
My Tessellation Has Cracks!
(and solutions to other tessellation related problems)

Bryan Dudash
Developer Technology, NVIDIA

Agenda

● Super-Quick Tessellation Review
● How cracks/holes are born
● Specific examples

● PN Triangles cracking
● Displacement map cracking

● Other Tessellation Issues
● Debugging Techniques
● Ptex

Super-Quick Tessellation Review
 ● Hull Shader

● Processes control points
● Decides tessellation factor

● Tessellator

● Fixed function
● Generates barycentric coords
● Based on tess factors from HS

● Domain Shader

● Calculates final tessellated vertices
● Interpolates data using barycentric coords

Domain Shader

Hull Shader

Tessellator

Vertex Shader

Setup/Raster

Pixel Shader

What is a “crack”?
● Visible seam between
edges in the mesh

● Often large color variance
on cracked pixels

● Can see the background
as backfaces are culled

● Vertices on shared edges that should share a
position (along edge) are offset such that they no
longer share the same position.

Holes: The other “crack”

● A “hole” is when shared control vertices diverge position
● Can think of this as multiple “cracks”

● Can result in much larger seams

● Same avoidance methods as cracks

● Can cause holes without tessellation!

● Different vertex offsets in VS per SV_PrimitiveID

How cracks are born
 ● Two primitives share an edge positionally, but the vertices of
that edge have divergent data

● Normal, UV, etc

● Domain Shader interpolates divergent data sets
● Can result in large differences in tessellated positions

● Only along control edges/vertices
● Interior edges are guaranteed not to crack

● In practice float LSB differences don’t crack

● Primitive winding means operations are in different order
● Theoretically possible to have micro-cracking

b

c a

i h

d

e f

g

General Solution to Cracking

● Ensure the domain shader
is using same input data

● Shared Vertices

● Shared Edges

● What is “same data”?

PN Triangles & PN-AEN

● Vertex normals used to calculate Bezier splines
● offsets tessellated vertices

● Divergent normals = Divergent splines

● Which leads to cracks

● Adjacent Edge Normals (AEN)

● Average Normals along Edges

● Phong Tessellation
● Same issue
● Same solution

PN Triangles
PN Triangles

w/ Averaged Normals

b

c a

i h

d

e f

g

Implementing AEN

● Method 1 : Index Buffer
● Add extra indices per primitive
● Point to adjacent edges
● Average Normals in Shader

● Method 2 : Texture

● Store Averaged Normals
● “Smoothed Normals”
● Two per edge

● Load() in Shader
●SV_VertexID

Index Buffer

a b c d e f g h i

Texture

Nad Nbe Nbf Ncg Nch Nai

AEN Alternative: Smoothed Normal

● Use average normals from entire mesh
● PN “done right”?
● Used only for PN/Phong interpolation
● Averages all valence vertices

● Less “same data”
● Only one tex sample per vertex
● Could be integrated into VB

● Results in more “puffy” PN splines

● Normals from irrelevant edges

PN-AEN

Smooth Normals

Displacement Map Cracking(1)
 ● UV coordinates are discontinuous

● UV unwrap results in seams
● Edge length in texture space also not identical
● Edge direction in texure space divergent

● Historical “issue” for texture mapping
● Divergent locations contain similar values
● Normal mapping sometimes shows issues

● Displacement offsets along shared edges

● Displacements interpolated along the edge and
will pick up slightly varying values

Solution: Dominant UVs

● Override UV for sampling displacement

● This is safe as we only override along
the shared edge and control vertices

● An edge will never crack from itself

● Interior primitives uses the original UVs

b

c a

Dominant Data

● Lookup at runtime into preprocessed data
● Overridden IB
● Data to stuff into texture

● Edges separate from Corners

● Only 2 possible shared edges to pick from for any
primitive

● N shared “non edge” vertices
● Dominant Vertex may or may not be on Dominant Edge

● Can be arbitrary

● All shared vertices must have the same dominant data
● Both edge vertices must be from the same primitive

Control
Vertex

Dominant
Vertex

a A

b E

c H

Control
Edge

Dominant
Edge

a-b D-E

b-c B-C

c-a H-I

J

E

A
H I

Index Buffer

Texture

UdVdUe

Implementing Dominant UVs

● Method 1: Index Buffer

● Add indices for dominant edge

● Can use AEN edge data as well

● Add indices for dominant vertex

● Method 2: Texture

● Encode UV

● 2 Samples per control point

a b c D E B C H A E J I

VeUAVA

Dominant Data Generation
 ● CPU side pre-process

● Typically done as part of a build/cook process
● Can be done on mesh load as well

● Generate Packed Listing of shared position & edges
● List of indices at each shared position
● List of index tuple at each shared edge start

● Arbitrarily pick dominant data

● First entry in the list

● It really is that simple

Intra-material cracking

● Meshes in games often have multiple materials
● Submeshes render as separate draws
● With separate textures and UV spaces
● No access to neighbor info across seams

● Solutions

● If submeshes share a VB, then AEN style techniques can work
● Smooth normal/Dominant UV texture can encode data from

group of submeshes
● Pin displacement to 0 at edge

● May not look “right”
● Alternative is mesh rework.

Virtual Dicing

● Tessellation factor limit of 64
● 1 edge => 64 edges
● This limit can be hit for coarse meshes with high zoom

● One solution is to pre-dice mesh in DCC tool

● This requires artist time
● Potentially not matched to displacement map resolution

● Alternative is to programmatically subdivide
● Per primitive density control
● Match mesh density to displacement map resolution
● Add extra redundant indices into IB
● Reposition duplicates on interior of original

No Dicing – Dynamic Factor=64 12 Factor Diced – Dynamic Factor=32

Virtual Dicing Implementation

● Add duplicate primitives
● “inflated” index buffer
● # of addition varies per prim

● Barycentric coords texture

● Remap of new control verts
● Interpolation of originals

● Hull Shader repositions vertices

● SV_PrimitiveID determines Load()

 Domain Shader

Hull Shader

Tessellator

Custom
Barycentrics

Texture

Inflated
Index Buffer

Vertex Shader

Original
Vertex
Buffer

LOAD

Repositioned
Diced

Control
Points

Dynamic
Tess Factors

Dynamic
Barycentrics

Ptex – Per-face TEXture

● Developed at Walt Disney Animation
Studios

● By Brent Burley in 2008
● As a method to remove UV unwrap

serialization in art pipeline

● Texturing with implicit UVs

● One “texture” per primitive
● Power of two textures
● Quads only!

Ptex and Displacement Maps

● Ptex can be used with displacement maps

● No Holes
● Corners pinned at texgen

● No Cracks
● Edges all share common data

● Full Resolution Control

● Per-face control

Realtime Ptex

● DCC support already in place

● Realtime Ptex with DirectX11!
● Texture2DArray (also in D3D10)
● Quad primitives

● For more info: http://ptex.us/

● “Practical Ptex for Games”

● Game Developer Magazine: January 2012

Content
Production

Bucket and Sort

Generate
Mipmaps

Fill Texture
Interiors

Reorder
Index
Buffer

Fill Texture
Borders

Pack Patch
Constants

http://ptex.us/
http://ptex.us/

Questions?

bdudash@nvidia.com

mailto:bdudash@nvidia.com
mailto:bdudash@nvidia.com

Appendix B: Debugging Techniques

• Verify your conventions
• Output Barycentric coordinates as

diffuse color

• Reduce shader to flat tessellation

• add pieces back

• Remove clipping & “clever” optimizations

Barycentric Coordinates as colors

Debugging Techniques cont’d
● Edge LOD specification

● for triangles is surprising

● Real-time graphics debugging tools

● Introspect graphics state
● Visualize mesh, texture and render

target data
● Debug your tessellation shader

(Hull/Domain)
●natively on the hardware

Appendix C :Texture Stretching

• UV space stretched when displacing
• Edge length in texture space is constant

• Physical edge length (world space) changes
based on displacement

• Solution/Workaround
• 2-pass approach

• Reduce displacement of texels causing
stretching on the second pass

Texture stretching

Reduced offsets

