
Texture Space Bump MapsTexture Space Bump Maps
Sim Dietrich

Bump Mapping Overview
• Bump mapping enables per-pixel detail without needing to use

per-pixel-sized triangles
• It is actually a lighting calculation, either diffuse, specular or

both
• Because it is a lighting calculation, it is essentially simply a dot

product
• Some bump mapping techniques don’t use dot products

• EMBM uses lookups into 2D textures based
on dU and dV per pixel

• Embossing uses lookups into 2D textures
based on dU and dV per vertex

• They are really 2D operations, and can’t correctly handle
arbitrary geometry very easily

DOT3 Bump Mapping

• To perform correct bump mapping or per-pixel
lighting, we need to perform a true 3 dimensional
dot product per-pixel between two 3-dimensional
vectors
• One representing the light vector or half-angle
• The other representing the per-pixel surface

normal
• To generate the correct result, both vectors must

be defined in the same coordinate space
• View space
• World space
• Model space
• Any space, as long as both vectors are expressed

in it

Texture Space

• One convenient space for per-pixel lighting
operations is called Texture Space

• It represents a local coordinate system defined at
each vertex of a set of geometry

• You can think of the Z axis of Texture Space to be
roughly parallel to the vertex normal

• The X and Y axes are perpendicular to the Z axis
and can be arbitrarily oriented around the Z axis

Why Texture Space

• Texture Space gives us a way to redefine the
lighting coordinate system on a per-vertex basis

SxT

SxT
SxT

SxT

S
T

T
S

S

T
S

T

Why Texture Space?

• If we used model or world space bump maps, we
would have to regenerate the entire bump map
every time the object morphed or rotated in any
way, because the bump map normals will no
longer be pointing in the correct direction in
model or world space

• We would have to recompute the bump maps for
each instance of each changing object each
frame – no thanks

Why Texture Space?

• Texture Space is a surface-local basis in which
we define our normal maps

• Therefore, we must rotate the light into this space
as well

• This means we must move the light vectors into
Texture Space before performing the per-pixel dot
product

Texture Space Diagram

Normal Map – A flat plane in
S,T direction

SxT

S

T

Normal map applied to object
RGB are in the wrong space!!

Solution = Rotate Light position into
S,T,SxT space.

Result: New light position for each vertex.

How to Author for Texture Space

• The best method for generating Texture Space for
your geometry is as follows :
• Have the artist apply bump maps in their authoring

tool – or just use the same mapping as the decal
• Don’t let them use texture mirroring
• Don’t use degenerate projections (ie stretched

textures)
• When loading in a model, create an extra set of 3

3D vectors per vertex
• These will store the axes of the Texture Space basis
• Generate the Texture Space vectors from the vertex

positions and bump map texture coordinates

How to Generate Texture Space?

• For each triangle in the model :
• Use the x,y,z position and the s,t bump map

texture coordinates
• Create plane equations of the form :

• Ax + Bs + Ct + D = 0
• Ay + Bs + Ct + D = 0
• Az + Bs + Ct + D = 0

• Solve for the texture gradients dsdx, dsdy, dsdz,
etc.

Generating Texture Space
• Now treat the dsdx, dsdy, and dsdz as a 3D vector

representing the S axis < dsdx, dsdy, dsdz >
• Do the same to generate the T axis
• Now cross the two to generate the SxT axis – this

is the ‘Z’ or up axis of Texture Space, and is
typically close to parallel with the triangle’s
normal

• If your SxT and the triangle normal point in
opposite directions, the artist applied the texture
backwards – have the artist fix this, or negate the
SxT axis

Generating Texture Space

• These 3 Axes together make up a 3x3
rotation/scale matrix

dsdx dtdx SxTx
dsdy dtdy SxTy
dsdz dtdz SxTz

Putting an XYZ model-space vector through this 3x3
matrix produces a vector expressed in local
Texture Space

Per-Triangle Bases

SxT
SxT

S
T

T

S

Per-Triangle Bases
• We now have a coordinate basis for each triangle
• We need them on a per-vertex basis so they can

vary smoothly across our geometry
• The solution :

• For each vertex, sum up the S vectors from each
face that shares this vertex.

• Do the same for all T and SxT vectors
• Normalize each sum vector
• Optionally scale by the average original magnitude

of S,T or SxT if your texture map is applied
anisotropically

• The result is per-vertex Texture Space
• This is analogous to calculating vertex normals

for lighting

Per-Vertex Texture Space

• Now we have what we need to move a light into a
local space defined at each vertex via the Texture
Space Basis Matrix

• For each per-pixel light, we move it’s L or H
vector into local Texture Space

• On the CPU with C code
• Or on the GPU with a vertex program

Texture Space In Practice
• The L or H vector is linearly interpolated across

the polygon in Texture Space :
• In the diffuse or specular color

• It must be normalized before storing in the color
• It will get de-normalized across large polygons
• Doesn’t handle anisotropy well

• Or in a set of 3D texture coordinates
• Use a Cube Map to renormalize the vector

• Able to support scaling on textures
• Can avoid CPU or GPU work

• The L or H vector can be renormalized per-pixel
via a texture, such as a Cube Map, Volume Map or
Projected Texture

The Resulting Texture Space

SxT

SxT
SxT

SxT

S
T

T
S

S

T
S

T

What about Animation?

• When triangles distort, so do their texture
gradients, invalidating the model space->Texture
Space matrix

• When triangles rotate, the model space->Texture
Space matrix is invalid

• Therefore, the Texture Space will need to be
updated or recomputed during animation

• The obvious approach, and one practical for
simple models, is to simply go through the
previous steps for each animation frame
• Regenerate Texture Space for each triangle, then

each vertex

A Better Way – Update the Bases

• The two most popular animation techniques both
work with Texture Space bump mapping
WITHOUT requiring recalculating the entire basis

• Bone-Based Skinning (Indexed or Not)

• Keyframe Interpolation

Bone-Based Skinning

• For each axis of the Texture Space – S, T and
SxT, “skin” the axis by putting it through the
same matrix as the vertex normals

• Alternatively, skip the SxT axis and perform S
cross T instead – can be cheaper if you have
many bones

Keyframe Interpolation

• Create keyframes for the S, T and SxT axes as
well

• Linearly interpolate between the S(0) and S(1)
using the keyframe weight from 0 to 1

(1 – Weight) S0 + (Weight) * S1
• Now Normalize the result
• To handle scaled or stretched textures

• Rescale by the linearly interpolated length of the
two keyframe vectors

• NormalizedVector *=
(1 – Weight) LengthOf(S0) + (Weight) * LengthOf(S1)

Keyframe Interpolation

• The normalizing of the vector approximates a
SLERP

• The rescaling ensures that any stretching or
scaling in the textures is preserved
• especially important if morphing

Texture Space Calculations

• The cost of computing and updating Texture
Space for moving models can seem large

• Keep it in perspective :
• For a certain amount of per-vertex work, you are

getting tremendous per-pixel detail

• All of the previous techniques for moving lights
into Texture Space and updating the Texture
Space vectors for moving objects can be handled
with vertex shaders

Finally, the Dot Product
• Now we have a per-pixel representation of the L

or H vector expressed in smoothly varying local
coordinates

• Now, we can perform the DOT3 operation in the
pixel shader or register combiners

• Next, apply the light color
• If computing H, we can raise the dot product to a

power via self-multiplication
• Watch for banding with high exponents

• We can apply attenuation effects either per-vertex
or per-pixel with texture techniques

• Finally, combine with a decal texture or gloss
map for the final result

