

Per-Face Texture Mapping for

Realtime Rendering
―Realtime Ptex‖

Quick Note

• For CUDA/Compute folks:

– Ptex != PTX

Goals

 Render native Ptex datasets in real-time on commodity

hardware

 Remove texture seams from textured models

 Remove expensive, manual model unwrap step from art

pipeline

 Support arbitrary resolutions on a per-face basis

Video Time!

Video Recap

Stored as 8Kx8K

Rendered as 2Kx2K

Model Statistics

• ~800 FPS on GTX 460 with no optimization

• 278M of Color Texture Data

• 5812 Patches

General Steps

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Load Model

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Load Model

• Vertex Data

– Any geometry arranged as a quad-based mesh

– Example: Wavefront OBJ

• Patch Texture

– Power-of-two texture images

• Adjacency Information

– 4 Neighbors of each quad patch

• Easily load with library available from http://ptex.us/

http://ptex.us/

Load Model (cont’d)

• Texel Data

– Per face, load the largest available mipmap level from the

source files

– In memory, place the loaded texel data into a memory

buffer that has a fixed-size texel border region

– The borders must be big enough for the largest filter kernel

you will support (Border size = ½ filter kernel size)

• Bilinear (2x2 kernel): 1 pixel border

• 16x Aniso (16x16 kernel): 8 pixel border

Load Model

VB: …

IB:

Load Model

VB: …

IB:

Bucket and Sort

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Bucket and Sort

• Bucket ptex surfaces into groups by Aspect Ratio

– Each Aspect Ratio will be one bucket

– 1:1 bucket, 2:1 bucket, 4:1 bucket, etc

• Then, within each bucket, sort by decreasing surface

size and assign IDs.

– This allows us to densely pack texture arrays, avoiding ―empty‖

surfaces.

Bucket and Sort

Bucket 4:1

Bucket 1:1

0

Reorder Index Buffer

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Reorder Index Buffer

• Original • Post Sort, we have 2!

IB:

IB(1:1):

IB(4:1):

Generate Mipmaps

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Generate Mipmaps

• Walk through surfaces, and generate a mipmap chain

from native size to (MinFilterSize x MinFilterSize) for

each surface.

– Bilinear stops at 2x2, 8xAniso stops at 8x8

• Ptex data files do not guarantee complete mipmap

chains—although the library can generate all levels for

you—with pre-multiplied alpha.

• Mipmap chains stop to allow for unique pinning values

in the corners

Generate Mipmaps

• Done for every surface, but only inside the surface—the

border is not touched.

Fill Borders

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Fill Borders

• Copy neighbor texels into border area of this surface’s

mip level

– Match source and destination number of pixels when

possible

• Bordered textures are the heart of the logical realtime

ptex solution

• Allows 1-2 texture lookups per ptex sample request

– 1 if not performing tween-mip-level interpolation, 2 otherwise

Fill Borders

Fill Borders

Fill Borders

Fill Borders

Fill Borders

Pack Texture Arrays

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Texture Arrays

• Like 3D / Volume Textures, except:

– No filtering between 2D slices

– Only X and Y decrease with mipmap level (Z doesn’t)

– Z indexed by integer index, not [0,1]

• E.g. (0.5, 0.5, 4) would be (0.5, 0.5) from the 5th slice

• API Support

– Direct3D 10+: Texture2DArray

– OpenGL 3.0+: GL_TEXTURE_2D_ARRAY

Pack Texture Arrays

• Copy all generated data into Texture2DArray

• Each Texture2DArray represents a single mipmap level

– Texture2DArrays present a view of the data that is efficient

for GPU layout

– Logical Textures cut across the same page index of every

Texture2DArray

Pack Texture Arrays

0 1 2

3

Logical Texture Layout

Pack Texture Arrays

10x10x3
(1+8+1)x(1+8+1)x3

6x6x4
(1+4+1)x(1+4+1)x4

4x4x4
(1+2+1)x(1+2+1)x4

GPU Layout Texture2DArray

gColor[0]

gColor[1]

gColor[2]

Pack Patch Constants

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Pack Patch Constants

• Each primitive has a ―PatchInfo‖ struct:

– TextureId – which array slice contains our data

– TopMipLevel – the index of the top-most mipmap level for this

texture

– FlipUVs – whether or not to flip UVs, allows 1:2 and 2:1 to be

grouped into same bucket

– MaxMipLevels – Maximum mipmap level for each edge

Fill Borders

Load

Model

Render

Preprocess

Draw Time

Bucket

and

Sort

Generate

Mipmaps

Fill

Borders

Pack

Texture

Arrays

Reorder

Index

Buffer

Pack

Patch

Constants

Red: Vertex and Index data

Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

Render

• Brief Recap of D3D11 Pipe stages

New Direct3D 11 Stages

IA VS HS TS DS GS RAS PS OM

Programmable (Shader)

Fixed Function

Render

• In the Hull Shader

– Store pre-expansion PrimitiveID to output control points

– This is used everywhere to determine which set of Patch

Constants are owned by the currently running thread (in

Domain, Geometry or Pixel Shaders)

New Direct3D 11 Stages

IA VS HS TS DS GS RAS PS OM

Render

• In the Domain Shader

– Vertices belonging to a quad meshes are evaluated with a

domain location, which is (0,0)-(1,1) for each patch

– Use this value to store our UV location

New Direct3D 11 Stages

IA VS HS TS DS GS RAS PS OM

Render

• Texture lookups in Domain or Pixel Shader are replaced

with a ―ptex‖ sample function.

– Determines which logical texture to work from

– Compute mipmap level(s) to access

– Scale and bias computed (u,v) by mipmap size

– Lookup texels, return weighted average

Texture Lookup Shader Code

• Traditional (D3D11)

return

 gTxDiffuse.Sample(

 gSampler,

 I.fTextureUV);

• Ptex

return

 ptex(gTxDiffuse,

 gSampler,

 I.uPrimitiveId,

 I.fTextureUV);

Complex logic hidden

in single function call

Questions?

• jmcdonald at nvidia dot com

• Brent dot Burley at disneyanimation dot com

• http://ptex.us/

• http://groups.google.com/group/ptex

• Or visit our studio session

– Monday, 8 August @ 4:30 PM – 5:00 PM

– The Studio / West Building, Ballroom A

http://ptex.us/
http://groups.google.com/group/ptex

Additional Considerations

• Filtering across edges with differing numbers of pixels

• Filtering across corners

Filtering across edges

Filtering across edges

Filtering across edges

Filtering across corners

• Corners with valence > 4

cannot be exactly

matched with a

bilerp (4 samples)

Filtering across corners

• The solution is a bit more involved.

– First, walk the mesh and determine which corners are shared

– For each shared group, determine the correct value for when

we’re exactly at that corner. E.g. Simple Average.

– Then, modify every mipmap level of every surface of that

group s.t. the shared corner has the same value

– When you’re in the corner, everyone will perform the same

lookup—regardless of mipmap level—and continuity prevails

Filtering across corners

• For Realtime Ptex, we apply pinning to all corners,

regardless of valence.

Pinned Corners

Questions redux?

• jmcdonald at nvidia dot com

• Brent dot Burley at disneyanimation dot com

• http://ptex.us/

• http://groups.google.com/group/ptex

• Or visit our studio session

– Monday, 8 August @ 4:30 PM – 5:00 PM

– The Studio / West Building, Ballroom A

http://ptex.us/
http://groups.google.com/group/ptex

