
Mesh SkinningMesh Skinning
Sébastien Dominé

Agenda

• Introduction to Mesh Skinning
• 2 matrix skinning
• 4 matrix skinning with lighting
• Complex skinning for character modeling

Introduction to Mesh Skinning

• Allows a mesh to be deformed based on an
underlying transformation matrix set.

• Usually thought of as a skin being deformed by a
skeleton

Mathematics of mesh skinning 1/3

Where:
is the number of matrices.
is the vertex position.
is the weight associated.
is the transformation matrix.

∑=′
n

i
ii vMwv

v
iw

∑ =
i

iw 1with

iM

n

Mathematics of mesh skinning 2/3

• For the normals:

∑ −=′
N

i
ii nMwn

T1 ∑ =
i

iw 1with

Where:
is the number of matrices.
is the vertex normal.
is the weight associated.
is the inverse transpose of transformation

matrix .

n
iw

T

iM 1−

N

iM

Mathematics of mesh skinning 3/3

• Tangent basis computation:
• Use the algorithm for the normal, and instead

compute the skinned bi-normal and tangent.
• Do a cross product of the skinned bi-normal and

tangent to obtain the normal (Cheap only 2 op-
codes to compute the cross product):

MUL R0, R2.yzxw, R1.zxyw;
MAD R0, -R2.zxyw, R1.yzxw, R0;

Complex Skinning for Character
modeling

• 2 methods:

1. 100% CPU free skinning method (Vertex Offset):
• Consists of pre-computing vertices in bone’s local space:

• PROS:
• CPU is not involved

• CONS:
• Consumes more bus bandwidth since we have to pass X times

the vertices (where X is the number of bone reference per vertex)

2. Light CPU usage method (Bone Offset):
• Consists of pre-computing the bone’s transform that

moves a vertex (in model space) into bone’s local space
and to post-multiply the bone’s matrices by it at runtime:

• PROS:
• About 4x less bandwidth usage (good for multiple characters)

• CONS:
• Uses a small amount of CPU to post-multiply the bone’s

matrices (again this could be pre-computed)

Complex Skinning for Character
modeling – Vertex Offset Method

• 12 matrices per primitive (triangle)
• 4 matrices per vertex
• 28 matrices accessible at once

• Use 4x3 affine transforms

• Needs 4 derivative of the same vertex program to
process efficiently the vertices that are
transformed by either 1,2,3 or 4 bones

• Needs to send vertices in bone’s space, I.e.
multiple versions of the same vertex, but each in
the local bone space that the vertex is
referencing

Vertex Offset Method
Math. of complex skinning 1/2

Where:
is the number of matrices
is the vertex position in coordinate system.
is the weight associated.
is the transformation matrix (affine transform).

∑=′
n

i
iii vMwv

iv
iw

∑ =
i

iw 1with

iM

n
iM

Vertex Offset Method
Math. of complex skinning2/2

• For the normals:

∑=′
N

i
iii nRwn ∑ =

i
iw 1with

Where:
is the number of matrices.
is the vertex normal in coordinate system.
is the weight associated.
is the upper 3x3 matrix block of transformation

matrix . (I.e. just the rotation component of
the affine transform)

in
iw

iM

iR

N

iM

Vertex Offset Method
Data organization 1/3

• Bones are stored in the constant table:
• 96 four dimensional vectors
• 28x3 = 84 vectors used to store 28 affine transforms (i.e.

translation + rotation)
• Vertex attributes (16 four dimensional attributes per vertex):

• Vertex offsets (up to 4)
• Vertex weights (up to 4)
• Indices to constant table to get transforms (up to 4)

• Normal offsets (up to 4)
Or
• Bi-normal offsets (up to 4)
• Tangent offsets (up to 4)

Depending on the kind of lighting

Vertex Offset Method
Data organization 2/3

1 byte1 byteIndices

105 bytes81 bytesTotal per skinned vertex

3 shorts * 4Tangent

3 shorts * 4Binormal

1 short * 41 short * 4Weights

3 shorts * 4Normal

3 floats * 43 floats * 4Position

Per pixel lightingStandard lightingVertex attributes / bone

Plus texture coordinates – depends how many units are used.

Vertex Offset Method
Data organization 3/3

• Preprocess the model to batch up groups of
faces that are using vertices that are using either
1,2,3 or 4 bones. This way you know when to pick
the optimal vertex program to render the group of
faces.

• If you have more than 28 bones, preprocess the
model to break it up in groups of faces that share
the same bones.

Vertex Offset Method
Vertex Program 1/5

• Source code:
char four_bone_normal_offsets_textured[] =

"!!VP1.0 # Four bone transform \n"
// c[0]...c[3] contains modelview projection composite matrix
// c[4] contains constants: c[4].x = 2.0; c[4].y = 1.0; c[4].z = 0.0;
// c[5] contains (diffuse color) * Kd
// c[6] contains light position

// c[8]...c[11] contains bone one transform
// c[12]...n contains bone n transform

// v[OPOS] contains the transform indices

// v[NRML] contains normal offset and weight related to bone one
// v[6] contains normal offset and weight related to bone two
// v[7] contains normal offset and weight related to bone three
// v[TEX3] contains normal offset and weight related to bone four

// v[TEX4] contains vector offset
// v[TEX5] contains vector offset
// v[TEX6] contains vector offset
// v[TEX7] contains vector offset

Vertex Offset Method
Vertex Program 2/5
// Load the matrix index for mat0
"ARL A0.x, v[OPOS].x;"
// We transform the offset by bone one's tranform
"DP4 R1.x, c[A0.x + 8], v[TEX4];"
"DP4 R1.y, c[A0.x + 9], v[TEX4];"
"DP4 R1.z, c[A0.x + 10], v[TEX4];"
// We multiply the transformed offset by the weight
"MUL R1.xyz, R1, v[NRML].w;"

// We transform the normal offset by bone one's tranform
"DP3 R5.x, c[A0.x + 8], v[NRML];"
"DP3 R5.y, c[A0.x + 9], v[NRML];"
"DP3 R5.z, c[A0.x + 10], v[NRML];"
// We multiply the transformed normal offset by the weight
"MUL R5.xyz, R5, v[NRML].w;"

// Load the matrix index for mat1
"ARL A0.x, v[OPOS].y;"
// We transform the offset by bone two's tranform
"DP4 R2.x, c[A0.x + 8], v[TEX5];"
"DP4 R2.y, c[A0.x + 9], v[TEX5];"
"DP4 R2.z, c[A0.x + 10], v[TEX5];"

// We multiply the transformed offset by the weight
"MAD R1.xyz, R2, v[6].w, R1;"

Vertex Offset Method
Vertex Program 3/5

// We transform the normal offset by bone two's tranform
"DP3 R6.x, c[A0.x + 8], v[6];"
"DP3 R6.y, c[A0.x + 9], v[6];"
"DP3 R6.z, c[A0.x + 10], v[6];"
// We multiply the transformed normal offset by the weight
"MAD R5.xyz, R6, v[6].w, R5;"

// Load the matrix index for mat2
"ARL A0.x, v[OPOS].z;"
// We transform the offset by bone three's tranform
"DP4 R3.x, c[A0.x + 8], v[TEX6];"
"DP4 R3.y, c[A0.x + 9], v[TEX6];"
"DP4 R3.z, c[A0.x + 10], v[TEX6];"

// We multiply the transformed offset by the weight
"MAD R1.xyz, R3, v[7].w, R1;"

// We transform the normal offset by bone two's tranform
"DP3 R7.x, c[A0.x + 8], v[7];"
"DP3 R7.y, c[A0.x + 9], v[7];"
"DP3 R7.z, c[A0.x + 10], v[7];"
// We multiply the transformed normal offset by the weight
"MAD R5.xyz, R7, v[7].w, R5;"

// Load the matrix index for mat3
"ARL A0.x, v[OPOS].w;"

Vertex Offset Method
Vertex Program 4/5

// We transform the offset by bone four's tranform
"DP4 R4.x, c[A0.x + 8], v[TEX7];"
"DP4 R4.y, c[A0.x + 9], v[TEX7];"
"DP4 R4.z, c[A0.x + 10], v[TEX7];"

// We multiply the transformed offset by the weight
"MAD R1.xyz, R4, v[TEX3].w, R1;"

// We transform the normal offset by bone two's tranform
"DP3 R8.x, c[A0.x + 8], v[TEX3];"
"DP3 R8.y, c[A0.x + 9], v[TEX3];"
"DP3 R8.z, c[A0.x + 10], v[TEX3];"

// We multiply the transformed normal offset by the weight
"MAD R5.xyz, R8, v[TEX3].w, R5;"

// set the vertex w to 1.0
"SGE R1.w, R5, R5;"

// normalize(R5) -> R2
"DP3 R3.w, R5, R5;"
"RSQ R3.w, R3.w;"
"MUL R2.xyz, R5, R3.w;"

Vertex Offset Method
Vertex Program 5/5

// Still needs to be projected...
"DP4 o[HPOS].x, c[0], R1;"
"DP4 o[HPOS].y, c[1], R1;"
"DP4 o[HPOS].z, c[2], R1;"
"DP4 o[HPOS].w, c[3], R1;"

// light position DOT normal
"DP3 R3, c[6], R2;“

// Diffuse term * diffuse color
"MUL o[COL0].xyz, R3, c[5];"

// set the texcoord s and t
"MOV o[TEX0].xy, v[TEX0];"
"END";

Complex Skinning for Character
modeling – Bone Offset Method

• 12 matrices per primitive (triangle)
• 4 matrices per vertex
• 28 matrices accessible at once

• Use 4x3 affine transforms

• Needs 4 derivative of the same vertex program to
process efficiently the vertices that are
transformed by either 1,2,3 or 4 bones

• Only pass vertices in model space (1 set of
vertices is sent)

Bone Offset Method
Math. of complex skinning 1/2

Where:
is the number of matrices
is the vertex position in model space of the reference
posture.
is the weight associated.
is the transformation matrix (affine transform).
is the inverse transform of the bone’s reference posture

transform (it transforms the vertex from model space into
bone’s local space)

∑ −=′
n

i
refii vMMwv

i

1

v

iw

∑ =
i

iw 1with

iM

n

1−
irefM

Bone Offset Method
Math. of complex skinning2/2

• For the normals:

∑ −=′
N

i
refii nRRwn

i

1 ∑ =
i

iw 1with

Where:
is the number of matrices.
is the vertex normal in model space of the reference
posture.
is the weight associated.
is the upper 3x3 matrix block of transformation matrix
(I.e. just the rotation component of the affine transform).
is the inverse rotation matrix of the bone’s reference
posture transform.

n

iw
iR

N

1−
irefR

Bone Offset Method
Data organization 1/3

• Bones are stored in the constant table:
• 96 four dimensional vectors
• 28x3 = 84 vectors used to store 28 affine transforms (i.e.

translation + rotation)
• Vertex attributes (16 four dimensional attributes per vertex):

• Vertex position
• Vertex weights (up to 4)
• Indices to constant table to get transforms (up to 4)

• Normal
Or
• Bi-normal
• Tangent

Depending on the kind of lighting

Bone Offset Method
Data organization 2/3

1 byte1 byteIndices

33 bytes27 bytesTotal per skinned vertex

3 shortsTangent

3 shortsBinormal

1 short * 41 short * 4Weights

3 shortsNormal

3 floats3 floatsPosition

Per pixel lightingStandard lightingVertex attributes / bone

Plus texture coordinates – depends how many units are used.

Bone Offset Method
Data organization 3/3

• Preprocess the model to batch up groups of
faces that are using vertices that are using either
1,2,3 or 4 bones. This way you know when to pick
the optimal vertex program to render the group of
faces.

• If you have more than 28 bones, preprocess the
model to break it up in groups of faces that share
the same bones.

Optimization 1/2

• Use:
• In OpenGL, display lists to store the geometry on the

GPU – in D3D, Vertex buffers:
• Batch up all sub meshes
• Update constant table for the motion capture playback
• Draw the display list (buffers)
• This is good for multiple instances of the same model

• Use Vertex Array Range / Fence if you vary the
weights or other vertex attributes over time (bulging
effects, etc…)

Optimization 2/2
• Use :

• OpenGL: the texture shaders and/or register
combiners to do the lighting whenever possible – it
should save a few instructions.

• D3D: Pixel shaders.
• Be careful with multipass rendering – the GPU

has to process the vertices for each pass (no
persistency of the processed data)

• Make the most use of the 4 texture units and the
register combiners to avoid multipass rendering.

• Use appropriate data types to minimize data
transfers (AGP 4x is 1066MB/s). The data gets
converted to IEEE 32-bit (s23e8) floating point
precision internally anyway.

Character skinning demo

• 85 bones
• Up to 4 matrices per vertex
• Source code in the OpenGL SDK:

• OpenGL\src\demos\vtxprg_skin

Questions, comments, feedback

• Sébastien Dominé, sdomine@nvidia.com
• www.nvidia.com/developer

