
Booth #223 - South Hall

www.nvidia.com/GDC

Alex Dunn – Senior Developer Technology Eng.

23 March 2018

Aftermath: Advances in
GPU Crash Debugging

2

Why did the GPU crash?

3

GPU CRASH?

a.k.a. TDR / Hang / Device Removed / Crash

4

WHAT’S HAPPENING?

i. OS schedules buffers for execution on GPU

ii. During execution, GPU fault occurs (or a buffer takes too long to complete)

iii. GPU scheduler doesn’t respond for X seconds (default is 2s)

iv. OS raises appropriate bugcheck, KMD attempts to reset engine/adapter

v. Device removed follows… or worse!

GPU Fault TDR BUGCHECK

Behind the scenes…

5

DETECTING GPU CRASH

▪ Crash detected based on error code from API (CPU)

▪ Crash happened sometime in the last N frames of GPU commands…

▪ CPU call stack of is likely a red-herring

CPU Location

GPU Crash

Not useful for debugging!

∞0

Frame

Without Aftermath

6

NVIDIA AFTERMATH (DEBUGGER)

▪ What is it?

o Post-mortem GPU debugging tool

o Helps diagnose GPU crashes (TDRs/Faults)

o Can be shipped in game – catch crashes “from the wild”

o Version 2.0 (available soon)

▪ Support

o GFX APIs: DX11, DX12 & Vulkan

o Platforms: GeForce - Windows (and UWP), Linux - (x86, x64)

7

What does it do?

8

FEATURE SET
Aftermath 2.0

i. GPU Crash Reason

ii. Page Fault State/Resource Tracking

iii.GPU Checkpoints

iv. …

9

GPU CRASH REASON
Two Fundamental Categories

FAULTTIME-OUT

i. Driver induced time-out
e.g. unrecoverable fault →

ii. Long running execution
e.g. infinite loop in shader

iii. Incorrect synchronization
e.g. wait without signal

i. Page fault
e.g. non-resident read

ii. Invalid page access
e.g. read buffer as texture

iii. Push buffer fault
e.g. malformed commands

iv. Graphics exception

e.g. unaligned CBV

10

After device removed call this:
GFSDK_Aftermath_GetDeviceStatus(

GFSDK_Aftermath_DeviceStatus* pOutDeviceStatus
);

Possible status:
Unknown
Active
Stopped
Reset

Timeout

OutOfMemory
PageFault
DmaFault

Transition

Faults

IMPLEMENTATION

…

11

RESOURCE TRACKING

RESOURCE BASE VA SIZE RELEASED

Tex (A) 0x00 8 0

Buf (A) 0x08 4 0

Buf (B) 0x0B 4 0

Buf (C) 0x10 4 0

Tex (B) 0x14 12 0

KO: Make page faults actionable, by maintaining

a table of resources and their VA mapping.

Example:

i. Release/Evict ‘Buf(C)’

ii. Access ‘Buf(C)’ in shader

iii. Page fault occurred @ 0x12

iv. ‘Buf(C)’ last occupied this VA

Tex(A)

0x00…

Buf(A)

0x08…

Tex(B)

0x14…

Buf(C)

0x10…

0x12…

Buf(B)

0x0B…

VID MEM

1

12

Once a page fault has occurred and the device removed:
GFSDK_Aftermath_GetPageFaultInformation(

GFSDK_Aftermath_PageFaultInfo* pOutPageFaultInfo
);

The following can be used to link app and driver resources:
GFSDK_Aftermath_DX12_RegisterResource(

ID3D12Resource* const pResource,
GFSDK_Aftermath_ResourceHandle* pOutResourceHandle

);

GFSDK_Aftermath_DX12_UnregisterResource(
GFSDK_Aftermath_ResourceHandle hResource

);

IMPLEMENTATION

13

AFTERMATH CHECKPOINTS

Checkpoints: Narrow in on GPU crash location WRT to command stream

Example:

i. Game inserts user-defined markers in the command stream (CPU)

ii. GPU signals each checkpoint once reached

iii. Last marker reached indicates GPU crash location

CPU Location

∞Fn

GPU Crash

(prev. Markers)

14

IMPLEMENTATION

To inject a checkpoint:
GFSDK_Aftermath_SetCheckpoint(

GFSDK_Aftermath_ContextHandle hCmdListContext,
const void* pData, unsigned int size

);

When device removed has been detected:
GFSDK_Aftermath_GetCheckpointData(

GFSDK_Aftermath_ContextHandle hCmdQueueContext,
void** outBottomCP, unsigned int* outBottomSize
void** outTopCP, unsigned int* outTopSize

);

15

▪ Adding Vulkan support!

▪ Initially exposing checkpoints as extension →

▪ Available via the NVIDIA beta developer program:

o https://developer.nvidia.com/vulkan-driver

// VK_NV_device_diagnostic_checkpoints

typedef struct VkCheckpointDataNV {
VkStructureType sType;
const void* pNext;
VkBool32 checkpointTopValid;
void* pCheckpointTop;
VkBool32 checkpointBottomValid;
void* pCheckpointBottom;

} VkCheckpointDataNV;

void vkCmdSetCheckpointNV(
VkCommandBuffer commandBuffer,
const void* pCheckpointData

);

VkResult vkGetCheckpointDataNV(
VkQueue queue,
VkCheckpointDataNV* pCheckpointData

);

https://developer.nvidia.com/vulkan-driver

16

DirectX® Raytracing (DXR)

▪ Aftermath supports GPU crash debugging with DXR!

o All current features supported

▪ A single ‘DispatchRays’ call can invoke many shaders!

o Similar problem to ExecuteIndirect

o Checkpoints aren’t the most helpful…

o We’re working on improving this for 2.0!

17

But what does it do for me???

18

NO EASY ANSWERS

▪ Not giving you the answer to riddle, it’s just a clue!

o e.g. checkpoints don’t tell you which workloads caused a

GPU crash.

• They tell us what the GPU last finished processing.

o e.g. resource tracking doesn’t tell us the resource that

caused a GPU crash.

• It tells us which resources overlap a faulting virtual address.

What does it give me then?

19

GPU CRASH DEBUGGING PROCESS

i. Collect data on all the crash reports for a given repro!

ii. Find commonality between them (e.g. same shader? shared resources?)

o Remember, shaders share lot’s of code! (Helpful to look at asm…)

iii. Divide and conquer the common factors

Some tips! Learned the hard way!!!

20

“CROWD SOURCING”

▪ Aftermath can be shipped and included in existing crash

reporting infrastructure

o Bucketize crashes by their signature

o Prioritize fixing more frequent crashes

▪ Same process applies: confirm an in-house repro using

crash signature!

21

What else is there?

22

GPU CRASH TOOLBOX?

▪ More and more options for GPU crash debugging now!

o PIX support - https://blogs.msdn.microsoft.com/pix/tdr-debugging/

o DX Debug Layers/GBV improving support

o ID3D12GraphicsCommandList2::WriteBufferImmediate(…)

o Aftermath 2.0

▪ Future:

o Watch this space, more collaboration and more work still to happen!

https://blogs.msdn.microsoft.com/pix/tdr-debugging/

23

QUESTIONS?

Thank you!

\0
|\
/\

24

Ref.

i. https://msdn.microsoft.com/en-gb/windows/uwp/gaming/handling-device-

lost-scenarios

ii. https://msdn.microsoft.com/en-

us/library/windows/desktop/bb509553(v=vs.85).aspx

iii. http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-

detection-and-recovery)-and-collecting-dump-files

iv. https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#devsa

ndqueues-lost-device

v. https://developer.nvidia.com/nvidia-aftermath

vi. https://blogs.msdn.microsoft.com/pix/tdr-debugging

vii. https://developer.nvidia.com/vulkan-driver

http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
http://nvidia.custhelp.com/app/answers/detail/a_id/3335/~/tdr-(timeout-detection-and-recovery)-and-collecting-dump-files
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://developer.nvidia.com/nvidia-aftermath
https://blogs.msdn.microsoft.com/pix/tdr-debugging
https://developer.nvidia.com/vulkan-driver

Booth #223 - South Hall

www.nvidia.com/GDC

