
Practical Performance Analysis
and Tuning

Practical Performance Analysis
and Tuning

Ashu Rege and Clint Brewer
NVIDIA Developer Technology Group

Overview

Basic principles in practice
Practice identifying the problems (and win prizes)
Learn how to fix the problems
Summary
Question and Answer
Performance Lore

Basic Principles

Pipelined architecture
Each part needs the data from the previous part to
do its job

Bottleneck identification and elimination
Balancing the pipeline

Pipelined Architecture (simplified view)

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Vertices Pixels

The Terrible Bottleneck

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Limits the speed of the pipeline

Bottleneck Identification

Need to identify it quickly and correctly
Guessing what it is without testing can waste a lot of
coding time

Two ways to identify a stage as the bottleneck
Modify the stage itself
Rule out the other stages

Bottleneck Identification

Modify the stage itself
By decreasing its workload

FPS FPS

If performance improves greatly, then
you know this is the bottleneck
Careful not to change the workload of
other stages!

Bottleneck Identification

Rule out the other stages
By giving all of them little or no work

FPS

If performance doesn’t change
significantly, then you know this is the
bottleneck
Careful not to change the workload of
this stage!

FPS

Bottleneck Identification

Most changes to a stage affect other stages as well
Can be hard to pick what test to do
Let’s go over some tests

Bottleneck Identification: CPU

CPU workload
What could the problem be?

Could be the game
Complex physics, AI, game logic
Memory management
Data structures

Could be incorrect usage of API
Check debug runtime output for errors and warnings

Could be the display driver
Too many batches

Bottleneck Identification: CPU

Reduce the CPU workload
Temporarily turn off

Game logic
AI
Physics
Any other thing you know to be expensive on the CPU
as long as it doesn’t change the rendering workload

Bottleneck Identification: CPU

Rule out other stages
Kill the DrawPrimitive calls

Set up everything as you normally would but when the
time comes to render something, just do not make the
DrawPrimitive* call
Problem: you don’t know what the runtime or driver
does when a draw primitive call is made

Use VTUNE or NVPerfHUD (more info later)
These let you see right away if the CPU time is in your
app or somewhere else

Bottleneck Identification: Vertex

Vertex Bound
What could the problem be?

Transferring the vertices and indices to the card
Turning the vertices and indices into triangles
Vertex cache misses
Using an expensive vertex shader

Bottleneck Identification: Vertex

Reduce vertex overhead
Use simpler vertex shader

But still include all the data for the pixel shader
Send fewer Triangles??

Not good: can affect pixel shader, texture, and frame
buffer

Decrease AGP Aperture??
Maybe not good: can affect texture also, depends on
where your textures are
Use NVPerfHUD to see video memory

If it’s full then you might have textures in AGP

Bottleneck Identification: Vertex

Rule out other stages
Render to a smaller backbuffer; this can rule out

Texture
Frame buffer
Pixel shader

Test for a CPU bottleneck
Can also render to smaller view port instead of
smaller backbuffer. Still rules out

Texture
Frame buffer
Pixel shader

Bottleneck Identification: Raster

Rasterization
Rarely the bottleneck, spend your time testing other
stages first

Bottleneck Identification: Texture

Texture Bound
What could the problem be?

Texture cache misses
Huge Textures
Bandwidth
Texturing out of AGP

Bottleneck Identification: Texture

Reduce Texture bandwidth
Use tiny (2x2) textures

Good, but if you are using alpha test with texture alpha,
then this could actually make things run slower due to
increased fill. It is still a good easy test though

Use mipmaps if you aren’t already
Turn off anisotropic filtering if you have it on

Bottleneck Identification: Texture

Rule out other stages
Since texture is so easy to test directly, we
recommend relying on that

Bottleneck Identification: Fragment

Fragment Bound
What could the problem be?

Expensive pixel shader
Rendering more fragments than necessary

High depth complexity
Poor z-cull

Bottleneck Identification: Fragment

Modify the stage itself
Just output a solid color

Good: does no work per fragment
But also affects texture, so you must then rule out
texture

Use simpler math
Good: does less work per fragment
But make sure that the math still indexes into the
textures the same way or you will change the texture
stage as well

Bottleneck Identification: FB

Frame Buffer bandwidth
What could the problem be?

Touching the buffer more times than necessary
Multiple passes

Tons of alpha blending
Using too big a buffer

Stencil when you don’t need it
A lot of time dynamic reflection cube-maps can get away
with r5g6b5 color instead of x8r8g8b8

Bottleneck Identification: FB

Modify the stage itself
Use a 16 bit depth buffer instead of a 24 bit one
Use a 16 bit color buffer instead of a 32 bit one

Bottleneck Identification

Now we have a bunch of practical ideas to find out
if each stage is a bottleneck or not

Questions on Bottleneck Identification?

A Tool: NVPerfHud

Free tool made to help
identify bottlenecks
Batches
GPU idle
CPU waits for GPU
Driver time
Total time
Solid color pixel shaders
2x2 textures
Etc...

Practice

Now lets look at some sample problems and see if
we can find out where the problem is
Use NVPerfHUD to help

Practice: Clean the Machine

Make sure that your machine is ready for analysis
Make sure you have the right drivers
Use a release build of the game (optimizations on)
Check debug output for warnings or errors but.....
Use the release d3d runtime!!!
No maximum validation
No driver overridden anisotropic filtering or anti-
aliasing
Make sure v-sync is off

Practice: Example 1

A seemingly simple scene runs horribly slow
Narrow in on the bottleneck

Practice: Example 1

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
0, //declares this as static
PARTICLE_VERT::FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

Dynamic vertex buffer
BAD creation flags

Practice: Example 1

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
D3DUSAGE_DYNAMIC |
D3DUSAGE_WRITEONLY,
PARTICLE_VERT::FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

Dynamic vertex buffer
GOOD creation flags

Practice: Example 1

m_pVB->Lock(0, 0,(void**)&quadTris, 0);

Dynamic Vertex Buffer
BAD Lock flags

No flags at all!?
That can’t be good....

Practice: Example 1

m_pVB->Lock(0, 0,(void**)&quadTris,
D3DLOCK_NOSYSLOCK | D3DLOCK_DISCARD);

Dynamic Vertex Buffer
GOOD Lock flags

Use D3DLOCK_DISCARD the first time you lock a
vertex buffer each frame

And again when that buffer is full
Otherwise just use NOSYSLOCK

Practice: Example 2

Another slow scene
What’s the problem here

Practice: Example 2

Texture bandwidth overkill
Use mipmaps
Use dxt1 if possible

Some cards can store compressed data in cache
Use smaller textures when they are fine

Does the grass blade really need a 1024x1024 texture?
Maybe

Practice: Example 3

Another slow scene
Who wants a prize?

Practice: Example 3

Expensive pixel shader
Can have huge performance effect
Only 3 verts, but maybe a million pixels

That’s only 1024x1024

Look at all the pixels!!

Practice: Example 3

36 cycles BAD

Practice: Example 3

11 cycles GOOD

Practice: Example 3

What changed?
Moved math that was constant across the triangle
into the vertex shader

Used ‘half’ instead of ‘float’

Got rid of normalize where it wasn’t necessary
See Normalization Heuristics
http://developer.nvidia.com

Practice: Example 4

The last one
Audience: there are no more prizes, but we’ve locked the
doors

Practice: Example 4

Too many batches
Was sending every quad as it’s own batch
Instead, group quads into one big VB then send that
with one call

Practice: Example 4

What if they use different textures?
Use texture atlases
Put the two textures into a single texture and use a
vertex and pixel shader to offset the texture
coordinates

Balancing the Pipeline

Once satisfied with performance
Balance the pipeline by making more use of un-
bottlenecked stages
Careful not to make too much use of them

FPS FPS

Summary

Pipeline architecture is ruled by bottlenecks
Don’t waste time optimizing stages needlessly
Identify bottlenecks with quick tests
Use NVPerfHUD to analyze your pipeline
Use Fxcomposer to help tune your shaders
Check your performance early and often

Don’t wait until the last week!

Questions?

Ashu Rege (arege@nvidia.com)
Clint Brewer (cbrewer@nvidia.com)

Other NVIDIA programming talks

GPU Gems Showcase
Wed 5:30 – 6:00

Real-time Translucent Animated Objects
Fri 2:30 – 3:30

Performance Lore

We collected some advice from various developers
and include it here so you don’t have to discover it
the hard way

Performance Lore

Use low resolution (<256x256) 8-bit normalization
cube-maps. Quality isn’t reduced since 50% of
texels in high resolution cube-map are identical
you are only getting nearest filtering
Use oblique frustum clipping to clip geometry for
reflection instead of a clip plane
Re-use vertex buffers for streaming geometry.
Don’t create and delete vertex buffers every frame
if they could be re-used
Use multiples of 32 byte sized vertices for transfer
over AGP

Performance Lore

Use Occlusion Query and render object’s bounding
box this frame. Then use the result next frame to
decide whether or not you need to draw the real
object
For ARB fragment programs use
ARB_precision_hint_fastest
Use 16-bit 565 cube-maps for dynamic reflections
on cars. Don’t need 32-bit reflections
Blend out small game objects and don’t render
them when they are far away. cuts down on
batches

Performance Lore

use half instead of float optimizations early in
development
If rendering multiple passes, lay down Depth first
then render your expensive pixel shaders. Cuts out
depth complexity problems when shading
If rendering multiple passes, on later additive
passes you can set alpha to r + g + b, then use
alpha test to cut on fill
Terrain was rendered in 4 passes in ps1.1 due to
texture limits. Render it in 1 pass in ps2.0

Performance Lore

Communicate with IHVs about your problem,
sometimes it really isn’t your code and we can fix
the bugs!
Use texture pages / atlases to combine objects into
a single batch
Use anisotropic filtering only on textures that need
it. Don’t just set it to default on
Don’t lock static vertex buffers multiple times per
frame. make them dynamic
Sorting the scene by render target gave a large
perf boost

Performance Lore

When locating the bottleneck, divide and conquer.
Lower resolution first, cuts the problem almost in
half. rules out just about everything fill and pixel
related
Use float4 to pack multiple float2 texture
coordinates
Optimize your index and vertex buffers to take
advantage of the cache
Move per object calculations out of the vertex
shader and onto the cpu
Move per triangle calculations out of the pixel
shader and into the vertex shader

Performance Lore

Use swizzles and masks in your vertex and pixel
shaders: Value.xy = blah
Use the API to clear the color and depth buffer
Don’t change the direction of your z test mid frame,
going from > ...to... >= ...to... = should be fine, but
don’t go from > ...to... <
Don’t use polygon offset if something else will
work
Don’t write depth in your pixel shader if you don’t
have to

Performance Lore

Use Mipmaps. If they are too blurry for you, use
anisotropic and/or trilinear filtering: that gives
better quality than LOD bias
Rarely is there a single bottleneck in a game. If you
find a bottleneck and fix it, and performance
doesn’t improve more than a few fps. Don’t give
up. You’ve helped yourself by making the real
bottleneck apparent. Keep narrowing it down until
you find it

Bottleneck Identification

Run App Vary FB FPS
varies?

FB
limited

Vary texture
size/filtering

FPS
varies?

Vary
resolution

FPS
varies?

Texture
limited

Vary
fragment

instructions

FPS
varies?

Vary
vertex

instructions

FPS
varies?

Transform
limited

Vary
vertex size/
AGP rate

FPS
varies?

Transfer
limited

Fragment
limited

Raster
limited

CPU
limited

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

references

http://developer.nvidia.com/object/GDC_2004_Pres
entations.html
Tomas Akenine-Moller and Eric Haines, Real-Time
Rendering, second edition
http://developer.nvidia.com/object/GDCE_2003_Prese
ntations.html, Has other presentations on finding and
locating the bottleneck

developer.nvidia.comdeveloper.nvidia.com
The Source for GPU Programming

Latest documentation
SDKs
Cutting-edge tools

Performance analysis tools
Content creation tools

Hundreds of effects
Video presentations and tutorials
Libraries and utilities
News and newsletter archives

EverQuest® content courtesy Sony Online Entertainment Inc.

GPU Gems: Programming Techniques, GPU Gems: Programming Techniques,
Tips, and Tricks for RealTips, and Tricks for Real--Time GraphicsTime Graphics

Practical real-time graphics techniques from
experts at leading corporations and universities

Great value:
Contributions from industry experts
Full color (300+ diagrams and screenshots)
Hard cover
816 pages
Available at GDC 2004

“GPU Gems is a cool toolbox of advanced graphics
techniques. Novice programmers and graphics gurus
alike will find the gems practical, intriguing, and
useful.”
Tim Sweeney
Lead programmer of Unreal at Epic Games

“This collection of articles is
particularly impressive for its depth and
breadth. The book includes product-
oriented case studies, previously
unpublished state-of-the-art research,
comprehensive tutorials, and extensive
code samples and demos throughout.”
Eric Haines
Author of Real-Time Rendering

For more, visit:For more, visit:
http://http://developer.nvidia.com/GPUGemsdeveloper.nvidia.com/GPUGems

