

March 2011
WP-03016-001_v01

White Paper

PN-Patches

White Paper

ii March 4, 2011

Document Change History

Version Date Responsible Reason for Change

01 April 7, 2010 KD, SM Initial release

Go to sdkfeedback@nvidia.com to provide feedback on PN Patches.

mailto:sdkfeedback@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

PN-Patches

Abstract

Tessellation is one of the key features of DX11 API. It allows creating geometry on-
chip without necessity to store it anywhere in video memory. GPU receives a single
coarse patch, subdivides it to tiny polygons, displaces them to get rich detail, renders
them, and then forgets about them. Subdivision and displacing is guided by two new
shader stages – Hull Shader, and Domain Shader.

This sample shows typical tessellation implementation based on a monster model
from Metro 2033 title. The model was generously provided to us by game developer
- 4A games. Coarse model contains about 6000 polygons and is a mixture of quads
and triangles. We subdivide them to tiny polygons using PN-Patches subdivision
scheme. Then we displace those tiny polygons using displacement map to get the
look of detailed model (modeled in z-brush) containing about 3 million polygons.
This original detailed model is also available in the sample so that one could switch
between tessellated coarse and detailed versions to see that there is virtually no
visible difference. Tessellated version, looking the same, provides much better perf
compared to detailed version. When one zooms out, LOD of tessellated version is
automatically decreased providing even higher perf advantage (up to 50x depending
on GPU) with the same look.

Sample also provides many debug visualization regimes (like wireframe, color coded
normals, etc.) so that one could get better feeling of underlying technology.

Kirill Dmitriev
NVIDIA Corporation

White Paper

2 March 4, 2011

How It Works

Subdivision scheme

Since model consists of both triangles and of quads, we needed subdivision
scheme that can be applied to both triangles and quads. We subdivide triangles
according to PN-triangles scheme that was proposed in [1]. For quads we are
using PN-Quads scheme proposed in [2]. Those two schemes are very similar
and they blend together very well – triangle and quad sharing an edge will have
water-tight curved boundary between them after tessellation is applied.

Since PN-Triangle and PN-Quad schemes are very similar, not to address them
separately, we refer them by the common name PN-Patch subdivision. We are
aware of the fact that this name has been used before for different subdivision
scheme, but we use this name here nevertheless because it is so convenient.

The following images give general idea of how the sample works. Initial model
HW sees is coarse model, looking like this:

PN-Patches

 3
March 4, 2011

HW tessellates each patch of this model to tiny polygons and applies certain
„smoothing‟ (according to [1] and [2]) to each patch. If we only applied this
smoothing and would not be applying displacement and normal map, we would
be getting the following image:

After a patch is smoothed out like that, we let HW applied displacement and
normal map, so that the final model looks like this:

White Paper

4 March 4, 2011

Displacement mapping is mainly needed to get the right silhouettes of monster
parts, while normal map is needed to get the right shading. The below images

PN-Patches

 5
March 4, 2011

show that for example normal mapping alone is not enough to get the right look.
Images at the top are generated using only normal map, while images at the
bottom are generated with both displacement and normal map.

Displacement and normal map

Displacement at particular point on the surface of coarse mesh is distance
between corresponding point on infinitely subdivided coarse mesh (also called
limit surface) and corresponding surface of detailed mesh taken along the
smooth normal to coarse mesh.

White Paper

6 March 4, 2011

On the image above blue line is the limit surface. Red vectors are co-directed
with smooth normals to coarse surface and their length is displacement. This
displacement is stored in displacement map. Smooth normal need not be stored
because it is known at render-time (it is simply an interpolated shading normal).
Black vectors are smooth normals to detailed surface in the points where red
vectors intersect it. Those normals are stored in normal map.

Both displacement map and normal map have been precompiled and stored in
.dds files. They are bound to surface tangent space, so this model can be
actually skinned and animated while still using the same normal and
displacement maps.

Since the displacement is computed in respect to limit surface of particular
subdivision scheme, displacement map applied for PN-Patch subdivision differs
from displacement map that could be applied for, say, Catmull-Clark subdivision.
At the time of developing this sample we could not find a tool that could
generate displacement map in respect to PN-Patch subdivision, so we had to
develop our own tool for that. This sample only includes displacement and
normal maps that are output from the tool. The tool itself will probably be
released separately in the near future. If you need it urgently, please contact us
for that.

LOD computation

For LOD computation we use the following formula:

PN-Patches

 7
March 4, 2011

TESS_FACT = LEN * NP * Q / DIST

Where LEN is edge length in world space, NP is proportional to number of pixels
on the screen, DIST is distance between observer and edge center and Q is
global quality constant that is tweaked according to desired quality and
performance. The goal of this formula is to achieve constant triangle size (in
pixel) independently of distance between surface and observer and
independently of current resolution.

LEN is edge length in world space. This factor in formula causes large polygons
to be subdivided more densely than small polygons. So if initial model was
subdivided non-uniformly in world space, this factor forces all triangles to
become more or less of the same size.

DIST is distance between observer and edge center. The purpose of this factor is
to make triangle size constant in screen space rather than in world space. After
all, it does not make sense to have triangles smaller than one pixel because this
level of detail can‟t be shown on monitor anyway. On the other hand, too large
polygons lead to drop in quality. That‟s why Q factor is needed.

After LEN and DIST are in the formula, you get triangles of approximately
constant size in screen space. This size may be too large or too small for you. To
change this size, Q factor is introduced. By tweaking it, you may achieve desired
size of triangles. We recommend having triangles with edges of approximately 4
pixels in length.

Now when you have achieved desired size of triangle, what happens when you
change image resolution? Your triangles will now have different size in pixels
than you originally intended. To fix that, NP factor is introduced. Set your NP to
something like NP_NEW/NP_OLD, where NP_OLD is the number of pixels on the
screen you had when your triangle size was correct, and NP_NEW is number of
pixels in the new video regime. Then your triangle size in pixels will be staying
approximately constant no matter what video mode you set.

Culling in HS

As was noted before, tessellation provides automatic seamless LOD for
geometry. When surface is far away, its tessellation factor gets very small and
performance rises quite a lot without noticeable drop in quality of image. The
downside of that is that when geometry actually gets close, it is tessellated to
very fine detail and performance suffers.

To fix that, our sample uses culling in HS. When the surface gets close to the
camera, only small number of patches are visible – most of the patches end up
being invisible due to frustum culling. Our HS determines this situation by
analyzing corners of each patch. If all corners of particular patch are outside of

White Paper

8 March 4, 2011

current frustum, zero tessellation factor is output from HS. This lets HW to kill
this patch without tessellating it.

This makes performance real-time both at close-ups, and when object is far
away.

References

[1] Alex Vlachos, Jorg Peters, Chas Boyd, and Jason L. Mitchell. Curved PN
triangles. In 2001, Symposium on Interactive 3D Graphics, Bi-Annual Conference
Series, pages 159–166. ACM Press, 2001.

[2] Jorg Peters, “PN-Quads”, 2008

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

