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 Fast rendering of opacity-mapped 
particles using DirectX 11 tessellation and 

mixed resolutions 

What the sample shows 

This sample application demonstrates efficient rendering of dense particle plumes 
using four light sources, with self-shadowing applied to all four sources. 

 

 

 

The sample uses the following techniques for rendering and acceleration: 

� Fourier Opacity Mapping, for rendering self-shadowing effects 

� DX11 Tessellation, for acceleration 

� Mixed-resolution Particle Rendering with Nearest-Depth Upsampling, for 
acceleration 
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Fourier Opacity Mapping 

The particles are not opaque, so we cannot use conventional opaque shadow-
mapping techniques. Instead, we need to use a technique which takes account of 
variable translucency, and which is able to model the gradual extinction of light as it 
travels into the plume from the light source. 

The sample uses Fourier Opacity Mapping for this. Fourier Opacity Mapping 
approximates the variable density of the plume using a truncated Fourier series. 
Provided the opacity is low and varies smoothly, and as long as sufficient Fourier 
series terms are used in the approximation, Fourier Opacity Mapping will produce 
plausible and stable self-shadowing effects. 

The technique is implemented in two passes: 

1. Render the opacity map – this is conceptually similar to conventional opaque 
shadow mapping, but instead of depths, we store Fourier series coefficients in 
a 4xMRT opacity map (i.e. 16 coefficients in total – see Figure 1).  

2. Render the particles – again, this is conceptually similar to opaque shadow 
mapping, but instead of reading and comparing depths, we read Fourier series 
coefficients and we use the coefficients to model how much light has been 
extinguished on its journey from source. 

 

 

Figure 1 – a Fourier Opacity Map packed into 4xMRT 

For further details on Fourier Opacity Mapping, see (Jansen & Bavoil, 2010) 

DX11 Tessellation 

We rely on the accumulation of many layers of particles to form the impression of a 
plume, and this gives rise to challenging fill-related workloads. 

If we perform per-pixel lighting and self-shadowing calculations, the sample is 
typically bottlenecked in pixel-shader work. However, if we perform per-vertex 
lighting and self-shadowing, we find that the results are under-sampled and 
important features are missed or mis-represented (see Figure 3). 

Our solution is to use DX11 tessellation to calculate lighting and self-shadowing at 
an intermediate rate in the Domain Shader. 
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Figure 2

 

In the sample, we use a simple scheme where the tessellation level 
proportional to
those obtained using per
the non-tessellated per

 

Figure 3

 

Nearest-Depth Upsampling

Motivation 
DX11 tessellation helps to remove much of the pixel
nothing to unload the remaining fill
especially blending in the output
bottleneck by rendering the particles at lower (e.g. half  or quarter) resolution.

Rendering particles in low resolution 
between low

For scenes where the opaque objects interacting with the particles are not too thin, 
convincing results can be achieved with a simple low
particles (typically half resolution or quarter resolution), followed by a depth
upsampling filter 
resolution opaque 

 

  

2 – untessellated (left) vs. tessellated (right) particle 

billboards 

In the sample, we use a simple scheme where the tessellation level 
proportional to camera distance and where the results are just indistinguishable from 
those obtained using per-pixel calculations. This delivers a significant speedup over 

tessellated per-pixel approach, with no perceptible change in image quality.

  

3 – pixel lighting (left, ground truth), vertex lighting 

(middle), tessellated lighting (right)

Depth Upsampling 

DX11 tessellation helps to remove much of the pixel-shader burden, but it does 
nothing to unload the remaining fill-dependent parts of the DX11 pipeline, 
especially blending in the output-merger stage. We can mitigate this remaining 
bottleneck by rendering the particles at lower (e.g. half  or quarter) resolution.

endering particles in low resolution tends to generate aliasing artifacts 
low-resolution particles and full-resolution opaque obj

where the opaque objects interacting with the particles are not too thin, 
convincing results can be achieved with a simple low-resolution render of the 
particles (typically half resolution or quarter resolution), followed by a depth
upsampling filter taking as input the full-resolution opaque depths, the low

opaque depths and the low-resolution particle colors.
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) vs. tessellated (right) particle 

In the sample, we use a simple scheme where the tessellation level is inversely 
camera distance and where the results are just indistinguishable from 

This delivers a significant speedup over 
, with no perceptible change in image quality. 

 

), vertex lighting 

(right) 

shader burden, but it does 
dependent parts of the DX11 pipeline, 

tigate this remaining 
bottleneck by rendering the particles at lower (e.g. half  or quarter) resolution. 

tends to generate aliasing artifacts at the edges 
opaque objects.  

where the opaque objects interacting with the particles are not too thin, 
resolution render of the 

particles (typically half resolution or quarter resolution), followed by a depth-aware 
depths, the low-

colors. 
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Low-Resolution Pass 
During the low-resolution rendering pass, the particles need to be depth tested 
against the depths of the opaque objects that have been rendered so far. There are 
two orthogonal ways to do this. 

First, the least invasive way may be to downsample the full-resolution hardware 
depth buffer into a low-resolution hardware depth buffer. In DirectX 11, we can do 
this using a pixel shader to explicitly Load() a particular sample from the full-
resolution depth buffer. This is particularly useful when the technique is used with 
MSAA because it allows fine control over the choice of sample.  

Second, the depth test can be performed in the particle’s pixel shader by varying the 
output alpha based on the depth difference between the particle’s depth and the 
opaque depth (soft particles). To maximize performance, the compared depth can 
be fetched from a low-resolution texture. Various filters may be used for generating 
the low-resolution depth texture, such as an average or a max filter. We have found 
that plain hardware point filtering works well with our upsampling filter. 

At the end of this pass, the low-resolution color buffer should contain the particle’s 
color in RGB and the particle’s visibility (1-alpha0).(1-alpha1)…(1-alphan) in the 
destination alpha channel. 

Bilinear Upsampling 
Now that we have a low-resolution off-screen color buffer available for the 
particles, we need to upscale this buffer and blend it over the full-resolution color 
buffer. We do this by rendering a full-screen quad with a pixel shader, and blending 
the particle’s RGBA low-resolution colors over the full-resolution color buffer using 
the same blend equations as in (Cantlay, 2007). 

One way of upscaling the low-resolution particle’s colors is to simply fetch the low-
resolution texture with hardware bilinear filtering. For particles with smooth 
textures, plain bilinear filtering may cause jaggies and halos at pixels for which low-
resolution particles are occluded by full-resolution opaque objects (see Figure 4).  
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Figure 4 - quarter-resolution particles with plain bilinear 
upsampling (left), full-resolution particles (right) 

 

This problem may be reduced in some situations by rendering the low-resolution 
particles with a low-resolution depth buffer downscaled using a MAX filter but this 
approach does not remove all halo artifacts (Cantlay, 2007). 

 

Nearest-Depth Filter 
The idea of nearest-depth filtering is similar to cross bilateral filtering (Eisemann 
and Durand, 2004) (Petschnigg et al., 2004), the main difference being that only one 
of the low-resolution color samples is used in the result, not a weighted average. 
This makes the filter more robust and faster. 

The nearest-depth upsampling filter fetches the 2x2 low-resolution depths in the 
bilinear footprint of the current full-resolution pixel and compares these 4 depths 
with the full-resolution depth of the current pixel. Then the filter computes which 
of these four low-resolution depths is nearest to the full-resolution depth and 
returns the corresponding low-resolution color for that sample. Note that the 2x2 
low-resolution depths can be fetched using a single GatherRed instruction with 
DirectX 11. The nearest-depth filter can reconstruct high-quality edges if the 
resolution of the low-resolution rendering pass is high enough to capture the 
opaque-geometry features (see Figure 5). 
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Figure 5 – quarter-resolution particles with nearest-depth filter 
(left), full-resolution particles (right) 

 
Edge Detection 

An issue with the nearest-depth filter is that because it uses only one low-resolution 
color sample per group of 2x2 texels, if may generate blocky artifacts at non-edge 
pixels. For these non-edge pixels, bilinear filtering usually works well. Therefore a 
solution is to use nearest-depth filtering for edge pixels and bilinear filtering for 
non-edge pixels. Edge pixels can be simply detected by re-using the depth 
differences that have been computed in the nearest-depth computation: we can 
classify the current pixel to be a non-edge pixel if all of the absolute depth 
differences between the full-resolution depth and the low-resolution depths are 
smaller than a given depth threshold.  

The resulting combined filter looks like this, where Z00, Z10, Z01, Z11 are the 2x2 
low-resolution linear depths, ZFull is the full-resolution linear depth, and 
NearestUV is the texture coordinate of the nearest-depth low-resolution sample: 

 

    if (abs(Z00 - ZFull) < g_DepthThreshold && 

        abs(Z10 - ZFull) < g_DepthThreshold && 

        abs(Z01 - ZFull) < g_DepthThreshold && 

        abs(Z11 - ZFull) < g_DepthThreshold) 

    { 

        return g_LoResColor.Sample(g_SamplerBilinear, LoResUV); 

    } 

    else 

    { 

        return g_LoResColor.Sample(g_SamplerNearest, NearestUV); 

    } 
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This edge-detection test may decide to use the point-sampling branch although 
there is no opaque-particle interaction at this pixel, which may cause blocky artifacts 
at these pixels. To minimize the artifacts, the application may compute the 
minimum and maximum view-space depths for the current particle system’s 
bounding box and clamp the low-resolution depths to this view-space depth range 
before performing the edge detection. 

Such a filter was used in the game Batman: Arkham Asylum, with quarter-resolution 
or half-resolution rendering depending on the particle systems. 

References 

Cantlay, I. (2007). High-Speed, Off-Screen Particles. In H. Nguyen, GPU Gems 3.  

Eisemann, E., & Durand, F. (2004) Flash Photography Enhancement via Intrinsic 
Relighting. ACM Trans. Graph. (SIGGRAPH) 23, 3, (pp. 673–678). 

Jansen, J., & Bavoil, L. (2010). Fourier Opacity Mapping. Proceedings of the 2010 ACM 
SIGGRAPH symposium on Interactive 3D Graphics and Games, (pp. 165-172). 

Kim, T.-Y., & Neumann, U. (2001). Opacity shadow maps. Proceedings of the 12th 
Eurographics Workshop on Rendering, (pp. 177-182). 

Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., & Toyama, K. 
(2004). Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 
(SIGGRAPH) 23, 3, (pp. 664–672). 



 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in 
the United States and other countries. Other company and product names may be trademarks of 
the respective companies with which they are associated. 

 

Copyright 

© 2010 NVIDIA Corporation. All rights reserved.  


