
Generating Displacement from

Normal Map for use in 3D Games

Kirill Dmitriev

Evgeny Makarov

NVIDIA

Adding Geometric Detail to the Game

Displacement vs. Bump or POM

 Can be done using HW Tessellation

 Silhouettes

 Occlusion and self shadowing

 Correct parallax

 Works with multisampling

Full Artistic Pipeline

 Design coarse model

 Subdivide and add details

 Calculate displacement as mesh difference

height

Shortcut possible?

 Have only coarse model and normal map

 Want to compute displacement

?! ?!

Computing Displacement in 1D

 Normal per texel is known

 Texel world size is known

Depth Difference Map (DDM)

 Preprocess normal map to build DDM

 DDM stores height delta when crossing the texel

depth difference

texel size

Computing Displacement in 1D

 Get displacement map by integrating depth

difference map

Computing Displacement in 1D

 Get displacement map by integrating depth

difference map

Computing Displacement in 1D

 Get displacement map by integrating depth

difference map

Computing Displacement in 1D

 Get displacement map by integrating depth

difference map

Depth Difference in 2D

 2D DDM stores two height deltas: for horizontal

and vertical directions

Depth ddx

Depth ddy

Computing Displacement in 2D

 Integrate DDM starting from the corner

 Integrate DDM starting from multiple points

Errors will occur …

 Depending on the route to a point we can get

different results

route a
route b

height(route a) ≠ height(route b)

Normal Map is Lossy

 Stores average per texel. Can’t reconstruct exact

normal in every point

 Does not have information about discontinuities

 Stored in low precision

 All those errors accumulate

Uniform Approach

 Compute every texel independently

 No preferred points or directions

Depth Difference Map

Uniform Approach

 Starting from zero depth integrate depth over circle

 Shoot N rays uniformly distributed over 360 º

N directions

Depth Difference Map

Integrating Height

 Height is reconstructed from DDM on the fly and added

to integration sum

 Integration in polar coordinates!

 height(B) = height(A) + DDM(x,y) * float2(Δx,Δy)

Δx

Δy A

B (x,y)

Uniform Approach

 Target zero displacement on average

 Offset texel by computed average

Displacement Map

-average

Results

Before After

Results

Results

Summary

 Fully automatic solution

 Works reasonably well even on ‘painted’ normal maps

 Getting good looking displacement is not the whole

story…

Displacement Problems

 Cracks

 Texture coordinates discontinuities

 Multiple materials assigned to sub-meshes

 Stretching

Texture Coordinates Discontinuities

 Use adjacency information in Domain Shader

to stitch the crack

 Each vertex gets assigned 3 extra coordinates

 1 for dominant corner

 2 for dominant edge

Texture Coordinates Discontinuities

 Reducing discontinuities on the seams

 For each texel

 Using adjacency, average height value of connected texels

 Blend smoothly displacement to the border

Multi Materials

 Mark material seams

 Zero displacement on the seam

Stretching

 2-pass approach

 Calculate displacement as usual

 Measure stretching on real model

 Reduce weight of texels causing stretching on the

second pass

Geometry Collision and Separation

 Displacement changes object sizes

 Objects may collide or separate from each other

 Characters flying over tessellated terrain

 Billboards pierced by tessellated walls

 Zero average displacement helps

 Deferred decals

Questions

kdmitriev

 or

emakarov

 (at)

nvidia.com

