
Cube MapsCube Maps
Chris Wynn & Sim Dietrich

Overview

• What are Cube Maps?

• How to Create a Cube Map

• Using Cube Maps for Environment-Maps

• Pre-Calculated Specular & Diffuse Lighting

What Are Cube Environment Maps?

• Cube Maps are made up of 6 square textures of
the same size, representing a cube centered at
the origin

• Each cube face represents a set of directions
along each major axis

• +X, -X, +Y, -Y, +Z, -Z
• Think of a unit cube centered about the origin
• Each texel on the cube represents what can be

‘seen’ from the origin in that direction

Visualizing the Cube Map
The Cube map is accessed via vectors expressed
as 3D texture coordinates (S, T, R).

The greatest magnitude component, S, T or R, is used
to select the cube face. The other 2 components are
used to select a texel from that face.

+S,+X

-R,-Z

+T,+Y

Cube Map Texture Coordinates

The calculation that is performed to generate
the coordinates is simply a 3D →→→→ 2D projected
texture.

1. Select the highest magnitude component, let’s
say -T

2. Divide the other components by -T, giving

S’ = S / -T
R’ = R / -T

Creating Cube Maps in OpenGL

• ARB_texture_cube_map &
EXT_texture_cube_map

• Defines <cap> parameter
GL_TEXTURE_CUBE_MAP_EXT

• Defines new texture <target> parameters for
texture functions such as:

glTexImage2D()
glCopyTexImage2D()
glCopySubTexImage2D()
…

Creating Cube Maps in OpenGL

• ARB_texture_cube_map &
EXT_texture_cube_map

• Defines new texture coordinate generation modes
GL_REFLECTION_MAP_EXT
GL_NORMAL_MAP_EXT

Creating Cube Maps in OpenGL

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X_EXT, 0,
GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_px);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X_EXT, 0,
GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_nx);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y_EXT, 0,
GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_py);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT, 0,
GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_ny);

glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z_EXT, 0,
GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_pz);

glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT, 0,
GL_RGB8, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, face_nz);

glEnable(GL_TEXTURE_CUBE_MAP_EXT);
/* Render geometry. */

glDisable(GL_TEXTURE_CUBE_MAP_EXT);

Environment Mapping with
Cube Maps

• Reflections of environment on shiny objects

• Other techniques
• Exhibit interpolation artifacts
• More difficult to generate for dynamic scenes

• Cube Environment maps
• Easy to generate on the fly
• S,T,R can be automatically calculated in HW
• Improved interpolation

Generating an Environment Map

• Set up a 90°°°° FOV camera at the object’s location
• Point the camera along +X, and render the

(approximate) scene around your object into the
first face of the cube map

• Repeat the process, facing -X, ± Y and ± Z into
each face of the cube map

• You now have a dynamically generated
environment map!

Example of Cube Environment
Mapping

Optimizations

• Dynamic Cube Maps don’t have to be full
resolution

• They also don’t need updating every frame

• Allowing updates to lag behind a frame prevents
stalling in some cases

Cube Map for Pre-Computed
Specular lighting (Illumination map)

• Use a cube map as a specular lighting solution for reflective
objects :

• The cubemap can be thought of as a function of a
vector that returns a RGBA value.

• Therefore, any lighting that relies on only a vector and
constant values can be precalculated and stored in the
cube map

• Render only your specular lighting into your cube map (
only valid for the current view vector)

• Use camera space reflection texture coordinate
generation

• Use blurred or low resolution cube map for rough
surfaces

Cube Map for Diffuse Lighting

• To use the environment map as a diffuse lighting
solution for diffuse objects :

• Render only diffuse lighting into cubemap
• Use GL_TEXTURE_GEN_MODE

GL_NORMAL_MAP_EXT

• Works well for directional (and distant) lights
• Does not work well when light is very close to

surface.

Dynamic Cube Maps

• Cube map only needs to be updated when
surrounding lights change
• Can use the cube map to store pre-calculated

lighting (i.e. lightmaps), and add in other lights on
top

• Don’t typically have to update the cube map every
frame
• roughly represent the environment, it will look

good

Cube Maps as Vector Lookups

• Think of a cube map as a way to store/lookup a
function with a vector
• The function can store a color or a vector
• Can also store an alpha

• For example, a cube map can store color which
represents a normalized a vector
• Allows vector interpolation with normalization
• V’ = Normalize(V) on a per-pixel basis
• Useful for bump mapping and per-pixel lighting
• Called a Normalization Cube Map

The Normalization Cube Map
The Cube map is accessed via vectors expressed
as 3D texture coordinates (S, T, R).

The Orange Vector < 0, 0, -8 > is passed in.
The Blue Vector < 0, 0, -1 > is returned in RGB form
as < 0x80, 0x80, 0x00 >.

+S,+X

+T,+Y

-R,-Z

Cube Maps as Vector Lookups

• Other useful functions
• V’ = -V
• Color = (L •••• N)
• Color = (R •••• V)n

Questions, comments, feedback

• Chris Wynn, cwynn@nvidia.com
• Sim Dietrich, sdietrich@nvidia.com
• www.nvidia.com/developer

