

# $\mathcal{N}VIDIA_{TM}$

## **Multi-Textured BRDF-based Lighting**

**Chris Wynn** 



#### **Overview**

- What is a BRDF?
- The BRDF Lighting Equation
- Multi-texture BRDF Approximations
  - Single term approximations
  - Multi-term approximations
- Cool stuff with BRDFs
- Demos and Discussion

#### What is a BRDF?

- BRDF = Bi-directional reflectance distribution function
- Describes how light is reflected when it interacts with a surface material
- Physically-based
  - Analytical
  - Measured Data
  - Offers increased level of lighting "realism" for computer graphics



• A BRDF is a 4D function: BRDF( $\theta_L, \phi_L, \theta_V, \phi_V$ )

## **The BRDF Lighting Equation**

- Derived using properties of calculus
- Single Point Light Source

$$\mathbf{I}_{\mathbf{V}} = \mathbf{I}_{\mathbf{L}} * \mathbf{BRDF}(\boldsymbol{\theta}_{\mathbf{L}}, \boldsymbol{\phi}_{\mathbf{L}}, \boldsymbol{\theta}_{\mathbf{V}}, \boldsymbol{\phi}_{\mathbf{V}}) * \cos(\boldsymbol{\theta}_{\mathbf{L}})$$

#### where

- I<sub>V</sub> ≡ intensity of light reflected in direction
  V from the surface point
- I<sub>L</sub> ≡ intensity of light arriving at the surface point from direction L

## **The BRDF Lighting Equation**

Multiple Point Light Sources

$$\mathbf{I}_{\mathbf{V}} = \sum_{i=1}^{n} \left( \mathbf{I}_{\mathbf{L}_{i}} * \mathbf{BRDF}(\boldsymbol{\theta}_{\mathbf{L}_{i}}, \boldsymbol{\phi}_{\mathbf{L}_{i}}, \boldsymbol{\theta}_{\mathbf{V}}, \boldsymbol{\phi}_{\mathbf{V}}) * \cos(\boldsymbol{\theta}_{\mathbf{L}_{i}}) \right)$$

where

- $I_V \equiv$  intensity of light reflected in direction V from the surface point
- $L_i \equiv$  direction to i<sup>th</sup> light source
- $I_{L_i} \equiv$  intensity of light arriving at the surface point from direction  $L_i$

## **The BRDF Lighting Equation**

- Fundamental Problems:
  - Given that a BRDF is a 4D function, how can we evaluate the lighting equation using current graphics HW?
  - How can we evaluate the lighting equation on a per-pixel basis?

- Basic Idea:
  - Approximate the 4D function with lower dimensional functions
  - "Separate" the BRDF into products of simpler functions
  - BRDF(L,V)  $\cong$  G<sub>1</sub>(L)\*H<sub>1</sub>(V) + G<sub>2</sub>(L)\*H<sub>2</sub>(V) + ...

How it works:



- Sample the BRDF and "unroll" the 4D function into a 2D matrix
- Each column (or row) corresponds to a single incoming light direction (or outgoing view direction).

• How it works (cont):



- Once the matrix has been created, perform a matrix decomposition to produce factors.
  - Singular Value Decomposition (SVD)
  - Normalized Decomposition (ND)

#### Normalized Decomposition

Produces a single term approximation



#### Normalized Decomposition

Produces a single term approximation



#### Normalized Decomposition (Example)



#### Normalized Decomposition (Example)

- Scale & Resample functions to create textures
  - Cube Maps, Dual-Parabaloid, or 2D Textures



- Normalized Decomposition (Example)
  - At Run-Time, compute L and V vectors pervertex.
  - Derive texture coordinates.
  - Apply multi-texturing to compute G \*H perpixel



Multi-Term Approximations

• Use SVD to compute:

 $\mathsf{BRDF}(\mathsf{L},\mathsf{V})\cong\mathsf{G}_1(\mathsf{L})^*\mathsf{H}_1(\mathsf{V})+\mathsf{G}_2(\mathsf{L})^*\mathsf{H}_2(\mathsf{V})+\dots$ 

• Use error from ND to compute  $G_2(L)$  and  $H_2(V)$ . Error(L,V) = BRDF(L,V) - G(L)\*H(V)

#### Multi-Term Approximations

 $Error(L,V) = BRDF(L,V) - G_1(L)^*H_1(V)$ 



- Multi-Term Approximations
  - Multiple terms improve results but require multiple textures.
    - One Term  $\Rightarrow$  2 textures
    - Two Term  $\Rightarrow$  4 textures
  - Perhaps there is other cool stuff we can do with additional textures.

## **Cool Stuff with BRDFs**

#### Single-Term BRDF-based lighting

![](_page_18_Picture_2.jpeg)

## **Cool Stuff with BRDFs**

#### Single-Term BRDF-based lighting

![](_page_19_Picture_2.jpeg)

#### **Cool Stuff with BRDFs**

#### Single-Term BRDF + Spotlight + Decal

![](_page_20_Picture_2.jpeg)

#### **Demos and Discussion**

Questions?

#### **Questions, comments, feedback**

- Chris Wynn, <u>cwynn@nvidia.com</u>
- www.nvidia.com/developer