata
depends on the domain. If domain is CUPTI_CB_DOMAIN_DRIVER_API or
CUPTI_CB_DOMAIN_RUNTIME_API the type of cbdata will be
CUpti_CallbackData. If domain is CUPTI_CB_DOMAIN_RESOURCE the type of
cbdata will be CUpti_ResourceData. If domain is
CUPTI_CB_DOMAIN_SYNCHRONIZE the type of cbdata will be
CUpti_SynchronizeData.

Parameters:

userdata User data supplied at subscription of the callback

domain The domain of the callback

cbid The ID of the callback

cbdata Data passed to the callback.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 64

typedef uint32_t CUpti_CallbackId

An ID for a driver API, runtime API, resource or synchronization callback. Within a
driver API callback this should be interpreted as a CUpti_driver_api_trace_cbid value.
Within a runtime API callback this should be interpreted as a
CUpti_runtime_api_trace_cbid value. Within a resource API callback this should be
interpreted as a CUpti_CallbackIdResource value. Within a synchronize API callback this
should be interpreted as a CUpti_CallbackIdSync value.

Enumeration Type Documentation
enum CUpti_ApiCallbackSite

Specifies the point in an API call that a callback is issued. This value is communicated to
the callback function via CUpti_CallbackData::callbackSite.
Enumerator:

CUPTI_API_ENTER The callback is at the entry of the API call.

CUPTI_API_EXIT The callback is at the exit of the API call.

enum CUpti_CallbackDomain

Callback domains. Each domain represents callback points for a group of related API
functions or CUDA driver activity.
Enumerator:

CUPTI_CB_DOMAIN_INVALID Invalid domain.

CUPTI_CB_DOMAIN_DRIVER_API Domain containing callback points for all
driver API functions.

CUPTI_CB_DOMAIN_RUNTIME_API Domain containing callback points for
all runtime API functions.

CUPTI_CB_DOMAIN_RESOURCE Domain containing callback points for
CUDA resource tracking.

CUPTI_CB_DOMAIN_SYNCHRONIZE Domain containing callback points for
CUDA synchronization.

enum CUpti_CallbackIdResource

Callback IDs for resource domain, CUPTI_CB_DOMAIN_RESOURCE. This value is
communicated to the callback function via the cbid parameter.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 65

Enumerator:

CUPTI_CBID_RESOURCE_INVALID Invalid resource callback ID.

CUPTI_CBID_RESOURCE_CONTEXT_CREATED A new context has been
created.

CUPTI_CBID_RESOURCE_CONTEXT_DESTROY_STARTING A context is
about to be destroyed.

CUPTI_CBID_RESOURCE_STREAM_CREATED A new stream has been
created.

CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING A stream is
about to be destroyed.

enum CUpti_CallbackIdSync

Callback IDs for synchronization domain, CUPTI_CB_DOMAIN_SYNCHRONIZE. This
value is communicated to the callback function via the cbid parameter.
Enumerator:

CUPTI_CBID_SYNCHRONIZE_INVALID Invalid synchronize callback ID.

CUPTI_CBID_SYNCHRONIZE_STREAM_SYNCHRONIZED Stream
synchronization has completed for the stream.

CUPTI_CBID_SYNCHRONIZE_CONTEXT_SYNCHRONIZED Context
synchronization has completed for the context.

Function Documentation
CUptiResult cuptiEnableAllDomains (uint32_t enable,
CUpti_SubscriberHandle subscriber)

Enable or disable all callbacks in all domains.
Note:

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackState(sub, d, ∗) and cuptiEnableAllDomains(sub) are called
concurrently, the results are undefined.

Parameters:

enable New enable state for all callbacks in all domain. Zero disables all callbacks,
non-zero enables all callbacks.

subscriber - Handle to callback subscription

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 66

Return values:

CUPTI_SUCCESS on success
CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI
CUPTI_ERROR_INVALID_PARAMETER if subscriber is invalid

CUptiResult cuptiEnableCallback (uint32_t enable,
CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain
domain, CUpti_CallbackId cbid)

Enable or disabled callbacks for a subscriber for a specific domain and callback ID.

Note:

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackState(sub, d, c) and cuptiEnableCallback(sub, d, c) are called
concurrently, the results are undefined.

Parameters:

enable New enable state for the callback. Zero disables the callback, non-zero enables
the callback.

subscriber - Handle to callback subscription
domain The domain of the callback
cbid The ID of the callback

Return values:

CUPTI_SUCCESS on success
CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI
CUPTI_ERROR_INVALID_PARAMETER if subscriber, domain or cbid is

invalid.

CUptiResult cuptiEnableDomain (uint32_t enable,
CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain
domain)

Enable or disabled all callbacks for a specific domain.

Note:

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackEnabled(sub, d, ∗) and cuptiEnableDomain(sub, d) are called
concurrently, the results are undefined.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 67

Parameters:

enable New enable state for all callbacks in the domain. Zero disables all callbacks,
non-zero enables all callbacks.

subscriber - Handle to callback subscription
domain The domain of the callback

Return values:

CUPTI_SUCCESS on success
CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI
CUPTI_ERROR_INVALID_PARAMETER if subscriber or domain is invalid

CUptiResult cuptiGetCallbackState (uint32_t ∗ enable,
CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain
domain, CUpti_CallbackId cbid)

Returns non-zero in ∗enable if the callback for a domain and callback ID is enabled, and
zero if not enabled.
Note:

Thread-safety: a subscriber must serialize access to cuptiGetCallbackState,
cuptiEnableCallback, cuptiEnableDomain, and cuptiEnableAllDomains. For example,
if cuptiGetCallbackState(sub, d, c) and cuptiEnableCallback(sub, d, c) are called
concurrently, the results are undefined.

Parameters:

enable Returns non-zero if callback enabled, zero if not enabled
subscriber Handle to the initialize subscriber
domain The domain of the callback
cbid The ID of the callback

Return values:

CUPTI_SUCCESS on success
CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI
CUPTI_ERROR_INVALID_PARAMETER if enabled is NULL, or if subscriber,

domain or cbid is invalid.

CUptiResult cuptiSubscribe (CUpti_SubscriberHandle ∗
subscriber, CUpti_CallbackFunc callback, void ∗ userdata)

Initializes a callback subscriber with a callback function and (optionally) a pointer to user
data. The returned subscriber handle can be used to enable and disable the callback for

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 68

specific domains and callback IDs.
Note:

Only a single subscriber can be registered at a time.
This function does not enable any callbacks.
Thread-safety: this function is thread safe.

Parameters:

subscriber Returns handle to initialize subscriber

callback The callback function

userdata A pointer to user data. This data will be passed to the callback function via
the userdata paramater.

Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialize CUPTI

CUPTI_ERROR_MAX_LIMIT_REACHED if there is already a CUPTI subscriber

CUPTI_ERROR_INVALID_PARAMETER if subscriber is NULL

CUptiResult cuptiSupportedDomains (size_t ∗ domainCount,
CUpti_DomainTable ∗ domainTable)

Returns in ∗domainTable an array of size ∗domainCount of all the available callback
domains.
Note:

Thread-safety: this function is thread safe.

Parameters:

domainCount Returns number of callback domains

domainTable Returns pointer to array of available callback domains

Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialize CUPTI

CUPTI_ERROR_INVALID_PARAMETER if domainCount or domainTable are
NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 69

CUptiResult cuptiUnsubscribe (CUpti_SubscriberHandle
subscriber)

Removes a callback subscriber so that no future callbacks will be issued to that subscriber.

Note:

Thread-safety: this function is thread safe.

Parameters:

subscriber Handle to the initialize subscriber
Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI

CUPTI_ERROR_INVALID_PARAMETER if subscriber is NULL or not
initialized

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 70

CUpti_CallbackData Type Reference
Data passed into a runtime or driver API callback function.

Data Fields
I CUpti_ApiCallbackSite callbackSite
I CUcontext context
I uint32_t contextUid
I uint64_t ∗ correlationData
I uint32_t correlationId
I const char ∗ functionName
I const void ∗ functionParams
I void ∗ functionReturnValue
I const char ∗ symbolName

Detailed Description
Data passed into a runtime or driver API callback function as the cbdata argument to
CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_DRIVER_API or CUPTI_CB_DOMAIN_RUNTIME_API.
The callback data is valid only within the invocation of the callback function that is passed
the data. If you need to retain some data for use outside of the callback, you must make a
copy of that data. For example, if you make a shallow copy of CUpti_CallbackData within
a callback, you cannot dereference functionParams outside of that callback to access the
function parameters. functionName is an exception: the string pointed to by
functionName is a global constant and so may be accessed outside of the callback.

Field Documentation
CUpti_ApiCallbackSite CUpti_CallbackData::callbackSite

Point in the runtime or driver function from where the callback was issued.

CUcontext CUpti_CallbackData::context

Driver context current to the thread, or null if no context is current. This value can change
from the entry to exit callback of a runtime API function if the runtime initializes a

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 71

context.

uint32_t CUpti_CallbackData::contextUid

Unique ID for the CUDA context associated with the thread. The UIDs are assigned
sequentially as contexts are created and are unique within a process.

uint64_t∗ CUpti_CallbackData::correlationData

Pointer to data shared between the entry and exit callbacks of a given runtime or drive
API function invocation. This field can be used to pass 64-bit values from the entry
callback to the corresponding exit callback.

uint32_t CUpti_CallbackData::correlationId

The activity record correlation ID for this callback. For a driver domain callback (i.e.
domain CUPTI_CB_DOMAIN_DRIVER_API) this ID will equal the correlation ID in
the CUpti_ActivityAPI record corresponding to the CUDA driver function call. For a
runtime domain callback (i.e. domain CUPTI_CB_DOMAIN_RUNTIME_API) this ID
will equal the correlation ID in the CUpti_ActivityAPI record corresponding to the
CUDA runtime function call. Within the callback, this ID can be recorded to correlate
user data with the activity record. This field is new in 4.1.

const char∗ CUpti_CallbackData::functionName

Name of the runtime or driver API function which issued the callback. This string is a
global constant and so may be accessed outside of the callback.

const void∗ CUpti_CallbackData::functionParams

Pointer to the arguments passed to the runtime or driver API call. See
generated_cuda_runtime_api_meta::h and generated_cuda_meta::h for structure
definitions for the parameters for each runtime and driver API function.

void∗ CUpti_CallbackData::functionReturnValue

Pointer to the return value of the runtime or driver API call. This field is only valid within
the exit::CUPTI_API_EXIT callback. For a runtime API functionReturnValue points
to a cudaError_t. For a driver API functionReturnValue points to a CUresult.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 72

const char∗ CUpti_CallbackData::symbolName

Name of the symbol operated on by the runtime or driver API function which issued the
callback. This entry is valid only for the runtime cudaLaunch callback (i.e.
CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020), where it returns the name of
the kernel.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 73

CUpti_ResourceData Type Reference
Data passed into a resource callback function.

Data Fields
I CUcontext context
I void ∗ resourceDescriptor
I CUstream stream

Detailed Description
Data passed into a resource callback function as the cbdata argument to
CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_RESOURCE. The callback data is valid only within the
invocation of the callback function that is passed the data. If you need to retain some data
for use outside of the callback, you must make a copy of that data.

Field Documentation
CUcontext CUpti_ResourceData::context

For CUPTI_CBID_RESOURCE_CONTEXT_CREATED and
CUPTI_CBID_RESOURCE_CONTEXT_DESTROY_STARTING, the context being
created or destroyed. For CUPTI_CBID_RESOURCE_STREAM_CREATED and
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING, the context
containing the stream being created or destroyed.

void∗ CUpti_ResourceData::resourceDescriptor

Reserved for future use.

CUstream CUpti_ResourceData::stream

For CUPTI_CBID_RESOURCE_STREAM_CREATED and
CUPTI_CBID_RESOURCE_STREAM_DESTROY_STARTING, the stream being
created or destroyed.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 74

CUpti_SynchronizeData Type Reference
Data passed into a synchronize callback function.

Data Fields
I CUcontext context
I CUstream stream

Detailed Description
Data passed into a synchronize callback function as the cbdata argument to
CUpti_CallbackFunc. The cbdata will be this type for domain equal to
CUPTI_CB_DOMAIN_SYNCHRONIZE. The callback data is valid only within the
invocation of the callback function that is passed the data. If you need to retain some data
for use outside of the callback, you must make a copy of that data.

Field Documentation
CUcontext CUpti_SynchronizeData::context

The context of the stream being synchronized.

CUstream CUpti_SynchronizeData::stream

The stream being synchronized.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 75

CUPTI Event API
Data Structures

I struct CUpti_EventGroupSet

A set of event groups.

I struct CUpti_EventGroupSets

A set of event group sets.

Defines
I #define CUPTI_EVENT_OVERFLOW ((uint64_t)0xFFFFFFFFFFFFFFFFULL)

The overflow value for a CUPTI event.

Typedefs
I typedef uint32_t CUpti_EventDomainID

ID for an event domain.

I typedef void ∗ CUpti_EventGroup

A group of events.

I typedef uint32_t CUpti_EventID

ID for an event.

Enumerations
I enum CUpti_DeviceAttribute {

CUPTI_DEVICE_ATTR_MAX_EVENT_ID = 1,

CUPTI_DEVICE_ATTR_MAX_EVENT_DOMAIN_ID = 2,

CUPTI_DEVICE_ATTR_GLOBAL_MEMORY_BANDWIDTH = 3,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 76

CUPTI_DEVICE_ATTR_INSTRUCTION_PER_CYCLE = 4,

CUPTI_DEVICE_ATTR_INSTRUCTION_THROUGHPUT_SINGLE_PRECISION
= 5 }

Device attributes.

I enum CUpti_EventAttribute {

CUPTI_EVENT_ATTR_NAME = 0,

CUPTI_EVENT_ATTR_SHORT_DESCRIPTION = 1,

CUPTI_EVENT_ATTR_LONG_DESCRIPTION = 2,

CUPTI_EVENT_ATTR_CATEGORY = 3 }

Event attributes.

I enum CUpti_EventCategory {

CUPTI_EVENT_CATEGORY_INSTRUCTION = 0,

CUPTI_EVENT_CATEGORY_MEMORY = 1,

CUPTI_EVENT_CATEGORY_CACHE = 2,

CUPTI_EVENT_CATEGORY_PROFILE_TRIGGER = 3 }

An event category.

I enum CUpti_EventCollectionMode {

CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS = 0,

CUPTI_EVENT_COLLECTION_MODE_KERNEL = 1 }

Event collection modes.

I enum CUpti_EventDomainAttribute {

CUPTI_EVENT_DOMAIN_ATTR_NAME = 0,

CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT = 1,

CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT = 3 }

Event domain attributes.

I enum CUpti_EventGroupAttribute {

CUPTI_EVENT_GROUP_ATTR_EVENT_DOMAIN_ID = 0,

CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES =
1,

CUPTI_EVENT_GROUP_ATTR_USER_DATA = 2,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 77

CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS = 3,

CUPTI_EVENT_GROUP_ATTR_EVENTS = 4,

CUPTI_EVENT_GROUP_ATTR_INSTANCE_COUNT = 5 }

Event group attributes.

I enum CUpti_ReadEventFlags { CUPTI_EVENT_READ_FLAG_NONE = 0 }

Flags for cuptiEventGroupReadEvent an cuptiEventGroupReadAllEvents.

Functions
I CUptiResult cuptiDeviceEnumEventDomains (CUdevice device, size_t
∗arraySizeBytes, CUpti_EventDomainID ∗domainArray)

Get the event domains for a device.

I CUptiResult cuptiDeviceGetAttribute (CUdevice device, CUpti_DeviceAttribute
attrib, size_t ∗valueSize, void ∗value)

Read a device attribute.

I CUptiResult cuptiDeviceGetEventDomainAttribute (CUdevice device,
CUpti_EventDomainID eventDomain, CUpti_EventDomainAttribute attrib, size_t
∗valueSize, void ∗value)

Read an event domain attribute.

I CUptiResult cuptiDeviceGetNumEventDomains (CUdevice device, uint32_t
∗numDomains)

Get the number of domains for a device.

I CUptiResult cuptiDeviceGetTimestamp (CUcontext context, uint64_t ∗timestamp)

Read a device timestamp.

I CUptiResult cuptiEnumEventDomains (size_t ∗arraySizeBytes,
CUpti_EventDomainID ∗domainArray)

Get the event domains available on any device.

I CUptiResult cuptiEventDomainEnumEvents (CUpti_EventDomainID eventDomain,
size_t ∗arraySizeBytes, CUpti_EventID ∗eventArray)

Get the events in a domain.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 78

I CUptiResult cuptiEventDomainGetAttribute (CUpti_EventDomainID eventDomain,
CUpti_EventDomainAttribute attrib, size_t ∗valueSize, void ∗value)

Read an event domain attribute.

I CUptiResult cuptiEventDomainGetNumEvents (CUpti_EventDomainID
eventDomain, uint32_t ∗numEvents)

Get number of events in a domain.

I CUptiResult cuptiEventGetAttribute (CUpti_EventID event,
CUpti_EventAttribute attrib, size_t ∗valueSize, void ∗value)

Get an event attribute.

I CUptiResult cuptiEventGetIdFromName (CUdevice device, const char ∗eventName,
CUpti_EventID ∗event)

Find an event by name.

I CUptiResult cuptiEventGroupAddEvent (CUpti_EventGroup eventGroup,
CUpti_EventID event)

Add an event to an event group.

I CUptiResult cuptiEventGroupCreate (CUcontext context, CUpti_EventGroup
∗eventGroup, uint32_t flags)

Create a new event group for a context.

I CUptiResult cuptiEventGroupDestroy (CUpti_EventGroup eventGroup)

Destroy an event group.

I CUptiResult cuptiEventGroupDisable (CUpti_EventGroup eventGroup)

Disable an event group.

I CUptiResult cuptiEventGroupEnable (CUpti_EventGroup eventGroup)

Enable an event group.

I CUptiResult cuptiEventGroupGetAttribute (CUpti_EventGroup eventGroup,
CUpti_EventGroupAttribute attrib, size_t ∗valueSize, void ∗value)

Read an event group attribute.

I CUptiResult cuptiEventGroupReadAllEvents (CUpti_EventGroup eventGroup,
CUpti_ReadEventFlags flags, size_t ∗eventValueBufferSizeBytes, uint64_t

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 79

∗eventValueBuffer, size_t ∗eventIdArraySizeBytes, CUpti_EventID ∗eventIdArray,
size_t ∗numEventIdsRead)

Read the values for all the events in an event group.

I CUptiResult cuptiEventGroupReadEvent (CUpti_EventGroup eventGroup,
CUpti_ReadEventFlags flags, CUpti_EventID event, size_t
∗eventValueBufferSizeBytes, uint64_t ∗eventValueBuffer)

Read the value for an event in an event group.

I CUptiResult cuptiEventGroupRemoveAllEvents (CUpti_EventGroup eventGroup)

Remove all events from an event group.

I CUptiResult cuptiEventGroupRemoveEvent (CUpti_EventGroup eventGroup,
CUpti_EventID event)

Remove an event from an event group.

I CUptiResult cuptiEventGroupResetAllEvents (CUpti_EventGroup eventGroup)

Zero all the event counts in an event group.

I CUptiResult cuptiEventGroupSetAttribute (CUpti_EventGroup eventGroup,
CUpti_EventGroupAttribute attrib, size_t valueSize, void ∗value)

Write an event group attribute.

I CUptiResult cuptiEventGroupSetsCreate (CUcontext context, size_t
eventIdArraySizeBytes, CUpti_EventID ∗eventIdArray, CUpti_EventGroupSets
∗∗eventGroupPasses)

For a set of events, get the grouping that indicates the number of passes and the event
groups necessary to collect the events.

I CUptiResult cuptiEventGroupSetsDestroy (CUpti_EventGroupSets
∗eventGroupSets)

Destroy a CUpti_EventGroupSets object.

I CUptiResult cuptiGetNumEventDomains (uint32_t ∗numDomains)

Get the number of event domains available on any device.

I CUptiResult cuptiGetTimestamp (uint64_t ∗timestamp)

Get the CUPTI timestamp.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 80

I CUptiResult cuptiSetEventCollectionMode (CUcontext context,
CUpti_EventCollectionMode mode)

Set the event collection mode.

Define Documentation
#define
CUPTI_EVENT_OVERFLOW ((uint64_t)0xFFFFFFFFFFFFFFFFULL)

The CUPTI event value that indicates an overflow.

Typedef Documentation
typedef uint32_t CUpti_EventDomainID

ID for an event domain. An event domain represents a group of related events. A device
may have multiple instances of a domain, indicating that the device can simultaneously
record multiple instances of each event within that domain.

typedef void∗ CUpti_EventGroup

An event group is a collection of events that are managed together. All events in an event
group must belong to the same domain.

typedef uint32_t CUpti_EventID

An event represents a countable activity, action, or occurrence on the device.

Enumeration Type Documentation
enum CUpti_DeviceAttribute

CUPTI device attributes. These attributes can be read using cuptiDeviceGetAttribute.

Enumerator:

CUPTI_DEVICE_ATTR_MAX_EVENT_ID Number of event IDs for a device.
Value is a uint32_t.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 81

CUPTI_DEVICE_ATTR_MAX_EVENT_DOMAIN_ID Number of event
domain IDs for a device. Value is a uint32_t.

CUPTI_DEVICE_ATTR_GLOBAL_MEMORY_BANDWIDTH Get global
memory bandwidth in Kbytes/sec. Value is a uint64_t.

CUPTI_DEVICE_ATTR_INSTRUCTION_PER_CYCLE Get theoretical
instructions per cycle (for Fermi). Value is a uint32_t.

CUPTI_DEVICE_ATTR_INSTRUCTION_THROUGHPUT_SINGLE_PRECISION
Get theoretical number of single precision instructions that can be executed per
second. Value is a uint64_t.

enum CUpti_EventAttribute

Event attributes. These attributes can be read using cuptiEventGetAttribute.
Enumerator:

CUPTI_EVENT_ATTR_NAME Event name. Value is a null terminated const
c-string.

CUPTI_EVENT_ATTR_SHORT_DESCRIPTION Short description of event.
Value is a null terminated const c-string.

CUPTI_EVENT_ATTR_LONG_DESCRIPTION Long description of event.
Value is a null terminated const c-string.

CUPTI_EVENT_ATTR_CATEGORY Category of event. Value is
CUpti_EventCategory.

enum CUpti_EventCategory

Each event is assigned to a category that represents the general type of the event. A
event’s category is accessed using cuptiEventGetAttribute and the
CUPTI_EVENT_ATTR_CATEGORY attribute.
Enumerator:

CUPTI_EVENT_CATEGORY_INSTRUCTION An instruction related event.

CUPTI_EVENT_CATEGORY_MEMORY A memory related event.

CUPTI_EVENT_CATEGORY_CACHE A cache related event.

CUPTI_EVENT_CATEGORY_PROFILE_TRIGGER A profile-trigger event.

enum CUpti_EventCollectionMode

The event collection mode determines the period over which the events within the enabled
event groups will be collected.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 82

Enumerator:

CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS Events are collected
for the entire duration between the cuptiEventGroupEnable and
cuptiEventGroupDisable calls. This is the default mode.

CUPTI_EVENT_COLLECTION_MODE_KERNEL Events are collected only for
the durations of kernel executions that occur between the
cuptiEventGroupEnable and cuptiEventGroupDisable calls. Event collection
begins when a kernel execution begins, and stops when kernel execution
completes. If multiple kernel executions occur between the
cuptiEventGroupEnable and cuptiEventGroupDisable calls then the event values
must be read after each kernel launch if those events need to be associated with
the specific kernel launch.

enum CUpti_EventDomainAttribute

Event domain attributes. Except where noted, all the attributes can be read using either
cuptiDeviceGetEventDomainAttribute or cuptiEventDomainGetAttribute.
Enumerator:

CUPTI_EVENT_DOMAIN_ATTR_NAME Event domain name. Value is a null
terminated const c-string.

CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT Number of instances
of the domain for which event counts will be collected. The domain may have
additional instances that cannot be profiled (see
CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT). Can be
read only with cuptiDeviceGetEventDomainAttribute. Value is a uint32_t.

CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT Total
number of instances of the domain, including instances that cannot be profiled.
Use CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT to get the
number of instances that can be profiled. Can be read only with
cuptiDeviceGetEventDomainAttribute. Value is a uint32_t.

enum CUpti_EventGroupAttribute

Event group attributes. These attributes can be read using cuptiEventGroupGetAttribute.
Attributes marked [rw] can also be written using cuptiEventGroupSetAttribute.
Enumerator:

CUPTI_EVENT_GROUP_ATTR_EVENT_DOMAIN_ID The domain to which
the event group is bound. This attribute is set when the first event is added to
the group. Value is a CUpti_EventDomainID.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 83

CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
[rw] Profile all the instances of the domain for this eventgroup. This feature can
be used to get load balancing across all instances of a domain. Value is an
integer.

CUPTI_EVENT_GROUP_ATTR_USER_DATA [rw] Reserved for user data.
CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS Number of events in the

group. Value is a uint32_t.
CUPTI_EVENT_GROUP_ATTR_EVENTS Enumerates events in the group.

Value is a pointer to buffer of size sizeof(CUpti_EventID) ∗ num_of_events in
the eventgroup. num_of_events can be queried using
CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS.

CUPTI_EVENT_GROUP_ATTR_INSTANCE_COUNT Number of instances of
the domain bound to this event group that will be counted. Value is a uint32_t.

enum CUpti_ReadEventFlags

Flags for cuptiEventGroupReadEvent an cuptiEventGroupReadAllEvents.
Enumerator:

CUPTI_EVENT_READ_FLAG_NONE No flags.

Function Documentation
CUptiResult cuptiDeviceEnumEventDomains (CUdevice device,
size_t ∗ arraySizeBytes, CUpti_EventDomainID ∗ domainArray)

Returns the event domains IDs in domainArray for a device. The size of the domainArray
buffer is given by ∗arraySizeBytes. The size of the domainArray buffer must be at least
numdomains ∗ sizeof(CUpti_EventDomainID) or else all domains will not be returned. The
value returned in ∗arraySizeBytes contains the number of bytes returned in domainArray.

Parameters:

device The CUDA device
arraySizeBytes The size of domainArray in bytes, and returns the number of bytes

written to domainArray

domainArray Returns the IDs of the event domains for the device

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 84

CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or domainArray are
NULL

CUptiResult cuptiDeviceGetAttribute (CUdevice device,
CUpti_DeviceAttribute attrib, size_t ∗ valueSize, void ∗ value)

Read a device attribute and return it in ∗value.
Parameters:

device The CUDA device
attrib The attribute to read
valueSize Size of buffer pointed by the value, and returns the number of bytes written

to value

value Returns the value of the attribute
Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE
CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if

attrib is not a device attribute
CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string

attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiDeviceGetEventDomainAttribute
(CUdevice device, CUpti_EventDomainID eventDomain,
CUpti_EventDomainAttribute attrib, size_t ∗ valueSize, void ∗
value)

Returns an event domain attribute in ∗value. The size of the value buffer is given by
∗valueSize. The value returned in ∗valueSize contains the number of bytes returned in
value.

If the attribute value is a c-string that is longer than ∗valueSize, then only the first
∗valueSize characters will be returned and there will be no terminating null byte.

Parameters:

device The CUDA device
eventDomain ID of the event domain
attrib The event domain attribute to read

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 85

valueSize The size of the value buffer in bytes, and returns the number of bytes
written to value

value Returns the attribute’s value
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID

CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if
attrib is not an event domain attribute

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string
attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiDeviceGetNumEventDomains (CUdevice device,
uint32_t ∗ numDomains)

Returns the number of domains in numDomains for a device.
Parameters:

device The CUDA device

numDomains Returns the number of domains
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_PARAMETER if numDomains is NULL

CUptiResult cuptiDeviceGetTimestamp (CUcontext context,
uint64_t ∗ timestamp)

Returns the device timestamp in ∗timestamp. The timestamp is reported in nanoseconds
and indicates the time since the device was last reset.
Parameters:

context A context on the device from which to get the timestamp

timestamp Returns the device timestamp

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 86

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_CONTEXT

CUPTI_ERROR_INVALID_PARAMETER is timestamp is NULL

CUptiResult cuptiEnumEventDomains (size_t ∗ arraySizeBytes,
CUpti_EventDomainID ∗ domainArray)

Returns all the event domains available on any CUDA-capable device. Event domain IDs
are returned in domainArray. The size of the domainArray buffer is given by
∗arraySizeBytes. The size of the domainArray buffer must be at least numDomains ∗
sizeof(CUpti_EventDomainID) or all domains will not be returned. The value returned in
∗arraySizeBytes contains the number of bytes returned in domainArray.

Parameters:

arraySizeBytes The size of domainArray in bytes, and returns the number of bytes
written to domainArray

domainArray Returns all the event domains

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or domainArray are
NULL

CUptiResult cuptiEventDomainEnumEvents
(CUpti_EventDomainID eventDomain, size_t ∗
arraySizeBytes, CUpti_EventID ∗ eventArray)

Returns the event IDs in eventArray for a domain. The size of the eventArray buffer is
given by ∗arraySizeBytes. The size of the eventArray buffer must be at least
numdomainevents ∗ sizeof(CUpti_EventID) or else all events will not be returned. The
value returned in ∗arraySizeBytes contains the number of bytes returned in eventArray.

Parameters:

eventDomain ID of the event domain

arraySizeBytes The size of eventArray in bytes, and returns the number of bytes
written to eventArray

eventArray Returns the IDs of the events in the domain

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 87

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID

CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or eventArray are
NULL

CUptiResult cuptiEventDomainGetAttribute
(CUpti_EventDomainID eventDomain,
CUpti_EventDomainAttribute attrib, size_t ∗
valueSize, void ∗ value)

Returns an event domain attribute in ∗value. The size of the value buffer is given by
∗valueSize. The value returned in ∗valueSize contains the number of bytes returned in
value.

If the attribute value is a c-string that is longer than ∗valueSize, then only the first
∗valueSize characters will be returned and there will be no terminating null byte.

Parameters:

eventDomain ID of the event domain

attrib The event domain attribute to read

valueSize The size of the value buffer in bytes, and returns the number of bytes
written to value

value Returns the attribute’s value
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID

CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if
attrib is not an event domain attribute

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string
attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiEventDomainGetNumEvents
(CUpti_EventDomainID eventDomain, uint32_t ∗ numEvents)

Returns the number of events in numEvents for a domain.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 88

Parameters:

eventDomain ID of the event domain

numEvents Returns the number of events in the domain
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID

CUPTI_ERROR_INVALID_PARAMETER if numEvents is NULL

CUptiResult cuptiEventGetAttribute (CUpti_EventID event,
CUpti_EventAttribute attrib, size_t ∗ valueSize, void ∗ value)

Returns an event attribute in ∗value. The size of the value buffer is given by ∗valueSize.
The value returned in ∗valueSize contains the number of bytes returned in value.

If the attribute value is a c-string that is longer than ∗valueSize, then only the first
∗valueSize characters will be returned and there will be no terminating null byte.

Parameters:

event ID of the event

attrib The event attribute to read

valueSize The size of the value buffer in bytes, and returns the number of bytes
written to value

value Returns the attribute’s value
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if
attrib is not an event attribute

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string
attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiEventGetIdFromName (CUdevice device, const
char ∗ eventName, CUpti_EventID ∗ event)

Find an event by name and return the event ID in ∗event.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 89

Parameters:

device The CUDA device
eventName The name of the event to find
event Returns the ID of the found event or undefined if unable to find the event

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE
CUPTI_ERROR_INVALID_EVENT_NAME if unable to find an event with name

eventName. In this case ∗event is undefined
CUPTI_ERROR_INVALID_PARAMETER if eventName or event are NULL

CUptiResult cuptiEventGroupAddEvent (CUpti_EventGroup
eventGroup, CUpti_EventID event)

Add an event to an event group. The event add can fail for a number of reasons:

I The event group is enabled

I The event does not belong to the same event domain as the events that are already
in the event group

I Device limitations on the events that can belong to the same group

I The event group is full

Parameters:

eventGroup The event group
event The event to add to the group

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_EVENT_ID
CUPTI_ERROR_OUT_OF_MEMORY
CUPTI_ERROR_INVALID_OPERATION if eventGroup is enabled
CUPTI_ERROR_NOT_COMPATIBLE if event belongs to a different event

domain than the events already in eventGroup, or if a device limitation prevents
event from being collected at the same time as the events already in eventGroup

CUPTI_ERROR_MAX_LIMIT_REACHED if eventGroup is full
CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 90

CUptiResult cuptiEventGroupCreate (CUcontext context,
CUpti_EventGroup ∗ eventGroup, uint32_t flags)

Creates a new event group for context and returns the new group in ∗eventGroup.
Note:

flags are reserved for future use and should be set to zero.

Parameters:

context The context for the event group

eventGroup Returns the new event group

flags Reserved - must be zero

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_CONTEXT

CUPTI_ERROR_OUT_OF_MEMORY

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupDestroy (CUpti_EventGroup
eventGroup)

Destroy an eventGroup and free its resources. An event group cannot be destroyed if it is
enabled.
Parameters:

eventGroup The event group to destroy

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_OPERATION if the event group is enabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupDisable (CUpti_EventGroup
eventGroup)

Disable an event group. Disabling an event group stops collection of events contained in
the group.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 91

Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupEnable (CUpti_EventGroup
eventGroup)

Enable an event group. Enabling an event group zeros the value of all the events in the
group and then starts collection of those events.

Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_NOT_READY if eventGroup does not contain any events

CUPTI_ERROR_NOT_COMPATIBLE if eventGroup cannot be enabled due to
other already enabled event groups

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupGetAttribute (CUpti_EventGroup
eventGroup, CUpti_EventGroupAttribute attrib, size_t ∗
valueSize, void ∗ value)

Read an event group attribute and return it in ∗value.

Parameters:

eventGroup The event group

attrib The attribute to read

valueSize Size of buffer pointed by the value, and returns the number of bytes written
to value

value Returns the value of the attribute

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 92

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if
attrib is not an eventgroup attribute

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string
attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiEventGroupReadAllEvents (CUpti_EventGroup
eventGroup, CUpti_ReadEventFlags flags, size_t ∗
eventValueBufferSizeBytes, uint64_t ∗ eventValueBuffer, size_t ∗
eventIdArraySizeBytes, CUpti_EventID ∗ eventIdArray, size_t ∗
numEventIdsRead)

Read the values for all the events in an event group. The event values are returned in the
eventValueBuffer buffer. eventValueBufferSizeBytes indicates the size of
eventValueBuffer. The buffer must be at least (sizeof(uint64) ∗ number of events in
group) if CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
is not set on the group containing the events. The buffer must be at least (sizeof(uint64) ∗
number of domain instances ∗ number of events in group) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is set on
the group.

The data format returned in eventValueBuffer is:

I domain instance 0: event0 event1 ... eventN

I domain instance 1: event0 event1 ... eventN

I ...

I domain instance M: event0 event1 ... eventN

The event order in eventValueBuffer is returned in eventIdArray. The size of
eventIdArray is specified in eventIdArraySizeBytes. The size should be at least
(sizeof(CUpti_EventID) ∗ number of events in group).

If any instance of any event counter overflows, the value returned for that event instance
will be CUPTI_EVENT_OVERFLOW.

The only allowed value for flags is CUPTI_EVENT_READ_FLAG_NONE.

Reading events from a disabled event group is not allowed.

Parameters:

eventGroup The event group

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 93

flags Flags controlling the reading mode

eventValueBufferSizeBytes The size of eventValueBuffer in bytes, and returns the
number of bytes written to eventValueBuffer

eventValueBuffer Returns the event values

eventIdArraySizeBytes The size of eventIdArray in bytes, and returns the number of
bytes written to eventIdArray

eventIdArray Returns the IDs of the events in the same order as the values return in
eventValueBuffer.

numEventIdsRead Returns the number of event IDs returned in
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_OPERATION if eventGroup is disabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup,
eventValueBufferSizeBytes, eventValueBuffer, eventIdArraySizeBytes,
eventIdArray or numEventIdsRead is NULL

CUptiResult cuptiEventGroupReadEvent (CUpti_EventGroup
eventGroup, CUpti_ReadEventFlags flags, CUpti_EventID
event, size_t ∗ eventValueBufferSizeBytes, uint64_t ∗
eventValueBuffer)

Read the value for an event in an event group. The event value is returned in the
eventValueBuffer buffer. eventValueBufferSizeBytes indicates the size of the
eventValueBuffer buffer. The buffer must be at least sizeof(uint64) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is not set
on the group containing the event. The buffer must be at least (sizeof(uint64) ∗ number of
domain instances) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is set on
the group.

If any instance of an event counter overflows, the value returned for that event instance
will be CUPTI_EVENT_OVERFLOW.

The only allowed value for flags is CUPTI_EVENT_READ_FLAG_NONE.

Reading an event from a disabled event group is not allowed.

Parameters:

eventGroup The event group

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 94

flags Flags controlling the reading mode

event The event to read

eventValueBbufferSizeBytes The size of eventValueBuffer in bytes, and returns the
number of bytes written to eventValueBuffer

eventValueBuffer Returns the event value(s)

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_OPERATION if eventGroup is disabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup,
eventValueBufferSizeBytes or eventValueBuffer is NULL

CUptiResult cuptiEventGroupRemoveAllEvents
(CUpti_EventGroup eventGroup)

Remove all events from an event group. Events cannot be removed if the event group is
enabled.
Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_OPERATION if eventGroup is enabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupRemoveEvent (CUpti_EventGroup
eventGroup, CUpti_EventID event)

Remove event from the an event group. The event cannot be removed if the event group
is enabled.
Parameters:

eventGroup The event group

event The event to remove from the group

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 95

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_EVENT_ID
CUPTI_ERROR_INVALID_OPERATION if eventGroup is enabled
CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupResetAllEvents (CUpti_EventGroup
eventGroup)

Zero all the event counts in an event group.

Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_HARDWARE
CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupSetAttribute (CUpti_EventGroup
eventGroup, CUpti_EventGroupAttribute attrib, size_t
valueSize, void ∗ value)

Write an event group attribute.

Parameters:

eventGroup The event group
attrib The attribute to write
valueSize The size, in bytes, of the value
value The attribute value to write

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if

attrib is not an event group attribute, or if attrib is not a writable attribute
CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT Indicates that the

value buffer is too small to hold the attribute value.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 96

CUptiResult cuptiEventGroupSetsCreate (CUcontext context,
size_t eventIdArraySizeBytes, CUpti_EventID ∗ eventIdArray,
CUpti_EventGroupSets ∗∗ eventGroupPasses)

The number of events that can be collected simultaneously varies by device and by the
type of the events. When events can be collected simultaneously, they may need to be
grouped into multiple event groups because they are from different event domains. This
function takes a set of events and determines how many passes are required to collect all
those events, and which events can be collected simultaneously in each pass.

The CUpti_EventGroupSets returned in eventGroupPasses indicates how many passes
are required to collect the events with the numSets field. The sets array indicates the
event groups that should be collected on each pass.

Parameters:

context The context for event collection

eventIdArraySizeBytes Size of eventIdArray in bytes

eventIdArray Array of event IDs that need to be grouped

eventGroupPasses Returns a CUpti_EventGroupSets object that indicates the
number of passes required to collect the events and the events to collect on each
pass

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_CONTEXT

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_INVALID_PARAMETER if eventIdArray or eventGroupPasses
is NULL

CUptiResult cuptiEventGroupSetsDestroy
(CUpti_EventGroupSets ∗ eventGroupSets)

Destroy a CUpti_EventGroupSets object.

Parameters:

eventGroupSets The object to destroy

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 97

CUPTI_ERROR_INVALID_OPERATION if any of the event groups contained in
the sets is enabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroupSets is NULL

CUptiResult cuptiGetNumEventDomains (uint32_t ∗ numDomains)

Returns the total number of event domains available on any CUDA-capable device.

Parameters:

numDomains Returns the number of domains
Return values:

CUPTI_SUCCESS
CUPTI_ERROR_INVALID_PARAMETER if numDomains is NULL

CUptiResult cuptiGetTimestamp (uint64_t ∗ timestamp)

Returns a timestamp normalized to correspond with the start and end timestamps
reported in the CUPTI activity records. The timestamp is reported in nanoseconds.

Parameters:

timestamp Returns the CUPTI timestamp

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_INVALID_PARAMETER if timestamp is NULL

CUptiResult cuptiSetEventCollectionMode (CUcontext context,
CUpti_EventCollectionMode mode)

Set the event collection mode for a context. The mode controls the event collection
behavior of all events in event groups created in the context.

Parameters:

context The context
mode The event collection mode

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_CONTEXT

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 98

CUPTI Metric API
Data Structures

I union CUpti_MetricValue

A metric value.

Typedefs
I typedef uint32_t CUpti_MetricID

ID for a metric.

Enumerations
I enum CUpti_MetricAttribute {

CUPTI_METRIC_ATTR_NAME = 0,

CUPTI_METRIC_ATTR_SHORT_DESCRIPTION = 1,

CUPTI_METRIC_ATTR_LONG_DESCRIPTION = 2,

CUPTI_METRIC_ATTR_CATEGORY = 3,

CUPTI_METRIC_ATTR_VALUE_KIND = 4 }

Metric attributes.

I enum CUpti_MetricCategory {

CUPTI_METRIC_CATEGORY_MEMORY = 0,

CUPTI_METRIC_CATEGORY_INSTRUCTION = 1,

CUPTI_METRIC_CATEGORY_MULTIPROCESSOR = 2,

CUPTI_METRIC_CATEGORY_CACHE = 3,

CUPTI_METRIC_CATEGORY_TEXTURE = 4 }

A metric category.

I enum CUpti_MetricValueKind {

CUPTI_METRIC_VALUE_KIND_DOUBLE = 0,

CUPTI_METRIC_VALUE_KIND_UINT64 = 1,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 99

CUPTI_METRIC_VALUE_KIND_PERCENT = 2,

CUPTI_METRIC_VALUE_KIND_THROUGHPUT = 3 }

Kinds of metric values.

Functions
I CUptiResult cuptiDeviceEnumMetrics (CUdevice device, size_t ∗arraySizeBytes,

CUpti_MetricID ∗metricArray)

Get the metrics for a device.

I CUptiResult cuptiDeviceGetNumMetrics (CUdevice device, uint32_t ∗numMetrics)

Get the number of metrics for a device.

I CUptiResult cuptiEnumMetrics (size_t ∗arraySizeBytes, CUpti_MetricID
∗metricArray)

Get all the metrics available on any device.

I CUptiResult cuptiGetNumMetrics (uint32_t ∗numMetrics)

Get the total number of metrics available on any device.

I CUptiResult cuptiMetricCreateEventGroupSets (CUcontext context, size_t
metricIdArraySizeBytes, CUpti_MetricID ∗metricIdArray, CUpti_EventGroupSets
∗∗eventGroupPasses)

For a set of metrics, get the grouping that indicates the number of passes and the event
groups necessary to collect the events required for those metrics.

I CUptiResult cuptiMetricEnumEvents (CUpti_MetricID metric, size_t
∗eventIdArraySizeBytes, CUpti_EventID ∗eventIdArray)

Get the events required to calculating a metric.

I CUptiResult cuptiMetricGetAttribute (CUpti_MetricID metric,
CUpti_MetricAttribute attrib, size_t ∗valueSize, void ∗value)

Get a metric attribute.

I CUptiResult cuptiMetricGetIdFromName (CUdevice device, const char
∗metricName, CUpti_MetricID ∗metric)

Find an metric by name.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 100

I CUptiResult cuptiMetricGetNumEvents (CUpti_MetricID metric, uint32_t
∗numEvents)

Get number of events required to calculate a metric.

I CUptiResult cuptiMetricGetValue (CUdevice device, CUpti_MetricID metric, size_t
eventIdArraySizeBytes, CUpti_EventID ∗eventIdArray, size_t
eventValueArraySizeBytes, uint64_t ∗eventValueArray, uint64_t timeDuration,
CUpti_MetricValue ∗metricValue)

Calculate the value for a metric.

Typedef Documentation
typedef uint32_t CUpti_MetricID

A metric provides a measure of some aspect of the device.

Enumeration Type Documentation
enum CUpti_MetricAttribute

Metric attributes describe properties of a metric. These attributes can be read using
cuptiMetricGetAttribute.
Enumerator:

CUPTI_METRIC_ATTR_NAME Metric name. Value is a null terminated const
c-string.

CUPTI_METRIC_ATTR_SHORT_DESCRIPTION Short description of metric.
Value is a null terminated const c-string.

CUPTI_METRIC_ATTR_LONG_DESCRIPTION Long description of metric.
Value is a null terminated const c-string.

CUPTI_METRIC_ATTR_CATEGORY Category of the metric. Value is of type
CUpti_MetricCategory.

CUPTI_METRIC_ATTR_VALUE_KIND Value type of the metric. Value is of
type CUpti_MetricValueKind.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 101

enum CUpti_MetricCategory

Each metric is assigned to a category that represents the general type of the metric. A
metric’s category is accessed using cuptiMetricGetAttribute and the
CUPTI_METRIC_ATTR_CATEGORY attribute.
Enumerator:

CUPTI_METRIC_CATEGORY_MEMORY A memory related metric.

CUPTI_METRIC_CATEGORY_INSTRUCTION An instruction related metric.

CUPTI_METRIC_CATEGORY_MULTIPROCESSOR A multiprocessor related
metric.

CUPTI_METRIC_CATEGORY_CACHE A cache related metric.

CUPTI_METRIC_CATEGORY_TEXTURE A texture related metric.

enum CUpti_MetricValueKind

Metric values can be one of several different kinds. Corresponding to each kind is a
member of the CUpti_MetricValue union. The metric value returned by
cuptiMetricGetValue should be accessed using the appropriate member of that union
based on its value kind.
Enumerator:

CUPTI_METRIC_VALUE_KIND_DOUBLE The metric value is a 64-bit double.

CUPTI_METRIC_VALUE_KIND_UINT64 The metric value is a 64-bit integer.

CUPTI_METRIC_VALUE_KIND_PERCENT The metric value is a percentage
represented by a 64-bit double. For example, 57.5% is represented by the value
57.5.

CUPTI_METRIC_VALUE_KIND_THROUGHPUT The metric value is a
throughput represented by a 64-bit integer. The unit for throughput values is
bytes/second.

Function Documentation
CUptiResult cuptiDeviceEnumMetrics (CUdevice device, size_t ∗
arraySizeBytes, CUpti_MetricID ∗ metricArray)

Returns the metric IDs in metricArray for a device. The size of the metricArray buffer is
given by ∗arraySizeBytes. The size of the metricArray buffer must be at least
numMetrics ∗ sizeof(CUpti_MetricID) or else all metric IDs will not be returned. The
value returned in ∗arraySizeBytes contains the number of bytes returned in metricArray.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 102

Parameters:

device The CUDA device

arraySizeBytes The size of metricArray in bytes, and returns the number of bytes
written to metricArray

metricArray Returns the IDs of the metrics for the device

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or metricArray are
NULL

CUptiResult cuptiDeviceGetNumMetrics (CUdevice device, uint32_t
∗ numMetrics)

Returns the number of metrics available for a device.
Parameters:

device The CUDA device

numMetrics Returns the number of metrics available for the device
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_PARAMETER if numMetrics is NULL

CUptiResult cuptiEnumMetrics (size_t ∗ arraySizeBytes,
CUpti_MetricID ∗ metricArray)

Returns the metric IDs in metricArray for all CUDA-capable devices. The size of the
metricArray buffer is given by ∗arraySizeBytes. The size of the metricArray buffer
must be at least numMetrics ∗ sizeof(CUpti_MetricID) or all metric IDs will not be
returned. The value returned in ∗arraySizeBytes contains the number of bytes returned
in metricArray.

Parameters:

arraySizeBytes The size of metricArray in bytes, and returns the number of bytes
written to metricArray

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 103

metricArray Returns the IDs of the metrics

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or metricArray are

NULL

CUptiResult cuptiGetNumMetrics (uint32_t ∗ numMetrics)

Returns the total number of metrics available on any CUDA-capable devices.

Parameters:

numMetrics Returns the number of metrics
Return values:

CUPTI_SUCCESS
CUPTI_ERROR_INVALID_PARAMETER if numMetrics is NULL

CUptiResult cuptiMetricCreateEventGroupSets (CUcontext context,
size_t metricIdArraySizeBytes, CUpti_MetricID ∗ metricIdArray,
CUpti_EventGroupSets ∗∗ eventGroupPasses)

For a set of metrics, get the grouping that indicates the number of passes and the event
groups necessary to collect the events required for those metrics.

See also:

cuptiEventGroupSetsCreate for details on event group set creation.

Parameters:

context The context for event collection
metricIdArraySizeBytes Size of the metricIdArray in bytes
metricIdArray Array of metric IDs
eventGroupPasses Returns a CUpti_EventGroupSets object that indicates the

number of passes required to collect the events and the events to collect on each
pass

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_CONTEXT
CUPTI_ERROR_INVALID_METRIC_ID

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 104

CUPTI_ERROR_INVALID_PARAMETER if metricIdArray or
eventGroupPasses is NULL

CUptiResult cuptiMetricEnumEvents (CUpti_MetricID metric,
size_t ∗ eventIdArraySizeBytes, CUpti_EventID ∗ eventIdArray)

Gets the event IDs in eventIdArray required to calculate a metric. The size of the
eventIdArray buffer is given by ∗eventIdArraySizeBytes and must be at least
numEvents ∗ sizeof(CUpti_EventID) or all events will not be returned. The value returned
in ∗eventIdArraySizeBytes contains the number of bytes returned in eventIdArray.

Parameters:

metric ID of the metric
eventIdArraySizeBytes The size of eventIdArray in bytes, and returns the number of

bytes written to eventIdArray

eventIdArray Returns the IDs of the events required to calculate metric

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_METRIC_ID
CUPTI_ERROR_INVALID_PARAMETER if eventIdArraySizeBytes or

eventIdArray are NULL.

CUptiResult cuptiMetricGetAttribute (CUpti_MetricID metric,
CUpti_MetricAttribute attrib, size_t ∗ valueSize, void ∗ value)

Returns a metric attribute in ∗value. The size of the value buffer is given by ∗valueSize.
The value returned in ∗valueSize contains the number of bytes returned in value.

If the attribute value is a c-string that is longer than ∗valueSize, then only the first
∗valueSize characters will be returned and there will be no terminating null byte.

Parameters:

metric ID of the metric
attrib The metric attribute to read
valueSize The size of the value buffer in bytes, and returns the number of bytes

written to value

value Returns the attribute’s value
Return values:

CUPTI_SUCCESS

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 105

CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_METRIC_ID
CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if

attrib is not a metric attribute
CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string

attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiMetricGetIdFromName (CUdevice device, const
char ∗ metricName, CUpti_MetricID ∗ metric)

Find a metric by name and return the metric ID in ∗metric.

Parameters:

device The CUDA device
metricName The name of metric to find
metric Returns the ID of the found metric or undefined if unable to find the metric

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE
CUPTI_ERROR_INVALID_METRIC_NAME if unable to find a metric with name

metricName. In this case ∗metric is undefined
CUPTI_ERROR_INVALID_PARAMETER if metricName or metric are NULL.

CUptiResult cuptiMetricGetNumEvents (CUpti_MetricID metric,
uint32_t ∗ numEvents)

Returns the number of events in numEvents that are required to calculate a metric.

Parameters:

metric ID of the metric
numEvents Returns the number of events required for the metric

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_METRIC_ID
CUPTI_ERROR_INVALID_PARAMETER if numEvents is NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 106

CUptiResult cuptiMetricGetValue (CUdevice device,
CUpti_MetricID metric, size_t eventIdArraySizeBytes,
CUpti_EventID ∗ eventIdArray, size_t eventValueArraySizeBytes,
uint64_t ∗ eventValueArray, uint64_t timeDuration,
CUpti_MetricValue ∗ metricValue)

Use the events collected for a metric to calculate the metric value. Metric value calculation
assumes that event values are normalized to represent all domain instances on a device.
For the most accurate metric collection, the events required for the metric should be
collected for all profiled domain instances. For example, to collect all instances of an event,
set the CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
attribute on the group containing the event to 1. The normalized value for the event is
then: (sum_event_values ∗ totalInstanceCount) / instanceCount, where
sum_event_values is the summation of the event values across all profiled domain
instances, totalInstanceCount is obtained from querying
CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT and
instanceCount is obtained from querying
CUPTI_EVENT_GROUP_ATTR_INSTANCE_COUNT (or
CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT).

Parameters:

device The CUDA device that the metric is being calculated for

metric The metric ID

eventIdArraySizeBytes The size of eventIdArray in bytes

eventIdArray The event IDs required to calculate metric

eventValueArraySizeBytes The size of eventValueArray in bytes

eventValueArray The normalized event values required to calculate metric. The
values must be order to match the order of events in eventIdArray

timeDuration The duration over which the events were collected, in ns

metricValue Returns the value for the metric
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_METRIC_ID

CUPTI_ERROR_INVALID_OPERATION

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT if the eventIdArray
does not contain all the events needed for metric

CUPTI_ERROR_INVALID_EVENT_VALUE if any of the event values required
for the metric is CUPTI_EVENT_OVERFLOW

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 107

CUPTI_ERROR_INVALID_PARAMETER if metricValue, eventIdArray or
eventValueArray is NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 108

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2011 NVIDIA Corporation. All rights reserved.

	CUPTI
	CUPTI Compatibility and Requirements
	CUPTI Initialization
	CUPTI Activity API
	CUPTI Callback API
	Driver and Runtime API Callbacks
	Resource Callbacks
	Synchronization Callbacks

	CUPTI Event API
	Collecting Kernel Execution Events
	Sampling Events
	Interpreting Event Values
	SM Event Type
	TPC Event Type
	FB Event Type

	Event Reference - Compute Capability 1.0 to 1.3
	Event Reference - Compute Capability 2.x

	CUPTI Metric API
	Metric Reference - Compute Capability 1.x
	Metric Reference - Compute Capability 2.x

	Samples

	CUPTI Reference
	CUPTI Version
	Define Documentation
	CUPTI_API_VERSION

	Function Documentation
	cuptiGetVersion

	CUPTI Result Codes
	Enumeration Type Documentation
	CUptiResult

	Function Documentation
	cuptiGetResultString

	CUPTI Activity API
	Enumeration Type Documentation
	CUpti_ActivityComputeApiKind
	CUpti_ActivityFlag
	CUpti_ActivityKind
	CUpti_ActivityMemcpyKind
	CUpti_ActivityMemoryKind

	Function Documentation
	cuptiActivityDequeueBuffer
	cuptiActivityDisable
	cuptiActivityEnable
	cuptiActivityEnqueueBuffer
	cuptiActivityGetNextRecord
	cuptiActivityGetNumDroppedRecords
	cuptiActivityQueryBuffer
	cuptiGetStreamId

	CUpti_Activity Type Reference
	Detailed Description
	Field Documentation
	kind

	CUpti_ActivityAPI Type Reference
	Detailed Description
	Field Documentation
	cbid
	correlationId
	end
	kind
	processId
	returnValue
	start
	threadId

	CUpti_ActivityDevice Type Reference
	Detailed Description
	Field Documentation
	computeCapabilityMajor
	computeCapabilityMinor
	constantMemorySize
	coreClockRate
	flags
	globalMemoryBandwidth
	globalMemorySize
	id
	kind
	l2CacheSize
	maxBlockDimX
	maxBlockDimY
	maxBlockDimZ
	maxBlocksPerMultiprocessor
	maxGridDimX
	maxGridDimY
	maxGridDimZ
	maxIPC
	maxRegistersPerBlock
	maxSharedMemoryPerBlock
	maxThreadsPerBlock
	maxWarpsPerMultiprocessor
	name
	numMemcpyEngines
	numMultiprocessors
	numThreadsPerWarp

	CUpti_ActivityEvent Type Reference
	Detailed Description
	Field Documentation
	correlationId
	domain
	id
	kind
	value

	CUpti_ActivityKernel Type Reference
	Detailed Description
	Field Documentation
	blockX
	blockY
	blockZ
	cacheConfigExecuted
	cacheConfigRequested
	contextId
	correlationId
	deviceId
	dynamicSharedMemory
	end
	gridX
	gridY
	gridZ
	kind
	localMemoryPerThread
	localMemoryTotal
	name
	pad
	registersPerThread
	reserved0
	runtimeCorrelationId
	start
	staticSharedMemory
	streamId

	CUpti_ActivityMemcpy Type Reference
	Detailed Description
	Field Documentation
	bytes
	contextId
	copyKind
	correlationId
	deviceId
	dstKind
	end
	flags
	kind
	reserved0
	runtimeCorrelationId
	srcKind
	start
	streamId

	CUpti_ActivityMemset Type Reference
	Detailed Description
	Field Documentation
	bytes
	contextId
	correlationId
	deviceId
	end
	kind
	reserved0
	runtimeCorrelationId
	start
	streamId
	value

	CUpti_ActivityMetric Type Reference
	Detailed Description
	Field Documentation
	correlationId
	id
	kind
	pad
	value

	CUPTI Callback API
	Typedef Documentation
	CUpti_CallbackFunc
	CUpti_CallbackId

	Enumeration Type Documentation
	CUpti_ApiCallbackSite
	CUpti_CallbackDomain
	CUpti_CallbackIdResource
	CUpti_CallbackIdSync

	Function Documentation
	cuptiEnableAllDomains
	cuptiEnableCallback
	cuptiEnableDomain
	cuptiGetCallbackState
	cuptiSubscribe
	cuptiSupportedDomains
	cuptiUnsubscribe

	CUpti_CallbackData Type Reference
	Detailed Description
	Field Documentation
	callbackSite
	context
	contextUid
	correlationData
	correlationId
	functionName
	functionParams
	functionReturnValue
	symbolName

	CUpti_ResourceData Type Reference
	Detailed Description
	Field Documentation
	context
	resourceDescriptor
	stream

	CUpti_SynchronizeData Type Reference
	Detailed Description
	Field Documentation
	context
	stream

	CUPTI Event API
	Define Documentation
	CUPTI_EVENT_OVERFLOW

	Typedef Documentation
	CUpti_EventDomainID
	CUpti_EventGroup
	CUpti_EventID

	Enumeration Type Documentation
	CUpti_DeviceAttribute
	CUpti_EventAttribute
	CUpti_EventCategory
	CUpti_EventCollectionMode
	CUpti_EventDomainAttribute
	CUpti_EventGroupAttribute
	CUpti_ReadEventFlags

	Function Documentation
	cuptiDeviceEnumEventDomains
	cuptiDeviceGetAttribute
	cuptiDeviceGetEventDomainAttribute
	cuptiDeviceGetNumEventDomains
	cuptiDeviceGetTimestamp
	cuptiEnumEventDomains
	cuptiEventDomainEnumEvents
	cuptiEventDomainGetAttribute
	cuptiEventDomainGetNumEvents
	cuptiEventGetAttribute
	cuptiEventGetIdFromName
	cuptiEventGroupAddEvent
	cuptiEventGroupCreate
	cuptiEventGroupDestroy
	cuptiEventGroupDisable
	cuptiEventGroupEnable
	cuptiEventGroupGetAttribute
	cuptiEventGroupReadAllEvents
	cuptiEventGroupReadEvent
	cuptiEventGroupRemoveAllEvents
	cuptiEventGroupRemoveEvent
	cuptiEventGroupResetAllEvents
	cuptiEventGroupSetAttribute
	cuptiEventGroupSetsCreate
	cuptiEventGroupSetsDestroy
	cuptiGetNumEventDomains
	cuptiGetTimestamp
	cuptiSetEventCollectionMode

	CUPTI Metric API
	Typedef Documentation
	CUpti_MetricID

	Enumeration Type Documentation
	CUpti_MetricAttribute
	CUpti_MetricCategory
	CUpti_MetricValueKind

	Function Documentation
	cuptiDeviceEnumMetrics
	cuptiDeviceGetNumMetrics
	cuptiEnumMetrics
	cuptiGetNumMetrics
	cuptiMetricCreateEventGroupSets
	cuptiMetricEnumEvents
	cuptiMetricGetAttribute
	cuptiMetricGetIdFromName
	cuptiMetricGetNumEvents
	cuptiMetricGetValue

