
Holger Gruen Senior DevTechEngineer, 3/1/2017

DirectXÊ 12 Case Studies



2www.gameworks.nvidia.com

Agenda

ÅIntroduction

ÅDX12 in The Division from Massive Entertainment

ÅDX12 in Anvil Next Engine from Ubisoft

ÅDX12 in Hitman from IO Interactive

ÅDX12 in 'Game AAA' 

ÅAfterMath Preview

ÅNsight VSE & DirectX12 Games

ÅQ&A

gameworks.nvidia.com


3www.gameworks.nvidia.com

Agenda

ÅIntroduction

ÅDX12 in The Division from Massive Entertainment 

ÅDX12 in Anvil Next Engine from Ubisoft

ÅDX12 in Hitman from IO Interactive

ÅDX12 in 'Game AAA' 

ÅAfterMath Preview

ÅNsight VSE & DirectX12 Games

ÅQ&A

gameworks.nvidia.com


4www.gameworks.nvidia.com

Introduction

ÅDirectX 12 is here to stay

ÅGames do now support DX12 & many engines are transitioning to DX12

ÅDirectX 12 makes 3D programming more complex 

Åsee DX12 Doõs & Donõts in developer section on NVIDIA.com

ÅGoal for this talk is to é

ÅHear what talented developers have done to cope with DX12

ÅSee what developers want to share when asked to describe their DX12 story  

ÅGain insights for your own DX11 to DX12 transition

gameworks.nvidia.com


5www.gameworks.nvidia.com

Thanks & Credits

ÅCarl Johan Lejdfors Technical Director & 
Daniel Wesslen Render Architect - Massive

ÅJonas Meyer Lead Render Programmer & 
Anders Wang Kristensen Render Programmer - Io-Interactive

ÅTiago Rodrigues 3D Programmer - Ubisoft Montreal

gameworks.nvidia.com


6www.gameworks.nvidia.com

Before we really start é

ÅThings weõll be hearing about a lot

ÅMemory Managment

ÅBarriers

ÅPipeline State Objects

ÅRoot Signature and Shader Bindings

ÅMultiple Queues

ÅMulti threading

If you get a chance check out the DX12 presentation from Mondayõs  ôThe Advanced Graphics Techniques tutorialõ 

gameworks.nvidia.com


7www.gameworks.nvidia.com

Agenda

ÅIntroduction

ÅDX12 in The Division from Massive Entertainment 

ÅDX12 in Anvil Next Engine from Ubisoft

ÅDX12 in Hitman from IO Interactive

ÅDX12 in 'Game AAA' 

ÅAfterMath Preview

ÅNsight VSE & DirectX12 Games

ÅQ&A

gameworks.nvidia.com


8www.gameworks.nvidia.com

from

ÅSnowdrop Engine

ÅDeveloped in-house to support The Division

ÅScalable & multi -threaded

ÅHas a strong focus on great performance and 
fast iteration times

ÅTom Clancyõs The Division

ÅAn always online, coop game in a modern day setting

gameworks.nvidia.com


9www.gameworks.nvidia.com

from

ÅSnowdrop Engine

ÅDeveloped in-house to support The Division

ÅScalable & multi -threaded

ÅHas a strong focus on great performance and 
fast iteration times

ÅTom Clancyõs The Division

ÅAn always online, coop game in a modern day setting

gameworks.nvidia.com


10www.gameworks.nvidia.com

from

ÅSnowdrop Engine

ÅDeveloped in-house to support The Division

ÅScalable & multi -threaded

ÅHas a strong focus on great performance and 
fast iteration times

ÅTom Clancyõs The Division

ÅAn always online, coop game in a modern day setting

gameworks.nvidia.com


11www.gameworks.nvidia.com

The Division DX12 - Agenda

ÅAsynchronous Queues

ÅMemory Management

ÅPipeline State Objects

ÅShaderModel 5.1 Resource Binding

ÅMulti threading

ÅMiscellaneous 

gameworks.nvidia.com


12www.gameworks.nvidia.com

ÅCompute Queue

ÅNice cross vendor speedup

ÅOn average 5% 

ÅAsynchronous workload mostly resolution-independent (tuned for 1080p)

ÅDiminishing returns as resolution increases

The Division DX12 : Asynchronous Queues

GraphicsQueue

ComputeQueue

Shadow maps, G-buffer, post fxé

Motion vectors, histogram, GI, ray marched VolumeFog, wind, snow particles,é

gameworks.nvidia.com


13www.gameworks.nvidia.com

ÅThe engine uses 3 Copy Queues 

ÅMultiple copy queues ease engine thread synchronization

The Division DX12 : Asynchronous Queues

CopyQueue1

CopyQueue2

High frequency copies from upload to default heap

Asynchronous streaming of mip map data

CopyQueue3
Data initialization during resource creation

gameworks.nvidia.com


14www.gameworks.nvidia.com

The Division DX12 : Memory Managment

ÅAfter DX12 bring-up, MemoryManagmentimprovements increased performance most

ÅOne type of CB accidentally allocated as committed resource

ÅCaused memory fragmentation => intermittent stuttering 

ÅSub-allocation from a larger heap (as intended) improved performance by ~ 15% 

ÅUsed GPUViewto detect this

ÅNot overcommitted on memory 

ÅSaw a huge amount of copies from outside the game process

gameworks.nvidia.com


15www.gameworks.nvidia.com

The Division DX12 : Memory Managment

ÅTuning which resources to allocate from which heap added >2% perf

ÅIncluded adjusting rules for where to allocate placed resources

Heap1

Temp RTs

of any size

on direct queue

Heap2

Temp non-RTs

of any size

on compute 

queue

Multiple Heaps

for non-RT 

textures

non-RT 

textures

<= 16 MB

Multiple 

heaps with 

large buffers

Buffers (no 

hazard tracking)

<= 8 MB

suballocated

from large 

buffers 

Multiple heaps 

for buffers

Buffers 

(hazard 

tracking)

<= 8 MB

gameworks.nvidia.com


16www.gameworks.nvidia.com

The Division DX12 : Memory Managment

ÅTypically frequently -updated-and-rarely -read buffers are placed on the upload heap

ÅConstant Buffers

ÅDynamic VBs, é

ÅTurns out this strategy is not optimal for The Division

ÅCopying data from the an upload to a default heap generates a nice speedup > 1%

gameworks.nvidia.com


17www.gameworks.nvidia.com

The Division DX12 : Pipeline State Objects

ÅLuckily òShader State Objectó concept was already used by the engine

ÅMapped nicely to DX12 PSO after some small extension work

ÅMost PSOs get pre-created when the game starts and during streaming

ÅSupport to skip rendering objects for ômissingõ PSOs

ÅEnded up restructuring mesh queuing and rendering to reduce # of PSO changes

ÅUnifying all equivalent artists created render states

ÅSaved >= ~15% CPU time (Better batching)

gameworks.nvidia.com


18www.gameworks.nvidia.com

The Division DX12 : SM 5.1 Resource Binding

ÅUnbounded descriptor tables simplify many things

ÅAllows to store all local material indices in one CB

ÅMakes mesh rendering very efficient on the CPU

ÅOnly VB,IB and a single root CBV changed per PSO change

ÅDuring streaming updated textures are placed at the same table index

ÅDescriptor heap with texture descriptors triple buffered to prevent race conditions

0

2

4

1

Diffuse

Normal

Index CB

TD0

TD1

TD2

TD3

TD4

Diffuse DT

TD0

TD1

TD2

TD3

TD4

Normal DT

sample_l r5.w, r7.xyxx, t3[r5.w].yzwx, s1[14], l(0)

sample_l r5.w, r7.xyxx, t3[r5.w].yzwx, s1[14], l(0)

gameworks.nvidia.com


19www.gameworks.nvidia.com

The Division DX12 : Multi threading

ÅDX12 finally allows multi -threaded submission and recording

ÅOne thread per queue type (Direct, Compute, Copy)

Årecording more complex command lists and submitting work

ÅCommand list recording runs on all cores

Å43 tasks ðable to run on as many threads

gameworks.nvidia.com


20www.gameworks.nvidia.com

The Division DX12 : Miscellaneous

ÅSM 5.1 and / all_resources_bound Shadercompiler flag improve perf by ~1.0-1.5%

ÅNo change in shader code necessary 

ÅEnables less conservative code generation for texture accesses

ÅNot new: check https://blogs.msdn.microsoft.com/marcelolr/2016/08/19/understanding -all_resources_bound-in-hlsl/

Code snippets from: https://blogs.msdn.microsoft.com/marcelolr/2016/08/19/understanding -all_resources_bound-in-hlsl/

w/o /all_resources_bound with /all_resources_bound

gameworks.nvidia.com


21www.gameworks.nvidia.com

Agenda

ÅIntroduction

ÅDX12 in The Division from Massive Entertainment 

ÅDX12 in Anvil Next Engine from Ubisoft

ÅDX12 in Hitman from IO Interactive

ÅDX12 in 'Game AAA'

ÅAfterMath Preview

ÅNsight VSE & DirectX12 Games

ÅQ&A

gameworks.nvidia.com


22www.gameworks.nvidia.com

Anvil Next Engine from Ubisoft

ÅUsed in Assassin's creed series

ÅInitial ônaµveõ port revealed a number of performance issues

ÅInefficient Barriers

ÅHitching on PSO creation

ÅMemory over-commitment 

This is a condensed version of Tiago Rodrigues talk òMoving to DirectX 12: Lessons Learnedó ðcheck out the full version!

gameworks.nvidia.com


23www.gameworks.nvidia.com

Anvil Next Engine from Ubisoft

ÅRe-designed to get the best out of DX12

1. Minimize and batch resource barriers

2. Take full advantage of parallel CMD list recording 

3. Use precompiled render state to minimize runtime work

4. Minimize memory footprint

5. Make use of the several GPU queues

gameworks.nvidia.com


24www.gameworks.nvidia.com

Anvil Next Engine - Agenda

ÅAutomatic Resource Tracking

ÅBarriers

ÅShaderBindings

ÅPipeline State

gameworks.nvidia.com


25www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine code explicitly defines a dependency graph

Å Each pass/producer defines which resources are needed and in which state

GPU execution order:

Compute

Copy

Graphics

Producers:

Dependencies:

GPU Queues:

gameworks.nvidia.com


26www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource dependencies automatically 

Å Analyzes graph dependency graph between GPU producers & consumers

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: producer

: resource

gameworks.nvidia.com


27www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource life times automatically

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: producer

: resource

gameworks.nvidia.com


28www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource life times automatically

Å Engine uses life times to determine options for memory reuse (placed resources)

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: producer

: resource

gameworks.nvidia.com


29www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource access synchronization automatically

Å SSAO buffer produced in compute, consumed in GFX queue

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

gameworks.nvidia.com


30www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource access synchronization automatically

ÅSSAO on compute queue must wait for G -Buffer rendering to finish 

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

: auto fencing

gameworks.nvidia.com


31www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource access synchronization automatically

ÅDeferred lighting on GFX queue must wait for SSAO to finish

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

: auto fencing

gameworks.nvidia.com


32www.gameworks.nvidia.com

Anvil Next Engine ðResource Tracking

Å Engine tracks resource access synchronization automatically

ÅUser can add manual sync to better match workloads

: execution order

Derived dependencies:

: resource write

: resource read

Explicit dependencies:

: SSAO

: SSAO

: Depth

: G-Buffer

: lighting

Producers:

Resources: Compute

Graphics

: auto fencing

: Shadows
: manual fencing

gameworks.nvidia.com


33www.gameworks.nvidia.com

Anvil Next Engine ðBarriers

ÅUsing producer resource dependencies

ÁBatch transitions at producer boundaries

ÁDetermine minimal set of merged states 

ÁAuto split barriers

gameworks.nvidia.com


34www.gameworks.nvidia.com

Anvil Next Engine ðBarriers

ÅBarriers at producer boundaries

: resource write

: resource read

: Producer

: Depth Buffer DepthWrite ->

PS Resource

Barriers:

: Shadow Map

gameworks.nvidia.com


35www.gameworks.nvidia.com

Anvil Next Engine ðBarriers

ÅAuto split barriers

: resource write

: resource read

: Producer

: Depth Buffer

DepthWrite ->

PS Resource

Begin DepthWrite -> 

PS Resource

End DepthWrite ->

PS Resource

Barriers:

: Shadow Map

gameworks.nvidia.com


36www.gameworks.nvidia.com

Anvil Next Engine ðBarriers

ÅGroup Barriers

: resource write

: resource read

Single call

to ResourceBarrier()

DepthWrite ->

PS Resource

Begin DepthWrite -> 

PS Resource

End DepthWrite ->

PS Resource

Barriers:

: Producer

: Depth Buffer

: Shadow Map

gameworks.nvidia.com


37www.gameworks.nvidia.com

Anvil Next Engine ðShader Bindings

ÅRe-architected to match DX12 binding model

ÅEngine class ShaderInputLayout maps to DX12 Root Signature

ÅHides root signature 1.0/1.1, tier restrictions etc.

ÅEngine class ShaderInputGroupmaps to DX12 Descriptor Tables

ÅAbstracts underlying API details like bind slots

ÅShaderInputGroup is the granularity of change

ÅEach unique ShaderInputGroup gets compiled to an immutable Blob

gameworks.nvidia.com


38www.gameworks.nvidia.com

Anvil Next Engine ðPipeline State

ÅRun-time PSO creation is expensive

ÅEngine thus supports two modes for PSO creation

ÅBlob based PSOs for data driven material rendering code paths

ÅUses precompiled groups of state

ÅUses predefined state presets to restricts independent state changes

ÅOpens the opportunity for load time/offline blob compile time optimization

ÅLegacy mode for DX9-style changes in state (only used in legacy code rendering passes)

ÅLate compilation (then cached) 

gameworks.nvidia.com


39www.gameworks.nvidia.com

Agenda

ÅIntroduction

ÅDX12 in The Division from Massive Entertainment 

ÅDX12 in Anvil Next Engine from Ubisoft

ÅDX12 in Hitman from IO Interactive

ÅDX12 in 'Game AAA'

ÅAfterMath Preview

ÅNsight VSE & DirectX12 Games

ÅQ&A

gameworks.nvidia.com


40www.gameworks.nvidia.com

Hitman from IO Interactive

ÅAbout the game

ÅEpisodic Murder simulator

ÅReleased March 2016

Also Check:

http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/meyer_jonas_rendering_hitman_with.pdf

gameworks.nvidia.com

