
Using GL_NV_vertex_array_range and GL_NV_fence
on GeForce Products and Beyond

John Spitzer
john.spitzer@nvidia.com

NVIDIA Corporation

Cass Everitt

cass@nvidia.com
NVIDIA Corporation

Overview

The OpenGL extension, GL_NV_vertex_array_range, offers the absolute highest
performance available for transferring geometry from the application to the GPU. By
allowing the application to allocate and access memory that’s usually only accessible by
the driver, a developer can minimize data copying and thus maximize performance. The
memories accessible through this extension are in limited supply, and whole frames will
often not fit completely. The GL_NV_fence extension provides for a very fine-grained
synchronization to enable the best possible pipelining of CPU and GPU processing.
These extensions are both available in the Detonator2 5.32 (and subsequent) drivers.

Figure 1 shows an example program that uses these extensions to achieve very high
polygon throughput for dynamic geometry. It may be difficult to tell, but the image on
the right is actually a wireframe view of the image on the left.

Figure 1. This dynamic, undulating mesh of 180,000 triangles (shown in wireframe on the right) renders at
approx. 39fps (7 Mtri/sec) using NV_vertex_array_range and NV_fence. Without NV_vertex_-
array_range, the performance drops to approx 25 fps (4.3 Mtri/sec). This data was collected from a
Pentium III 700 MHz with a GeForce2 GTS and AGP2X.

General Process

1. Allocate memory
2. Allocate fences*
3. Enable memory
4. Define vertex arrays
5. Finish fence(s)∗
6. Copy data into arrays
7. Draw indexed primitives
8. Set fence(s)*
9. Repeat steps 4, 5, 6, 7 and 8 as necessary

Allocate Memory

This extension allows one to allocate either video memory (that which is resident on the
card) or AGP memory (system memory that is easily accessed by the bus/card). Video
memory, though fast, is a precious resource on any system, and should be used sparingly,
and only for static geometry. AGP memory is typically much more plentiful (often many
megabytes of memory can be allocated), and it may offer similar if not identical
performance to video memory (depending upon the AGP bus speed).

To allocate AGP memory or video memory, one must supply the
wglAllocateMemoryNV call with the appropriate arguments:

Memory Allocated ReadFrequency WriteFrequency Priority

AGP Memory [0, .25) [0, .25) (.25, .75]

Video Memory [0, .25) [0, .25) (.75, 1]

All arguments outside these ranges will yield poor results.

For best results, only allocate memory once. If multiple buffers are needed, sum the sizes
and allocate one large buffer, then partition it after the allocation. Switching between
multiple (separately allocated) buffers is expensive and unnecessary. There is no proxy
mechanism to determine the maximize size buffer that can be allocated. If an allocation
request cannot be satisfied, wglAllocateMemoryNV will return NULL.

∗ Fences are only required in a memory-limited situation, and can be ignored if all arrays for a frame will fit
into the buffer allocated.

Allocate Fences [optional]

Fences are allocated using the same semantics as those of texture objects. A typical
allocation is as follows:

GLuint fence;

glGenFencesNV(1, &fence);

Enable Memory

Call glVertexArrayRangeNV on the entire allocated memory buffer. Calling it upon a
subset of the memory buffer will result in an invalid range, and will not work. Once the
range has been defined, enable the extension by calling:

 glEnableClientState(GL_VERTEX_ARRAY_RANGE_NV);

Define Vertex Arrays

At this point, one must define the vertex array pointers, just like normal. Use one of the
glInterleavedArrays formats, or use glVertexPointer, glNormalPointer, etc. Performance
between these two methods will be similar, if not identical. The following restrictions
apply to all defined arrays:

• strides for defined arrays must be less than 256
• strides must be multiples of 4
• pointers must be 4-byte aligned
• must be enabled
• must exist entirely within enabled buffer

Furthermore, each defined array must fall into one of the following formats:

Array Size Type Stride Pointer

Alignment

Color 3 GL_FLOAT

Color 4 GL_FLOAT

Color 3 GL_UNSIGNED_BYTE ≠ 0

Color 4 GL_UNSIGNED_BYTE

Normal - GL_FLOAT

Normal - GL_SHORT Multiple of 8, ≠ 0 8-byte

TexCoord 1 GL_SHORT ≠ 0

TexCoord 2 GL_SHORT

TexCoord 3 GL_SHORT Multiple of 8, ≠ 0 8-byte

TexCoord 4 GL_SHORT 8-byte

TexCoord 1,2,3,4 GL_FLOAT

Vertex 2 GL_SHORT

Vertex 3 GL_SHORT Multiple of 8, ≠ 0 8-byte

Vertex 4 GL_SHORT 8-byte

Vertex 2,3,4 GL_FLOAT

VertexWeight 1 GL_FLOAT

The Color formats apply to both glColorPointer and glSecondaryColorPointerEXT. Note
that glEdgeFlagPointer, glFogCoordPointerEXT and glIndexPointer are not supported
under this extension, and their use will disable it.

Finish Fence(s) [optional]

In the memory-limited condition, it will be necessary to recycle AGP buffer space.
Ideally, we only want to make sure that the GPU has finished up to some point in the
OpenGL command stream before the CPU begins filling that memory. The
GL_NV_fence extension provides just this sort of fine-grained synchronization. Before
reusing buffer space, the fence that was set following its last use must be finished:

glFinishFenceNV(fence);

Copy Data into Arrays

When writing to video memory, only systems that support Fast Writes will get good write
performance. When using AGP memory, it is absolutely essential that data be written to
the buffer sequentially to maximize memory bandwidth. This is because AGP memory is
uncached, and writing sequentially will take full advantage of the write combiners.
Additional performance can be obtained by creating two or more partitions within the
buffer, then alternately writing between them. This allows the CPU to fill one partition
while the other is simultaneously drained by the GPU. If using a single partition (or a
small number), ensure that any previous rendering calls are finished with the partition
before refilling it. This can be accomplished by using GL_NV_fence as described in
this paper. The synchronization provided by the GL_NV_fence extension is significantly
finer-grained than that of the glFlushVertexArrayRangeNV() function, and
should be preferred.

Draw Indexed Primitives

For drawing primitives, it’s best, though not essential, to use indexed formats (i.e.
glDrawElements, glDrawRangeElements) over non-indexed ones (i.e. glDrawArrays),
and to avoid glArrayElement altogether (and do not mix glArrayElement with immediate
mode calls – this will certainly yield poor results). Indexed elements not only have the
advantage of minimizing bandwidth (only a single index needs to be transferred, not all
of a vertex’s data), but the driver can also quickly and easily detect shared vertices. Upon
encountering a vertex the first time, it will need to be transformed and potentially lighted.
The second time it’s encountered, the index may show up in the vertex cache as being
already processed. GeForce products have a vertex cache of 16 entries, although it’s
effectively only 10 entries due to pipelining.

Cache usage can be maximized by spatially sorting geometry. Long strips are fairly
efficient even without the vertex cache, so great pains need not be taken to insure good
performance. However, when triangle/quad lists are processed, it is definitely best to
render adjacent primitives at the same time, if possible.

GeForce products require indices to not exceed 65535. If more indices are necessary,
break the object into smaller parts.

Set Fence(s) [optional]

As soon as a buffer will no longer be referenced by subsequent rendering calls, set a
fence. When memory must be reclaimed, these fences can be finished in the order they
were set. The following command is used to set a fence:

glSetFenceNV(fence, GL_ALL_COMPLETED_NV);

Important Caveats for NV_vertex_array_range

When using vertex array range, avoid two-sided lighting, clip planes, logic op or
bordered textures, because (depending on the specific hardware) these may disable the
extension. The vertex arrays will still reside in uncached memory, yielding much lower
performance than had they resided in regular system memory. General avoidance of
these modes is advised, since they all trigger some amount of software acceleration.

Because the memory allocated by the vertex array range extension is uncached, reading
from the buffer will be very, very slow. If an application needs to read the vertex array
data (e.g. for collision detection, deformation or animation), it should maintain a second
copy of the data in cached system memory. Once the modification is completed, the data
should be copied to the vertex array range buffer in large, contiguous blocks. Failure to
do this will result in extremely poor performance. Finally, it’s best to tightly pack one’s
data in the vertex array range buffer. In other words, don’t include application-specific
data - only the vertices, normals, colors, texture coordinates and/or weights that are
needed by OpenGL. This not only optimizes memory usage, but also minimizes cache
misses when the data is fetched by the GPU.

