

Per-Face Texture Mapping for

Realtime Rendering
“‘Realtime Ptex”

@ SIGGRAPH2011

—

* For CUDA/Compute folks:
— Ptex != PTX

= Render native Ptex datasets in real-time on commodity
hardware

= Remove texture seams from textured models

= Remove expensive, manual model unwrap step from art
pipeline

= Support arbitrary resolutions on a per-face basis

@ SIGGRAPH2011

@ SIGGRAPH2011

Stored as 8Kx8K
Rendered as 2Kx2K

* ~800 FPS on GTX 460 with no optimization
» 278M of Color Texture Data
» 5812 Patches

m @SIGGRAPH2011

Load Bucket Generate Fill Pack
Model 20C Mipmaps Borders Pl LLE
Sort Arrays
E
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time

R d Red: Vertex and Index data
enaer Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

@ SIGGRAPH2011

Load Bucket Generate Fill Pack
and Mipmaps Borders M Texiure
Sort pmap Arrays
E
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time

R d Red: Vertex and Index data
enaer Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

* Vertex Data
— Any geometry arranged as a quad-based mesh
— Example: Wavefront OBJ

* Patch Texture
— Power-of-two texture images
* Adjacency Information
— 4 Neighbors of each quad patch
* Easily load with library available from http://ptex.us/

http://ptex.us/

w “ (M d) @SIGGRAPH2011

* Texel Data

— Per face, load the largest available mipmap level from the
source files

— In memory, place the loaded texel data into a memory
buffer that has a fixed-size texel border region

— The borders must be big enough for the largest filter kernel
you will support (Border size = % filter kernel size)

* Bilinear (2x2 kernel): 1 pixel border
* 16x Aniso (16x16 kernel): 8 pixel border

5

w m @SIGGRAPH2011

Bucket and Sort @SIGGRAPH2011

Load Bucket Generate Fill Pack
Model 20C Mipmaps Borders Pl LLE
Sort Arrays
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time

R d Red: Vertex and Index data
enaer Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

* Bucket ptex surfaces into groups by Aspect Ratio
— Each Aspect Ratio will be one bucket
— 1:1 bucket, 2:1 bucket, 4:1 bucket, etc

* Then, within each bucket, sort by decreasing surface
size and assign IDs.

— This allows us to densely pack texture arrays, avoiding “empty”
surfaces.

m “ m @SIGGRAPH2011

Bucket 1:1
Bucket4:1 B . T 3

Reorder Index Buffer

@ SIGGRAPH2011

Load Bucket Generate Fill Pack
Model 2uc Mipmaps Borders Pl LLE
Sort Arrays
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time
Red: Vertex and Index data
Render Green: Patch Constant information

Blue: Texel data
Orange: Adjacency information

* Qiriginal * Post Sort, we have 2!

IB:

m @SIGGRAPH2011

y .

Load Bucket Generate Fill Pack
Model 20C Mipmaps Borders Pl LLE
Sort Arrays
E
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time

R d Red: Vertex and Index data
enaer Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

m m @smemwzoﬁ

* Walk through surfaces, and generate a mipmap chain
from native size to (MinFilterSize x MinFilterSize) for
each surface.

— Bilinear stops at 2x2, 8xAniso stops at 8x8

* Ptex data files do not guarantee complete mipmap
chains—although the library can generate all levels for
you—with pre-multiplied alpha.

* Mipmap chains stop to allow for unique pinning values
in the corners

Generate Mipmaps

@ SIGGRAPH2011

* Done for every surface, but only inside the surface—the

border is not touched.

@ SIGGRAPH2011

Load Bucket Generate Fill Pack
Model and Mipmaps Borders 1l
S_grt N prmap) Arrays
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time
Red: Vertex and Index data
Render Green: Patch Constant information

Blue: Texel data
Orange: Adjacency information

'. m 6 SIGGRAPH2011

* Copy neighbor texels into border area of this surface’s
mip level

— Match source and destination number of pixels when
possible

* Bordered textures are the heart of the logical realtime
ptex solution

* Allows 1-2 texture lookups per ptex sample request

— 1 if not performing tween-mip-level interpolation, 2 otherwise

-

Pack Texture

@ SIGGRAPH2011

Load Bucket Generate Fill Pack
Model and Mipmaps Borders 1l
S_grt N prmap Arrays
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time
Red: Vertex and Index data
Render Green: Patch Constant information

Blue: Texel data

Orange: Adjacency information

* Like 3D / Volume Textures, except:
— No filtering between 2D slices
— Only X and Y decrease with mipmap level (Z doesn't)
— Z indexed by integer index, not [0,1]
* E.g. (0.5, 0.5, 4) would be (0.5, 0.5) from the 5" slice
* API Support
— Direct3D 10+: Texture2DArray
— OpenGL 3.0+: GL_TEXTURE_2D_ARRAY

* Copy all generated data into Texture2DArray

* Each Texture2DArray represents a single mipmap level

— Texture2DArrays present a view of the data that is efficient
for GPU layout

— Logical Textures cut across the same page index of every
Texture2DArray

M 'm w @SIGGRAPH2011

Logical Texture Layout

0 2

Pack Texture Arrays

6 SIGGRAPH2011

GPU Layout Texture2DArray
(1+8+1)x(1+8+1)x3
scoors) [B (| e
(1+4+1)x(1+4+1)x4
4x4x4
gCOIOr[Z] . . . (1+2+1)x(1+2+1)x4

Load Bucket Generate Fill Pack
Model 20C Mipmaps Borders Pl LLE
Sort Arrays
r !
Reorder Pack
Index Patch
Buffer | { Constants } Preprocess
Draw Time

R d Red: Vertex and Index data
enaer Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

* Each primitive has a “Patchinfo” struct:

— Textureld — which array slice contains our data

— TopMipLevel — the index of the top-most mipmap level for this
texture

— FlipUVs — whether or not to flip UVs, allows 1:2 and 2:1 to be
grouped into same bucket

— MaxMipLevels — Maximum mipmap level for each edge

Fill m @SIGGRAPH2011

Load Bucket Generate Fill Pack
Model 20C Mipmaps Borders Pl LLE
Sort Arrays
E
Reorder Pack
Index Patch
Buffer Constants Preprocess
Draw Time ‘ X

R d Red: Vertex and Index data
enaer Green: Patch Constant information
Blue: Texel data

Orange: Adjacency information

New Direct3D 11 Stages

i Programmable (Shader)
. Fixed Function

* In the Hull Shader
— Store pre-expansion PrimitivelD to output control points

— This is used everywhere to determine which set of Patch
Constants are owned by the currently running thread (in
Domain, Geometry or Pixel Shaders)

TGS 1Y s LS oY o

New Direct3D 11 Stages

* |n the Domain Shader

— Vertices belonging to a quad meshes are evaluated with a
domain location, which is (0,0)-(1,1) for each patch

— Use this value to store our UV location

(G513 ks BYPS TS o

New Direct3D 11 Stages

* Texture lookups in Domain or Pixel Shader are replaced
with a “ptex” sample function.

— Determines which logical texture to work from
— Compute mipmap level(s) to access

— Scale and bias computed (u,v) by mipmap size
— Lookup texels, return weighted average

Texture Lookup Shader Code £ scomewo:

* Traditional (D3D11)

return
gTxDiffuse.Sample (
gSampler,

I.fTextureUV);

* Ptex
return

ptex(gTxDiffuse,
gSampler,
I.uPrimitiveld,

I.fTexturelV);

Complex logic hidden
In single function call

jmcdonald at nvidia dot com

Brent dot Burley at disneyanimation dot com
http://ptex.us/

http://groups.google.com/group/ptex

Or visit our studio session
— Monday, 8 August @ 4:30 PM - 5:00 PM
— The Studio / West Building, Ballroom A

http://ptex.us/
http://groups.google.com/group/ptex

* Filtering across edges with differing numbers of pixels
* Filtering across corners

Filtering across edges @ sicnaprzon

Filtering across edges €2 socmaprzon

Filtering across edges @ sicnaprzon

* Corners with valence > 4
cannot be exactly
matched with a
bilerp (4 samples)

* The solution is a bit more involved.
— First, walk the mesh and determine which corners are shared

— For each shared group, determine the correct value for when
we're exactly at that corner. E.g. Simple Average.

— Then, modify every mipmap level of every surface of that
group s.t. the shared corner has the same value

— When you're in the corner, everyone will perform the same
lookup—regardless of mipmap level—and continuity prevails

Filtering across corners

* For Realtime Ptex, we apply pinning to all corners,
regardless of valence.

@ SIGGRAPH2011

@ SIGGRAPH2011

w m? @SIGGRAPHZOﬁ

* jmcdonald at nvidia dot com

Brent dot Burley at disneyanimation dot com

http://ptex.us/

http://groups.google.com/group/ptex

* Or visit our studio session
— Monday, 8 August @ 4:30 PM - 5:00 PM
— The Studio / West Building, Ballroom A

http://ptex.us/
http://groups.google.com/group/ptex

