
OpenGL PerformanceOpenGL Performance
John Spitzer



2

OpenGL Performance

John Spitzer
Manager, OpenGL Applications Engineering
jspitzer@nvidia.com



3

Possible Performance Bottlenecks

They mirror the OpenGL pipeline
• High order surface evaluation
• Data transfer from application to GPU
• Vertex operations (fixed function or vertex 

program)
• Texture mapping
• Other per-fragment operations



4

High Order Surface Evaluation

Each patch requires an amount of driver setup
• CPU dependent for coarse tessellation
• Will improve as driver optimizations are completed
• Integer tessellation factors faster than fractional
• Driver may cache display-listed patches, so that 

setup is amortized over many frames for static 
patches



5

Evaluating Higher Order Surfaces

• Use surfaces if:

• You tessellate to more than

Degree_U * Degree_V * 3

• Driver data is smaller than equivalent triangles

• Cost of increasing the tessellation is small

• Cost is roughly Sqrt(N) up to 512 triangles.



6

Transferring Geometric
Data from App to GPU

So many ways to do it
• Immediate mode
• Display lists
• Vertex arrays
• Compiled vertex arrays
• Vertex array range extension



7

Immediate Mode

The old stand-by
• Has the most flexibility
• Makes the most calls
• Has the highest CPU overhead
• Varies in performance depending on CPU speed
• Not the most efficient



8

Display Lists

Fast, but limited
• Immutable
• Requires driver to allocate memory to hold data
• Allows large amount of driver optimization
• Can sometimes be cached in fast memory
• Typically very fast



9

Vertex Arrays

Best of both worlds
• Data can be changed as often as you like
• Data can be interleaved or in separate arrays
• Can use straight lists or indices
• Reduces number of API calls vs. immediate mode
• Little room for driver optimization, since data 

referenced by pointers can change at any time



10

Compiled Vertex Arrays

Solve part of the problem
• Allow user to lock portions of vertex array
• In turn, gives driver more optimization 

opportunities:
• Shared vertices can be detected, allowing driver to 

eliminate superfluous operations
• Locked data can be copied to higher bandwidth 

memory for more efficient transfer to the GPU
• Still requires transferring data twice



11

Vertex Array Range (VAR) Extension

VAR allows the GPU to pull vertex data directly
• Eliminates double copy
• Analogous to Direct3D vertex buffers
• VAR memory must be specially allocated from AGP 

or video memory
• Facilitates post-T&L vertex caching
• Introduces synchronization issues between CPU 

and GPU



12

VAR Memory Allocation and Issues

Video memory has faster GPU access, but precious
• Same memory used for framebuffer and textures
• Could cause texture thrashing
• On systems without Fast Writes, writes will be slow

AGP memory typically easier to use
• Write sequentially to take advantage of CPU’s write 

combiners (and maximize memory bandwidth)
• Usually as fast as Video memory

Best to use either one large chunk of AGP or one 
large chunk of Video; switching is expensive

NEVER read from either type of memory



13

Facilitates Post-T&L Vertex Caching

All NVIDIA GPUs have post-T&L caches
• Replacement policy is FIFO-based
• 16 elements on GeForce 256 and GeForce2 GPUs
• 24 elements on GeForce3
• Effective sizes are smaller due to pipelining

Only activated when used in conjunction with:
• Compiled vertex arrays or VAR
• glDrawElements or glDrawRangeElements

Vertex cache hits more important than primitive 
type, though strips are still faster than lists

Do not create degenerate triangle strips



14

VAR Synchronization Issues

CPU is writing to and the GPU reading from the 
same memory simultaneously

Must ensure the GPU is finished reading before the 
memory is overwritten by the CPU

Current synchronization methods are insufficient:
• glFinish and glFlushVertexArrayRangeNV are too 

heavy-handed; block CPU until GPU is all done
• glFlush is merely guaranteed to “complete finite 

time” – could be next week sometime
Need a mechanism to perform a “partial finish”

• Introduce token into command stream
• Force the GPU to finish up to that token



15

Introducing: NV_fence

NV_fence provides fine-grained synchronization
• A “fence” is a token that can be placed into the 

OpenGL command stream by glSetFenceNV
• Each fence has a condition that can be tested (only 

condition available is GL_ALL_COMPLETED_NV)
• glFinishFenceNV forces the app (i.e. CPU) to wait 

until a specific fence’s condition is satisfied
• glTestFenceNV queries whether a particular fence 

has been completed yet or not, without blocking



16

How to Use VAR/fence Together

Combination of VAR and fences is very powerful
• VAR gives the best possible T&L performance
• With fences, apps can achieve very efficient 

pipelining of CPU and GPU
In memory-limited situations, VAR memory must be 

reused
• Fences can be placed in the command stream to 

determine when memory can be reclaimed
• Different strategies can be used for dynamic/static 

data arrays
• App must manage memory itself



17

VAR/fence Performance Hints

Effective memory management and synchronization 
is key
• Delineate static/dynamic arrays
• Avoid redundant copies

• Do this on a per-array bases, not per-object
• Be clever in your use of memory

• Use fences to keep CPU and GPU working in 
parallel



18

Other Vertex Array Range Issues

Separate vs. Interleaved Arrays
• If an object’s arrays are a mix of static and 

dynamic, then interleaved writing will be inefficient
• Interleaved arrays may be slightly faster though

Only use VAR when HW T&L is used
• Not with vertex programs on NV1X
• Not with feedback/selection

VAR array can be of arbitrary size, but indices must 
be less than 1M (1,048,576) on GeForce3

Data arrays must be 8-byte aligned



19

Vertex Operations

Vertex Program or Fixed Function Pipeline?
For operations that can be performed with the fixed 

function pipeline, that should be used, because:
• it will also be hardware accelerated on NV1X
• it will be faster on GeForce3, if lighting-heavy

All other operations should be performed with a 
vertex program



20

Vertex Program Performance

Vertices per second = ~ clock_rate/program_length
Vertex Program Performance

0

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

Instructions per Program

Ve
rt

s/
s_



21

Fixed Function Pipeline Performance

GeForce3 fixed function pipeline performance will 
scale in relation to NV1X in most cases

Two sided lighting is an exception – it is entirely 
hardware accelerated in GeForce3

Performance penalty for two sided lighting vs. one 
sided is dependent upon number of lights, 
texgen, and other variables, but should be almost 
free for “CAD lighting” (1 infinite light/viewer)



22

Texturing

Hard to optimize
• Speed vs. quality – make it a user settable option
• Pick the right filtering modes
• Pick the right texture formats
• Pick the right texture shader functions
• Pick the right texture blend functions
• Load the textures efficiently
• Manage your textures effectively
• Use multitexture to reduce number of passes
• Sort by texture to reduce state changes!



23

Texture Filtering and Formats

Still use bilinear mipmapped filtering for best speed 
when multitexturing

LINEAR_MIPMAP_LINEAR is as fast as bilinear when 
only a single 2D texture is being used on 
GeForce3

Use anisotropic filtering for best image fidelity
• Will not be free, but penalty only occurs when 

necessary, not on all pixels
• Higher levels will be slower

Use texture compression, if at all practical
Use single/dual component formats when possible



24

Texture Shader Programs

Pixels/s

1D

2D

Cubemap

Passthrough

Pixel kill

Dependent AR

Dependent GB

Offset 2D (no luminance)

Offset 2D (luminance)

Dot product 2D

Dot product depth

Dot product cubemap

Dot product reflection

Sh
ad

er
 p

ro
gr

am
 ty

pe

Texture Shader Performance



25

Texture Blending

Use register combiners for most flexibility
Final combiner is always “free” (i.e. full speed)
General combiners can slow things down:

• 1 or 2 can be enabled for free
• 3 or 4 can run at one half maximum speed
• 5 or 6 can run at one third maximum speed
• 7 or 8 can run at one fourth maximum speed

Maximum speed may not be possible due to choice 
and number of texture shaders (or other factors)

As such, number of enabled general combiners will 
likely not be the bottleneck in most cases



26

Texture Downloads and Copies

Texture downloads
• Always use glTexSubImage2D rather than 

glTexImage2D, if possible
• Match external/internal formats
• Use texture compression, if it makes sense
• Use SGIS_generate_mipmap instead of 

gluBuild2DMipmaps
Texture copies

• Match internal format to framebuffer (e.g. 32-bit 
desktop to GL_RGBA8)

• Will likely have a facility to texture by reference 
soon, obviating the copy



27

Other Fragment Operations

Render coarsely from front-to-back
• Minimizes memory bandwidth, which is often the 

performance bottleneck
• Particularly important on GeForce3, which has 

special early Z-culling hardware
Avoid blending

• Most modes drop fill rates
• Try to collapse multiple passes with multitexture

Avoid front-and-back rendering like the plague!
• Instead, render to back, then to front



28

Questions, comments, feedback

• John Spitzer, jspitzer@nvidia.com
• www.nvidia.com/developer


