
Ocean Surface SimulationOcean Surface Simulation

List of the ContentList of the Content

• Simulation Algorithm• Simulation Algorithm

• Rendering• Rendering

• DirectX Compute Implementation• DirectX Compute Implementation

• Performance• Performance

Simulation Overview
• Based on Jerry Tenssendorf’s paper “Simulating Ocean Water”• Based on Jerry Tenssendorf’s paper “Simulating Ocean Water”

• Statistic based, not physics based

• Generate wave distribution in frequency domain, then perform inverse FFT • Generate wave distribution in frequency domain, then perform inverse FFT

• Widely used in movie CGIs since 90s, and in games since 2000s

• In movie CGI: The size of height map is large• In movie CGI: The size of height map is large
• Titanic, 2048x2048

• Water World, 2048x2048

• And more…• And more…

• In games: The size of height map is small• In games: The size of height map is small
• Crysis, 64x64

• Resistance 2, 32x32

• And more…• And more…

• All simulated on CPU (or Cell SPE)

Performance Issues

• The simulation require to generate the displacement map in real-time

• Computing FFT on CPU becomes the bottleneck when the
displacement map gets largerdisplacement map gets larger

• Larger texture also takes longer time on CPU-GPU data transfer

• However, large displacement map is a must-have for detailed wave crests

• GPU computing is really good at FFT

• Multiple 512x512 transforms can be performed in trivial time on high-end GPUs• Multiple 512x512 transforms can be performed in trivial time on high-end GPUs

• Multiple 1024x1024 transforms are affordable for high quality real-time rendering

The Algorithm: Wave Composition

• The ocean surface is composed by
enormous simple wavesenormous simple waves

• Each simple wave is a hybrid sine • Each simple wave is a hybrid sine
wave (Gerstner wave)

• A mass point on the surface is doing
vertical circular motionvertical circular motion

)sin()/(0 tAk ω−⋅−= xkkxx

)cos(

)sin()/(0

tAy

tAk

ω

ω

−⋅=

−⋅−=

xk

xkkxx

The Algorithm: Statistic Model

• The distribution of wave length,
speed and amplitude are following speed and amplitude are following
several statistic models

• Phillips spectrum is one mostly used

practical model: Gauss function practical model: Gauss function
modulated by wind direction

22

1
2

)(Lke
A

P
−

⋅= ωkk

• Generated in frequency domain at

222

4
)(Lk

h e
k

A
P

−

⋅= ωkk

the initial time

)()(
~

2

1
)(

~
0 kkk hPH ξ=)()(

2
)(0 kkk hPH ξ=

The Diagram of Generating Initial Spectrum The Diagram of Generating Initial Spectrum

2 2

1
2

4
ˆ ˆ() k L

h

A
P e

k
ω

−

= ⋅k k

0

1
() () ()

2
hH Pξ=k k k%%

() Gaussian()ξ =k k%

The Algorithm: Displacement Map

• Update three spectrums for each
displacement direction at runtimedisplacement direction at runtime

• Z for “height” field

titi
eHeHtH

ωω −−+=)(
~

)(
~

),(
~ *

00 kkk

• XY for “choppy” field

eHeHtH −+=)()(),(00 kkk

),(
~

),(
~

tHit k
k

kD =

• Perform inverse FFT on three
spectrums

),(
~

),(
~

tH
k

it k
k

kD =

spectrums

• Surface normal and other data are

generated from displacement mapgenerated from displacement map

The Diagram of Updating Displacement Map

1−

.
(,) (,)

x

x
D t i H t

k
=

k
k k% %

Dx

Normal

1−

0

1
() () ()

2
h

H Pξ=k k k%% 0

*

0

(,) ()

()

i t

i t

H t H e

H e

ω

ω−

= +

−

k k

k

% %

% Dz Displacement

Folding
1−

.
(,) (,)y

y
D t i H t

k
=

k
k k% %

Dy

1−

Rendering

Screen Space vs. World Space

• Screen Space
Pro

• Minimal mesh wastage

• Can be extended to horizon easily

ConCon
• Distracting alias at distance due to undersampling

• Require huge off-screen mesh chunks to cover gaps along the screen edges

• World Space• World Space
Pro

• Can be mapped to displacement map straightforwardly

• No undersampling alias

Con
• Need more complicated way extending to horizon• Need more complicated way extending to horizon

• Produce many sub-pixel triangles at distance

World Space Rendering

• We use world space rendering in
the demothe demo

• The mesh is created at half • The mesh is created at half
resolution of the displacement
map

• In the demo, 256x256• In the demo, 256x256

• Quad-tree is employed for • Quad-tree is employed for
frustum culling and mesh LOD

Tiling Artifact Removing (1)

• FFT only produce periodic pattern • FFT only produce periodic pattern

• The repeated pattern becomes a major distraction at distance

• But looks okay at near sight• But looks okay at near sight

Tiling Artifact Removing (2)

• Perlin noise composed crests yield no tiling artifact

• But lack of details at near sight

Tiling Artifact Removing (3)

• Solution: blend Perlin and FFT generated crests

• Effective and simple

• We do tried texture synthesize based method, but which works poorly and not • We do tried texture synthesize based method, but which works poorly and not
worthy to do in real-time

The result of blending FFT and Perlin noise

Ocean Shading (1)

• The demo only rendered for deep ocean water

• Shallow water rendering is much more complicated• Shallow water rendering is much more complicated

• Shading components

• Water body color: using a constant color

• Fresnel term for reflection: read from a pre-computed texture

• Reflected color: using a small cubemap blend with a constant sky color• Reflected color: using a small cubemap blend with a constant sky color

• Vertical streak: computed from a modified specular term

Ocean Shading (2)

• Fresnel term (left) and sun streak (right)

DirectX Compute Implementation

• Use DX Compute to

• Update three spectrums each frame• Update three spectrums each frame

• Perform three 512x512 inverse FFTs each frame

• Use Pixel Shader to• Use Pixel Shader to

• Read the results from FFT and interleave the data into displacement map

• Generate normal map• Generate normal map

Details on DX Compute code

• Inverse FFT

• Currently, only 512x512 transform is implemented in the SDK sample• Currently, only 512x512 transform is implemented in the SDK sample

• Higher than 1024x1024 will produce visible artifact due to FP precision

• Using CS4.0 to run on DX10 level GPU (G8x and later)

• Using complex-to-complex transform for better coalescing performance• Using complex-to-complex transform for better coalescing performance

• UAV usage (Unordered Access View)• UAV usage (Unordered Access View)

• CS4.x only supports 1 UAV per compute shader

• To output to three buffers for the three spectrums, just allocate one big buffer
and manage the offsets for each bufferand manage the offsets for each buffer

• A pixel shader is employed to read the transformed data from the UAV and
interleave them into a FP32x4 texture

Performance

• The performance is bound by texture• The performance is bound by texture

• FFT takes trivial time to complete on most GPUs.

• Increasing AF level can help the image quality, but decrease the framerate • Increasing AF level can help the image quality, but decrease the framerate
steeply

Acknowledgement

• Thanks for Victor Podlozhnyuk for providing FFT code, Simon Green • Thanks for Victor Podlozhnyuk for providing FFT code, Simon Green
for various suggestions, Cyril Zeller and Cem Cebenoyan for
supporting doing this demo

