
Optimizing For Hardware
Transform and Lighting

Optimizing For Hardware
Transform and Lighting

Sim Dietrich
NVIDIA Corporation

sdietrich@nvidia.com

HW T&L : The Good News

• Hardware T&L is extremely fast

• GeForce2 GTS can achieve 22 million drawn
triangles per second – Quadro2, Ultra even more

• Using Hardware T&L correctly is very easy

• In DX7, it all happens through VertexBuffers

HW T&L : The Bad News

• Using HW T&L incorrectly is even *easier* than
getting it right

• Some apps are slower when first ported to T&L!

• Why? Because the obvious way to use VBs is
NOT the right way

• If you replace many DrawPrimitive calls with many
DrawPrimitiveVB calls, you will be very
disappointed

HW T&L : A New API Path

• The “D3D TnL HAL” Device is new for DX7
• It allows access to :

• AGP and video memory vertex buffers
• HW Texture Matrix
• HW Texture Coordinate Generation “TexGen”
• HW Fog
• HW Lighting
• HW Clipping
• HW Transform & Projection

The D3D TnL HAL

• The TnL HAL is a different API and driver path
than the HAL

• It has different Performance Characteristics
• Even more oriented towards batching than the HAL
• Higher memory overhead for VBs

• They are DDraw Surfaces, so have a 2K memory
overhead

• Very expensive to create VBs
• Has the potential to be lighter-weight and faster

than the HAL

What is a Vertex Buffer, Anyway?

• There are two answers to this question, one for
Static VBs, and one for Dynamic VBs

• Static VBs are like textures. You create them at
level load time in AGP or video memory and leave
them there
• Great for terrain, rigid-body objects
• Not good for skinned, animated characters or

procedural effects
• NEVER create a VB at runtime – it can take 100s of

milliseconds

Vertex Buffers are Write Only

• They are not designed for getting results back
with ProcessVertices()

• You can never get the result of T&L back
• But that’s OK

• If you need to do collision detection or culling,
you’d do best to use a separate simpler database
anyway

• Case in point – Do you really need to walk through
U,Vs & diffuse colors when doing collision work?

• VBs should always be WRITE_ONLY – even on
non T&L devices

Dynamic VBs

• Dynamic VBs are sort of like like streaming DVD
video
• There is not enough space to hold every possible

frame of animation, just like there wouldn’t be
enough space to hold a DVD video in ram

• Plus, many effects are truly dynamic and have an
essentially infinite number of possible states

• The focus is on getting the vertex data from the
app to the card as efficiently as possible

The Myths Of Dynamic VBs

• If your data isn’t static, you can’t use T&L
• Wrong, VBs were designed to handle Dynamic

data, too
• Dynamic T&L is so slow as to be worthless

• Totally incorrect, Dynamic T&L is still faster than
static CPU T&L

• It is hard to manage Dynamic VBs
• I have a single page of source code to prove this

one wrong…

Shared Resources

• The GPU is a co-processor to the CPU
• If you can keep both processors busy, speed will

be excellent
• However, to work together, the CPU and GPU

must sometimes share resources
• Textures
• Frame Buffers
• Vertex Buffers

• If the sharing is managed poorly, you will get no
overlap between the GPU and CPU and
performance will suffer

Keeping GPU & CPU Busy

• Dynamic VBs are a shared resource
• CPU must write data into it
• GPU must read data out of it
• The API tries to ensure that both of these won’t

occur in the same place at the same time
• You can control how strictly access to the VB is

managed
• Control is managed through three flags :

• DDLOCK_WRITEONLY
• DDLOCK_DISCARDCONTENTS
• DDLOCK_NOOVERWRITE

DDLOCK_WRITEONLY

• Use D3DVBCAPS_WRITEONLY when creating
your VB

• Use ONLY this flag
• Do NOT USE DDVBCAPS_SYSTEMMEMORY, or

you will not get AGP or video memory vertex
buffers
• This will require the driver to copy the data into

AGP first
• You could have just put it there yourself and saved

the work
• If you specify this cap, you can only lock w/

DDLOCK_WRITEONLY

DDLOCK_DISCARDCONTENTS

• This flag tells D3D
• “I just need more space, give me a pointer with

junk in it, please”

• Specifying this flag allows the driver to “rename”
vertex buffers

• You are saying that you don’t want the object back
that you just drew, you are saying that you are
going to fill up part of this with new data

• This prevents stalling the CPU & GPU

DDLOCK_NOOVERWRITE

• DDLOCK_NOOVERWRITE says “I am just
appending data to the VB, no need to stall”

• This allows you to append data to a VB without
incurring a stall of the GPU & CPU

Using These Flags Together

• Start of Frame – Lock your Dynamic VB with
DDLOCK_DISCARDCONTENTS
• Giving you an empty buffer

• Fill with data to render
• Call Unlock(), then DrawIndexedPrimitiveVB()
• Now, as long as there is room in the VB,

• Lock with DDLOCK_NOOVERWRITE
• Append Data into VB pointer
• Unlock(), and DIPVB()

• If you run out of room, just lock the SAME VB
with the DDLOCK_DISCARDCONTENTS and
repeat

Other Dynamic VB tips

• Only use ONE dynamic VB
• An issue with DX7 requires this for performance
• This implies using the largest FVF you need

• Send triangles in large batches if you can
• NEVER use DrawPrimitive, or

DrawIndexedPrimitive, even for Text
• It will ALWAYS cause a stall of the GPU & CPU

• Check out your system’s AGP perf with BenMark
from our website
• GeForce should get 14 million tps @ AGP2X
• GeForce2 ~22 million w/ AGP 4x

Other VB Perf Tips

• Changing VB is more expensive than changing
textures – this is an API thing, not the HW

• Never do your own VB “round robin” – that’s
what the DDLOCK_DISCARDCONTENTS flag is
for

• Never use ONLY DDLOCK_DISCARDCONTENTS,
there are only so many “rename” buffers – use
appending, too

• Use only one or two static VBs, and use index
lists for different objects within them

• Write into DynamicVBs sequentially for AGP
write-combining performance

Source Code

• I wrote an extremely lightweight wrapper for
correct Dynamic VB functionality

• On NVIDIA’s Developer Website
• One for C++ heads (like me)

• DynamicVB.hpp

• One for C types
• DynamicVB.h

Other Optimizations : Culling

• The CPU is still needed for gross culling
• View Frustum

• Sphere, AABB, OBB, Cone, Cylinder
• Occlusion

• Don’t use span buffers or C-buffer – too much CPU
work

• Light Culling
• Turn off lights that are too far away to affect the

object
• Turn point lights into directional if far away

• Fog Culling
• Turn off fog if objects are too far from the fog plane

Culling and Clipping

• Do gross culling on the CPU, but leave the
Clipping to the GPU

• Expect H/W clipping to be fast (GeForce clipping
is essentially free)

• Expect guard band clipping to be very fast
• Don’t cull individual polys unless you cull them

very early and they are quite expensive
• Culling should be at the model or hierarchy level
• For world geometry at the BSP Leaf or OctTree

cube level
• H/W will clip out 1.0 < z < 0.0

Other Optimizations : LOD

• Use the CPU to perform gross LOD
• For terrain, don’t use ROAM – too CPU heavy –

cheaper to just draw the darn triangles than to
figure out which ones to draw and which to skip

• If you do adaptive terrain, do one where you
• A) don’t track previous frame’s terrain
• B) Don’t do screen space error for every triangle
• C) Can ‘quit’ at a high enough level to keep large

batch sizes – Quadtree approaches
• Don’t do View-dependent progressive meshes

• Again, too much CPU work
• View Independent Progressive Meshes look great

and are trivial to use with vertex buffers

Other Optimizations : LOD

• Never try to scale to frame rate by adding or
removing triangles in small groups on a T&L card
• You are just wasting CPU time
• 90% of frame rate drops are CPU or fill-bound, not

triangle bound
• Do less LOD calculations when frame rate drops,

not more, save the CPU time
• Reduce depth of volumetric effects, especially

when player is near
• Reduce particle counts, especially when player is

inside the particle system
• Player won’t notice

Other Optimizations : Lighting

• If multi-pass, you often don’t need it on for both
passes

• Turn on & off lights per object based on distance
from light

• Turn off per-vertex material properties if you
don’t need them
• Using the per-vertex diffuse for the diffuse material

is expensive – use it wisely
• Turn off local viewer for specular lighting if not

needed
• If you are not sure, you probably wouldn’t notice

• Turn off SpecularEnable if you aren’t using
specular for this pass

Other Optimizations : Vertex Cache

• GeForce GPUS have a ~10 entry FIFO vertex
cache
• Post-transformed vertices

• If you reuse an indexed triangle within 10
vertices, you save the AGP B/W & transform cost

• If you don’t index, or don’t re-use, you pay both
AGP & transform again

• The fastest primitive is indexed strips, sometimes
only the cost of one short per triangle if all reside
in cache

• Use the NVStripifer on our website to optimize
your models

Other Optimizations : Triangle Size

• Little known facts
• Every app is fillbound
• Every app is Xform or setup bound
• - In different parts of the same scene
• Two Engines in parallel – vertex and pixel

• Given fill rate, b/w and max xform/setup rate you can
determine what the optimal triangle size is for a GPU

• For GeForce, with a few lights on it’s about 100 pixel
triangles

• Bigger Tris get you temporarily fill bound
• Smaller Tris get you vertex bound
• More expensive vertices (more lights or xform work)

need bigger triangles to balance out

Other Optimizations : Triangle Size

• If you are temporarily fill bound (Tri too big), you
lose xform rate

• If you are xform bound (xformed vertex cache is
full) you loose potential fill rate

• This is one reason why you may not see the
optimal vertex or fill rate
• If one engine is backed up, the other will eventually

idle – and you never get this time back
• When you are drawing the sky, you lose potential

triangles
• This means that you can tessellate down to the

optimal triangle size in these cases for FREE

Other Optimizations : Stat Driver

• NVIDIA has provided a Statistics Driver for
registered developers
• Written by Ken Hurley

• You install two parts
• A monitoring program
• A special stats driver

• You start the monitoring and then run your app
• Or, you can use a hotkey to toggle the stats

collection
• Quit your app and see where you are forcing a

SpinLock()
• This means the CPU & GPU are idle

Stats Driver

• SpinLock() means the CPU is waiting on the GPU
to finish with something
• Usually a shared resource

• Most apps spend quite a bit of time here
• This time is totally wasted!

• The Stat Driver monitor will tell you where your
d3d & driver CPU time is going

• Your app should be spending > 60% of the Driver
time in DrawIndexedPrimitiveVB

• SpinLock() should be < 5%
The log file can help you track down the culprit

Summary

• T&L is Faster, but it is different
• The first time you port to DX7, you will almost

certainly do it wrong! ;(
• Use Static VBs for static geometry
• Stream vertex data through DynamicVBs
• Use the stat driver often when working on

rendering code
• Take out stalls as soon as they are introduced

• Texture Locks
• FB or ZB Locks
• VB Locks w/out proper flags
• DrawPrimitive or DIP, not the VB calls

Questions…

?
Sim Dietrich

Sim.dietrich@nvidia.com

